1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/sysent.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 #include <sys/filedesc.h> 51 #include <sys/tty.h> 52 #include <sys/signalvar.h> 53 #include <sys/sx.h> 54 #include <sys/user.h> 55 #include <sys/jail.h> 56 #ifdef KTRACE 57 #include <sys/uio.h> 58 #include <sys/ktrace.h> 59 #endif 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/uma.h> 66 #include <machine/critical.h> 67 68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 69 MALLOC_DEFINE(M_SESSION, "session", "session header"); 70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 72 73 static void doenterpgrp(struct proc *, struct pgrp *); 74 static void orphanpg(struct pgrp *pg); 75 static void pgadjustjobc(struct pgrp *pgrp, int entering); 76 static void pgdelete(struct pgrp *); 77 static int proc_ctor(void *mem, int size, void *arg, int flags); 78 static void proc_dtor(void *mem, int size, void *arg); 79 static int proc_init(void *mem, int size, int flags); 80 static void proc_fini(void *mem, int size); 81 82 /* 83 * Other process lists 84 */ 85 struct pidhashhead *pidhashtbl; 86 u_long pidhash; 87 struct pgrphashhead *pgrphashtbl; 88 u_long pgrphash; 89 struct proclist allproc; 90 struct proclist zombproc; 91 struct sx allproc_lock; 92 struct sx proctree_lock; 93 struct mtx pargs_ref_lock; 94 struct mtx ppeers_lock; 95 uma_zone_t proc_zone; 96 uma_zone_t ithread_zone; 97 98 int kstack_pages = KSTACK_PAGES; 99 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 100 101 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 102 103 /* 104 * Initialize global process hashing structures. 105 */ 106 void 107 procinit() 108 { 109 110 sx_init(&allproc_lock, "allproc"); 111 sx_init(&proctree_lock, "proctree"); 112 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); 113 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 114 LIST_INIT(&allproc); 115 LIST_INIT(&zombproc); 116 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 117 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 118 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 119 proc_ctor, proc_dtor, proc_init, proc_fini, 120 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 121 uihashinit(); 122 } 123 124 /* 125 * Prepare a proc for use. 126 */ 127 static int 128 proc_ctor(void *mem, int size, void *arg, int flags) 129 { 130 struct proc *p; 131 132 p = (struct proc *)mem; 133 return (0); 134 } 135 136 /* 137 * Reclaim a proc after use. 138 */ 139 static void 140 proc_dtor(void *mem, int size, void *arg) 141 { 142 struct proc *p; 143 struct thread *td; 144 #ifdef INVARIANTS 145 struct ksegrp *kg; 146 #endif 147 148 /* INVARIANTS checks go here */ 149 p = (struct proc *)mem; 150 td = FIRST_THREAD_IN_PROC(p); 151 #ifdef INVARIANTS 152 KASSERT((p->p_numthreads == 1), 153 ("bad number of threads in exiting process")); 154 KASSERT((p->p_numksegrps == 1), ("free proc with > 1 ksegrp")); 155 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 156 kg = FIRST_KSEGRP_IN_PROC(p); 157 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 158 #endif 159 160 /* Dispose of an alternate kstack, if it exists. 161 * XXX What if there are more than one thread in the proc? 162 * The first thread in the proc is special and not 163 * freed, so you gotta do this here. 164 */ 165 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 166 vm_thread_dispose_altkstack(td); 167 } 168 169 /* 170 * Initialize type-stable parts of a proc (when newly created). 171 */ 172 static int 173 proc_init(void *mem, int size, int flags) 174 { 175 struct proc *p; 176 struct thread *td; 177 struct ksegrp *kg; 178 179 p = (struct proc *)mem; 180 p->p_sched = (struct p_sched *)&p[1]; 181 td = thread_alloc(); 182 kg = ksegrp_alloc(); 183 bzero(&p->p_mtx, sizeof(struct mtx)); 184 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 185 p->p_stats = pstats_alloc(); 186 proc_linkup(p, kg, td); 187 sched_newproc(p, kg, td); 188 return (0); 189 } 190 191 /* 192 * UMA should ensure that this function is never called. 193 * Freeing a proc structure would violate type stability. 194 */ 195 static void 196 proc_fini(void *mem, int size) 197 { 198 199 panic("proc reclaimed"); 200 } 201 202 /* 203 * Is p an inferior of the current process? 204 */ 205 int 206 inferior(p) 207 register struct proc *p; 208 { 209 210 sx_assert(&proctree_lock, SX_LOCKED); 211 for (; p != curproc; p = p->p_pptr) 212 if (p->p_pid == 0) 213 return (0); 214 return (1); 215 } 216 217 /* 218 * Locate a process by number; return only "live" processes -- i.e., neither 219 * zombies nor newly born but incompletely initialized processes. By not 220 * returning processes in the PRS_NEW state, we allow callers to avoid 221 * testing for that condition to avoid dereferencing p_ucred, et al. 222 */ 223 struct proc * 224 pfind(pid) 225 register pid_t pid; 226 { 227 register struct proc *p; 228 229 sx_slock(&allproc_lock); 230 LIST_FOREACH(p, PIDHASH(pid), p_hash) 231 if (p->p_pid == pid) { 232 if (p->p_state == PRS_NEW) { 233 p = NULL; 234 break; 235 } 236 PROC_LOCK(p); 237 break; 238 } 239 sx_sunlock(&allproc_lock); 240 return (p); 241 } 242 243 /* 244 * Locate a process group by number. 245 * The caller must hold proctree_lock. 246 */ 247 struct pgrp * 248 pgfind(pgid) 249 register pid_t pgid; 250 { 251 register struct pgrp *pgrp; 252 253 sx_assert(&proctree_lock, SX_LOCKED); 254 255 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 256 if (pgrp->pg_id == pgid) { 257 PGRP_LOCK(pgrp); 258 return (pgrp); 259 } 260 } 261 return (NULL); 262 } 263 264 /* 265 * Create a new process group. 266 * pgid must be equal to the pid of p. 267 * Begin a new session if required. 268 */ 269 int 270 enterpgrp(p, pgid, pgrp, sess) 271 register struct proc *p; 272 pid_t pgid; 273 struct pgrp *pgrp; 274 struct session *sess; 275 { 276 struct pgrp *pgrp2; 277 278 sx_assert(&proctree_lock, SX_XLOCKED); 279 280 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 281 KASSERT(p->p_pid == pgid, 282 ("enterpgrp: new pgrp and pid != pgid")); 283 284 pgrp2 = pgfind(pgid); 285 286 KASSERT(pgrp2 == NULL, 287 ("enterpgrp: pgrp with pgid exists")); 288 KASSERT(!SESS_LEADER(p), 289 ("enterpgrp: session leader attempted setpgrp")); 290 291 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 292 293 if (sess != NULL) { 294 /* 295 * new session 296 */ 297 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 298 PROC_LOCK(p); 299 p->p_flag &= ~P_CONTROLT; 300 PROC_UNLOCK(p); 301 PGRP_LOCK(pgrp); 302 sess->s_leader = p; 303 sess->s_sid = p->p_pid; 304 sess->s_count = 1; 305 sess->s_ttyvp = NULL; 306 sess->s_ttyp = NULL; 307 bcopy(p->p_session->s_login, sess->s_login, 308 sizeof(sess->s_login)); 309 pgrp->pg_session = sess; 310 KASSERT(p == curproc, 311 ("enterpgrp: mksession and p != curproc")); 312 } else { 313 pgrp->pg_session = p->p_session; 314 SESS_LOCK(pgrp->pg_session); 315 pgrp->pg_session->s_count++; 316 SESS_UNLOCK(pgrp->pg_session); 317 PGRP_LOCK(pgrp); 318 } 319 pgrp->pg_id = pgid; 320 LIST_INIT(&pgrp->pg_members); 321 322 /* 323 * As we have an exclusive lock of proctree_lock, 324 * this should not deadlock. 325 */ 326 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 327 pgrp->pg_jobc = 0; 328 SLIST_INIT(&pgrp->pg_sigiolst); 329 PGRP_UNLOCK(pgrp); 330 331 doenterpgrp(p, pgrp); 332 333 return (0); 334 } 335 336 /* 337 * Move p to an existing process group 338 */ 339 int 340 enterthispgrp(p, pgrp) 341 register struct proc *p; 342 struct pgrp *pgrp; 343 { 344 345 sx_assert(&proctree_lock, SX_XLOCKED); 346 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 347 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 348 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 349 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 350 KASSERT(pgrp->pg_session == p->p_session, 351 ("%s: pgrp's session %p, p->p_session %p.\n", 352 __func__, 353 pgrp->pg_session, 354 p->p_session)); 355 KASSERT(pgrp != p->p_pgrp, 356 ("%s: p belongs to pgrp.", __func__)); 357 358 doenterpgrp(p, pgrp); 359 360 return (0); 361 } 362 363 /* 364 * Move p to a process group 365 */ 366 static void 367 doenterpgrp(p, pgrp) 368 struct proc *p; 369 struct pgrp *pgrp; 370 { 371 struct pgrp *savepgrp; 372 373 sx_assert(&proctree_lock, SX_XLOCKED); 374 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 375 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 376 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 377 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 378 379 savepgrp = p->p_pgrp; 380 381 /* 382 * Adjust eligibility of affected pgrps to participate in job control. 383 * Increment eligibility counts before decrementing, otherwise we 384 * could reach 0 spuriously during the first call. 385 */ 386 fixjobc(p, pgrp, 1); 387 fixjobc(p, p->p_pgrp, 0); 388 389 PGRP_LOCK(pgrp); 390 PGRP_LOCK(savepgrp); 391 PROC_LOCK(p); 392 LIST_REMOVE(p, p_pglist); 393 p->p_pgrp = pgrp; 394 PROC_UNLOCK(p); 395 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 396 PGRP_UNLOCK(savepgrp); 397 PGRP_UNLOCK(pgrp); 398 if (LIST_EMPTY(&savepgrp->pg_members)) 399 pgdelete(savepgrp); 400 } 401 402 /* 403 * remove process from process group 404 */ 405 int 406 leavepgrp(p) 407 register struct proc *p; 408 { 409 struct pgrp *savepgrp; 410 411 sx_assert(&proctree_lock, SX_XLOCKED); 412 savepgrp = p->p_pgrp; 413 PGRP_LOCK(savepgrp); 414 PROC_LOCK(p); 415 LIST_REMOVE(p, p_pglist); 416 p->p_pgrp = NULL; 417 PROC_UNLOCK(p); 418 PGRP_UNLOCK(savepgrp); 419 if (LIST_EMPTY(&savepgrp->pg_members)) 420 pgdelete(savepgrp); 421 return (0); 422 } 423 424 /* 425 * delete a process group 426 */ 427 static void 428 pgdelete(pgrp) 429 register struct pgrp *pgrp; 430 { 431 struct session *savesess; 432 int i; 433 434 sx_assert(&proctree_lock, SX_XLOCKED); 435 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 436 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 437 438 /* 439 * Reset any sigio structures pointing to us as a result of 440 * F_SETOWN with our pgid. 441 */ 442 funsetownlst(&pgrp->pg_sigiolst); 443 444 PGRP_LOCK(pgrp); 445 if (pgrp->pg_session->s_ttyp != NULL && 446 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 447 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 448 LIST_REMOVE(pgrp, pg_hash); 449 savesess = pgrp->pg_session; 450 SESS_LOCK(savesess); 451 i = --savesess->s_count; 452 SESS_UNLOCK(savesess); 453 PGRP_UNLOCK(pgrp); 454 if (i == 0) { 455 if (savesess->s_ttyp != NULL) 456 ttyrel(savesess->s_ttyp); 457 mtx_destroy(&savesess->s_mtx); 458 FREE(savesess, M_SESSION); 459 } 460 mtx_destroy(&pgrp->pg_mtx); 461 FREE(pgrp, M_PGRP); 462 } 463 464 static void 465 pgadjustjobc(pgrp, entering) 466 struct pgrp *pgrp; 467 int entering; 468 { 469 470 PGRP_LOCK(pgrp); 471 if (entering) 472 pgrp->pg_jobc++; 473 else { 474 --pgrp->pg_jobc; 475 if (pgrp->pg_jobc == 0) 476 orphanpg(pgrp); 477 } 478 PGRP_UNLOCK(pgrp); 479 } 480 481 /* 482 * Adjust pgrp jobc counters when specified process changes process group. 483 * We count the number of processes in each process group that "qualify" 484 * the group for terminal job control (those with a parent in a different 485 * process group of the same session). If that count reaches zero, the 486 * process group becomes orphaned. Check both the specified process' 487 * process group and that of its children. 488 * entering == 0 => p is leaving specified group. 489 * entering == 1 => p is entering specified group. 490 */ 491 void 492 fixjobc(p, pgrp, entering) 493 register struct proc *p; 494 register struct pgrp *pgrp; 495 int entering; 496 { 497 register struct pgrp *hispgrp; 498 register struct session *mysession; 499 500 sx_assert(&proctree_lock, SX_LOCKED); 501 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 502 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 503 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 504 505 /* 506 * Check p's parent to see whether p qualifies its own process 507 * group; if so, adjust count for p's process group. 508 */ 509 mysession = pgrp->pg_session; 510 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 511 hispgrp->pg_session == mysession) 512 pgadjustjobc(pgrp, entering); 513 514 /* 515 * Check this process' children to see whether they qualify 516 * their process groups; if so, adjust counts for children's 517 * process groups. 518 */ 519 LIST_FOREACH(p, &p->p_children, p_sibling) { 520 hispgrp = p->p_pgrp; 521 if (hispgrp == pgrp || 522 hispgrp->pg_session != mysession) 523 continue; 524 PROC_LOCK(p); 525 if (p->p_state == PRS_ZOMBIE) { 526 PROC_UNLOCK(p); 527 continue; 528 } 529 PROC_UNLOCK(p); 530 pgadjustjobc(hispgrp, entering); 531 } 532 } 533 534 /* 535 * A process group has become orphaned; 536 * if there are any stopped processes in the group, 537 * hang-up all process in that group. 538 */ 539 static void 540 orphanpg(pg) 541 struct pgrp *pg; 542 { 543 register struct proc *p; 544 545 PGRP_LOCK_ASSERT(pg, MA_OWNED); 546 547 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 548 PROC_LOCK(p); 549 if (P_SHOULDSTOP(p)) { 550 PROC_UNLOCK(p); 551 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 552 PROC_LOCK(p); 553 psignal(p, SIGHUP); 554 psignal(p, SIGCONT); 555 PROC_UNLOCK(p); 556 } 557 return; 558 } 559 PROC_UNLOCK(p); 560 } 561 } 562 563 #include "opt_ddb.h" 564 #ifdef DDB 565 #include <ddb/ddb.h> 566 567 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 568 { 569 register struct pgrp *pgrp; 570 register struct proc *p; 571 register int i; 572 573 for (i = 0; i <= pgrphash; i++) { 574 if (!LIST_EMPTY(&pgrphashtbl[i])) { 575 printf("\tindx %d\n", i); 576 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 577 printf( 578 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 579 (void *)pgrp, (long)pgrp->pg_id, 580 (void *)pgrp->pg_session, 581 pgrp->pg_session->s_count, 582 (void *)LIST_FIRST(&pgrp->pg_members)); 583 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 584 printf("\t\tpid %ld addr %p pgrp %p\n", 585 (long)p->p_pid, (void *)p, 586 (void *)p->p_pgrp); 587 } 588 } 589 } 590 } 591 } 592 #endif /* DDB */ 593 void 594 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 595 596 /* 597 * Fill in a kinfo_proc structure for the specified process. 598 * Must be called with the target process locked. 599 */ 600 void 601 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 602 { 603 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 604 } 605 606 void 607 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 608 { 609 struct proc *p; 610 struct thread *td0; 611 struct ksegrp *kg; 612 struct tty *tp; 613 struct session *sp; 614 struct timeval tv; 615 struct sigacts *ps; 616 617 p = td->td_proc; 618 619 bzero(kp, sizeof(*kp)); 620 621 kp->ki_structsize = sizeof(*kp); 622 kp->ki_paddr = p; 623 PROC_LOCK_ASSERT(p, MA_OWNED); 624 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 625 kp->ki_args = p->p_args; 626 kp->ki_textvp = p->p_textvp; 627 #ifdef KTRACE 628 kp->ki_tracep = p->p_tracevp; 629 mtx_lock(&ktrace_mtx); 630 kp->ki_traceflag = p->p_traceflag; 631 mtx_unlock(&ktrace_mtx); 632 #endif 633 kp->ki_fd = p->p_fd; 634 kp->ki_vmspace = p->p_vmspace; 635 if (p->p_ucred) { 636 kp->ki_uid = p->p_ucred->cr_uid; 637 kp->ki_ruid = p->p_ucred->cr_ruid; 638 kp->ki_svuid = p->p_ucred->cr_svuid; 639 /* XXX bde doesn't like KI_NGROUPS */ 640 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); 641 bcopy(p->p_ucred->cr_groups, kp->ki_groups, 642 kp->ki_ngroups * sizeof(gid_t)); 643 kp->ki_rgid = p->p_ucred->cr_rgid; 644 kp->ki_svgid = p->p_ucred->cr_svgid; 645 } 646 if (p->p_sigacts) { 647 ps = p->p_sigacts; 648 mtx_lock(&ps->ps_mtx); 649 kp->ki_sigignore = ps->ps_sigignore; 650 kp->ki_sigcatch = ps->ps_sigcatch; 651 mtx_unlock(&ps->ps_mtx); 652 } 653 mtx_lock_spin(&sched_lock); 654 if (p->p_state != PRS_NEW && 655 p->p_state != PRS_ZOMBIE && 656 p->p_vmspace != NULL) { 657 struct vmspace *vm = p->p_vmspace; 658 659 kp->ki_size = vm->vm_map.size; 660 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 661 FOREACH_THREAD_IN_PROC(p, td0) { 662 if (!TD_IS_SWAPPED(td0)) 663 kp->ki_rssize += td0->td_kstack_pages; 664 if (td0->td_altkstack_obj != NULL) 665 kp->ki_rssize += td0->td_altkstack_pages; 666 } 667 kp->ki_swrss = vm->vm_swrss; 668 kp->ki_tsize = vm->vm_tsize; 669 kp->ki_dsize = vm->vm_dsize; 670 kp->ki_ssize = vm->vm_ssize; 671 } 672 kp->ki_sflag = p->p_sflag; 673 kp->ki_swtime = p->p_swtime; 674 kp->ki_pid = p->p_pid; 675 kp->ki_nice = p->p_nice; 676 bintime2timeval(&p->p_rux.rux_runtime, &tv); 677 kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 678 if (p->p_state != PRS_ZOMBIE) { 679 #if 0 680 if (td == NULL) { 681 /* XXXKSE: This should never happen. */ 682 printf("fill_kinfo_proc(): pid %d has no threads!\n", 683 p->p_pid); 684 mtx_unlock_spin(&sched_lock); 685 return; 686 } 687 #endif 688 if (td->td_wmesg != NULL) { 689 strlcpy(kp->ki_wmesg, td->td_wmesg, 690 sizeof(kp->ki_wmesg)); 691 } 692 if (TD_ON_LOCK(td)) { 693 kp->ki_kiflag |= KI_LOCKBLOCK; 694 strlcpy(kp->ki_lockname, td->td_lockname, 695 sizeof(kp->ki_lockname)); 696 } 697 698 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 699 if (TD_ON_RUNQ(td) || 700 TD_CAN_RUN(td) || 701 TD_IS_RUNNING(td)) { 702 kp->ki_stat = SRUN; 703 } else if (P_SHOULDSTOP(p)) { 704 kp->ki_stat = SSTOP; 705 } else if (TD_IS_SLEEPING(td)) { 706 kp->ki_stat = SSLEEP; 707 } else if (TD_ON_LOCK(td)) { 708 kp->ki_stat = SLOCK; 709 } else { 710 kp->ki_stat = SWAIT; 711 } 712 } else { 713 kp->ki_stat = SIDL; 714 } 715 716 kg = td->td_ksegrp; 717 718 /* things in the KSE GROUP */ 719 kp->ki_estcpu = kg->kg_estcpu; 720 kp->ki_slptime = kg->kg_slptime; 721 kp->ki_pri.pri_user = kg->kg_user_pri; 722 kp->ki_pri.pri_class = kg->kg_pri_class; 723 724 /* Things in the thread */ 725 kp->ki_wchan = td->td_wchan; 726 kp->ki_pri.pri_level = td->td_priority; 727 kp->ki_pri.pri_native = td->td_base_pri; 728 kp->ki_lastcpu = td->td_lastcpu; 729 kp->ki_oncpu = td->td_oncpu; 730 kp->ki_tdflags = td->td_flags; 731 kp->ki_tid = td->td_tid; 732 kp->ki_numthreads = p->p_numthreads; 733 kp->ki_pcb = td->td_pcb; 734 kp->ki_kstack = (void *)td->td_kstack; 735 kp->ki_pctcpu = sched_pctcpu(td); 736 737 /* We can't get this anymore but ps etc never used it anyway. */ 738 kp->ki_rqindex = 0; 739 740 } else { 741 kp->ki_stat = SZOMB; 742 } 743 mtx_unlock_spin(&sched_lock); 744 if ((p->p_sflag & PS_INMEM) && p->p_stats != NULL) { 745 kp->ki_start = p->p_stats->p_start; 746 timevaladd(&kp->ki_start, &boottime); 747 kp->ki_rusage = p->p_stats->p_ru; 748 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 749 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 750 751 /* Some callers want child-times in a single value */ 752 kp->ki_childtime = kp->ki_childstime; 753 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 754 } 755 sp = NULL; 756 tp = NULL; 757 if (p->p_pgrp) { 758 kp->ki_pgid = p->p_pgrp->pg_id; 759 kp->ki_jobc = p->p_pgrp->pg_jobc; 760 sp = p->p_pgrp->pg_session; 761 762 if (sp != NULL) { 763 kp->ki_sid = sp->s_sid; 764 SESS_LOCK(sp); 765 strlcpy(kp->ki_login, sp->s_login, 766 sizeof(kp->ki_login)); 767 if (sp->s_ttyvp) 768 kp->ki_kiflag |= KI_CTTY; 769 if (SESS_LEADER(p)) 770 kp->ki_kiflag |= KI_SLEADER; 771 tp = sp->s_ttyp; 772 SESS_UNLOCK(sp); 773 } 774 } 775 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 776 kp->ki_tdev = dev2udev(tp->t_dev); 777 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 778 if (tp->t_session) 779 kp->ki_tsid = tp->t_session->s_sid; 780 } else 781 kp->ki_tdev = NODEV; 782 if (p->p_comm[0] != '\0') { 783 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 784 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 785 } 786 if (p->p_sysent && p->p_sysent->sv_name != NULL && 787 p->p_sysent->sv_name[0] != '\0') 788 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 789 kp->ki_siglist = p->p_siglist; 790 SIGSETOR(kp->ki_siglist, td->td_siglist); 791 kp->ki_sigmask = td->td_sigmask; 792 kp->ki_xstat = p->p_xstat; 793 kp->ki_acflag = p->p_acflag; 794 kp->ki_flag = p->p_flag; 795 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ 796 if (jailed(p->p_ucred)) 797 kp->ki_flag |= P_JAILED; 798 kp->ki_lock = p->p_lock; 799 if (p->p_pptr) 800 kp->ki_ppid = p->p_pptr->p_pid; 801 } 802 803 /* 804 * Fill a 'struct user' for backwards compatibility with a.out core dumps. 805 * This is used by the aout, linux, and pecoff modules. 806 */ 807 void 808 fill_user(struct proc *p, struct user *u) 809 { 810 811 PROC_LOCK_ASSERT(p, MA_OWNED); 812 bcopy(&p->p_stats, &u->u_stats, sizeof(struct pstats)); 813 fill_kinfo_proc(p, &u->u_kproc); 814 } 815 816 struct pstats * 817 pstats_alloc(void) 818 { 819 820 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 821 } 822 823 /* 824 * Copy parts of p_stats; zero the rest of p_stats (statistics). 825 */ 826 void 827 pstats_fork(struct pstats *src, struct pstats *dst) 828 { 829 830 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 831 832 bzero(&dst->pstat_startzero, 833 (unsigned)RANGEOF(struct pstats, pstat_startzero, pstat_endzero)); 834 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 835 (unsigned)RANGEOF(struct pstats, pstat_startcopy, pstat_endcopy)); 836 #undef RANGEOF 837 } 838 839 void 840 pstats_free(struct pstats *ps) 841 { 842 843 free(ps, M_SUBPROC); 844 } 845 846 /* 847 * Locate a zombie process by number 848 */ 849 struct proc * 850 zpfind(pid_t pid) 851 { 852 struct proc *p; 853 854 sx_slock(&allproc_lock); 855 LIST_FOREACH(p, &zombproc, p_list) 856 if (p->p_pid == pid) { 857 PROC_LOCK(p); 858 break; 859 } 860 sx_sunlock(&allproc_lock); 861 return (p); 862 } 863 864 #define KERN_PROC_ZOMBMASK 0x3 865 #define KERN_PROC_NOTHREADS 0x4 866 867 /* 868 * Must be called with the process locked and will return with it unlocked. 869 */ 870 static int 871 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 872 { 873 struct thread *td; 874 struct kinfo_proc kinfo_proc; 875 int error = 0; 876 struct proc *np; 877 pid_t pid = p->p_pid; 878 879 PROC_LOCK_ASSERT(p, MA_OWNED); 880 881 if (flags & KERN_PROC_NOTHREADS) { 882 fill_kinfo_proc(p, &kinfo_proc); 883 PROC_UNLOCK(p); 884 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 885 sizeof(kinfo_proc)); 886 PROC_LOCK(p); 887 } else { 888 _PHOLD(p); 889 FOREACH_THREAD_IN_PROC(p, td) { 890 fill_kinfo_thread(td, &kinfo_proc); 891 PROC_UNLOCK(p); 892 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 893 sizeof(kinfo_proc)); 894 PROC_LOCK(p); 895 if (error) 896 break; 897 } 898 _PRELE(p); 899 } 900 PROC_UNLOCK(p); 901 if (error) 902 return (error); 903 if (flags & KERN_PROC_ZOMBMASK) 904 np = zpfind(pid); 905 else { 906 if (pid == 0) 907 return (0); 908 np = pfind(pid); 909 } 910 if (np == NULL) 911 return EAGAIN; 912 if (np != p) { 913 PROC_UNLOCK(np); 914 return EAGAIN; 915 } 916 PROC_UNLOCK(np); 917 return (0); 918 } 919 920 static int 921 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 922 { 923 int *name = (int*) arg1; 924 u_int namelen = arg2; 925 struct proc *p; 926 int flags, doingzomb, oid_number; 927 int error = 0; 928 929 oid_number = oidp->oid_number; 930 if (oid_number != KERN_PROC_ALL && 931 (oid_number & KERN_PROC_INC_THREAD) == 0) 932 flags = KERN_PROC_NOTHREADS; 933 else { 934 flags = 0; 935 oid_number &= ~KERN_PROC_INC_THREAD; 936 } 937 if (oid_number == KERN_PROC_PID) { 938 if (namelen != 1) 939 return (EINVAL); 940 p = pfind((pid_t)name[0]); 941 if (!p) 942 return (ESRCH); 943 if ((error = p_cansee(curthread, p))) { 944 PROC_UNLOCK(p); 945 return (error); 946 } 947 error = sysctl_out_proc(p, req, flags); 948 return (error); 949 } 950 951 switch (oid_number) { 952 case KERN_PROC_ALL: 953 if (namelen != 0) 954 return (EINVAL); 955 break; 956 case KERN_PROC_PROC: 957 if (namelen != 0 && namelen != 1) 958 return (EINVAL); 959 break; 960 default: 961 if (namelen != 1) 962 return (EINVAL); 963 break; 964 } 965 966 if (!req->oldptr) { 967 /* overestimate by 5 procs */ 968 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 969 if (error) 970 return (error); 971 } 972 error = sysctl_wire_old_buffer(req, 0); 973 if (error != 0) 974 return (error); 975 sx_slock(&allproc_lock); 976 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 977 if (!doingzomb) 978 p = LIST_FIRST(&allproc); 979 else 980 p = LIST_FIRST(&zombproc); 981 for (; p != 0; p = LIST_NEXT(p, p_list)) { 982 /* 983 * Skip embryonic processes. 984 */ 985 mtx_lock_spin(&sched_lock); 986 if (p->p_state == PRS_NEW) { 987 mtx_unlock_spin(&sched_lock); 988 continue; 989 } 990 mtx_unlock_spin(&sched_lock); 991 PROC_LOCK(p); 992 /* 993 * Show a user only appropriate processes. 994 */ 995 if (p_cansee(curthread, p)) { 996 PROC_UNLOCK(p); 997 continue; 998 } 999 /* 1000 * TODO - make more efficient (see notes below). 1001 * do by session. 1002 */ 1003 switch (oid_number) { 1004 1005 case KERN_PROC_GID: 1006 if (p->p_ucred == NULL || 1007 p->p_ucred->cr_gid != (gid_t)name[0]) { 1008 PROC_UNLOCK(p); 1009 continue; 1010 } 1011 break; 1012 1013 case KERN_PROC_PGRP: 1014 /* could do this by traversing pgrp */ 1015 if (p->p_pgrp == NULL || 1016 p->p_pgrp->pg_id != (pid_t)name[0]) { 1017 PROC_UNLOCK(p); 1018 continue; 1019 } 1020 break; 1021 1022 case KERN_PROC_RGID: 1023 if (p->p_ucred == NULL || 1024 p->p_ucred->cr_rgid != (gid_t)name[0]) { 1025 PROC_UNLOCK(p); 1026 continue; 1027 } 1028 break; 1029 1030 case KERN_PROC_SESSION: 1031 if (p->p_session == NULL || 1032 p->p_session->s_sid != (pid_t)name[0]) { 1033 PROC_UNLOCK(p); 1034 continue; 1035 } 1036 break; 1037 1038 case KERN_PROC_TTY: 1039 if ((p->p_flag & P_CONTROLT) == 0 || 1040 p->p_session == NULL) { 1041 PROC_UNLOCK(p); 1042 continue; 1043 } 1044 SESS_LOCK(p->p_session); 1045 if (p->p_session->s_ttyp == NULL || 1046 dev2udev(p->p_session->s_ttyp->t_dev) != 1047 (dev_t)name[0]) { 1048 SESS_UNLOCK(p->p_session); 1049 PROC_UNLOCK(p); 1050 continue; 1051 } 1052 SESS_UNLOCK(p->p_session); 1053 break; 1054 1055 case KERN_PROC_UID: 1056 if (p->p_ucred == NULL || 1057 p->p_ucred->cr_uid != (uid_t)name[0]) { 1058 PROC_UNLOCK(p); 1059 continue; 1060 } 1061 break; 1062 1063 case KERN_PROC_RUID: 1064 if (p->p_ucred == NULL || 1065 p->p_ucred->cr_ruid != (uid_t)name[0]) { 1066 PROC_UNLOCK(p); 1067 continue; 1068 } 1069 break; 1070 1071 case KERN_PROC_PROC: 1072 break; 1073 1074 default: 1075 break; 1076 1077 } 1078 1079 error = sysctl_out_proc(p, req, flags | doingzomb); 1080 if (error) { 1081 sx_sunlock(&allproc_lock); 1082 return (error); 1083 } 1084 } 1085 } 1086 sx_sunlock(&allproc_lock); 1087 return (0); 1088 } 1089 1090 struct pargs * 1091 pargs_alloc(int len) 1092 { 1093 struct pargs *pa; 1094 1095 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1096 M_WAITOK); 1097 pa->ar_ref = 1; 1098 pa->ar_length = len; 1099 return (pa); 1100 } 1101 1102 void 1103 pargs_free(struct pargs *pa) 1104 { 1105 1106 FREE(pa, M_PARGS); 1107 } 1108 1109 void 1110 pargs_hold(struct pargs *pa) 1111 { 1112 1113 if (pa == NULL) 1114 return; 1115 PARGS_LOCK(pa); 1116 pa->ar_ref++; 1117 PARGS_UNLOCK(pa); 1118 } 1119 1120 void 1121 pargs_drop(struct pargs *pa) 1122 { 1123 1124 if (pa == NULL) 1125 return; 1126 PARGS_LOCK(pa); 1127 if (--pa->ar_ref == 0) { 1128 PARGS_UNLOCK(pa); 1129 pargs_free(pa); 1130 } else 1131 PARGS_UNLOCK(pa); 1132 } 1133 1134 /* 1135 * This sysctl allows a process to retrieve the argument list or process 1136 * title for another process without groping around in the address space 1137 * of the other process. It also allow a process to set its own "process 1138 * title to a string of its own choice. 1139 */ 1140 static int 1141 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1142 { 1143 int *name = (int*) arg1; 1144 u_int namelen = arg2; 1145 struct pargs *newpa, *pa; 1146 struct proc *p; 1147 int error = 0; 1148 1149 if (namelen != 1) 1150 return (EINVAL); 1151 1152 p = pfind((pid_t)name[0]); 1153 if (!p) 1154 return (ESRCH); 1155 1156 if ((error = p_cansee(curthread, p)) != 0) { 1157 PROC_UNLOCK(p); 1158 return (error); 1159 } 1160 1161 if (req->newptr && curproc != p) { 1162 PROC_UNLOCK(p); 1163 return (EPERM); 1164 } 1165 1166 pa = p->p_args; 1167 pargs_hold(pa); 1168 PROC_UNLOCK(p); 1169 if (req->oldptr != NULL && pa != NULL) 1170 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1171 pargs_drop(pa); 1172 if (error != 0 || req->newptr == NULL) 1173 return (error); 1174 1175 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1176 return (ENOMEM); 1177 newpa = pargs_alloc(req->newlen); 1178 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1179 if (error != 0) { 1180 pargs_free(newpa); 1181 return (error); 1182 } 1183 PROC_LOCK(p); 1184 pa = p->p_args; 1185 p->p_args = newpa; 1186 PROC_UNLOCK(p); 1187 pargs_drop(pa); 1188 return (0); 1189 } 1190 1191 static int 1192 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1193 { 1194 struct proc *p; 1195 char *sv_name; 1196 int *name; 1197 int namelen; 1198 int error; 1199 1200 namelen = arg2; 1201 if (namelen != 1) 1202 return (EINVAL); 1203 1204 name = (int *)arg1; 1205 if ((p = pfind((pid_t)name[0])) == NULL) 1206 return (ESRCH); 1207 if ((error = p_cansee(curthread, p))) { 1208 PROC_UNLOCK(p); 1209 return (error); 1210 } 1211 sv_name = p->p_sysent->sv_name; 1212 PROC_UNLOCK(p); 1213 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1214 } 1215 1216 1217 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1218 1219 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1220 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1221 1222 SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1223 sysctl_kern_proc, "Process table"); 1224 1225 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1226 sysctl_kern_proc, "Process table"); 1227 1228 SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1229 sysctl_kern_proc, "Process table"); 1230 1231 SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1232 sysctl_kern_proc, "Process table"); 1233 1234 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1235 sysctl_kern_proc, "Process table"); 1236 1237 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1238 sysctl_kern_proc, "Process table"); 1239 1240 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1241 sysctl_kern_proc, "Process table"); 1242 1243 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1244 sysctl_kern_proc, "Process table"); 1245 1246 SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1247 sysctl_kern_proc, "Return process table, no threads"); 1248 1249 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 1250 sysctl_kern_proc_args, "Process argument list"); 1251 1252 SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1253 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1254 1255 SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1256 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1257 1258 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1259 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1260 1261 SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1262 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1263 1264 SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td, 1265 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1266 1267 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1268 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1269 1270 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1271 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1272 1273 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1274 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1275 1276 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1277 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1278 1279 SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1280 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1281