xref: /freebsd/sys/kern/kern_proc.c (revision 5dcd9c10612684d1c823670cbb5b4715028784e7)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/refcount.h>
52 #include <sys/sbuf.h>
53 #include <sys/sysent.h>
54 #include <sys/sched.h>
55 #include <sys/smp.h>
56 #include <sys/stack.h>
57 #include <sys/sysctl.h>
58 #include <sys/filedesc.h>
59 #include <sys/tty.h>
60 #include <sys/signalvar.h>
61 #include <sys/sdt.h>
62 #include <sys/sx.h>
63 #include <sys/user.h>
64 #include <sys/jail.h>
65 #include <sys/vnode.h>
66 #include <sys/eventhandler.h>
67 
68 #ifdef DDB
69 #include <ddb/ddb.h>
70 #endif
71 
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_object.h>
77 #include <vm/uma.h>
78 
79 #ifdef COMPAT_FREEBSD32
80 #include <compat/freebsd32/freebsd32.h>
81 #include <compat/freebsd32/freebsd32_util.h>
82 #endif
83 
84 SDT_PROVIDER_DEFINE(proc);
85 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
90 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
93 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
95 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
100 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
102 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
103 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
104 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
106 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
107 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
108 SDT_PROBE_DEFINE(proc, kernel, init, return, return);
109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
110 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
111 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
112 
113 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
114 MALLOC_DEFINE(M_SESSION, "session", "session header");
115 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
116 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
117 
118 static void doenterpgrp(struct proc *, struct pgrp *);
119 static void orphanpg(struct pgrp *pg);
120 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
121 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
122 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
123     int preferthread);
124 static void pgadjustjobc(struct pgrp *pgrp, int entering);
125 static void pgdelete(struct pgrp *);
126 static int proc_ctor(void *mem, int size, void *arg, int flags);
127 static void proc_dtor(void *mem, int size, void *arg);
128 static int proc_init(void *mem, int size, int flags);
129 static void proc_fini(void *mem, int size);
130 static void pargs_free(struct pargs *pa);
131 
132 /*
133  * Other process lists
134  */
135 struct pidhashhead *pidhashtbl;
136 u_long pidhash;
137 struct pgrphashhead *pgrphashtbl;
138 u_long pgrphash;
139 struct proclist allproc;
140 struct proclist zombproc;
141 struct sx allproc_lock;
142 struct sx proctree_lock;
143 struct mtx ppeers_lock;
144 uma_zone_t proc_zone;
145 
146 int kstack_pages = KSTACK_PAGES;
147 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
148     "Kernel stack size in pages");
149 
150 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
151 #ifdef COMPAT_FREEBSD32
152 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
153 #endif
154 
155 /*
156  * Initialize global process hashing structures.
157  */
158 void
159 procinit()
160 {
161 
162 	sx_init(&allproc_lock, "allproc");
163 	sx_init(&proctree_lock, "proctree");
164 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
165 	LIST_INIT(&allproc);
166 	LIST_INIT(&zombproc);
167 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
168 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
169 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
170 	    proc_ctor, proc_dtor, proc_init, proc_fini,
171 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
172 	uihashinit();
173 }
174 
175 /*
176  * Prepare a proc for use.
177  */
178 static int
179 proc_ctor(void *mem, int size, void *arg, int flags)
180 {
181 	struct proc *p;
182 
183 	p = (struct proc *)mem;
184 	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
185 	EVENTHANDLER_INVOKE(process_ctor, p);
186 	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
187 	return (0);
188 }
189 
190 /*
191  * Reclaim a proc after use.
192  */
193 static void
194 proc_dtor(void *mem, int size, void *arg)
195 {
196 	struct proc *p;
197 	struct thread *td;
198 
199 	/* INVARIANTS checks go here */
200 	p = (struct proc *)mem;
201 	td = FIRST_THREAD_IN_PROC(p);
202 	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
203 	if (td != NULL) {
204 #ifdef INVARIANTS
205 		KASSERT((p->p_numthreads == 1),
206 		    ("bad number of threads in exiting process"));
207 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
208 #endif
209 		/* Free all OSD associated to this thread. */
210 		osd_thread_exit(td);
211 	}
212 	EVENTHANDLER_INVOKE(process_dtor, p);
213 	if (p->p_ksi != NULL)
214 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
215 	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
216 }
217 
218 /*
219  * Initialize type-stable parts of a proc (when newly created).
220  */
221 static int
222 proc_init(void *mem, int size, int flags)
223 {
224 	struct proc *p;
225 
226 	p = (struct proc *)mem;
227 	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
228 	p->p_sched = (struct p_sched *)&p[1];
229 	bzero(&p->p_mtx, sizeof(struct mtx));
230 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
231 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
232 	cv_init(&p->p_pwait, "ppwait");
233 	cv_init(&p->p_dbgwait, "dbgwait");
234 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
235 	EVENTHANDLER_INVOKE(process_init, p);
236 	p->p_stats = pstats_alloc();
237 	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
238 	return (0);
239 }
240 
241 /*
242  * UMA should ensure that this function is never called.
243  * Freeing a proc structure would violate type stability.
244  */
245 static void
246 proc_fini(void *mem, int size)
247 {
248 #ifdef notnow
249 	struct proc *p;
250 
251 	p = (struct proc *)mem;
252 	EVENTHANDLER_INVOKE(process_fini, p);
253 	pstats_free(p->p_stats);
254 	thread_free(FIRST_THREAD_IN_PROC(p));
255 	mtx_destroy(&p->p_mtx);
256 	if (p->p_ksi != NULL)
257 		ksiginfo_free(p->p_ksi);
258 #else
259 	panic("proc reclaimed");
260 #endif
261 }
262 
263 /*
264  * Is p an inferior of the current process?
265  */
266 int
267 inferior(p)
268 	register struct proc *p;
269 {
270 
271 	sx_assert(&proctree_lock, SX_LOCKED);
272 	for (; p != curproc; p = p->p_pptr)
273 		if (p->p_pid == 0)
274 			return (0);
275 	return (1);
276 }
277 
278 /*
279  * Locate a process by number; return only "live" processes -- i.e., neither
280  * zombies nor newly born but incompletely initialized processes.  By not
281  * returning processes in the PRS_NEW state, we allow callers to avoid
282  * testing for that condition to avoid dereferencing p_ucred, et al.
283  */
284 struct proc *
285 pfind(pid)
286 	register pid_t pid;
287 {
288 	register struct proc *p;
289 
290 	sx_slock(&allproc_lock);
291 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
292 		if (p->p_pid == pid) {
293 			if (p->p_state == PRS_NEW) {
294 				p = NULL;
295 				break;
296 			}
297 			PROC_LOCK(p);
298 			break;
299 		}
300 	sx_sunlock(&allproc_lock);
301 	return (p);
302 }
303 
304 /*
305  * Locate a process group by number.
306  * The caller must hold proctree_lock.
307  */
308 struct pgrp *
309 pgfind(pgid)
310 	register pid_t pgid;
311 {
312 	register struct pgrp *pgrp;
313 
314 	sx_assert(&proctree_lock, SX_LOCKED);
315 
316 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
317 		if (pgrp->pg_id == pgid) {
318 			PGRP_LOCK(pgrp);
319 			return (pgrp);
320 		}
321 	}
322 	return (NULL);
323 }
324 
325 /*
326  * Create a new process group.
327  * pgid must be equal to the pid of p.
328  * Begin a new session if required.
329  */
330 int
331 enterpgrp(p, pgid, pgrp, sess)
332 	register struct proc *p;
333 	pid_t pgid;
334 	struct pgrp *pgrp;
335 	struct session *sess;
336 {
337 	struct pgrp *pgrp2;
338 
339 	sx_assert(&proctree_lock, SX_XLOCKED);
340 
341 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
342 	KASSERT(p->p_pid == pgid,
343 	    ("enterpgrp: new pgrp and pid != pgid"));
344 
345 	pgrp2 = pgfind(pgid);
346 
347 	KASSERT(pgrp2 == NULL,
348 	    ("enterpgrp: pgrp with pgid exists"));
349 	KASSERT(!SESS_LEADER(p),
350 	    ("enterpgrp: session leader attempted setpgrp"));
351 
352 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
353 
354 	if (sess != NULL) {
355 		/*
356 		 * new session
357 		 */
358 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
359 		PROC_LOCK(p);
360 		p->p_flag &= ~P_CONTROLT;
361 		PROC_UNLOCK(p);
362 		PGRP_LOCK(pgrp);
363 		sess->s_leader = p;
364 		sess->s_sid = p->p_pid;
365 		refcount_init(&sess->s_count, 1);
366 		sess->s_ttyvp = NULL;
367 		sess->s_ttydp = NULL;
368 		sess->s_ttyp = NULL;
369 		bcopy(p->p_session->s_login, sess->s_login,
370 			    sizeof(sess->s_login));
371 		pgrp->pg_session = sess;
372 		KASSERT(p == curproc,
373 		    ("enterpgrp: mksession and p != curproc"));
374 	} else {
375 		pgrp->pg_session = p->p_session;
376 		sess_hold(pgrp->pg_session);
377 		PGRP_LOCK(pgrp);
378 	}
379 	pgrp->pg_id = pgid;
380 	LIST_INIT(&pgrp->pg_members);
381 
382 	/*
383 	 * As we have an exclusive lock of proctree_lock,
384 	 * this should not deadlock.
385 	 */
386 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
387 	pgrp->pg_jobc = 0;
388 	SLIST_INIT(&pgrp->pg_sigiolst);
389 	PGRP_UNLOCK(pgrp);
390 
391 	doenterpgrp(p, pgrp);
392 
393 	return (0);
394 }
395 
396 /*
397  * Move p to an existing process group
398  */
399 int
400 enterthispgrp(p, pgrp)
401 	register struct proc *p;
402 	struct pgrp *pgrp;
403 {
404 
405 	sx_assert(&proctree_lock, SX_XLOCKED);
406 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
407 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
408 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
409 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
410 	KASSERT(pgrp->pg_session == p->p_session,
411 		("%s: pgrp's session %p, p->p_session %p.\n",
412 		__func__,
413 		pgrp->pg_session,
414 		p->p_session));
415 	KASSERT(pgrp != p->p_pgrp,
416 		("%s: p belongs to pgrp.", __func__));
417 
418 	doenterpgrp(p, pgrp);
419 
420 	return (0);
421 }
422 
423 /*
424  * Move p to a process group
425  */
426 static void
427 doenterpgrp(p, pgrp)
428 	struct proc *p;
429 	struct pgrp *pgrp;
430 {
431 	struct pgrp *savepgrp;
432 
433 	sx_assert(&proctree_lock, SX_XLOCKED);
434 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
435 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
436 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
437 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
438 
439 	savepgrp = p->p_pgrp;
440 
441 	/*
442 	 * Adjust eligibility of affected pgrps to participate in job control.
443 	 * Increment eligibility counts before decrementing, otherwise we
444 	 * could reach 0 spuriously during the first call.
445 	 */
446 	fixjobc(p, pgrp, 1);
447 	fixjobc(p, p->p_pgrp, 0);
448 
449 	PGRP_LOCK(pgrp);
450 	PGRP_LOCK(savepgrp);
451 	PROC_LOCK(p);
452 	LIST_REMOVE(p, p_pglist);
453 	p->p_pgrp = pgrp;
454 	PROC_UNLOCK(p);
455 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
456 	PGRP_UNLOCK(savepgrp);
457 	PGRP_UNLOCK(pgrp);
458 	if (LIST_EMPTY(&savepgrp->pg_members))
459 		pgdelete(savepgrp);
460 }
461 
462 /*
463  * remove process from process group
464  */
465 int
466 leavepgrp(p)
467 	register struct proc *p;
468 {
469 	struct pgrp *savepgrp;
470 
471 	sx_assert(&proctree_lock, SX_XLOCKED);
472 	savepgrp = p->p_pgrp;
473 	PGRP_LOCK(savepgrp);
474 	PROC_LOCK(p);
475 	LIST_REMOVE(p, p_pglist);
476 	p->p_pgrp = NULL;
477 	PROC_UNLOCK(p);
478 	PGRP_UNLOCK(savepgrp);
479 	if (LIST_EMPTY(&savepgrp->pg_members))
480 		pgdelete(savepgrp);
481 	return (0);
482 }
483 
484 /*
485  * delete a process group
486  */
487 static void
488 pgdelete(pgrp)
489 	register struct pgrp *pgrp;
490 {
491 	struct session *savesess;
492 	struct tty *tp;
493 
494 	sx_assert(&proctree_lock, SX_XLOCKED);
495 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
496 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
497 
498 	/*
499 	 * Reset any sigio structures pointing to us as a result of
500 	 * F_SETOWN with our pgid.
501 	 */
502 	funsetownlst(&pgrp->pg_sigiolst);
503 
504 	PGRP_LOCK(pgrp);
505 	tp = pgrp->pg_session->s_ttyp;
506 	LIST_REMOVE(pgrp, pg_hash);
507 	savesess = pgrp->pg_session;
508 	PGRP_UNLOCK(pgrp);
509 
510 	/* Remove the reference to the pgrp before deallocating it. */
511 	if (tp != NULL) {
512 		tty_lock(tp);
513 		tty_rel_pgrp(tp, pgrp);
514 	}
515 
516 	mtx_destroy(&pgrp->pg_mtx);
517 	free(pgrp, M_PGRP);
518 	sess_release(savesess);
519 }
520 
521 static void
522 pgadjustjobc(pgrp, entering)
523 	struct pgrp *pgrp;
524 	int entering;
525 {
526 
527 	PGRP_LOCK(pgrp);
528 	if (entering)
529 		pgrp->pg_jobc++;
530 	else {
531 		--pgrp->pg_jobc;
532 		if (pgrp->pg_jobc == 0)
533 			orphanpg(pgrp);
534 	}
535 	PGRP_UNLOCK(pgrp);
536 }
537 
538 /*
539  * Adjust pgrp jobc counters when specified process changes process group.
540  * We count the number of processes in each process group that "qualify"
541  * the group for terminal job control (those with a parent in a different
542  * process group of the same session).  If that count reaches zero, the
543  * process group becomes orphaned.  Check both the specified process'
544  * process group and that of its children.
545  * entering == 0 => p is leaving specified group.
546  * entering == 1 => p is entering specified group.
547  */
548 void
549 fixjobc(p, pgrp, entering)
550 	register struct proc *p;
551 	register struct pgrp *pgrp;
552 	int entering;
553 {
554 	register struct pgrp *hispgrp;
555 	register struct session *mysession;
556 
557 	sx_assert(&proctree_lock, SX_LOCKED);
558 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
559 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
560 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
561 
562 	/*
563 	 * Check p's parent to see whether p qualifies its own process
564 	 * group; if so, adjust count for p's process group.
565 	 */
566 	mysession = pgrp->pg_session;
567 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
568 	    hispgrp->pg_session == mysession)
569 		pgadjustjobc(pgrp, entering);
570 
571 	/*
572 	 * Check this process' children to see whether they qualify
573 	 * their process groups; if so, adjust counts for children's
574 	 * process groups.
575 	 */
576 	LIST_FOREACH(p, &p->p_children, p_sibling) {
577 		hispgrp = p->p_pgrp;
578 		if (hispgrp == pgrp ||
579 		    hispgrp->pg_session != mysession)
580 			continue;
581 		PROC_LOCK(p);
582 		if (p->p_state == PRS_ZOMBIE) {
583 			PROC_UNLOCK(p);
584 			continue;
585 		}
586 		PROC_UNLOCK(p);
587 		pgadjustjobc(hispgrp, entering);
588 	}
589 }
590 
591 /*
592  * A process group has become orphaned;
593  * if there are any stopped processes in the group,
594  * hang-up all process in that group.
595  */
596 static void
597 orphanpg(pg)
598 	struct pgrp *pg;
599 {
600 	register struct proc *p;
601 
602 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
603 
604 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
605 		PROC_LOCK(p);
606 		if (P_SHOULDSTOP(p)) {
607 			PROC_UNLOCK(p);
608 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
609 				PROC_LOCK(p);
610 				psignal(p, SIGHUP);
611 				psignal(p, SIGCONT);
612 				PROC_UNLOCK(p);
613 			}
614 			return;
615 		}
616 		PROC_UNLOCK(p);
617 	}
618 }
619 
620 void
621 sess_hold(struct session *s)
622 {
623 
624 	refcount_acquire(&s->s_count);
625 }
626 
627 void
628 sess_release(struct session *s)
629 {
630 
631 	if (refcount_release(&s->s_count)) {
632 		if (s->s_ttyp != NULL) {
633 			tty_lock(s->s_ttyp);
634 			tty_rel_sess(s->s_ttyp, s);
635 		}
636 		mtx_destroy(&s->s_mtx);
637 		free(s, M_SESSION);
638 	}
639 }
640 
641 #include "opt_ddb.h"
642 #ifdef DDB
643 #include <ddb/ddb.h>
644 
645 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
646 {
647 	register struct pgrp *pgrp;
648 	register struct proc *p;
649 	register int i;
650 
651 	for (i = 0; i <= pgrphash; i++) {
652 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
653 			printf("\tindx %d\n", i);
654 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
655 				printf(
656 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
657 				    (void *)pgrp, (long)pgrp->pg_id,
658 				    (void *)pgrp->pg_session,
659 				    pgrp->pg_session->s_count,
660 				    (void *)LIST_FIRST(&pgrp->pg_members));
661 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
662 					printf("\t\tpid %ld addr %p pgrp %p\n",
663 					    (long)p->p_pid, (void *)p,
664 					    (void *)p->p_pgrp);
665 				}
666 			}
667 		}
668 	}
669 }
670 #endif /* DDB */
671 
672 /*
673  * Calculate the kinfo_proc members which contain process-wide
674  * informations.
675  * Must be called with the target process locked.
676  */
677 static void
678 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
679 {
680 	struct thread *td;
681 
682 	PROC_LOCK_ASSERT(p, MA_OWNED);
683 
684 	kp->ki_estcpu = 0;
685 	kp->ki_pctcpu = 0;
686 	FOREACH_THREAD_IN_PROC(p, td) {
687 		thread_lock(td);
688 		kp->ki_pctcpu += sched_pctcpu(td);
689 		kp->ki_estcpu += td->td_estcpu;
690 		thread_unlock(td);
691 	}
692 }
693 
694 /*
695  * Clear kinfo_proc and fill in any information that is common
696  * to all threads in the process.
697  * Must be called with the target process locked.
698  */
699 static void
700 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
701 {
702 	struct thread *td0;
703 	struct tty *tp;
704 	struct session *sp;
705 	struct ucred *cred;
706 	struct sigacts *ps;
707 
708 	PROC_LOCK_ASSERT(p, MA_OWNED);
709 	bzero(kp, sizeof(*kp));
710 
711 	kp->ki_structsize = sizeof(*kp);
712 	kp->ki_paddr = p;
713 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
714 	kp->ki_args = p->p_args;
715 	kp->ki_textvp = p->p_textvp;
716 #ifdef KTRACE
717 	kp->ki_tracep = p->p_tracevp;
718 	kp->ki_traceflag = p->p_traceflag;
719 #endif
720 	kp->ki_fd = p->p_fd;
721 	kp->ki_vmspace = p->p_vmspace;
722 	kp->ki_flag = p->p_flag;
723 	cred = p->p_ucred;
724 	if (cred) {
725 		kp->ki_uid = cred->cr_uid;
726 		kp->ki_ruid = cred->cr_ruid;
727 		kp->ki_svuid = cred->cr_svuid;
728 		kp->ki_cr_flags = 0;
729 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
730 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
731 		/* XXX bde doesn't like KI_NGROUPS */
732 		if (cred->cr_ngroups > KI_NGROUPS) {
733 			kp->ki_ngroups = KI_NGROUPS;
734 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
735 		} else
736 			kp->ki_ngroups = cred->cr_ngroups;
737 		bcopy(cred->cr_groups, kp->ki_groups,
738 		    kp->ki_ngroups * sizeof(gid_t));
739 		kp->ki_rgid = cred->cr_rgid;
740 		kp->ki_svgid = cred->cr_svgid;
741 		/* If jailed(cred), emulate the old P_JAILED flag. */
742 		if (jailed(cred)) {
743 			kp->ki_flag |= P_JAILED;
744 			/* If inside the jail, use 0 as a jail ID. */
745 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
746 				kp->ki_jid = cred->cr_prison->pr_id;
747 		}
748 	}
749 	ps = p->p_sigacts;
750 	if (ps) {
751 		mtx_lock(&ps->ps_mtx);
752 		kp->ki_sigignore = ps->ps_sigignore;
753 		kp->ki_sigcatch = ps->ps_sigcatch;
754 		mtx_unlock(&ps->ps_mtx);
755 	}
756 	PROC_SLOCK(p);
757 	if (p->p_state != PRS_NEW &&
758 	    p->p_state != PRS_ZOMBIE &&
759 	    p->p_vmspace != NULL) {
760 		struct vmspace *vm = p->p_vmspace;
761 
762 		kp->ki_size = vm->vm_map.size;
763 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
764 		FOREACH_THREAD_IN_PROC(p, td0) {
765 			if (!TD_IS_SWAPPED(td0))
766 				kp->ki_rssize += td0->td_kstack_pages;
767 		}
768 		kp->ki_swrss = vm->vm_swrss;
769 		kp->ki_tsize = vm->vm_tsize;
770 		kp->ki_dsize = vm->vm_dsize;
771 		kp->ki_ssize = vm->vm_ssize;
772 	} else if (p->p_state == PRS_ZOMBIE)
773 		kp->ki_stat = SZOMB;
774 	if (kp->ki_flag & P_INMEM)
775 		kp->ki_sflag = PS_INMEM;
776 	else
777 		kp->ki_sflag = 0;
778 	/* Calculate legacy swtime as seconds since 'swtick'. */
779 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
780 	kp->ki_pid = p->p_pid;
781 	kp->ki_nice = p->p_nice;
782 	rufetch(p, &kp->ki_rusage);
783 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
784 	PROC_SUNLOCK(p);
785 	kp->ki_start = p->p_stats->p_start;
786 	timevaladd(&kp->ki_start, &boottime);
787 	PROC_SLOCK(p);
788 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
789 	PROC_SUNLOCK(p);
790 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
791 	/* Some callers want child times in a single value. */
792 	kp->ki_childtime = kp->ki_childstime;
793 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
794 
795 	tp = NULL;
796 	if (p->p_pgrp) {
797 		kp->ki_pgid = p->p_pgrp->pg_id;
798 		kp->ki_jobc = p->p_pgrp->pg_jobc;
799 		sp = p->p_pgrp->pg_session;
800 
801 		if (sp != NULL) {
802 			kp->ki_sid = sp->s_sid;
803 			SESS_LOCK(sp);
804 			strlcpy(kp->ki_login, sp->s_login,
805 			    sizeof(kp->ki_login));
806 			if (sp->s_ttyvp)
807 				kp->ki_kiflag |= KI_CTTY;
808 			if (SESS_LEADER(p))
809 				kp->ki_kiflag |= KI_SLEADER;
810 			/* XXX proctree_lock */
811 			tp = sp->s_ttyp;
812 			SESS_UNLOCK(sp);
813 		}
814 	}
815 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
816 		kp->ki_tdev = tty_udev(tp);
817 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
818 		if (tp->t_session)
819 			kp->ki_tsid = tp->t_session->s_sid;
820 	} else
821 		kp->ki_tdev = NODEV;
822 	if (p->p_comm[0] != '\0')
823 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
824 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
825 	    p->p_sysent->sv_name[0] != '\0')
826 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
827 	kp->ki_siglist = p->p_siglist;
828 	kp->ki_xstat = p->p_xstat;
829 	kp->ki_acflag = p->p_acflag;
830 	kp->ki_lock = p->p_lock;
831 	if (p->p_pptr)
832 		kp->ki_ppid = p->p_pptr->p_pid;
833 }
834 
835 /*
836  * Fill in information that is thread specific.  Must be called with
837  * target process locked.  If 'preferthread' is set, overwrite certain
838  * process-related fields that are maintained for both threads and
839  * processes.
840  */
841 static void
842 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
843 {
844 	struct proc *p;
845 
846 	p = td->td_proc;
847 	kp->ki_tdaddr = td;
848 	PROC_LOCK_ASSERT(p, MA_OWNED);
849 
850 	thread_lock(td);
851 	if (td->td_wmesg != NULL)
852 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
853 	else
854 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
855 	strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
856 	if (TD_ON_LOCK(td)) {
857 		kp->ki_kiflag |= KI_LOCKBLOCK;
858 		strlcpy(kp->ki_lockname, td->td_lockname,
859 		    sizeof(kp->ki_lockname));
860 	} else {
861 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
862 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
863 	}
864 
865 	if (p->p_state == PRS_NORMAL) { /* approximate. */
866 		if (TD_ON_RUNQ(td) ||
867 		    TD_CAN_RUN(td) ||
868 		    TD_IS_RUNNING(td)) {
869 			kp->ki_stat = SRUN;
870 		} else if (P_SHOULDSTOP(p)) {
871 			kp->ki_stat = SSTOP;
872 		} else if (TD_IS_SLEEPING(td)) {
873 			kp->ki_stat = SSLEEP;
874 		} else if (TD_ON_LOCK(td)) {
875 			kp->ki_stat = SLOCK;
876 		} else {
877 			kp->ki_stat = SWAIT;
878 		}
879 	} else if (p->p_state == PRS_ZOMBIE) {
880 		kp->ki_stat = SZOMB;
881 	} else {
882 		kp->ki_stat = SIDL;
883 	}
884 
885 	/* Things in the thread */
886 	kp->ki_wchan = td->td_wchan;
887 	kp->ki_pri.pri_level = td->td_priority;
888 	kp->ki_pri.pri_native = td->td_base_pri;
889 	kp->ki_lastcpu = td->td_lastcpu;
890 	kp->ki_oncpu = td->td_oncpu;
891 	kp->ki_tdflags = td->td_flags;
892 	kp->ki_tid = td->td_tid;
893 	kp->ki_numthreads = p->p_numthreads;
894 	kp->ki_pcb = td->td_pcb;
895 	kp->ki_kstack = (void *)td->td_kstack;
896 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
897 	kp->ki_pri.pri_class = td->td_pri_class;
898 	kp->ki_pri.pri_user = td->td_user_pri;
899 
900 	if (preferthread) {
901 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
902 		kp->ki_pctcpu = sched_pctcpu(td);
903 		kp->ki_estcpu = td->td_estcpu;
904 	}
905 
906 	/* We can't get this anymore but ps etc never used it anyway. */
907 	kp->ki_rqindex = 0;
908 
909 	if (preferthread)
910 		kp->ki_siglist = td->td_siglist;
911 	kp->ki_sigmask = td->td_sigmask;
912 	thread_unlock(td);
913 }
914 
915 /*
916  * Fill in a kinfo_proc structure for the specified process.
917  * Must be called with the target process locked.
918  */
919 void
920 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
921 {
922 
923 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
924 
925 	fill_kinfo_proc_only(p, kp);
926 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
927 	fill_kinfo_aggregate(p, kp);
928 }
929 
930 struct pstats *
931 pstats_alloc(void)
932 {
933 
934 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
935 }
936 
937 /*
938  * Copy parts of p_stats; zero the rest of p_stats (statistics).
939  */
940 void
941 pstats_fork(struct pstats *src, struct pstats *dst)
942 {
943 
944 	bzero(&dst->pstat_startzero,
945 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
946 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
947 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
948 }
949 
950 void
951 pstats_free(struct pstats *ps)
952 {
953 
954 	free(ps, M_SUBPROC);
955 }
956 
957 /*
958  * Locate a zombie process by number
959  */
960 struct proc *
961 zpfind(pid_t pid)
962 {
963 	struct proc *p;
964 
965 	sx_slock(&allproc_lock);
966 	LIST_FOREACH(p, &zombproc, p_list)
967 		if (p->p_pid == pid) {
968 			PROC_LOCK(p);
969 			break;
970 		}
971 	sx_sunlock(&allproc_lock);
972 	return (p);
973 }
974 
975 #define KERN_PROC_ZOMBMASK	0x3
976 #define KERN_PROC_NOTHREADS	0x4
977 
978 #ifdef COMPAT_FREEBSD32
979 
980 /*
981  * This function is typically used to copy out the kernel address, so
982  * it can be replaced by assignment of zero.
983  */
984 static inline uint32_t
985 ptr32_trim(void *ptr)
986 {
987 	uintptr_t uptr;
988 
989 	uptr = (uintptr_t)ptr;
990 	return ((uptr > UINT_MAX) ? 0 : uptr);
991 }
992 
993 #define PTRTRIM_CP(src,dst,fld) \
994 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
995 
996 static void
997 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
998 {
999 	int i;
1000 
1001 	bzero(ki32, sizeof(struct kinfo_proc32));
1002 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1003 	CP(*ki, *ki32, ki_layout);
1004 	PTRTRIM_CP(*ki, *ki32, ki_args);
1005 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1006 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1007 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1008 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1009 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1010 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1011 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1012 	CP(*ki, *ki32, ki_pid);
1013 	CP(*ki, *ki32, ki_ppid);
1014 	CP(*ki, *ki32, ki_pgid);
1015 	CP(*ki, *ki32, ki_tpgid);
1016 	CP(*ki, *ki32, ki_sid);
1017 	CP(*ki, *ki32, ki_tsid);
1018 	CP(*ki, *ki32, ki_jobc);
1019 	CP(*ki, *ki32, ki_tdev);
1020 	CP(*ki, *ki32, ki_siglist);
1021 	CP(*ki, *ki32, ki_sigmask);
1022 	CP(*ki, *ki32, ki_sigignore);
1023 	CP(*ki, *ki32, ki_sigcatch);
1024 	CP(*ki, *ki32, ki_uid);
1025 	CP(*ki, *ki32, ki_ruid);
1026 	CP(*ki, *ki32, ki_svuid);
1027 	CP(*ki, *ki32, ki_rgid);
1028 	CP(*ki, *ki32, ki_svgid);
1029 	CP(*ki, *ki32, ki_ngroups);
1030 	for (i = 0; i < KI_NGROUPS; i++)
1031 		CP(*ki, *ki32, ki_groups[i]);
1032 	CP(*ki, *ki32, ki_size);
1033 	CP(*ki, *ki32, ki_rssize);
1034 	CP(*ki, *ki32, ki_swrss);
1035 	CP(*ki, *ki32, ki_tsize);
1036 	CP(*ki, *ki32, ki_dsize);
1037 	CP(*ki, *ki32, ki_ssize);
1038 	CP(*ki, *ki32, ki_xstat);
1039 	CP(*ki, *ki32, ki_acflag);
1040 	CP(*ki, *ki32, ki_pctcpu);
1041 	CP(*ki, *ki32, ki_estcpu);
1042 	CP(*ki, *ki32, ki_slptime);
1043 	CP(*ki, *ki32, ki_swtime);
1044 	CP(*ki, *ki32, ki_runtime);
1045 	TV_CP(*ki, *ki32, ki_start);
1046 	TV_CP(*ki, *ki32, ki_childtime);
1047 	CP(*ki, *ki32, ki_flag);
1048 	CP(*ki, *ki32, ki_kiflag);
1049 	CP(*ki, *ki32, ki_traceflag);
1050 	CP(*ki, *ki32, ki_stat);
1051 	CP(*ki, *ki32, ki_nice);
1052 	CP(*ki, *ki32, ki_lock);
1053 	CP(*ki, *ki32, ki_rqindex);
1054 	CP(*ki, *ki32, ki_oncpu);
1055 	CP(*ki, *ki32, ki_lastcpu);
1056 	bcopy(ki->ki_ocomm, ki32->ki_ocomm, OCOMMLEN + 1);
1057 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1058 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1059 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1060 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1061 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1062 	CP(*ki, *ki32, ki_cr_flags);
1063 	CP(*ki, *ki32, ki_jid);
1064 	CP(*ki, *ki32, ki_numthreads);
1065 	CP(*ki, *ki32, ki_tid);
1066 	CP(*ki, *ki32, ki_pri);
1067 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1068 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1069 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1070 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1071 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1072 	CP(*ki, *ki32, ki_sflag);
1073 	CP(*ki, *ki32, ki_tdflags);
1074 }
1075 
1076 static int
1077 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1078 {
1079 	struct kinfo_proc32 ki32;
1080 	int error;
1081 
1082 	if (req->flags & SCTL_MASK32) {
1083 		freebsd32_kinfo_proc_out(ki, &ki32);
1084 		error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32));
1085 	} else
1086 		error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc));
1087 	return (error);
1088 }
1089 #else
1090 static int
1091 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1092 {
1093 
1094 	return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)));
1095 }
1096 #endif
1097 
1098 /*
1099  * Must be called with the process locked and will return with it unlocked.
1100  */
1101 static int
1102 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1103 {
1104 	struct thread *td;
1105 	struct kinfo_proc kinfo_proc;
1106 	int error = 0;
1107 	struct proc *np;
1108 	pid_t pid = p->p_pid;
1109 
1110 	PROC_LOCK_ASSERT(p, MA_OWNED);
1111 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1112 
1113 	fill_kinfo_proc(p, &kinfo_proc);
1114 	if (flags & KERN_PROC_NOTHREADS)
1115 		error = sysctl_out_proc_copyout(&kinfo_proc, req);
1116 	else {
1117 		FOREACH_THREAD_IN_PROC(p, td) {
1118 			fill_kinfo_thread(td, &kinfo_proc, 1);
1119 			error = sysctl_out_proc_copyout(&kinfo_proc, req);
1120 			if (error)
1121 				break;
1122 		}
1123 	}
1124 	PROC_UNLOCK(p);
1125 	if (error)
1126 		return (error);
1127 	if (flags & KERN_PROC_ZOMBMASK)
1128 		np = zpfind(pid);
1129 	else {
1130 		if (pid == 0)
1131 			return (0);
1132 		np = pfind(pid);
1133 	}
1134 	if (np == NULL)
1135 		return (ESRCH);
1136 	if (np != p) {
1137 		PROC_UNLOCK(np);
1138 		return (ESRCH);
1139 	}
1140 	PROC_UNLOCK(np);
1141 	return (0);
1142 }
1143 
1144 static int
1145 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1146 {
1147 	int *name = (int*) arg1;
1148 	u_int namelen = arg2;
1149 	struct proc *p;
1150 	int flags, doingzomb, oid_number;
1151 	int error = 0;
1152 
1153 	oid_number = oidp->oid_number;
1154 	if (oid_number != KERN_PROC_ALL &&
1155 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1156 		flags = KERN_PROC_NOTHREADS;
1157 	else {
1158 		flags = 0;
1159 		oid_number &= ~KERN_PROC_INC_THREAD;
1160 	}
1161 	if (oid_number == KERN_PROC_PID) {
1162 		if (namelen != 1)
1163 			return (EINVAL);
1164 		error = sysctl_wire_old_buffer(req, 0);
1165 		if (error)
1166 			return (error);
1167 		p = pfind((pid_t)name[0]);
1168 		if (!p)
1169 			return (ESRCH);
1170 		if ((error = p_cansee(curthread, p))) {
1171 			PROC_UNLOCK(p);
1172 			return (error);
1173 		}
1174 		error = sysctl_out_proc(p, req, flags);
1175 		return (error);
1176 	}
1177 
1178 	switch (oid_number) {
1179 	case KERN_PROC_ALL:
1180 		if (namelen != 0)
1181 			return (EINVAL);
1182 		break;
1183 	case KERN_PROC_PROC:
1184 		if (namelen != 0 && namelen != 1)
1185 			return (EINVAL);
1186 		break;
1187 	default:
1188 		if (namelen != 1)
1189 			return (EINVAL);
1190 		break;
1191 	}
1192 
1193 	if (!req->oldptr) {
1194 		/* overestimate by 5 procs */
1195 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1196 		if (error)
1197 			return (error);
1198 	}
1199 	error = sysctl_wire_old_buffer(req, 0);
1200 	if (error != 0)
1201 		return (error);
1202 	sx_slock(&allproc_lock);
1203 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1204 		if (!doingzomb)
1205 			p = LIST_FIRST(&allproc);
1206 		else
1207 			p = LIST_FIRST(&zombproc);
1208 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1209 			/*
1210 			 * Skip embryonic processes.
1211 			 */
1212 			PROC_SLOCK(p);
1213 			if (p->p_state == PRS_NEW) {
1214 				PROC_SUNLOCK(p);
1215 				continue;
1216 			}
1217 			PROC_SUNLOCK(p);
1218 			PROC_LOCK(p);
1219 			KASSERT(p->p_ucred != NULL,
1220 			    ("process credential is NULL for non-NEW proc"));
1221 			/*
1222 			 * Show a user only appropriate processes.
1223 			 */
1224 			if (p_cansee(curthread, p)) {
1225 				PROC_UNLOCK(p);
1226 				continue;
1227 			}
1228 			/*
1229 			 * TODO - make more efficient (see notes below).
1230 			 * do by session.
1231 			 */
1232 			switch (oid_number) {
1233 
1234 			case KERN_PROC_GID:
1235 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1236 					PROC_UNLOCK(p);
1237 					continue;
1238 				}
1239 				break;
1240 
1241 			case KERN_PROC_PGRP:
1242 				/* could do this by traversing pgrp */
1243 				if (p->p_pgrp == NULL ||
1244 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1245 					PROC_UNLOCK(p);
1246 					continue;
1247 				}
1248 				break;
1249 
1250 			case KERN_PROC_RGID:
1251 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1252 					PROC_UNLOCK(p);
1253 					continue;
1254 				}
1255 				break;
1256 
1257 			case KERN_PROC_SESSION:
1258 				if (p->p_session == NULL ||
1259 				    p->p_session->s_sid != (pid_t)name[0]) {
1260 					PROC_UNLOCK(p);
1261 					continue;
1262 				}
1263 				break;
1264 
1265 			case KERN_PROC_TTY:
1266 				if ((p->p_flag & P_CONTROLT) == 0 ||
1267 				    p->p_session == NULL) {
1268 					PROC_UNLOCK(p);
1269 					continue;
1270 				}
1271 				/* XXX proctree_lock */
1272 				SESS_LOCK(p->p_session);
1273 				if (p->p_session->s_ttyp == NULL ||
1274 				    tty_udev(p->p_session->s_ttyp) !=
1275 				    (dev_t)name[0]) {
1276 					SESS_UNLOCK(p->p_session);
1277 					PROC_UNLOCK(p);
1278 					continue;
1279 				}
1280 				SESS_UNLOCK(p->p_session);
1281 				break;
1282 
1283 			case KERN_PROC_UID:
1284 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1285 					PROC_UNLOCK(p);
1286 					continue;
1287 				}
1288 				break;
1289 
1290 			case KERN_PROC_RUID:
1291 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1292 					PROC_UNLOCK(p);
1293 					continue;
1294 				}
1295 				break;
1296 
1297 			case KERN_PROC_PROC:
1298 				break;
1299 
1300 			default:
1301 				break;
1302 
1303 			}
1304 
1305 			error = sysctl_out_proc(p, req, flags | doingzomb);
1306 			if (error) {
1307 				sx_sunlock(&allproc_lock);
1308 				return (error);
1309 			}
1310 		}
1311 	}
1312 	sx_sunlock(&allproc_lock);
1313 	return (0);
1314 }
1315 
1316 struct pargs *
1317 pargs_alloc(int len)
1318 {
1319 	struct pargs *pa;
1320 
1321 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1322 		M_WAITOK);
1323 	refcount_init(&pa->ar_ref, 1);
1324 	pa->ar_length = len;
1325 	return (pa);
1326 }
1327 
1328 static void
1329 pargs_free(struct pargs *pa)
1330 {
1331 
1332 	free(pa, M_PARGS);
1333 }
1334 
1335 void
1336 pargs_hold(struct pargs *pa)
1337 {
1338 
1339 	if (pa == NULL)
1340 		return;
1341 	refcount_acquire(&pa->ar_ref);
1342 }
1343 
1344 void
1345 pargs_drop(struct pargs *pa)
1346 {
1347 
1348 	if (pa == NULL)
1349 		return;
1350 	if (refcount_release(&pa->ar_ref))
1351 		pargs_free(pa);
1352 }
1353 
1354 /*
1355  * This sysctl allows a process to retrieve the argument list or process
1356  * title for another process without groping around in the address space
1357  * of the other process.  It also allow a process to set its own "process
1358  * title to a string of its own choice.
1359  */
1360 static int
1361 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1362 {
1363 	int *name = (int*) arg1;
1364 	u_int namelen = arg2;
1365 	struct pargs *newpa, *pa;
1366 	struct proc *p;
1367 	int error = 0;
1368 
1369 	if (namelen != 1)
1370 		return (EINVAL);
1371 
1372 	p = pfind((pid_t)name[0]);
1373 	if (!p)
1374 		return (ESRCH);
1375 
1376 	if ((error = p_cansee(curthread, p)) != 0) {
1377 		PROC_UNLOCK(p);
1378 		return (error);
1379 	}
1380 
1381 	if (req->newptr && curproc != p) {
1382 		PROC_UNLOCK(p);
1383 		return (EPERM);
1384 	}
1385 
1386 	pa = p->p_args;
1387 	pargs_hold(pa);
1388 	PROC_UNLOCK(p);
1389 	if (req->oldptr != NULL && pa != NULL)
1390 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1391 	pargs_drop(pa);
1392 	if (error != 0 || req->newptr == NULL)
1393 		return (error);
1394 
1395 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1396 		return (ENOMEM);
1397 	newpa = pargs_alloc(req->newlen);
1398 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1399 	if (error != 0) {
1400 		pargs_free(newpa);
1401 		return (error);
1402 	}
1403 	PROC_LOCK(p);
1404 	pa = p->p_args;
1405 	p->p_args = newpa;
1406 	PROC_UNLOCK(p);
1407 	pargs_drop(pa);
1408 	return (0);
1409 }
1410 
1411 /*
1412  * This sysctl allows a process to retrieve the path of the executable for
1413  * itself or another process.
1414  */
1415 static int
1416 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1417 {
1418 	pid_t *pidp = (pid_t *)arg1;
1419 	unsigned int arglen = arg2;
1420 	struct proc *p;
1421 	struct vnode *vp;
1422 	char *retbuf, *freebuf;
1423 	int error, vfslocked;
1424 
1425 	if (arglen != 1)
1426 		return (EINVAL);
1427 	if (*pidp == -1) {	/* -1 means this process */
1428 		p = req->td->td_proc;
1429 	} else {
1430 		p = pfind(*pidp);
1431 		if (p == NULL)
1432 			return (ESRCH);
1433 		if ((error = p_cansee(curthread, p)) != 0) {
1434 			PROC_UNLOCK(p);
1435 			return (error);
1436 		}
1437 	}
1438 
1439 	vp = p->p_textvp;
1440 	if (vp == NULL) {
1441 		if (*pidp != -1)
1442 			PROC_UNLOCK(p);
1443 		return (0);
1444 	}
1445 	vref(vp);
1446 	if (*pidp != -1)
1447 		PROC_UNLOCK(p);
1448 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1449 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1450 	vrele(vp);
1451 	VFS_UNLOCK_GIANT(vfslocked);
1452 	if (error)
1453 		return (error);
1454 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1455 	free(freebuf, M_TEMP);
1456 	return (error);
1457 }
1458 
1459 static int
1460 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1461 {
1462 	struct proc *p;
1463 	char *sv_name;
1464 	int *name;
1465 	int namelen;
1466 	int error;
1467 
1468 	namelen = arg2;
1469 	if (namelen != 1)
1470 		return (EINVAL);
1471 
1472 	name = (int *)arg1;
1473 	if ((p = pfind((pid_t)name[0])) == NULL)
1474 		return (ESRCH);
1475 	if ((error = p_cansee(curthread, p))) {
1476 		PROC_UNLOCK(p);
1477 		return (error);
1478 	}
1479 	sv_name = p->p_sysent->sv_name;
1480 	PROC_UNLOCK(p);
1481 	return (sysctl_handle_string(oidp, sv_name, 0, req));
1482 }
1483 
1484 #ifdef KINFO_OVMENTRY_SIZE
1485 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1486 #endif
1487 
1488 #ifdef COMPAT_FREEBSD7
1489 static int
1490 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1491 {
1492 	vm_map_entry_t entry, tmp_entry;
1493 	unsigned int last_timestamp;
1494 	char *fullpath, *freepath;
1495 	struct kinfo_ovmentry *kve;
1496 	struct vattr va;
1497 	struct ucred *cred;
1498 	int error, *name;
1499 	struct vnode *vp;
1500 	struct proc *p;
1501 	vm_map_t map;
1502 	struct vmspace *vm;
1503 
1504 	name = (int *)arg1;
1505 	if ((p = pfind((pid_t)name[0])) == NULL)
1506 		return (ESRCH);
1507 	if (p->p_flag & P_WEXIT) {
1508 		PROC_UNLOCK(p);
1509 		return (ESRCH);
1510 	}
1511 	if ((error = p_candebug(curthread, p))) {
1512 		PROC_UNLOCK(p);
1513 		return (error);
1514 	}
1515 	_PHOLD(p);
1516 	PROC_UNLOCK(p);
1517 	vm = vmspace_acquire_ref(p);
1518 	if (vm == NULL) {
1519 		PRELE(p);
1520 		return (ESRCH);
1521 	}
1522 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1523 
1524 	map = &p->p_vmspace->vm_map;	/* XXXRW: More locking required? */
1525 	vm_map_lock_read(map);
1526 	for (entry = map->header.next; entry != &map->header;
1527 	    entry = entry->next) {
1528 		vm_object_t obj, tobj, lobj;
1529 		vm_offset_t addr;
1530 		int vfslocked;
1531 
1532 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1533 			continue;
1534 
1535 		bzero(kve, sizeof(*kve));
1536 		kve->kve_structsize = sizeof(*kve);
1537 
1538 		kve->kve_private_resident = 0;
1539 		obj = entry->object.vm_object;
1540 		if (obj != NULL) {
1541 			VM_OBJECT_LOCK(obj);
1542 			if (obj->shadow_count == 1)
1543 				kve->kve_private_resident =
1544 				    obj->resident_page_count;
1545 		}
1546 		kve->kve_resident = 0;
1547 		addr = entry->start;
1548 		while (addr < entry->end) {
1549 			if (pmap_extract(map->pmap, addr))
1550 				kve->kve_resident++;
1551 			addr += PAGE_SIZE;
1552 		}
1553 
1554 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1555 			if (tobj != obj)
1556 				VM_OBJECT_LOCK(tobj);
1557 			if (lobj != obj)
1558 				VM_OBJECT_UNLOCK(lobj);
1559 			lobj = tobj;
1560 		}
1561 
1562 		kve->kve_start = (void*)entry->start;
1563 		kve->kve_end = (void*)entry->end;
1564 		kve->kve_offset = (off_t)entry->offset;
1565 
1566 		if (entry->protection & VM_PROT_READ)
1567 			kve->kve_protection |= KVME_PROT_READ;
1568 		if (entry->protection & VM_PROT_WRITE)
1569 			kve->kve_protection |= KVME_PROT_WRITE;
1570 		if (entry->protection & VM_PROT_EXECUTE)
1571 			kve->kve_protection |= KVME_PROT_EXEC;
1572 
1573 		if (entry->eflags & MAP_ENTRY_COW)
1574 			kve->kve_flags |= KVME_FLAG_COW;
1575 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1576 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1577 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1578 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1579 
1580 		last_timestamp = map->timestamp;
1581 		vm_map_unlock_read(map);
1582 
1583 		kve->kve_fileid = 0;
1584 		kve->kve_fsid = 0;
1585 		freepath = NULL;
1586 		fullpath = "";
1587 		if (lobj) {
1588 			vp = NULL;
1589 			switch (lobj->type) {
1590 			case OBJT_DEFAULT:
1591 				kve->kve_type = KVME_TYPE_DEFAULT;
1592 				break;
1593 			case OBJT_VNODE:
1594 				kve->kve_type = KVME_TYPE_VNODE;
1595 				vp = lobj->handle;
1596 				vref(vp);
1597 				break;
1598 			case OBJT_SWAP:
1599 				kve->kve_type = KVME_TYPE_SWAP;
1600 				break;
1601 			case OBJT_DEVICE:
1602 				kve->kve_type = KVME_TYPE_DEVICE;
1603 				break;
1604 			case OBJT_PHYS:
1605 				kve->kve_type = KVME_TYPE_PHYS;
1606 				break;
1607 			case OBJT_DEAD:
1608 				kve->kve_type = KVME_TYPE_DEAD;
1609 				break;
1610 			case OBJT_SG:
1611 				kve->kve_type = KVME_TYPE_SG;
1612 				break;
1613 			default:
1614 				kve->kve_type = KVME_TYPE_UNKNOWN;
1615 				break;
1616 			}
1617 			if (lobj != obj)
1618 				VM_OBJECT_UNLOCK(lobj);
1619 
1620 			kve->kve_ref_count = obj->ref_count;
1621 			kve->kve_shadow_count = obj->shadow_count;
1622 			VM_OBJECT_UNLOCK(obj);
1623 			if (vp != NULL) {
1624 				vn_fullpath(curthread, vp, &fullpath,
1625 				    &freepath);
1626 				cred = curthread->td_ucred;
1627 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1628 				vn_lock(vp, LK_SHARED | LK_RETRY);
1629 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1630 					kve->kve_fileid = va.va_fileid;
1631 					kve->kve_fsid = va.va_fsid;
1632 				}
1633 				vput(vp);
1634 				VFS_UNLOCK_GIANT(vfslocked);
1635 			}
1636 		} else {
1637 			kve->kve_type = KVME_TYPE_NONE;
1638 			kve->kve_ref_count = 0;
1639 			kve->kve_shadow_count = 0;
1640 		}
1641 
1642 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1643 		if (freepath != NULL)
1644 			free(freepath, M_TEMP);
1645 
1646 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
1647 		vm_map_lock_read(map);
1648 		if (error)
1649 			break;
1650 		if (last_timestamp != map->timestamp) {
1651 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1652 			entry = tmp_entry;
1653 		}
1654 	}
1655 	vm_map_unlock_read(map);
1656 	vmspace_free(vm);
1657 	PRELE(p);
1658 	free(kve, M_TEMP);
1659 	return (error);
1660 }
1661 #endif	/* COMPAT_FREEBSD7 */
1662 
1663 #ifdef KINFO_VMENTRY_SIZE
1664 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1665 #endif
1666 
1667 static int
1668 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1669 {
1670 	vm_map_entry_t entry, tmp_entry;
1671 	unsigned int last_timestamp;
1672 	char *fullpath, *freepath;
1673 	struct kinfo_vmentry *kve;
1674 	struct vattr va;
1675 	struct ucred *cred;
1676 	int error, *name;
1677 	struct vnode *vp;
1678 	struct proc *p;
1679 	struct vmspace *vm;
1680 	vm_map_t map;
1681 
1682 	name = (int *)arg1;
1683 	if ((p = pfind((pid_t)name[0])) == NULL)
1684 		return (ESRCH);
1685 	if (p->p_flag & P_WEXIT) {
1686 		PROC_UNLOCK(p);
1687 		return (ESRCH);
1688 	}
1689 	if ((error = p_candebug(curthread, p))) {
1690 		PROC_UNLOCK(p);
1691 		return (error);
1692 	}
1693 	_PHOLD(p);
1694 	PROC_UNLOCK(p);
1695 	vm = vmspace_acquire_ref(p);
1696 	if (vm == NULL) {
1697 		PRELE(p);
1698 		return (ESRCH);
1699 	}
1700 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1701 
1702 	map = &vm->vm_map;	/* XXXRW: More locking required? */
1703 	vm_map_lock_read(map);
1704 	for (entry = map->header.next; entry != &map->header;
1705 	    entry = entry->next) {
1706 		vm_object_t obj, tobj, lobj;
1707 		vm_offset_t addr;
1708 		int vfslocked;
1709 
1710 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1711 			continue;
1712 
1713 		bzero(kve, sizeof(*kve));
1714 
1715 		kve->kve_private_resident = 0;
1716 		obj = entry->object.vm_object;
1717 		if (obj != NULL) {
1718 			VM_OBJECT_LOCK(obj);
1719 			if (obj->shadow_count == 1)
1720 				kve->kve_private_resident =
1721 				    obj->resident_page_count;
1722 		}
1723 		kve->kve_resident = 0;
1724 		addr = entry->start;
1725 		while (addr < entry->end) {
1726 			if (pmap_extract(map->pmap, addr))
1727 				kve->kve_resident++;
1728 			addr += PAGE_SIZE;
1729 		}
1730 
1731 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1732 			if (tobj != obj)
1733 				VM_OBJECT_LOCK(tobj);
1734 			if (lobj != obj)
1735 				VM_OBJECT_UNLOCK(lobj);
1736 			lobj = tobj;
1737 		}
1738 
1739 		kve->kve_start = entry->start;
1740 		kve->kve_end = entry->end;
1741 		kve->kve_offset = entry->offset;
1742 
1743 		if (entry->protection & VM_PROT_READ)
1744 			kve->kve_protection |= KVME_PROT_READ;
1745 		if (entry->protection & VM_PROT_WRITE)
1746 			kve->kve_protection |= KVME_PROT_WRITE;
1747 		if (entry->protection & VM_PROT_EXECUTE)
1748 			kve->kve_protection |= KVME_PROT_EXEC;
1749 
1750 		if (entry->eflags & MAP_ENTRY_COW)
1751 			kve->kve_flags |= KVME_FLAG_COW;
1752 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1753 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1754 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1755 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1756 
1757 		last_timestamp = map->timestamp;
1758 		vm_map_unlock_read(map);
1759 
1760 		kve->kve_fileid = 0;
1761 		kve->kve_fsid = 0;
1762 		freepath = NULL;
1763 		fullpath = "";
1764 		if (lobj) {
1765 			vp = NULL;
1766 			switch (lobj->type) {
1767 			case OBJT_DEFAULT:
1768 				kve->kve_type = KVME_TYPE_DEFAULT;
1769 				break;
1770 			case OBJT_VNODE:
1771 				kve->kve_type = KVME_TYPE_VNODE;
1772 				vp = lobj->handle;
1773 				vref(vp);
1774 				break;
1775 			case OBJT_SWAP:
1776 				kve->kve_type = KVME_TYPE_SWAP;
1777 				break;
1778 			case OBJT_DEVICE:
1779 				kve->kve_type = KVME_TYPE_DEVICE;
1780 				break;
1781 			case OBJT_PHYS:
1782 				kve->kve_type = KVME_TYPE_PHYS;
1783 				break;
1784 			case OBJT_DEAD:
1785 				kve->kve_type = KVME_TYPE_DEAD;
1786 				break;
1787 			case OBJT_SG:
1788 				kve->kve_type = KVME_TYPE_SG;
1789 				break;
1790 			default:
1791 				kve->kve_type = KVME_TYPE_UNKNOWN;
1792 				break;
1793 			}
1794 			if (lobj != obj)
1795 				VM_OBJECT_UNLOCK(lobj);
1796 
1797 			kve->kve_ref_count = obj->ref_count;
1798 			kve->kve_shadow_count = obj->shadow_count;
1799 			VM_OBJECT_UNLOCK(obj);
1800 			if (vp != NULL) {
1801 				vn_fullpath(curthread, vp, &fullpath,
1802 				    &freepath);
1803 				cred = curthread->td_ucred;
1804 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1805 				vn_lock(vp, LK_SHARED | LK_RETRY);
1806 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1807 					kve->kve_fileid = va.va_fileid;
1808 					kve->kve_fsid = va.va_fsid;
1809 				}
1810 				vput(vp);
1811 				VFS_UNLOCK_GIANT(vfslocked);
1812 			}
1813 		} else {
1814 			kve->kve_type = KVME_TYPE_NONE;
1815 			kve->kve_ref_count = 0;
1816 			kve->kve_shadow_count = 0;
1817 		}
1818 
1819 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1820 		if (freepath != NULL)
1821 			free(freepath, M_TEMP);
1822 
1823 		/* Pack record size down */
1824 		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1825 		    strlen(kve->kve_path) + 1;
1826 		kve->kve_structsize = roundup(kve->kve_structsize,
1827 		    sizeof(uint64_t));
1828 		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1829 		vm_map_lock_read(map);
1830 		if (error)
1831 			break;
1832 		if (last_timestamp != map->timestamp) {
1833 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1834 			entry = tmp_entry;
1835 		}
1836 	}
1837 	vm_map_unlock_read(map);
1838 	vmspace_free(vm);
1839 	PRELE(p);
1840 	free(kve, M_TEMP);
1841 	return (error);
1842 }
1843 
1844 #if defined(STACK) || defined(DDB)
1845 static int
1846 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1847 {
1848 	struct kinfo_kstack *kkstp;
1849 	int error, i, *name, numthreads;
1850 	lwpid_t *lwpidarray;
1851 	struct thread *td;
1852 	struct stack *st;
1853 	struct sbuf sb;
1854 	struct proc *p;
1855 
1856 	name = (int *)arg1;
1857 	if ((p = pfind((pid_t)name[0])) == NULL)
1858 		return (ESRCH);
1859 	/* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1860 	if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1861 		PROC_UNLOCK(p);
1862 		return (ESRCH);
1863 	}
1864 	if ((error = p_candebug(curthread, p))) {
1865 		PROC_UNLOCK(p);
1866 		return (error);
1867 	}
1868 	_PHOLD(p);
1869 	PROC_UNLOCK(p);
1870 
1871 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1872 	st = stack_create();
1873 
1874 	lwpidarray = NULL;
1875 	numthreads = 0;
1876 	PROC_LOCK(p);
1877 repeat:
1878 	if (numthreads < p->p_numthreads) {
1879 		if (lwpidarray != NULL) {
1880 			free(lwpidarray, M_TEMP);
1881 			lwpidarray = NULL;
1882 		}
1883 		numthreads = p->p_numthreads;
1884 		PROC_UNLOCK(p);
1885 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1886 		    M_WAITOK | M_ZERO);
1887 		PROC_LOCK(p);
1888 		goto repeat;
1889 	}
1890 	i = 0;
1891 
1892 	/*
1893 	 * XXXRW: During the below loop, execve(2) and countless other sorts
1894 	 * of changes could have taken place.  Should we check to see if the
1895 	 * vmspace has been replaced, or the like, in order to prevent
1896 	 * giving a snapshot that spans, say, execve(2), with some threads
1897 	 * before and some after?  Among other things, the credentials could
1898 	 * have changed, in which case the right to extract debug info might
1899 	 * no longer be assured.
1900 	 */
1901 	FOREACH_THREAD_IN_PROC(p, td) {
1902 		KASSERT(i < numthreads,
1903 		    ("sysctl_kern_proc_kstack: numthreads"));
1904 		lwpidarray[i] = td->td_tid;
1905 		i++;
1906 	}
1907 	numthreads = i;
1908 	for (i = 0; i < numthreads; i++) {
1909 		td = thread_find(p, lwpidarray[i]);
1910 		if (td == NULL) {
1911 			continue;
1912 		}
1913 		bzero(kkstp, sizeof(*kkstp));
1914 		(void)sbuf_new(&sb, kkstp->kkst_trace,
1915 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1916 		thread_lock(td);
1917 		kkstp->kkst_tid = td->td_tid;
1918 		if (TD_IS_SWAPPED(td))
1919 			kkstp->kkst_state = KKST_STATE_SWAPPED;
1920 		else if (TD_IS_RUNNING(td))
1921 			kkstp->kkst_state = KKST_STATE_RUNNING;
1922 		else {
1923 			kkstp->kkst_state = KKST_STATE_STACKOK;
1924 			stack_save_td(st, td);
1925 		}
1926 		thread_unlock(td);
1927 		PROC_UNLOCK(p);
1928 		stack_sbuf_print(&sb, st);
1929 		sbuf_finish(&sb);
1930 		sbuf_delete(&sb);
1931 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1932 		PROC_LOCK(p);
1933 		if (error)
1934 			break;
1935 	}
1936 	_PRELE(p);
1937 	PROC_UNLOCK(p);
1938 	if (lwpidarray != NULL)
1939 		free(lwpidarray, M_TEMP);
1940 	stack_destroy(st);
1941 	free(kkstp, M_TEMP);
1942 	return (error);
1943 }
1944 #endif
1945 
1946 /*
1947  * This sysctl allows a process to retrieve the full list of groups from
1948  * itself or another process.
1949  */
1950 static int
1951 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
1952 {
1953 	pid_t *pidp = (pid_t *)arg1;
1954 	unsigned int arglen = arg2;
1955 	struct proc *p;
1956 	struct ucred *cred;
1957 	int error;
1958 
1959 	if (arglen != 1)
1960 		return (EINVAL);
1961 	if (*pidp == -1) {	/* -1 means this process */
1962 		p = req->td->td_proc;
1963 	} else {
1964 		p = pfind(*pidp);
1965 		if (p == NULL)
1966 			return (ESRCH);
1967 		if ((error = p_cansee(curthread, p)) != 0) {
1968 			PROC_UNLOCK(p);
1969 			return (error);
1970 		}
1971 	}
1972 
1973 	cred = crhold(p->p_ucred);
1974 	if (*pidp != -1)
1975 		PROC_UNLOCK(p);
1976 
1977 	error = SYSCTL_OUT(req, cred->cr_groups,
1978 	    cred->cr_ngroups * sizeof(gid_t));
1979 	crfree(cred);
1980 	return (error);
1981 }
1982 
1983 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1984 
1985 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1986 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1987 	"Return entire process table");
1988 
1989 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1990 	sysctl_kern_proc, "Process table");
1991 
1992 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1993 	sysctl_kern_proc, "Process table");
1994 
1995 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1996 	sysctl_kern_proc, "Process table");
1997 
1998 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
1999 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2000 
2001 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2002 	sysctl_kern_proc, "Process table");
2003 
2004 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2005 	sysctl_kern_proc, "Process table");
2006 
2007 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2008 	sysctl_kern_proc, "Process table");
2009 
2010 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2011 	sysctl_kern_proc, "Process table");
2012 
2013 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2014 	sysctl_kern_proc, "Return process table, no threads");
2015 
2016 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2017 	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2018 	sysctl_kern_proc_args, "Process argument list");
2019 
2020 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2021 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2022 
2023 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2024 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2025 	"Process syscall vector name (ABI type)");
2026 
2027 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2028 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2029 
2030 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2031 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2032 
2033 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2034 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2035 
2036 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2037 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2038 
2039 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2040 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2041 
2042 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2043 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2044 
2045 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2046 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2047 
2048 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2049 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2050 
2051 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2052 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2053 	"Return process table, no threads");
2054 
2055 #ifdef COMPAT_FREEBSD7
2056 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2057 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2058 #endif
2059 
2060 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2061 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2062 
2063 #if defined(STACK) || defined(DDB)
2064 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2065 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2066 #endif
2067 
2068 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2069 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2070