1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ddb.h" 36 #include "opt_kdtrace.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mount.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/refcount.h> 50 #include <sys/sbuf.h> 51 #include <sys/sysent.h> 52 #include <sys/sched.h> 53 #include <sys/smp.h> 54 #include <sys/stack.h> 55 #include <sys/sysctl.h> 56 #include <sys/filedesc.h> 57 #include <sys/tty.h> 58 #include <sys/signalvar.h> 59 #include <sys/sdt.h> 60 #include <sys/sx.h> 61 #include <sys/user.h> 62 #include <sys/jail.h> 63 #include <sys/vnode.h> 64 #include <sys/eventhandler.h> 65 #ifdef KTRACE 66 #include <sys/uio.h> 67 #include <sys/ktrace.h> 68 #endif 69 70 #ifdef DDB 71 #include <ddb/ddb.h> 72 #endif 73 74 #include <vm/vm.h> 75 #include <vm/vm_extern.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/uma.h> 80 81 SDT_PROVIDER_DEFINE(proc); 82 SDT_PROBE_DEFINE(proc, kernel, ctor, entry); 83 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 87 SDT_PROBE_DEFINE(proc, kernel, ctor, return); 88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 92 SDT_PROBE_DEFINE(proc, kernel, dtor, entry); 93 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 97 SDT_PROBE_DEFINE(proc, kernel, dtor, return); 98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 101 SDT_PROBE_DEFINE(proc, kernel, init, entry); 102 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 105 SDT_PROBE_DEFINE(proc, kernel, init, return); 106 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 109 110 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 111 MALLOC_DEFINE(M_SESSION, "session", "session header"); 112 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 113 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 114 115 static void doenterpgrp(struct proc *, struct pgrp *); 116 static void orphanpg(struct pgrp *pg); 117 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 118 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 119 int preferthread); 120 static void pgadjustjobc(struct pgrp *pgrp, int entering); 121 static void pgdelete(struct pgrp *); 122 static int proc_ctor(void *mem, int size, void *arg, int flags); 123 static void proc_dtor(void *mem, int size, void *arg); 124 static int proc_init(void *mem, int size, int flags); 125 static void proc_fini(void *mem, int size); 126 static void pargs_free(struct pargs *pa); 127 128 /* 129 * Other process lists 130 */ 131 struct pidhashhead *pidhashtbl; 132 u_long pidhash; 133 struct pgrphashhead *pgrphashtbl; 134 u_long pgrphash; 135 struct proclist allproc; 136 struct proclist zombproc; 137 struct sx allproc_lock; 138 struct sx proctree_lock; 139 struct mtx ppeers_lock; 140 uma_zone_t proc_zone; 141 uma_zone_t ithread_zone; 142 143 int kstack_pages = KSTACK_PAGES; 144 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 145 146 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 147 148 /* 149 * Initialize global process hashing structures. 150 */ 151 void 152 procinit() 153 { 154 155 sx_init(&allproc_lock, "allproc"); 156 sx_init(&proctree_lock, "proctree"); 157 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 158 LIST_INIT(&allproc); 159 LIST_INIT(&zombproc); 160 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 161 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 162 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 163 proc_ctor, proc_dtor, proc_init, proc_fini, 164 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 165 uihashinit(); 166 } 167 168 /* 169 * Prepare a proc for use. 170 */ 171 static int 172 proc_ctor(void *mem, int size, void *arg, int flags) 173 { 174 struct proc *p; 175 176 p = (struct proc *)mem; 177 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 178 EVENTHANDLER_INVOKE(process_ctor, p); 179 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 180 return (0); 181 } 182 183 /* 184 * Reclaim a proc after use. 185 */ 186 static void 187 proc_dtor(void *mem, int size, void *arg) 188 { 189 struct proc *p; 190 struct thread *td; 191 192 /* INVARIANTS checks go here */ 193 p = (struct proc *)mem; 194 td = FIRST_THREAD_IN_PROC(p); 195 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 196 if (td != NULL) { 197 #ifdef INVARIANTS 198 KASSERT((p->p_numthreads == 1), 199 ("bad number of threads in exiting process")); 200 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 201 #endif 202 /* Dispose of an alternate kstack, if it exists. 203 * XXX What if there are more than one thread in the proc? 204 * The first thread in the proc is special and not 205 * freed, so you gotta do this here. 206 */ 207 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 208 vm_thread_dispose_altkstack(td); 209 } 210 EVENTHANDLER_INVOKE(process_dtor, p); 211 if (p->p_ksi != NULL) 212 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 213 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 214 } 215 216 /* 217 * Initialize type-stable parts of a proc (when newly created). 218 */ 219 static int 220 proc_init(void *mem, int size, int flags) 221 { 222 struct proc *p; 223 224 p = (struct proc *)mem; 225 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 226 p->p_sched = (struct p_sched *)&p[1]; 227 bzero(&p->p_mtx, sizeof(struct mtx)); 228 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 229 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 230 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 231 EVENTHANDLER_INVOKE(process_init, p); 232 p->p_stats = pstats_alloc(); 233 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 234 return (0); 235 } 236 237 /* 238 * UMA should ensure that this function is never called. 239 * Freeing a proc structure would violate type stability. 240 */ 241 static void 242 proc_fini(void *mem, int size) 243 { 244 #ifdef notnow 245 struct proc *p; 246 247 p = (struct proc *)mem; 248 EVENTHANDLER_INVOKE(process_fini, p); 249 pstats_free(p->p_stats); 250 thread_free(FIRST_THREAD_IN_PROC(p)); 251 mtx_destroy(&p->p_mtx); 252 if (p->p_ksi != NULL) 253 ksiginfo_free(p->p_ksi); 254 #else 255 panic("proc reclaimed"); 256 #endif 257 } 258 259 /* 260 * Is p an inferior of the current process? 261 */ 262 int 263 inferior(p) 264 register struct proc *p; 265 { 266 267 sx_assert(&proctree_lock, SX_LOCKED); 268 for (; p != curproc; p = p->p_pptr) 269 if (p->p_pid == 0) 270 return (0); 271 return (1); 272 } 273 274 /* 275 * Locate a process by number; return only "live" processes -- i.e., neither 276 * zombies nor newly born but incompletely initialized processes. By not 277 * returning processes in the PRS_NEW state, we allow callers to avoid 278 * testing for that condition to avoid dereferencing p_ucred, et al. 279 */ 280 struct proc * 281 pfind(pid) 282 register pid_t pid; 283 { 284 register struct proc *p; 285 286 sx_slock(&allproc_lock); 287 LIST_FOREACH(p, PIDHASH(pid), p_hash) 288 if (p->p_pid == pid) { 289 if (p->p_state == PRS_NEW) { 290 p = NULL; 291 break; 292 } 293 PROC_LOCK(p); 294 break; 295 } 296 sx_sunlock(&allproc_lock); 297 return (p); 298 } 299 300 /* 301 * Locate a process group by number. 302 * The caller must hold proctree_lock. 303 */ 304 struct pgrp * 305 pgfind(pgid) 306 register pid_t pgid; 307 { 308 register struct pgrp *pgrp; 309 310 sx_assert(&proctree_lock, SX_LOCKED); 311 312 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 313 if (pgrp->pg_id == pgid) { 314 PGRP_LOCK(pgrp); 315 return (pgrp); 316 } 317 } 318 return (NULL); 319 } 320 321 /* 322 * Create a new process group. 323 * pgid must be equal to the pid of p. 324 * Begin a new session if required. 325 */ 326 int 327 enterpgrp(p, pgid, pgrp, sess) 328 register struct proc *p; 329 pid_t pgid; 330 struct pgrp *pgrp; 331 struct session *sess; 332 { 333 struct pgrp *pgrp2; 334 335 sx_assert(&proctree_lock, SX_XLOCKED); 336 337 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 338 KASSERT(p->p_pid == pgid, 339 ("enterpgrp: new pgrp and pid != pgid")); 340 341 pgrp2 = pgfind(pgid); 342 343 KASSERT(pgrp2 == NULL, 344 ("enterpgrp: pgrp with pgid exists")); 345 KASSERT(!SESS_LEADER(p), 346 ("enterpgrp: session leader attempted setpgrp")); 347 348 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 349 350 if (sess != NULL) { 351 /* 352 * new session 353 */ 354 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 355 PROC_LOCK(p); 356 p->p_flag &= ~P_CONTROLT; 357 PROC_UNLOCK(p); 358 PGRP_LOCK(pgrp); 359 sess->s_leader = p; 360 sess->s_sid = p->p_pid; 361 refcount_init(&sess->s_count, 1); 362 sess->s_ttyvp = NULL; 363 sess->s_ttyp = NULL; 364 bcopy(p->p_session->s_login, sess->s_login, 365 sizeof(sess->s_login)); 366 pgrp->pg_session = sess; 367 KASSERT(p == curproc, 368 ("enterpgrp: mksession and p != curproc")); 369 } else { 370 pgrp->pg_session = p->p_session; 371 sess_hold(pgrp->pg_session); 372 PGRP_LOCK(pgrp); 373 } 374 pgrp->pg_id = pgid; 375 LIST_INIT(&pgrp->pg_members); 376 377 /* 378 * As we have an exclusive lock of proctree_lock, 379 * this should not deadlock. 380 */ 381 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 382 pgrp->pg_jobc = 0; 383 SLIST_INIT(&pgrp->pg_sigiolst); 384 PGRP_UNLOCK(pgrp); 385 386 doenterpgrp(p, pgrp); 387 388 return (0); 389 } 390 391 /* 392 * Move p to an existing process group 393 */ 394 int 395 enterthispgrp(p, pgrp) 396 register struct proc *p; 397 struct pgrp *pgrp; 398 { 399 400 sx_assert(&proctree_lock, SX_XLOCKED); 401 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 402 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 403 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 404 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 405 KASSERT(pgrp->pg_session == p->p_session, 406 ("%s: pgrp's session %p, p->p_session %p.\n", 407 __func__, 408 pgrp->pg_session, 409 p->p_session)); 410 KASSERT(pgrp != p->p_pgrp, 411 ("%s: p belongs to pgrp.", __func__)); 412 413 doenterpgrp(p, pgrp); 414 415 return (0); 416 } 417 418 /* 419 * Move p to a process group 420 */ 421 static void 422 doenterpgrp(p, pgrp) 423 struct proc *p; 424 struct pgrp *pgrp; 425 { 426 struct pgrp *savepgrp; 427 428 sx_assert(&proctree_lock, SX_XLOCKED); 429 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 430 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 431 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 432 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 433 434 savepgrp = p->p_pgrp; 435 436 /* 437 * Adjust eligibility of affected pgrps to participate in job control. 438 * Increment eligibility counts before decrementing, otherwise we 439 * could reach 0 spuriously during the first call. 440 */ 441 fixjobc(p, pgrp, 1); 442 fixjobc(p, p->p_pgrp, 0); 443 444 PGRP_LOCK(pgrp); 445 PGRP_LOCK(savepgrp); 446 PROC_LOCK(p); 447 LIST_REMOVE(p, p_pglist); 448 p->p_pgrp = pgrp; 449 PROC_UNLOCK(p); 450 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 451 PGRP_UNLOCK(savepgrp); 452 PGRP_UNLOCK(pgrp); 453 if (LIST_EMPTY(&savepgrp->pg_members)) 454 pgdelete(savepgrp); 455 } 456 457 /* 458 * remove process from process group 459 */ 460 int 461 leavepgrp(p) 462 register struct proc *p; 463 { 464 struct pgrp *savepgrp; 465 466 sx_assert(&proctree_lock, SX_XLOCKED); 467 savepgrp = p->p_pgrp; 468 PGRP_LOCK(savepgrp); 469 PROC_LOCK(p); 470 LIST_REMOVE(p, p_pglist); 471 p->p_pgrp = NULL; 472 PROC_UNLOCK(p); 473 PGRP_UNLOCK(savepgrp); 474 if (LIST_EMPTY(&savepgrp->pg_members)) 475 pgdelete(savepgrp); 476 return (0); 477 } 478 479 /* 480 * delete a process group 481 */ 482 static void 483 pgdelete(pgrp) 484 register struct pgrp *pgrp; 485 { 486 struct session *savesess; 487 struct tty *tp; 488 489 sx_assert(&proctree_lock, SX_XLOCKED); 490 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 491 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 492 493 /* 494 * Reset any sigio structures pointing to us as a result of 495 * F_SETOWN with our pgid. 496 */ 497 funsetownlst(&pgrp->pg_sigiolst); 498 499 PGRP_LOCK(pgrp); 500 tp = pgrp->pg_session->s_ttyp; 501 LIST_REMOVE(pgrp, pg_hash); 502 savesess = pgrp->pg_session; 503 PGRP_UNLOCK(pgrp); 504 505 /* Remove the reference to the pgrp before deallocating it. */ 506 if (tp != NULL) { 507 tty_lock(tp); 508 tty_rel_pgrp(tp, pgrp); 509 tty_unlock(tp); 510 } 511 512 mtx_destroy(&pgrp->pg_mtx); 513 FREE(pgrp, M_PGRP); 514 sess_release(savesess); 515 } 516 517 static void 518 pgadjustjobc(pgrp, entering) 519 struct pgrp *pgrp; 520 int entering; 521 { 522 523 PGRP_LOCK(pgrp); 524 if (entering) 525 pgrp->pg_jobc++; 526 else { 527 --pgrp->pg_jobc; 528 if (pgrp->pg_jobc == 0) 529 orphanpg(pgrp); 530 } 531 PGRP_UNLOCK(pgrp); 532 } 533 534 /* 535 * Adjust pgrp jobc counters when specified process changes process group. 536 * We count the number of processes in each process group that "qualify" 537 * the group for terminal job control (those with a parent in a different 538 * process group of the same session). If that count reaches zero, the 539 * process group becomes orphaned. Check both the specified process' 540 * process group and that of its children. 541 * entering == 0 => p is leaving specified group. 542 * entering == 1 => p is entering specified group. 543 */ 544 void 545 fixjobc(p, pgrp, entering) 546 register struct proc *p; 547 register struct pgrp *pgrp; 548 int entering; 549 { 550 register struct pgrp *hispgrp; 551 register struct session *mysession; 552 553 sx_assert(&proctree_lock, SX_LOCKED); 554 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 555 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 556 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 557 558 /* 559 * Check p's parent to see whether p qualifies its own process 560 * group; if so, adjust count for p's process group. 561 */ 562 mysession = pgrp->pg_session; 563 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 564 hispgrp->pg_session == mysession) 565 pgadjustjobc(pgrp, entering); 566 567 /* 568 * Check this process' children to see whether they qualify 569 * their process groups; if so, adjust counts for children's 570 * process groups. 571 */ 572 LIST_FOREACH(p, &p->p_children, p_sibling) { 573 hispgrp = p->p_pgrp; 574 if (hispgrp == pgrp || 575 hispgrp->pg_session != mysession) 576 continue; 577 PROC_LOCK(p); 578 if (p->p_state == PRS_ZOMBIE) { 579 PROC_UNLOCK(p); 580 continue; 581 } 582 PROC_UNLOCK(p); 583 pgadjustjobc(hispgrp, entering); 584 } 585 } 586 587 /* 588 * A process group has become orphaned; 589 * if there are any stopped processes in the group, 590 * hang-up all process in that group. 591 */ 592 static void 593 orphanpg(pg) 594 struct pgrp *pg; 595 { 596 register struct proc *p; 597 598 PGRP_LOCK_ASSERT(pg, MA_OWNED); 599 600 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 601 PROC_LOCK(p); 602 if (P_SHOULDSTOP(p)) { 603 PROC_UNLOCK(p); 604 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 605 PROC_LOCK(p); 606 psignal(p, SIGHUP); 607 psignal(p, SIGCONT); 608 PROC_UNLOCK(p); 609 } 610 return; 611 } 612 PROC_UNLOCK(p); 613 } 614 } 615 616 void 617 sess_hold(struct session *s) 618 { 619 620 refcount_acquire(&s->s_count); 621 } 622 623 void 624 sess_release(struct session *s) 625 { 626 627 if (refcount_release(&s->s_count)) { 628 if (s->s_ttyp != NULL) { 629 tty_lock(s->s_ttyp); 630 tty_rel_sess(s->s_ttyp, s); 631 } 632 mtx_destroy(&s->s_mtx); 633 FREE(s, M_SESSION); 634 } 635 } 636 637 #include "opt_ddb.h" 638 #ifdef DDB 639 #include <ddb/ddb.h> 640 641 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 642 { 643 register struct pgrp *pgrp; 644 register struct proc *p; 645 register int i; 646 647 for (i = 0; i <= pgrphash; i++) { 648 if (!LIST_EMPTY(&pgrphashtbl[i])) { 649 printf("\tindx %d\n", i); 650 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 651 printf( 652 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 653 (void *)pgrp, (long)pgrp->pg_id, 654 (void *)pgrp->pg_session, 655 pgrp->pg_session->s_count, 656 (void *)LIST_FIRST(&pgrp->pg_members)); 657 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 658 printf("\t\tpid %ld addr %p pgrp %p\n", 659 (long)p->p_pid, (void *)p, 660 (void *)p->p_pgrp); 661 } 662 } 663 } 664 } 665 } 666 #endif /* DDB */ 667 668 /* 669 * Clear kinfo_proc and fill in any information that is common 670 * to all threads in the process. 671 * Must be called with the target process locked. 672 */ 673 static void 674 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 675 { 676 struct thread *td0; 677 struct tty *tp; 678 struct session *sp; 679 struct ucred *cred; 680 struct sigacts *ps; 681 682 PROC_LOCK_ASSERT(p, MA_OWNED); 683 bzero(kp, sizeof(*kp)); 684 685 kp->ki_structsize = sizeof(*kp); 686 kp->ki_paddr = p; 687 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 688 kp->ki_args = p->p_args; 689 kp->ki_textvp = p->p_textvp; 690 #ifdef KTRACE 691 kp->ki_tracep = p->p_tracevp; 692 mtx_lock(&ktrace_mtx); 693 kp->ki_traceflag = p->p_traceflag; 694 mtx_unlock(&ktrace_mtx); 695 #endif 696 kp->ki_fd = p->p_fd; 697 kp->ki_vmspace = p->p_vmspace; 698 kp->ki_flag = p->p_flag; 699 cred = p->p_ucred; 700 if (cred) { 701 kp->ki_uid = cred->cr_uid; 702 kp->ki_ruid = cred->cr_ruid; 703 kp->ki_svuid = cred->cr_svuid; 704 /* XXX bde doesn't like KI_NGROUPS */ 705 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 706 bcopy(cred->cr_groups, kp->ki_groups, 707 kp->ki_ngroups * sizeof(gid_t)); 708 kp->ki_rgid = cred->cr_rgid; 709 kp->ki_svgid = cred->cr_svgid; 710 /* If jailed(cred), emulate the old P_JAILED flag. */ 711 if (jailed(cred)) { 712 kp->ki_flag |= P_JAILED; 713 /* If inside a jail, use 0 as a jail ID. */ 714 if (!jailed(curthread->td_ucred)) 715 kp->ki_jid = cred->cr_prison->pr_id; 716 } 717 } 718 ps = p->p_sigacts; 719 if (ps) { 720 mtx_lock(&ps->ps_mtx); 721 kp->ki_sigignore = ps->ps_sigignore; 722 kp->ki_sigcatch = ps->ps_sigcatch; 723 mtx_unlock(&ps->ps_mtx); 724 } 725 PROC_SLOCK(p); 726 if (p->p_state != PRS_NEW && 727 p->p_state != PRS_ZOMBIE && 728 p->p_vmspace != NULL) { 729 struct vmspace *vm = p->p_vmspace; 730 731 kp->ki_size = vm->vm_map.size; 732 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 733 FOREACH_THREAD_IN_PROC(p, td0) { 734 if (!TD_IS_SWAPPED(td0)) 735 kp->ki_rssize += td0->td_kstack_pages; 736 if (td0->td_altkstack_obj != NULL) 737 kp->ki_rssize += td0->td_altkstack_pages; 738 } 739 kp->ki_swrss = vm->vm_swrss; 740 kp->ki_tsize = vm->vm_tsize; 741 kp->ki_dsize = vm->vm_dsize; 742 kp->ki_ssize = vm->vm_ssize; 743 } else if (p->p_state == PRS_ZOMBIE) 744 kp->ki_stat = SZOMB; 745 if (kp->ki_flag & P_INMEM) 746 kp->ki_sflag = PS_INMEM; 747 else 748 kp->ki_sflag = 0; 749 /* Calculate legacy swtime as seconds since 'swtick'. */ 750 kp->ki_swtime = (ticks - p->p_swtick) / hz; 751 kp->ki_pid = p->p_pid; 752 kp->ki_nice = p->p_nice; 753 rufetch(p, &kp->ki_rusage); 754 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 755 PROC_SUNLOCK(p); 756 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 757 kp->ki_start = p->p_stats->p_start; 758 timevaladd(&kp->ki_start, &boottime); 759 PROC_SLOCK(p); 760 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 761 PROC_SUNLOCK(p); 762 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 763 764 /* Some callers want child-times in a single value */ 765 kp->ki_childtime = kp->ki_childstime; 766 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 767 } 768 tp = NULL; 769 if (p->p_pgrp) { 770 kp->ki_pgid = p->p_pgrp->pg_id; 771 kp->ki_jobc = p->p_pgrp->pg_jobc; 772 sp = p->p_pgrp->pg_session; 773 774 if (sp != NULL) { 775 kp->ki_sid = sp->s_sid; 776 SESS_LOCK(sp); 777 strlcpy(kp->ki_login, sp->s_login, 778 sizeof(kp->ki_login)); 779 if (sp->s_ttyvp) 780 kp->ki_kiflag |= KI_CTTY; 781 if (SESS_LEADER(p)) 782 kp->ki_kiflag |= KI_SLEADER; 783 /* XXX proctree_lock */ 784 tp = sp->s_ttyp; 785 SESS_UNLOCK(sp); 786 } 787 } 788 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 789 kp->ki_tdev = tty_udev(tp); 790 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 791 if (tp->t_session) 792 kp->ki_tsid = tp->t_session->s_sid; 793 } else 794 kp->ki_tdev = NODEV; 795 if (p->p_comm[0] != '\0') 796 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 797 if (p->p_sysent && p->p_sysent->sv_name != NULL && 798 p->p_sysent->sv_name[0] != '\0') 799 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 800 kp->ki_siglist = p->p_siglist; 801 kp->ki_xstat = p->p_xstat; 802 kp->ki_acflag = p->p_acflag; 803 kp->ki_lock = p->p_lock; 804 if (p->p_pptr) 805 kp->ki_ppid = p->p_pptr->p_pid; 806 } 807 808 /* 809 * Fill in information that is thread specific. Must be called with p_slock 810 * locked. If 'preferthread' is set, overwrite certain process-related 811 * fields that are maintained for both threads and processes. 812 */ 813 static void 814 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 815 { 816 struct proc *p; 817 818 p = td->td_proc; 819 PROC_LOCK_ASSERT(p, MA_OWNED); 820 821 thread_lock(td); 822 if (td->td_wmesg != NULL) 823 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 824 else 825 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 826 if (td->td_name[0] != '\0') 827 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 828 if (TD_ON_LOCK(td)) { 829 kp->ki_kiflag |= KI_LOCKBLOCK; 830 strlcpy(kp->ki_lockname, td->td_lockname, 831 sizeof(kp->ki_lockname)); 832 } else { 833 kp->ki_kiflag &= ~KI_LOCKBLOCK; 834 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 835 } 836 837 if (p->p_state == PRS_NORMAL) { /* approximate. */ 838 if (TD_ON_RUNQ(td) || 839 TD_CAN_RUN(td) || 840 TD_IS_RUNNING(td)) { 841 kp->ki_stat = SRUN; 842 } else if (P_SHOULDSTOP(p)) { 843 kp->ki_stat = SSTOP; 844 } else if (TD_IS_SLEEPING(td)) { 845 kp->ki_stat = SSLEEP; 846 } else if (TD_ON_LOCK(td)) { 847 kp->ki_stat = SLOCK; 848 } else { 849 kp->ki_stat = SWAIT; 850 } 851 } else if (p->p_state == PRS_ZOMBIE) { 852 kp->ki_stat = SZOMB; 853 } else { 854 kp->ki_stat = SIDL; 855 } 856 857 /* Things in the thread */ 858 kp->ki_wchan = td->td_wchan; 859 kp->ki_pri.pri_level = td->td_priority; 860 kp->ki_pri.pri_native = td->td_base_pri; 861 kp->ki_lastcpu = td->td_lastcpu; 862 kp->ki_oncpu = td->td_oncpu; 863 kp->ki_tdflags = td->td_flags; 864 kp->ki_tid = td->td_tid; 865 kp->ki_numthreads = p->p_numthreads; 866 kp->ki_pcb = td->td_pcb; 867 kp->ki_kstack = (void *)td->td_kstack; 868 kp->ki_pctcpu = sched_pctcpu(td); 869 kp->ki_estcpu = td->td_estcpu; 870 kp->ki_slptime = (ticks - td->td_slptick) / hz; 871 kp->ki_pri.pri_class = td->td_pri_class; 872 kp->ki_pri.pri_user = td->td_user_pri; 873 874 if (preferthread) 875 kp->ki_runtime = cputick2usec(td->td_runtime); 876 877 /* We can't get this anymore but ps etc never used it anyway. */ 878 kp->ki_rqindex = 0; 879 880 SIGSETOR(kp->ki_siglist, td->td_siglist); 881 kp->ki_sigmask = td->td_sigmask; 882 thread_unlock(td); 883 } 884 885 /* 886 * Fill in a kinfo_proc structure for the specified process. 887 * Must be called with the target process locked. 888 */ 889 void 890 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 891 { 892 893 fill_kinfo_proc_only(p, kp); 894 if (FIRST_THREAD_IN_PROC(p) != NULL) 895 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 896 } 897 898 struct pstats * 899 pstats_alloc(void) 900 { 901 902 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 903 } 904 905 /* 906 * Copy parts of p_stats; zero the rest of p_stats (statistics). 907 */ 908 void 909 pstats_fork(struct pstats *src, struct pstats *dst) 910 { 911 912 bzero(&dst->pstat_startzero, 913 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 914 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 915 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 916 } 917 918 void 919 pstats_free(struct pstats *ps) 920 { 921 922 free(ps, M_SUBPROC); 923 } 924 925 /* 926 * Locate a zombie process by number 927 */ 928 struct proc * 929 zpfind(pid_t pid) 930 { 931 struct proc *p; 932 933 sx_slock(&allproc_lock); 934 LIST_FOREACH(p, &zombproc, p_list) 935 if (p->p_pid == pid) { 936 PROC_LOCK(p); 937 break; 938 } 939 sx_sunlock(&allproc_lock); 940 return (p); 941 } 942 943 #define KERN_PROC_ZOMBMASK 0x3 944 #define KERN_PROC_NOTHREADS 0x4 945 946 /* 947 * Must be called with the process locked and will return with it unlocked. 948 */ 949 static int 950 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 951 { 952 struct thread *td; 953 struct kinfo_proc kinfo_proc; 954 int error = 0; 955 struct proc *np; 956 pid_t pid = p->p_pid; 957 958 PROC_LOCK_ASSERT(p, MA_OWNED); 959 960 fill_kinfo_proc_only(p, &kinfo_proc); 961 if (flags & KERN_PROC_NOTHREADS) { 962 if (FIRST_THREAD_IN_PROC(p) != NULL) 963 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), 964 &kinfo_proc, 0); 965 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 966 sizeof(kinfo_proc)); 967 } else { 968 if (FIRST_THREAD_IN_PROC(p) != NULL) 969 FOREACH_THREAD_IN_PROC(p, td) { 970 fill_kinfo_thread(td, &kinfo_proc, 1); 971 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 972 sizeof(kinfo_proc)); 973 if (error) 974 break; 975 } 976 else 977 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 978 sizeof(kinfo_proc)); 979 } 980 PROC_UNLOCK(p); 981 if (error) 982 return (error); 983 if (flags & KERN_PROC_ZOMBMASK) 984 np = zpfind(pid); 985 else { 986 if (pid == 0) 987 return (0); 988 np = pfind(pid); 989 } 990 if (np == NULL) 991 return EAGAIN; 992 if (np != p) { 993 PROC_UNLOCK(np); 994 return EAGAIN; 995 } 996 PROC_UNLOCK(np); 997 return (0); 998 } 999 1000 static int 1001 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1002 { 1003 int *name = (int*) arg1; 1004 u_int namelen = arg2; 1005 struct proc *p; 1006 int flags, doingzomb, oid_number; 1007 int error = 0; 1008 1009 oid_number = oidp->oid_number; 1010 if (oid_number != KERN_PROC_ALL && 1011 (oid_number & KERN_PROC_INC_THREAD) == 0) 1012 flags = KERN_PROC_NOTHREADS; 1013 else { 1014 flags = 0; 1015 oid_number &= ~KERN_PROC_INC_THREAD; 1016 } 1017 if (oid_number == KERN_PROC_PID) { 1018 if (namelen != 1) 1019 return (EINVAL); 1020 error = sysctl_wire_old_buffer(req, 0); 1021 if (error) 1022 return (error); 1023 p = pfind((pid_t)name[0]); 1024 if (!p) 1025 return (ESRCH); 1026 if ((error = p_cansee(curthread, p))) { 1027 PROC_UNLOCK(p); 1028 return (error); 1029 } 1030 error = sysctl_out_proc(p, req, flags); 1031 return (error); 1032 } 1033 1034 switch (oid_number) { 1035 case KERN_PROC_ALL: 1036 if (namelen != 0) 1037 return (EINVAL); 1038 break; 1039 case KERN_PROC_PROC: 1040 if (namelen != 0 && namelen != 1) 1041 return (EINVAL); 1042 break; 1043 default: 1044 if (namelen != 1) 1045 return (EINVAL); 1046 break; 1047 } 1048 1049 if (!req->oldptr) { 1050 /* overestimate by 5 procs */ 1051 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1052 if (error) 1053 return (error); 1054 } 1055 error = sysctl_wire_old_buffer(req, 0); 1056 if (error != 0) 1057 return (error); 1058 sx_slock(&allproc_lock); 1059 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1060 if (!doingzomb) 1061 p = LIST_FIRST(&allproc); 1062 else 1063 p = LIST_FIRST(&zombproc); 1064 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1065 /* 1066 * Skip embryonic processes. 1067 */ 1068 PROC_SLOCK(p); 1069 if (p->p_state == PRS_NEW) { 1070 PROC_SUNLOCK(p); 1071 continue; 1072 } 1073 PROC_SUNLOCK(p); 1074 PROC_LOCK(p); 1075 KASSERT(p->p_ucred != NULL, 1076 ("process credential is NULL for non-NEW proc")); 1077 /* 1078 * Show a user only appropriate processes. 1079 */ 1080 if (p_cansee(curthread, p)) { 1081 PROC_UNLOCK(p); 1082 continue; 1083 } 1084 /* 1085 * TODO - make more efficient (see notes below). 1086 * do by session. 1087 */ 1088 switch (oid_number) { 1089 1090 case KERN_PROC_GID: 1091 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1092 PROC_UNLOCK(p); 1093 continue; 1094 } 1095 break; 1096 1097 case KERN_PROC_PGRP: 1098 /* could do this by traversing pgrp */ 1099 if (p->p_pgrp == NULL || 1100 p->p_pgrp->pg_id != (pid_t)name[0]) { 1101 PROC_UNLOCK(p); 1102 continue; 1103 } 1104 break; 1105 1106 case KERN_PROC_RGID: 1107 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1108 PROC_UNLOCK(p); 1109 continue; 1110 } 1111 break; 1112 1113 case KERN_PROC_SESSION: 1114 if (p->p_session == NULL || 1115 p->p_session->s_sid != (pid_t)name[0]) { 1116 PROC_UNLOCK(p); 1117 continue; 1118 } 1119 break; 1120 1121 case KERN_PROC_TTY: 1122 if ((p->p_flag & P_CONTROLT) == 0 || 1123 p->p_session == NULL) { 1124 PROC_UNLOCK(p); 1125 continue; 1126 } 1127 /* XXX proctree_lock */ 1128 SESS_LOCK(p->p_session); 1129 if (p->p_session->s_ttyp == NULL || 1130 tty_udev(p->p_session->s_ttyp) != 1131 (dev_t)name[0]) { 1132 SESS_UNLOCK(p->p_session); 1133 PROC_UNLOCK(p); 1134 continue; 1135 } 1136 SESS_UNLOCK(p->p_session); 1137 break; 1138 1139 case KERN_PROC_UID: 1140 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1141 PROC_UNLOCK(p); 1142 continue; 1143 } 1144 break; 1145 1146 case KERN_PROC_RUID: 1147 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1148 PROC_UNLOCK(p); 1149 continue; 1150 } 1151 break; 1152 1153 case KERN_PROC_PROC: 1154 break; 1155 1156 default: 1157 break; 1158 1159 } 1160 1161 error = sysctl_out_proc(p, req, flags | doingzomb); 1162 if (error) { 1163 sx_sunlock(&allproc_lock); 1164 return (error); 1165 } 1166 } 1167 } 1168 sx_sunlock(&allproc_lock); 1169 return (0); 1170 } 1171 1172 struct pargs * 1173 pargs_alloc(int len) 1174 { 1175 struct pargs *pa; 1176 1177 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1178 M_WAITOK); 1179 refcount_init(&pa->ar_ref, 1); 1180 pa->ar_length = len; 1181 return (pa); 1182 } 1183 1184 static void 1185 pargs_free(struct pargs *pa) 1186 { 1187 1188 FREE(pa, M_PARGS); 1189 } 1190 1191 void 1192 pargs_hold(struct pargs *pa) 1193 { 1194 1195 if (pa == NULL) 1196 return; 1197 refcount_acquire(&pa->ar_ref); 1198 } 1199 1200 void 1201 pargs_drop(struct pargs *pa) 1202 { 1203 1204 if (pa == NULL) 1205 return; 1206 if (refcount_release(&pa->ar_ref)) 1207 pargs_free(pa); 1208 } 1209 1210 /* 1211 * This sysctl allows a process to retrieve the argument list or process 1212 * title for another process without groping around in the address space 1213 * of the other process. It also allow a process to set its own "process 1214 * title to a string of its own choice. 1215 */ 1216 static int 1217 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1218 { 1219 int *name = (int*) arg1; 1220 u_int namelen = arg2; 1221 struct pargs *newpa, *pa; 1222 struct proc *p; 1223 int error = 0; 1224 1225 if (namelen != 1) 1226 return (EINVAL); 1227 1228 p = pfind((pid_t)name[0]); 1229 if (!p) 1230 return (ESRCH); 1231 1232 if ((error = p_cansee(curthread, p)) != 0) { 1233 PROC_UNLOCK(p); 1234 return (error); 1235 } 1236 1237 if (req->newptr && curproc != p) { 1238 PROC_UNLOCK(p); 1239 return (EPERM); 1240 } 1241 1242 pa = p->p_args; 1243 pargs_hold(pa); 1244 PROC_UNLOCK(p); 1245 if (req->oldptr != NULL && pa != NULL) 1246 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1247 pargs_drop(pa); 1248 if (error != 0 || req->newptr == NULL) 1249 return (error); 1250 1251 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1252 return (ENOMEM); 1253 newpa = pargs_alloc(req->newlen); 1254 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1255 if (error != 0) { 1256 pargs_free(newpa); 1257 return (error); 1258 } 1259 PROC_LOCK(p); 1260 pa = p->p_args; 1261 p->p_args = newpa; 1262 PROC_UNLOCK(p); 1263 pargs_drop(pa); 1264 return (0); 1265 } 1266 1267 /* 1268 * This sysctl allows a process to retrieve the path of the executable for 1269 * itself or another process. 1270 */ 1271 static int 1272 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1273 { 1274 pid_t *pidp = (pid_t *)arg1; 1275 unsigned int arglen = arg2; 1276 struct proc *p; 1277 struct vnode *vp; 1278 char *retbuf, *freebuf; 1279 int error; 1280 1281 if (arglen != 1) 1282 return (EINVAL); 1283 if (*pidp == -1) { /* -1 means this process */ 1284 p = req->td->td_proc; 1285 } else { 1286 p = pfind(*pidp); 1287 if (p == NULL) 1288 return (ESRCH); 1289 if ((error = p_cansee(curthread, p)) != 0) { 1290 PROC_UNLOCK(p); 1291 return (error); 1292 } 1293 } 1294 1295 vp = p->p_textvp; 1296 if (vp == NULL) { 1297 if (*pidp != -1) 1298 PROC_UNLOCK(p); 1299 return (0); 1300 } 1301 vref(vp); 1302 if (*pidp != -1) 1303 PROC_UNLOCK(p); 1304 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1305 vrele(vp); 1306 if (error) 1307 return (error); 1308 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1309 free(freebuf, M_TEMP); 1310 return (error); 1311 } 1312 1313 static int 1314 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1315 { 1316 struct proc *p; 1317 char *sv_name; 1318 int *name; 1319 int namelen; 1320 int error; 1321 1322 namelen = arg2; 1323 if (namelen != 1) 1324 return (EINVAL); 1325 1326 name = (int *)arg1; 1327 if ((p = pfind((pid_t)name[0])) == NULL) 1328 return (ESRCH); 1329 if ((error = p_cansee(curthread, p))) { 1330 PROC_UNLOCK(p); 1331 return (error); 1332 } 1333 sv_name = p->p_sysent->sv_name; 1334 PROC_UNLOCK(p); 1335 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1336 } 1337 1338 static int 1339 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1340 { 1341 vm_map_entry_t entry, tmp_entry; 1342 unsigned int last_timestamp; 1343 char *fullpath, *freepath; 1344 struct kinfo_vmentry *kve; 1345 int error, *name; 1346 struct vnode *vp; 1347 struct proc *p; 1348 vm_map_t map; 1349 1350 name = (int *)arg1; 1351 if ((p = pfind((pid_t)name[0])) == NULL) 1352 return (ESRCH); 1353 if (p->p_flag & P_WEXIT) { 1354 PROC_UNLOCK(p); 1355 return (ESRCH); 1356 } 1357 if ((error = p_candebug(curthread, p))) { 1358 PROC_UNLOCK(p); 1359 return (error); 1360 } 1361 _PHOLD(p); 1362 PROC_UNLOCK(p); 1363 1364 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1365 1366 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1367 vm_map_lock_read(map); 1368 for (entry = map->header.next; entry != &map->header; 1369 entry = entry->next) { 1370 vm_object_t obj, tobj, lobj; 1371 vm_offset_t addr; 1372 int vfslocked; 1373 1374 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1375 continue; 1376 1377 bzero(kve, sizeof(*kve)); 1378 kve->kve_structsize = sizeof(*kve); 1379 1380 kve->kve_private_resident = 0; 1381 obj = entry->object.vm_object; 1382 if (obj != NULL) { 1383 VM_OBJECT_LOCK(obj); 1384 if (obj->shadow_count == 1) 1385 kve->kve_private_resident = 1386 obj->resident_page_count; 1387 } 1388 kve->kve_resident = 0; 1389 addr = entry->start; 1390 while (addr < entry->end) { 1391 if (pmap_extract(map->pmap, addr)) 1392 kve->kve_resident++; 1393 addr += PAGE_SIZE; 1394 } 1395 1396 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1397 if (tobj != obj) 1398 VM_OBJECT_LOCK(tobj); 1399 if (lobj != obj) 1400 VM_OBJECT_UNLOCK(lobj); 1401 lobj = tobj; 1402 } 1403 1404 freepath = NULL; 1405 fullpath = ""; 1406 if (lobj) { 1407 vp = NULL; 1408 switch(lobj->type) { 1409 case OBJT_DEFAULT: 1410 kve->kve_type = KVME_TYPE_DEFAULT; 1411 break; 1412 case OBJT_VNODE: 1413 kve->kve_type = KVME_TYPE_VNODE; 1414 vp = lobj->handle; 1415 vref(vp); 1416 break; 1417 case OBJT_SWAP: 1418 kve->kve_type = KVME_TYPE_SWAP; 1419 break; 1420 case OBJT_DEVICE: 1421 kve->kve_type = KVME_TYPE_DEVICE; 1422 break; 1423 case OBJT_PHYS: 1424 kve->kve_type = KVME_TYPE_PHYS; 1425 break; 1426 case OBJT_DEAD: 1427 kve->kve_type = KVME_TYPE_DEAD; 1428 break; 1429 default: 1430 kve->kve_type = KVME_TYPE_UNKNOWN; 1431 break; 1432 } 1433 if (lobj != obj) 1434 VM_OBJECT_UNLOCK(lobj); 1435 1436 kve->kve_ref_count = obj->ref_count; 1437 kve->kve_shadow_count = obj->shadow_count; 1438 VM_OBJECT_UNLOCK(obj); 1439 if (vp != NULL) { 1440 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1441 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1442 vn_fullpath(curthread, vp, &fullpath, 1443 &freepath); 1444 vput(vp); 1445 VFS_UNLOCK_GIANT(vfslocked); 1446 } 1447 } else { 1448 kve->kve_type = KVME_TYPE_NONE; 1449 kve->kve_ref_count = 0; 1450 kve->kve_shadow_count = 0; 1451 } 1452 1453 kve->kve_start = (void*)entry->start; 1454 kve->kve_end = (void*)entry->end; 1455 1456 if (entry->protection & VM_PROT_READ) 1457 kve->kve_protection |= KVME_PROT_READ; 1458 if (entry->protection & VM_PROT_WRITE) 1459 kve->kve_protection |= KVME_PROT_WRITE; 1460 if (entry->protection & VM_PROT_EXECUTE) 1461 kve->kve_protection |= KVME_PROT_EXEC; 1462 1463 if (entry->eflags & MAP_ENTRY_COW) 1464 kve->kve_flags |= KVME_FLAG_COW; 1465 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1466 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1467 1468 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1469 if (freepath != NULL) 1470 free(freepath, M_TEMP); 1471 1472 last_timestamp = map->timestamp; 1473 vm_map_unlock_read(map); 1474 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1475 vm_map_lock_read(map); 1476 if (error) 1477 break; 1478 if (last_timestamp + 1 != map->timestamp) { 1479 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1480 entry = tmp_entry; 1481 } 1482 } 1483 vm_map_unlock_read(map); 1484 PRELE(p); 1485 free(kve, M_TEMP); 1486 return (error); 1487 } 1488 1489 #if defined(STACK) || defined(DDB) 1490 static int 1491 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1492 { 1493 struct kinfo_kstack *kkstp; 1494 int error, i, *name, numthreads; 1495 lwpid_t *lwpidarray; 1496 struct thread *td; 1497 struct stack *st; 1498 struct sbuf sb; 1499 struct proc *p; 1500 1501 name = (int *)arg1; 1502 if ((p = pfind((pid_t)name[0])) == NULL) 1503 return (ESRCH); 1504 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1505 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1506 PROC_UNLOCK(p); 1507 return (ESRCH); 1508 } 1509 if ((error = p_candebug(curthread, p))) { 1510 PROC_UNLOCK(p); 1511 return (error); 1512 } 1513 _PHOLD(p); 1514 PROC_UNLOCK(p); 1515 1516 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1517 st = stack_create(); 1518 1519 lwpidarray = NULL; 1520 numthreads = 0; 1521 PROC_LOCK(p); 1522 repeat: 1523 if (numthreads < p->p_numthreads) { 1524 if (lwpidarray != NULL) { 1525 free(lwpidarray, M_TEMP); 1526 lwpidarray = NULL; 1527 } 1528 numthreads = p->p_numthreads; 1529 PROC_UNLOCK(p); 1530 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1531 M_WAITOK | M_ZERO); 1532 PROC_LOCK(p); 1533 goto repeat; 1534 } 1535 i = 0; 1536 1537 /* 1538 * XXXRW: During the below loop, execve(2) and countless other sorts 1539 * of changes could have taken place. Should we check to see if the 1540 * vmspace has been replaced, or the like, in order to prevent 1541 * giving a snapshot that spans, say, execve(2), with some threads 1542 * before and some after? Among other things, the credentials could 1543 * have changed, in which case the right to extract debug info might 1544 * no longer be assured. 1545 */ 1546 FOREACH_THREAD_IN_PROC(p, td) { 1547 KASSERT(i < numthreads, 1548 ("sysctl_kern_proc_kstack: numthreads")); 1549 lwpidarray[i] = td->td_tid; 1550 i++; 1551 } 1552 numthreads = i; 1553 for (i = 0; i < numthreads; i++) { 1554 td = thread_find(p, lwpidarray[i]); 1555 if (td == NULL) { 1556 continue; 1557 } 1558 bzero(kkstp, sizeof(*kkstp)); 1559 (void)sbuf_new(&sb, kkstp->kkst_trace, 1560 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1561 thread_lock(td); 1562 kkstp->kkst_tid = td->td_tid; 1563 if (TD_IS_SWAPPED(td)) 1564 kkstp->kkst_state = KKST_STATE_SWAPPED; 1565 else if (TD_IS_RUNNING(td)) 1566 kkstp->kkst_state = KKST_STATE_RUNNING; 1567 else { 1568 kkstp->kkst_state = KKST_STATE_STACKOK; 1569 stack_save_td(st, td); 1570 } 1571 thread_unlock(td); 1572 PROC_UNLOCK(p); 1573 stack_sbuf_print(&sb, st); 1574 sbuf_finish(&sb); 1575 sbuf_delete(&sb); 1576 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1577 PROC_LOCK(p); 1578 if (error) 1579 break; 1580 } 1581 _PRELE(p); 1582 PROC_UNLOCK(p); 1583 if (lwpidarray != NULL) 1584 free(lwpidarray, M_TEMP); 1585 stack_destroy(st); 1586 free(kkstp, M_TEMP); 1587 return (error); 1588 } 1589 #endif 1590 1591 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1592 1593 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1594 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1595 1596 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1597 sysctl_kern_proc, "Process table"); 1598 1599 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1600 sysctl_kern_proc, "Process table"); 1601 1602 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1603 sysctl_kern_proc, "Process table"); 1604 1605 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1606 sysctl_kern_proc, "Process table"); 1607 1608 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1609 sysctl_kern_proc, "Process table"); 1610 1611 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1612 sysctl_kern_proc, "Process table"); 1613 1614 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1615 sysctl_kern_proc, "Process table"); 1616 1617 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1618 sysctl_kern_proc, "Process table"); 1619 1620 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1621 sysctl_kern_proc, "Return process table, no threads"); 1622 1623 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1624 CTLFLAG_RW | CTLFLAG_ANYBODY, 1625 sysctl_kern_proc_args, "Process argument list"); 1626 1627 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1628 sysctl_kern_proc_pathname, "Process executable path"); 1629 1630 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1631 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1632 1633 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1634 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1635 1636 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1637 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1638 1639 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1640 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1641 1642 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1643 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1644 1645 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1646 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1647 1648 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1649 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1650 1651 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1652 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1653 1654 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1655 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1656 1657 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1658 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1659 1660 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD, 1661 sysctl_kern_proc_vmmap, "Process vm map entries"); 1662 1663 #if defined(STACK) || defined(DDB) 1664 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD, 1665 sysctl_kern_proc_kstack, "Process kernel stacks"); 1666 #endif 1667