xref: /freebsd/sys/kern/kern_proc.c (revision 5861f9665471e98e544f6fa3ce73c4912229ff82)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/refcount.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysent.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/stack.h>
56 #include <sys/sysctl.h>
57 #include <sys/filedesc.h>
58 #include <sys/tty.h>
59 #include <sys/signalvar.h>
60 #include <sys/sdt.h>
61 #include <sys/sx.h>
62 #include <sys/user.h>
63 #include <sys/jail.h>
64 #include <sys/vnode.h>
65 #include <sys/eventhandler.h>
66 #ifdef KTRACE
67 #include <sys/uio.h>
68 #include <sys/ktrace.h>
69 #endif
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/uma.h>
81 
82 SDT_PROVIDER_DEFINE(proc);
83 SDT_PROBE_DEFINE(proc, kernel, ctor, entry);
84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
88 SDT_PROBE_DEFINE(proc, kernel, ctor, return);
89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
93 SDT_PROBE_DEFINE(proc, kernel, dtor, entry);
94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
98 SDT_PROBE_DEFINE(proc, kernel, dtor, return);
99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
102 SDT_PROBE_DEFINE(proc, kernel, init, entry);
103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
106 SDT_PROBE_DEFINE(proc, kernel, init, return);
107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
110 
111 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
112 MALLOC_DEFINE(M_SESSION, "session", "session header");
113 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
114 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
115 
116 static void doenterpgrp(struct proc *, struct pgrp *);
117 static void orphanpg(struct pgrp *pg);
118 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
119 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
120 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
121     int preferthread);
122 static void pgadjustjobc(struct pgrp *pgrp, int entering);
123 static void pgdelete(struct pgrp *);
124 static int proc_ctor(void *mem, int size, void *arg, int flags);
125 static void proc_dtor(void *mem, int size, void *arg);
126 static int proc_init(void *mem, int size, int flags);
127 static void proc_fini(void *mem, int size);
128 static void pargs_free(struct pargs *pa);
129 
130 /*
131  * Other process lists
132  */
133 struct pidhashhead *pidhashtbl;
134 u_long pidhash;
135 struct pgrphashhead *pgrphashtbl;
136 u_long pgrphash;
137 struct proclist allproc;
138 struct proclist zombproc;
139 struct sx allproc_lock;
140 struct sx proctree_lock;
141 struct mtx ppeers_lock;
142 uma_zone_t proc_zone;
143 uma_zone_t ithread_zone;
144 
145 int kstack_pages = KSTACK_PAGES;
146 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
147 
148 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
149 
150 /*
151  * Initialize global process hashing structures.
152  */
153 void
154 procinit()
155 {
156 
157 	sx_init(&allproc_lock, "allproc");
158 	sx_init(&proctree_lock, "proctree");
159 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
160 	LIST_INIT(&allproc);
161 	LIST_INIT(&zombproc);
162 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
163 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
164 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
165 	    proc_ctor, proc_dtor, proc_init, proc_fini,
166 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
167 	uihashinit();
168 }
169 
170 /*
171  * Prepare a proc for use.
172  */
173 static int
174 proc_ctor(void *mem, int size, void *arg, int flags)
175 {
176 	struct proc *p;
177 
178 	p = (struct proc *)mem;
179 	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
180 	EVENTHANDLER_INVOKE(process_ctor, p);
181 	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
182 	return (0);
183 }
184 
185 /*
186  * Reclaim a proc after use.
187  */
188 static void
189 proc_dtor(void *mem, int size, void *arg)
190 {
191 	struct proc *p;
192 	struct thread *td;
193 
194 	/* INVARIANTS checks go here */
195 	p = (struct proc *)mem;
196 	td = FIRST_THREAD_IN_PROC(p);
197 	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
198 	if (td != NULL) {
199 #ifdef INVARIANTS
200 		KASSERT((p->p_numthreads == 1),
201 		    ("bad number of threads in exiting process"));
202 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
203 #endif
204 		/* Free all OSD associated to this thread. */
205 		osd_thread_exit(td);
206 
207 		/* Dispose of an alternate kstack, if it exists.
208 		 * XXX What if there are more than one thread in the proc?
209 		 *     The first thread in the proc is special and not
210 		 *     freed, so you gotta do this here.
211 		 */
212 		if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
213 			vm_thread_dispose_altkstack(td);
214 	}
215 	EVENTHANDLER_INVOKE(process_dtor, p);
216 	if (p->p_ksi != NULL)
217 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
218 	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
219 }
220 
221 /*
222  * Initialize type-stable parts of a proc (when newly created).
223  */
224 static int
225 proc_init(void *mem, int size, int flags)
226 {
227 	struct proc *p;
228 
229 	p = (struct proc *)mem;
230 	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
231 	p->p_sched = (struct p_sched *)&p[1];
232 	bzero(&p->p_mtx, sizeof(struct mtx));
233 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
234 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
235 	cv_init(&p->p_pwait, "ppwait");
236 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
237 	EVENTHANDLER_INVOKE(process_init, p);
238 	p->p_stats = pstats_alloc();
239 	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
240 	return (0);
241 }
242 
243 /*
244  * UMA should ensure that this function is never called.
245  * Freeing a proc structure would violate type stability.
246  */
247 static void
248 proc_fini(void *mem, int size)
249 {
250 #ifdef notnow
251 	struct proc *p;
252 
253 	p = (struct proc *)mem;
254 	EVENTHANDLER_INVOKE(process_fini, p);
255 	pstats_free(p->p_stats);
256 	thread_free(FIRST_THREAD_IN_PROC(p));
257 	mtx_destroy(&p->p_mtx);
258 	if (p->p_ksi != NULL)
259 		ksiginfo_free(p->p_ksi);
260 #else
261 	panic("proc reclaimed");
262 #endif
263 }
264 
265 /*
266  * Is p an inferior of the current process?
267  */
268 int
269 inferior(p)
270 	register struct proc *p;
271 {
272 
273 	sx_assert(&proctree_lock, SX_LOCKED);
274 	for (; p != curproc; p = p->p_pptr)
275 		if (p->p_pid == 0)
276 			return (0);
277 	return (1);
278 }
279 
280 /*
281  * Locate a process by number; return only "live" processes -- i.e., neither
282  * zombies nor newly born but incompletely initialized processes.  By not
283  * returning processes in the PRS_NEW state, we allow callers to avoid
284  * testing for that condition to avoid dereferencing p_ucred, et al.
285  */
286 struct proc *
287 pfind(pid)
288 	register pid_t pid;
289 {
290 	register struct proc *p;
291 
292 	sx_slock(&allproc_lock);
293 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
294 		if (p->p_pid == pid) {
295 			if (p->p_state == PRS_NEW) {
296 				p = NULL;
297 				break;
298 			}
299 			PROC_LOCK(p);
300 			break;
301 		}
302 	sx_sunlock(&allproc_lock);
303 	return (p);
304 }
305 
306 /*
307  * Locate a process group by number.
308  * The caller must hold proctree_lock.
309  */
310 struct pgrp *
311 pgfind(pgid)
312 	register pid_t pgid;
313 {
314 	register struct pgrp *pgrp;
315 
316 	sx_assert(&proctree_lock, SX_LOCKED);
317 
318 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
319 		if (pgrp->pg_id == pgid) {
320 			PGRP_LOCK(pgrp);
321 			return (pgrp);
322 		}
323 	}
324 	return (NULL);
325 }
326 
327 /*
328  * Create a new process group.
329  * pgid must be equal to the pid of p.
330  * Begin a new session if required.
331  */
332 int
333 enterpgrp(p, pgid, pgrp, sess)
334 	register struct proc *p;
335 	pid_t pgid;
336 	struct pgrp *pgrp;
337 	struct session *sess;
338 {
339 	struct pgrp *pgrp2;
340 
341 	sx_assert(&proctree_lock, SX_XLOCKED);
342 
343 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
344 	KASSERT(p->p_pid == pgid,
345 	    ("enterpgrp: new pgrp and pid != pgid"));
346 
347 	pgrp2 = pgfind(pgid);
348 
349 	KASSERT(pgrp2 == NULL,
350 	    ("enterpgrp: pgrp with pgid exists"));
351 	KASSERT(!SESS_LEADER(p),
352 	    ("enterpgrp: session leader attempted setpgrp"));
353 
354 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
355 
356 	if (sess != NULL) {
357 		/*
358 		 * new session
359 		 */
360 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
361 		PROC_LOCK(p);
362 		p->p_flag &= ~P_CONTROLT;
363 		PROC_UNLOCK(p);
364 		PGRP_LOCK(pgrp);
365 		sess->s_leader = p;
366 		sess->s_sid = p->p_pid;
367 		refcount_init(&sess->s_count, 1);
368 		sess->s_ttyvp = NULL;
369 		sess->s_ttyp = NULL;
370 		bcopy(p->p_session->s_login, sess->s_login,
371 			    sizeof(sess->s_login));
372 		pgrp->pg_session = sess;
373 		KASSERT(p == curproc,
374 		    ("enterpgrp: mksession and p != curproc"));
375 	} else {
376 		pgrp->pg_session = p->p_session;
377 		sess_hold(pgrp->pg_session);
378 		PGRP_LOCK(pgrp);
379 	}
380 	pgrp->pg_id = pgid;
381 	LIST_INIT(&pgrp->pg_members);
382 
383 	/*
384 	 * As we have an exclusive lock of proctree_lock,
385 	 * this should not deadlock.
386 	 */
387 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
388 	pgrp->pg_jobc = 0;
389 	SLIST_INIT(&pgrp->pg_sigiolst);
390 	PGRP_UNLOCK(pgrp);
391 
392 	doenterpgrp(p, pgrp);
393 
394 	return (0);
395 }
396 
397 /*
398  * Move p to an existing process group
399  */
400 int
401 enterthispgrp(p, pgrp)
402 	register struct proc *p;
403 	struct pgrp *pgrp;
404 {
405 
406 	sx_assert(&proctree_lock, SX_XLOCKED);
407 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
408 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
409 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
410 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
411 	KASSERT(pgrp->pg_session == p->p_session,
412 		("%s: pgrp's session %p, p->p_session %p.\n",
413 		__func__,
414 		pgrp->pg_session,
415 		p->p_session));
416 	KASSERT(pgrp != p->p_pgrp,
417 		("%s: p belongs to pgrp.", __func__));
418 
419 	doenterpgrp(p, pgrp);
420 
421 	return (0);
422 }
423 
424 /*
425  * Move p to a process group
426  */
427 static void
428 doenterpgrp(p, pgrp)
429 	struct proc *p;
430 	struct pgrp *pgrp;
431 {
432 	struct pgrp *savepgrp;
433 
434 	sx_assert(&proctree_lock, SX_XLOCKED);
435 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
436 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
437 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
438 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
439 
440 	savepgrp = p->p_pgrp;
441 
442 	/*
443 	 * Adjust eligibility of affected pgrps to participate in job control.
444 	 * Increment eligibility counts before decrementing, otherwise we
445 	 * could reach 0 spuriously during the first call.
446 	 */
447 	fixjobc(p, pgrp, 1);
448 	fixjobc(p, p->p_pgrp, 0);
449 
450 	PGRP_LOCK(pgrp);
451 	PGRP_LOCK(savepgrp);
452 	PROC_LOCK(p);
453 	LIST_REMOVE(p, p_pglist);
454 	p->p_pgrp = pgrp;
455 	PROC_UNLOCK(p);
456 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
457 	PGRP_UNLOCK(savepgrp);
458 	PGRP_UNLOCK(pgrp);
459 	if (LIST_EMPTY(&savepgrp->pg_members))
460 		pgdelete(savepgrp);
461 }
462 
463 /*
464  * remove process from process group
465  */
466 int
467 leavepgrp(p)
468 	register struct proc *p;
469 {
470 	struct pgrp *savepgrp;
471 
472 	sx_assert(&proctree_lock, SX_XLOCKED);
473 	savepgrp = p->p_pgrp;
474 	PGRP_LOCK(savepgrp);
475 	PROC_LOCK(p);
476 	LIST_REMOVE(p, p_pglist);
477 	p->p_pgrp = NULL;
478 	PROC_UNLOCK(p);
479 	PGRP_UNLOCK(savepgrp);
480 	if (LIST_EMPTY(&savepgrp->pg_members))
481 		pgdelete(savepgrp);
482 	return (0);
483 }
484 
485 /*
486  * delete a process group
487  */
488 static void
489 pgdelete(pgrp)
490 	register struct pgrp *pgrp;
491 {
492 	struct session *savesess;
493 	struct tty *tp;
494 
495 	sx_assert(&proctree_lock, SX_XLOCKED);
496 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
497 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
498 
499 	/*
500 	 * Reset any sigio structures pointing to us as a result of
501 	 * F_SETOWN with our pgid.
502 	 */
503 	funsetownlst(&pgrp->pg_sigiolst);
504 
505 	PGRP_LOCK(pgrp);
506 	tp = pgrp->pg_session->s_ttyp;
507 	LIST_REMOVE(pgrp, pg_hash);
508 	savesess = pgrp->pg_session;
509 	PGRP_UNLOCK(pgrp);
510 
511 	/* Remove the reference to the pgrp before deallocating it. */
512 	if (tp != NULL) {
513 		tty_lock(tp);
514 		tty_rel_pgrp(tp, pgrp);
515 	}
516 
517 	mtx_destroy(&pgrp->pg_mtx);
518 	free(pgrp, M_PGRP);
519 	sess_release(savesess);
520 }
521 
522 static void
523 pgadjustjobc(pgrp, entering)
524 	struct pgrp *pgrp;
525 	int entering;
526 {
527 
528 	PGRP_LOCK(pgrp);
529 	if (entering)
530 		pgrp->pg_jobc++;
531 	else {
532 		--pgrp->pg_jobc;
533 		if (pgrp->pg_jobc == 0)
534 			orphanpg(pgrp);
535 	}
536 	PGRP_UNLOCK(pgrp);
537 }
538 
539 /*
540  * Adjust pgrp jobc counters when specified process changes process group.
541  * We count the number of processes in each process group that "qualify"
542  * the group for terminal job control (those with a parent in a different
543  * process group of the same session).  If that count reaches zero, the
544  * process group becomes orphaned.  Check both the specified process'
545  * process group and that of its children.
546  * entering == 0 => p is leaving specified group.
547  * entering == 1 => p is entering specified group.
548  */
549 void
550 fixjobc(p, pgrp, entering)
551 	register struct proc *p;
552 	register struct pgrp *pgrp;
553 	int entering;
554 {
555 	register struct pgrp *hispgrp;
556 	register struct session *mysession;
557 
558 	sx_assert(&proctree_lock, SX_LOCKED);
559 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
560 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
561 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
562 
563 	/*
564 	 * Check p's parent to see whether p qualifies its own process
565 	 * group; if so, adjust count for p's process group.
566 	 */
567 	mysession = pgrp->pg_session;
568 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
569 	    hispgrp->pg_session == mysession)
570 		pgadjustjobc(pgrp, entering);
571 
572 	/*
573 	 * Check this process' children to see whether they qualify
574 	 * their process groups; if so, adjust counts for children's
575 	 * process groups.
576 	 */
577 	LIST_FOREACH(p, &p->p_children, p_sibling) {
578 		hispgrp = p->p_pgrp;
579 		if (hispgrp == pgrp ||
580 		    hispgrp->pg_session != mysession)
581 			continue;
582 		PROC_LOCK(p);
583 		if (p->p_state == PRS_ZOMBIE) {
584 			PROC_UNLOCK(p);
585 			continue;
586 		}
587 		PROC_UNLOCK(p);
588 		pgadjustjobc(hispgrp, entering);
589 	}
590 }
591 
592 /*
593  * A process group has become orphaned;
594  * if there are any stopped processes in the group,
595  * hang-up all process in that group.
596  */
597 static void
598 orphanpg(pg)
599 	struct pgrp *pg;
600 {
601 	register struct proc *p;
602 
603 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
604 
605 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
606 		PROC_LOCK(p);
607 		if (P_SHOULDSTOP(p)) {
608 			PROC_UNLOCK(p);
609 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
610 				PROC_LOCK(p);
611 				psignal(p, SIGHUP);
612 				psignal(p, SIGCONT);
613 				PROC_UNLOCK(p);
614 			}
615 			return;
616 		}
617 		PROC_UNLOCK(p);
618 	}
619 }
620 
621 void
622 sess_hold(struct session *s)
623 {
624 
625 	refcount_acquire(&s->s_count);
626 }
627 
628 void
629 sess_release(struct session *s)
630 {
631 
632 	if (refcount_release(&s->s_count)) {
633 		if (s->s_ttyp != NULL) {
634 			tty_lock(s->s_ttyp);
635 			tty_rel_sess(s->s_ttyp, s);
636 		}
637 		mtx_destroy(&s->s_mtx);
638 		free(s, M_SESSION);
639 	}
640 }
641 
642 #include "opt_ddb.h"
643 #ifdef DDB
644 #include <ddb/ddb.h>
645 
646 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
647 {
648 	register struct pgrp *pgrp;
649 	register struct proc *p;
650 	register int i;
651 
652 	for (i = 0; i <= pgrphash; i++) {
653 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
654 			printf("\tindx %d\n", i);
655 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
656 				printf(
657 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
658 				    (void *)pgrp, (long)pgrp->pg_id,
659 				    (void *)pgrp->pg_session,
660 				    pgrp->pg_session->s_count,
661 				    (void *)LIST_FIRST(&pgrp->pg_members));
662 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
663 					printf("\t\tpid %ld addr %p pgrp %p\n",
664 					    (long)p->p_pid, (void *)p,
665 					    (void *)p->p_pgrp);
666 				}
667 			}
668 		}
669 	}
670 }
671 #endif /* DDB */
672 
673 /*
674  * Calculate the kinfo_proc members which contain process-wide
675  * informations.
676  * Must be called with the target process locked.
677  */
678 static void
679 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
680 {
681 	struct thread *td;
682 
683 	PROC_LOCK_ASSERT(p, MA_OWNED);
684 
685 	kp->ki_estcpu = 0;
686 	kp->ki_pctcpu = 0;
687 	kp->ki_runtime = 0;
688 	FOREACH_THREAD_IN_PROC(p, td) {
689 		thread_lock(td);
690 		kp->ki_pctcpu += sched_pctcpu(td);
691 		kp->ki_runtime += cputick2usec(td->td_runtime);
692 		kp->ki_estcpu += td->td_estcpu;
693 		thread_unlock(td);
694 	}
695 }
696 
697 /*
698  * Clear kinfo_proc and fill in any information that is common
699  * to all threads in the process.
700  * Must be called with the target process locked.
701  */
702 static void
703 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
704 {
705 	struct thread *td0;
706 	struct tty *tp;
707 	struct session *sp;
708 	struct ucred *cred;
709 	struct sigacts *ps;
710 
711 	PROC_LOCK_ASSERT(p, MA_OWNED);
712 	bzero(kp, sizeof(*kp));
713 
714 	kp->ki_structsize = sizeof(*kp);
715 	kp->ki_paddr = p;
716 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
717 	kp->ki_args = p->p_args;
718 	kp->ki_textvp = p->p_textvp;
719 #ifdef KTRACE
720 	kp->ki_tracep = p->p_tracevp;
721 	mtx_lock(&ktrace_mtx);
722 	kp->ki_traceflag = p->p_traceflag;
723 	mtx_unlock(&ktrace_mtx);
724 #endif
725 	kp->ki_fd = p->p_fd;
726 	kp->ki_vmspace = p->p_vmspace;
727 	kp->ki_flag = p->p_flag;
728 	cred = p->p_ucred;
729 	if (cred) {
730 		kp->ki_uid = cred->cr_uid;
731 		kp->ki_ruid = cred->cr_ruid;
732 		kp->ki_svuid = cred->cr_svuid;
733 		kp->ki_ngroups = cred->cr_ngroups;
734 		kp->ki_groups = cred->cr_groups;
735 		kp->ki_rgid = cred->cr_rgid;
736 		kp->ki_svgid = cred->cr_svgid;
737 		kp->ki_cr_flags = cred->cr_flags;
738 		/* If jailed(cred), emulate the old P_JAILED flag. */
739 		if (jailed(cred)) {
740 			kp->ki_flag |= P_JAILED;
741 			/* If inside the jail, use 0 as a jail ID. */
742 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
743 				kp->ki_jid = cred->cr_prison->pr_id;
744 		}
745 	}
746 	ps = p->p_sigacts;
747 	if (ps) {
748 		mtx_lock(&ps->ps_mtx);
749 		kp->ki_sigignore = ps->ps_sigignore;
750 		kp->ki_sigcatch = ps->ps_sigcatch;
751 		mtx_unlock(&ps->ps_mtx);
752 	}
753 	PROC_SLOCK(p);
754 	if (p->p_state != PRS_NEW &&
755 	    p->p_state != PRS_ZOMBIE &&
756 	    p->p_vmspace != NULL) {
757 		struct vmspace *vm = p->p_vmspace;
758 
759 		kp->ki_size = vm->vm_map.size;
760 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
761 		FOREACH_THREAD_IN_PROC(p, td0) {
762 			if (!TD_IS_SWAPPED(td0))
763 				kp->ki_rssize += td0->td_kstack_pages;
764 			if (td0->td_altkstack_obj != NULL)
765 				kp->ki_rssize += td0->td_altkstack_pages;
766 		}
767 		kp->ki_swrss = vm->vm_swrss;
768 		kp->ki_tsize = vm->vm_tsize;
769 		kp->ki_dsize = vm->vm_dsize;
770 		kp->ki_ssize = vm->vm_ssize;
771 	} else if (p->p_state == PRS_ZOMBIE)
772 		kp->ki_stat = SZOMB;
773 	if (kp->ki_flag & P_INMEM)
774 		kp->ki_sflag = PS_INMEM;
775 	else
776 		kp->ki_sflag = 0;
777 	/* Calculate legacy swtime as seconds since 'swtick'. */
778 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
779 	kp->ki_pid = p->p_pid;
780 	kp->ki_nice = p->p_nice;
781 	rufetch(p, &kp->ki_rusage);
782 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
783 	PROC_SUNLOCK(p);
784 	if ((p->p_flag & P_INMEM) && p->p_stats != NULL) {
785 		kp->ki_start = p->p_stats->p_start;
786 		timevaladd(&kp->ki_start, &boottime);
787 		PROC_SLOCK(p);
788 		calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
789 		PROC_SUNLOCK(p);
790 		calccru(p, &kp->ki_childutime, &kp->ki_childstime);
791 
792 		/* Some callers want child-times in a single value */
793 		kp->ki_childtime = kp->ki_childstime;
794 		timevaladd(&kp->ki_childtime, &kp->ki_childutime);
795 	}
796 	tp = NULL;
797 	if (p->p_pgrp) {
798 		kp->ki_pgid = p->p_pgrp->pg_id;
799 		kp->ki_jobc = p->p_pgrp->pg_jobc;
800 		sp = p->p_pgrp->pg_session;
801 
802 		if (sp != NULL) {
803 			kp->ki_sid = sp->s_sid;
804 			SESS_LOCK(sp);
805 			strlcpy(kp->ki_login, sp->s_login,
806 			    sizeof(kp->ki_login));
807 			if (sp->s_ttyvp)
808 				kp->ki_kiflag |= KI_CTTY;
809 			if (SESS_LEADER(p))
810 				kp->ki_kiflag |= KI_SLEADER;
811 			/* XXX proctree_lock */
812 			tp = sp->s_ttyp;
813 			SESS_UNLOCK(sp);
814 		}
815 	}
816 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
817 		kp->ki_tdev = tty_udev(tp);
818 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
819 		if (tp->t_session)
820 			kp->ki_tsid = tp->t_session->s_sid;
821 	} else
822 		kp->ki_tdev = NODEV;
823 	if (p->p_comm[0] != '\0')
824 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
825 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
826 	    p->p_sysent->sv_name[0] != '\0')
827 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
828 	kp->ki_siglist = p->p_siglist;
829 	kp->ki_xstat = p->p_xstat;
830 	kp->ki_acflag = p->p_acflag;
831 	kp->ki_lock = p->p_lock;
832 	if (p->p_pptr)
833 		kp->ki_ppid = p->p_pptr->p_pid;
834 }
835 
836 /*
837  * Fill in information that is thread specific.  Must be called with p_slock
838  * locked.  If 'preferthread' is set, overwrite certain process-related
839  * fields that are maintained for both threads and processes.
840  */
841 static void
842 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
843 {
844 	struct proc *p;
845 
846 	p = td->td_proc;
847 	PROC_LOCK_ASSERT(p, MA_OWNED);
848 
849 	thread_lock(td);
850 	if (td->td_wmesg != NULL)
851 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
852 	else
853 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
854 	if (td->td_name[0] != '\0')
855 		strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
856 	if (TD_ON_LOCK(td)) {
857 		kp->ki_kiflag |= KI_LOCKBLOCK;
858 		strlcpy(kp->ki_lockname, td->td_lockname,
859 		    sizeof(kp->ki_lockname));
860 	} else {
861 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
862 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
863 	}
864 
865 	if (p->p_state == PRS_NORMAL) { /* approximate. */
866 		if (TD_ON_RUNQ(td) ||
867 		    TD_CAN_RUN(td) ||
868 		    TD_IS_RUNNING(td)) {
869 			kp->ki_stat = SRUN;
870 		} else if (P_SHOULDSTOP(p)) {
871 			kp->ki_stat = SSTOP;
872 		} else if (TD_IS_SLEEPING(td)) {
873 			kp->ki_stat = SSLEEP;
874 		} else if (TD_ON_LOCK(td)) {
875 			kp->ki_stat = SLOCK;
876 		} else {
877 			kp->ki_stat = SWAIT;
878 		}
879 	} else if (p->p_state == PRS_ZOMBIE) {
880 		kp->ki_stat = SZOMB;
881 	} else {
882 		kp->ki_stat = SIDL;
883 	}
884 
885 	/* Things in the thread */
886 	kp->ki_wchan = td->td_wchan;
887 	kp->ki_pri.pri_level = td->td_priority;
888 	kp->ki_pri.pri_native = td->td_base_pri;
889 	kp->ki_lastcpu = td->td_lastcpu;
890 	kp->ki_oncpu = td->td_oncpu;
891 	kp->ki_tdflags = td->td_flags;
892 	kp->ki_tid = td->td_tid;
893 	kp->ki_numthreads = p->p_numthreads;
894 	kp->ki_pcb = td->td_pcb;
895 	kp->ki_kstack = (void *)td->td_kstack;
896 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
897 	kp->ki_pri.pri_class = td->td_pri_class;
898 	kp->ki_pri.pri_user = td->td_user_pri;
899 
900 	if (preferthread) {
901 		kp->ki_runtime = cputick2usec(td->td_runtime);
902 		kp->ki_pctcpu = sched_pctcpu(td);
903 		kp->ki_estcpu = td->td_estcpu;
904 	}
905 
906 	/* We can't get this anymore but ps etc never used it anyway. */
907 	kp->ki_rqindex = 0;
908 
909 	SIGSETOR(kp->ki_siglist, td->td_siglist);
910 	kp->ki_sigmask = td->td_sigmask;
911 	thread_unlock(td);
912 }
913 
914 /*
915  * Fill in a kinfo_proc structure for the specified process.
916  * Must be called with the target process locked.
917  */
918 void
919 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
920 {
921 
922 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
923 
924 	fill_kinfo_proc_only(p, kp);
925 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
926 	fill_kinfo_aggregate(p, kp);
927 }
928 
929 struct pstats *
930 pstats_alloc(void)
931 {
932 
933 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
934 }
935 
936 /*
937  * Copy parts of p_stats; zero the rest of p_stats (statistics).
938  */
939 void
940 pstats_fork(struct pstats *src, struct pstats *dst)
941 {
942 
943 	bzero(&dst->pstat_startzero,
944 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
945 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
946 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
947 }
948 
949 void
950 pstats_free(struct pstats *ps)
951 {
952 
953 	free(ps, M_SUBPROC);
954 }
955 
956 /*
957  * Locate a zombie process by number
958  */
959 struct proc *
960 zpfind(pid_t pid)
961 {
962 	struct proc *p;
963 
964 	sx_slock(&allproc_lock);
965 	LIST_FOREACH(p, &zombproc, p_list)
966 		if (p->p_pid == pid) {
967 			PROC_LOCK(p);
968 			break;
969 		}
970 	sx_sunlock(&allproc_lock);
971 	return (p);
972 }
973 
974 #define KERN_PROC_ZOMBMASK	0x3
975 #define KERN_PROC_NOTHREADS	0x4
976 
977 /*
978  * Must be called with the process locked and will return with it unlocked.
979  */
980 static int
981 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
982 {
983 	struct thread *td;
984 	struct kinfo_proc kinfo_proc;
985 	int error = 0;
986 	struct proc *np;
987 	pid_t pid = p->p_pid;
988 
989 	PROC_LOCK_ASSERT(p, MA_OWNED);
990 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
991 
992 	fill_kinfo_proc(p, &kinfo_proc);
993 	if (flags & KERN_PROC_NOTHREADS)
994 		error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
995 		    sizeof(kinfo_proc));
996 	else {
997 		FOREACH_THREAD_IN_PROC(p, td) {
998 			fill_kinfo_thread(td, &kinfo_proc, 1);
999 			error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
1000 			    sizeof(kinfo_proc));
1001 			if (error)
1002 				break;
1003 		}
1004 	}
1005 	PROC_UNLOCK(p);
1006 	if (error)
1007 		return (error);
1008 	if (flags & KERN_PROC_ZOMBMASK)
1009 		np = zpfind(pid);
1010 	else {
1011 		if (pid == 0)
1012 			return (0);
1013 		np = pfind(pid);
1014 	}
1015 	if (np == NULL)
1016 		return (ESRCH);
1017 	if (np != p) {
1018 		PROC_UNLOCK(np);
1019 		return (ESRCH);
1020 	}
1021 	PROC_UNLOCK(np);
1022 	return (0);
1023 }
1024 
1025 static int
1026 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1027 {
1028 	int *name = (int*) arg1;
1029 	u_int namelen = arg2;
1030 	struct proc *p;
1031 	int flags, doingzomb, oid_number;
1032 	int error = 0;
1033 
1034 	oid_number = oidp->oid_number;
1035 	if (oid_number != KERN_PROC_ALL &&
1036 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1037 		flags = KERN_PROC_NOTHREADS;
1038 	else {
1039 		flags = 0;
1040 		oid_number &= ~KERN_PROC_INC_THREAD;
1041 	}
1042 	if (oid_number == KERN_PROC_PID) {
1043 		if (namelen != 1)
1044 			return (EINVAL);
1045 		error = sysctl_wire_old_buffer(req, 0);
1046 		if (error)
1047 			return (error);
1048 		p = pfind((pid_t)name[0]);
1049 		if (!p)
1050 			return (ESRCH);
1051 		if ((error = p_cansee(curthread, p))) {
1052 			PROC_UNLOCK(p);
1053 			return (error);
1054 		}
1055 		error = sysctl_out_proc(p, req, flags);
1056 		return (error);
1057 	}
1058 
1059 	switch (oid_number) {
1060 	case KERN_PROC_ALL:
1061 		if (namelen != 0)
1062 			return (EINVAL);
1063 		break;
1064 	case KERN_PROC_PROC:
1065 		if (namelen != 0 && namelen != 1)
1066 			return (EINVAL);
1067 		break;
1068 	default:
1069 		if (namelen != 1)
1070 			return (EINVAL);
1071 		break;
1072 	}
1073 
1074 	if (!req->oldptr) {
1075 		/* overestimate by 5 procs */
1076 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1077 		if (error)
1078 			return (error);
1079 	}
1080 	error = sysctl_wire_old_buffer(req, 0);
1081 	if (error != 0)
1082 		return (error);
1083 	sx_slock(&allproc_lock);
1084 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1085 		if (!doingzomb)
1086 			p = LIST_FIRST(&allproc);
1087 		else
1088 			p = LIST_FIRST(&zombproc);
1089 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1090 			/*
1091 			 * Skip embryonic processes.
1092 			 */
1093 			PROC_SLOCK(p);
1094 			if (p->p_state == PRS_NEW) {
1095 				PROC_SUNLOCK(p);
1096 				continue;
1097 			}
1098 			PROC_SUNLOCK(p);
1099 			PROC_LOCK(p);
1100 			KASSERT(p->p_ucred != NULL,
1101 			    ("process credential is NULL for non-NEW proc"));
1102 			/*
1103 			 * Show a user only appropriate processes.
1104 			 */
1105 			if (p_cansee(curthread, p)) {
1106 				PROC_UNLOCK(p);
1107 				continue;
1108 			}
1109 			/*
1110 			 * TODO - make more efficient (see notes below).
1111 			 * do by session.
1112 			 */
1113 			switch (oid_number) {
1114 
1115 			case KERN_PROC_GID:
1116 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1117 					PROC_UNLOCK(p);
1118 					continue;
1119 				}
1120 				break;
1121 
1122 			case KERN_PROC_PGRP:
1123 				/* could do this by traversing pgrp */
1124 				if (p->p_pgrp == NULL ||
1125 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1126 					PROC_UNLOCK(p);
1127 					continue;
1128 				}
1129 				break;
1130 
1131 			case KERN_PROC_RGID:
1132 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1133 					PROC_UNLOCK(p);
1134 					continue;
1135 				}
1136 				break;
1137 
1138 			case KERN_PROC_SESSION:
1139 				if (p->p_session == NULL ||
1140 				    p->p_session->s_sid != (pid_t)name[0]) {
1141 					PROC_UNLOCK(p);
1142 					continue;
1143 				}
1144 				break;
1145 
1146 			case KERN_PROC_TTY:
1147 				if ((p->p_flag & P_CONTROLT) == 0 ||
1148 				    p->p_session == NULL) {
1149 					PROC_UNLOCK(p);
1150 					continue;
1151 				}
1152 				/* XXX proctree_lock */
1153 				SESS_LOCK(p->p_session);
1154 				if (p->p_session->s_ttyp == NULL ||
1155 				    tty_udev(p->p_session->s_ttyp) !=
1156 				    (dev_t)name[0]) {
1157 					SESS_UNLOCK(p->p_session);
1158 					PROC_UNLOCK(p);
1159 					continue;
1160 				}
1161 				SESS_UNLOCK(p->p_session);
1162 				break;
1163 
1164 			case KERN_PROC_UID:
1165 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1166 					PROC_UNLOCK(p);
1167 					continue;
1168 				}
1169 				break;
1170 
1171 			case KERN_PROC_RUID:
1172 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1173 					PROC_UNLOCK(p);
1174 					continue;
1175 				}
1176 				break;
1177 
1178 			case KERN_PROC_PROC:
1179 				break;
1180 
1181 			default:
1182 				break;
1183 
1184 			}
1185 
1186 			error = sysctl_out_proc(p, req, flags | doingzomb);
1187 			if (error) {
1188 				sx_sunlock(&allproc_lock);
1189 				return (error);
1190 			}
1191 		}
1192 	}
1193 	sx_sunlock(&allproc_lock);
1194 	return (0);
1195 }
1196 
1197 struct pargs *
1198 pargs_alloc(int len)
1199 {
1200 	struct pargs *pa;
1201 
1202 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1203 		M_WAITOK);
1204 	refcount_init(&pa->ar_ref, 1);
1205 	pa->ar_length = len;
1206 	return (pa);
1207 }
1208 
1209 static void
1210 pargs_free(struct pargs *pa)
1211 {
1212 
1213 	free(pa, M_PARGS);
1214 }
1215 
1216 void
1217 pargs_hold(struct pargs *pa)
1218 {
1219 
1220 	if (pa == NULL)
1221 		return;
1222 	refcount_acquire(&pa->ar_ref);
1223 }
1224 
1225 void
1226 pargs_drop(struct pargs *pa)
1227 {
1228 
1229 	if (pa == NULL)
1230 		return;
1231 	if (refcount_release(&pa->ar_ref))
1232 		pargs_free(pa);
1233 }
1234 
1235 /*
1236  * This sysctl allows a process to retrieve the argument list or process
1237  * title for another process without groping around in the address space
1238  * of the other process.  It also allow a process to set its own "process
1239  * title to a string of its own choice.
1240  */
1241 static int
1242 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1243 {
1244 	int *name = (int*) arg1;
1245 	u_int namelen = arg2;
1246 	struct pargs *newpa, *pa;
1247 	struct proc *p;
1248 	int error = 0;
1249 
1250 	if (namelen != 1)
1251 		return (EINVAL);
1252 
1253 	p = pfind((pid_t)name[0]);
1254 	if (!p)
1255 		return (ESRCH);
1256 
1257 	if ((error = p_cansee(curthread, p)) != 0) {
1258 		PROC_UNLOCK(p);
1259 		return (error);
1260 	}
1261 
1262 	if (req->newptr && curproc != p) {
1263 		PROC_UNLOCK(p);
1264 		return (EPERM);
1265 	}
1266 
1267 	pa = p->p_args;
1268 	pargs_hold(pa);
1269 	PROC_UNLOCK(p);
1270 	if (req->oldptr != NULL && pa != NULL)
1271 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1272 	pargs_drop(pa);
1273 	if (error != 0 || req->newptr == NULL)
1274 		return (error);
1275 
1276 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1277 		return (ENOMEM);
1278 	newpa = pargs_alloc(req->newlen);
1279 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1280 	if (error != 0) {
1281 		pargs_free(newpa);
1282 		return (error);
1283 	}
1284 	PROC_LOCK(p);
1285 	pa = p->p_args;
1286 	p->p_args = newpa;
1287 	PROC_UNLOCK(p);
1288 	pargs_drop(pa);
1289 	return (0);
1290 }
1291 
1292 /*
1293  * This sysctl allows a process to retrieve the path of the executable for
1294  * itself or another process.
1295  */
1296 static int
1297 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1298 {
1299 	pid_t *pidp = (pid_t *)arg1;
1300 	unsigned int arglen = arg2;
1301 	struct proc *p;
1302 	struct vnode *vp;
1303 	char *retbuf, *freebuf;
1304 	int error, vfslocked;
1305 
1306 	if (arglen != 1)
1307 		return (EINVAL);
1308 	if (*pidp == -1) {	/* -1 means this process */
1309 		p = req->td->td_proc;
1310 	} else {
1311 		p = pfind(*pidp);
1312 		if (p == NULL)
1313 			return (ESRCH);
1314 		if ((error = p_cansee(curthread, p)) != 0) {
1315 			PROC_UNLOCK(p);
1316 			return (error);
1317 		}
1318 	}
1319 
1320 	vp = p->p_textvp;
1321 	if (vp == NULL) {
1322 		if (*pidp != -1)
1323 			PROC_UNLOCK(p);
1324 		return (0);
1325 	}
1326 	vref(vp);
1327 	if (*pidp != -1)
1328 		PROC_UNLOCK(p);
1329 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1330 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1331 	vrele(vp);
1332 	VFS_UNLOCK_GIANT(vfslocked);
1333 	if (error)
1334 		return (error);
1335 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1336 	free(freebuf, M_TEMP);
1337 	return (error);
1338 }
1339 
1340 static int
1341 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1342 {
1343 	struct proc *p;
1344 	char *sv_name;
1345 	int *name;
1346 	int namelen;
1347 	int error;
1348 
1349 	namelen = arg2;
1350 	if (namelen != 1)
1351 		return (EINVAL);
1352 
1353 	name = (int *)arg1;
1354 	if ((p = pfind((pid_t)name[0])) == NULL)
1355 		return (ESRCH);
1356 	if ((error = p_cansee(curthread, p))) {
1357 		PROC_UNLOCK(p);
1358 		return (error);
1359 	}
1360 	sv_name = p->p_sysent->sv_name;
1361 	PROC_UNLOCK(p);
1362 	return (sysctl_handle_string(oidp, sv_name, 0, req));
1363 }
1364 
1365 #ifdef KINFO_OVMENTRY_SIZE
1366 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1367 #endif
1368 
1369 #ifdef COMPAT_FREEBSD7
1370 static int
1371 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1372 {
1373 	vm_map_entry_t entry, tmp_entry;
1374 	unsigned int last_timestamp;
1375 	char *fullpath, *freepath;
1376 	struct kinfo_ovmentry *kve;
1377 	struct vattr va;
1378 	struct ucred *cred;
1379 	int error, *name;
1380 	struct vnode *vp;
1381 	struct proc *p;
1382 	vm_map_t map;
1383 	struct vmspace *vm;
1384 
1385 	name = (int *)arg1;
1386 	if ((p = pfind((pid_t)name[0])) == NULL)
1387 		return (ESRCH);
1388 	if (p->p_flag & P_WEXIT) {
1389 		PROC_UNLOCK(p);
1390 		return (ESRCH);
1391 	}
1392 	if ((error = p_candebug(curthread, p))) {
1393 		PROC_UNLOCK(p);
1394 		return (error);
1395 	}
1396 	_PHOLD(p);
1397 	PROC_UNLOCK(p);
1398 	vm = vmspace_acquire_ref(p);
1399 	if (vm == NULL) {
1400 		PRELE(p);
1401 		return (ESRCH);
1402 	}
1403 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1404 
1405 	map = &p->p_vmspace->vm_map;	/* XXXRW: More locking required? */
1406 	vm_map_lock_read(map);
1407 	for (entry = map->header.next; entry != &map->header;
1408 	    entry = entry->next) {
1409 		vm_object_t obj, tobj, lobj;
1410 		vm_offset_t addr;
1411 		int vfslocked;
1412 
1413 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1414 			continue;
1415 
1416 		bzero(kve, sizeof(*kve));
1417 		kve->kve_structsize = sizeof(*kve);
1418 
1419 		kve->kve_private_resident = 0;
1420 		obj = entry->object.vm_object;
1421 		if (obj != NULL) {
1422 			VM_OBJECT_LOCK(obj);
1423 			if (obj->shadow_count == 1)
1424 				kve->kve_private_resident =
1425 				    obj->resident_page_count;
1426 		}
1427 		kve->kve_resident = 0;
1428 		addr = entry->start;
1429 		while (addr < entry->end) {
1430 			if (pmap_extract(map->pmap, addr))
1431 				kve->kve_resident++;
1432 			addr += PAGE_SIZE;
1433 		}
1434 
1435 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1436 			if (tobj != obj)
1437 				VM_OBJECT_LOCK(tobj);
1438 			if (lobj != obj)
1439 				VM_OBJECT_UNLOCK(lobj);
1440 			lobj = tobj;
1441 		}
1442 
1443 		kve->kve_start = (void*)entry->start;
1444 		kve->kve_end = (void*)entry->end;
1445 		kve->kve_offset = (off_t)entry->offset;
1446 
1447 		if (entry->protection & VM_PROT_READ)
1448 			kve->kve_protection |= KVME_PROT_READ;
1449 		if (entry->protection & VM_PROT_WRITE)
1450 			kve->kve_protection |= KVME_PROT_WRITE;
1451 		if (entry->protection & VM_PROT_EXECUTE)
1452 			kve->kve_protection |= KVME_PROT_EXEC;
1453 
1454 		if (entry->eflags & MAP_ENTRY_COW)
1455 			kve->kve_flags |= KVME_FLAG_COW;
1456 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1457 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1458 
1459 		last_timestamp = map->timestamp;
1460 		vm_map_unlock_read(map);
1461 
1462 		kve->kve_fileid = 0;
1463 		kve->kve_fsid = 0;
1464 		freepath = NULL;
1465 		fullpath = "";
1466 		if (lobj) {
1467 			vp = NULL;
1468 			switch (lobj->type) {
1469 			case OBJT_DEFAULT:
1470 				kve->kve_type = KVME_TYPE_DEFAULT;
1471 				break;
1472 			case OBJT_VNODE:
1473 				kve->kve_type = KVME_TYPE_VNODE;
1474 				vp = lobj->handle;
1475 				vref(vp);
1476 				break;
1477 			case OBJT_SWAP:
1478 				kve->kve_type = KVME_TYPE_SWAP;
1479 				break;
1480 			case OBJT_DEVICE:
1481 				kve->kve_type = KVME_TYPE_DEVICE;
1482 				break;
1483 			case OBJT_PHYS:
1484 				kve->kve_type = KVME_TYPE_PHYS;
1485 				break;
1486 			case OBJT_DEAD:
1487 				kve->kve_type = KVME_TYPE_DEAD;
1488 				break;
1489 			default:
1490 				kve->kve_type = KVME_TYPE_UNKNOWN;
1491 				break;
1492 			}
1493 			if (lobj != obj)
1494 				VM_OBJECT_UNLOCK(lobj);
1495 
1496 			kve->kve_ref_count = obj->ref_count;
1497 			kve->kve_shadow_count = obj->shadow_count;
1498 			VM_OBJECT_UNLOCK(obj);
1499 			if (vp != NULL) {
1500 				vn_fullpath(curthread, vp, &fullpath,
1501 				    &freepath);
1502 				cred = curthread->td_ucred;
1503 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1504 				vn_lock(vp, LK_SHARED | LK_RETRY);
1505 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1506 					kve->kve_fileid = va.va_fileid;
1507 					kve->kve_fsid = va.va_fsid;
1508 				}
1509 				vput(vp);
1510 				VFS_UNLOCK_GIANT(vfslocked);
1511 			}
1512 		} else {
1513 			kve->kve_type = KVME_TYPE_NONE;
1514 			kve->kve_ref_count = 0;
1515 			kve->kve_shadow_count = 0;
1516 		}
1517 
1518 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1519 		if (freepath != NULL)
1520 			free(freepath, M_TEMP);
1521 
1522 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
1523 		vm_map_lock_read(map);
1524 		if (error)
1525 			break;
1526 		if (last_timestamp != map->timestamp) {
1527 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1528 			entry = tmp_entry;
1529 		}
1530 	}
1531 	vm_map_unlock_read(map);
1532 	vmspace_free(vm);
1533 	PRELE(p);
1534 	free(kve, M_TEMP);
1535 	return (error);
1536 }
1537 #endif	/* COMPAT_FREEBSD7 */
1538 
1539 #ifdef KINFO_VMENTRY_SIZE
1540 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1541 #endif
1542 
1543 static int
1544 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1545 {
1546 	vm_map_entry_t entry, tmp_entry;
1547 	unsigned int last_timestamp;
1548 	char *fullpath, *freepath;
1549 	struct kinfo_vmentry *kve;
1550 	struct vattr va;
1551 	struct ucred *cred;
1552 	int error, *name;
1553 	struct vnode *vp;
1554 	struct proc *p;
1555 	struct vmspace *vm;
1556 	vm_map_t map;
1557 
1558 	name = (int *)arg1;
1559 	if ((p = pfind((pid_t)name[0])) == NULL)
1560 		return (ESRCH);
1561 	if (p->p_flag & P_WEXIT) {
1562 		PROC_UNLOCK(p);
1563 		return (ESRCH);
1564 	}
1565 	if ((error = p_candebug(curthread, p))) {
1566 		PROC_UNLOCK(p);
1567 		return (error);
1568 	}
1569 	_PHOLD(p);
1570 	PROC_UNLOCK(p);
1571 	vm = vmspace_acquire_ref(p);
1572 	if (vm == NULL) {
1573 		PRELE(p);
1574 		return (ESRCH);
1575 	}
1576 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1577 
1578 	map = &vm->vm_map;	/* XXXRW: More locking required? */
1579 	vm_map_lock_read(map);
1580 	for (entry = map->header.next; entry != &map->header;
1581 	    entry = entry->next) {
1582 		vm_object_t obj, tobj, lobj;
1583 		vm_offset_t addr;
1584 		int vfslocked;
1585 
1586 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1587 			continue;
1588 
1589 		bzero(kve, sizeof(*kve));
1590 
1591 		kve->kve_private_resident = 0;
1592 		obj = entry->object.vm_object;
1593 		if (obj != NULL) {
1594 			VM_OBJECT_LOCK(obj);
1595 			if (obj->shadow_count == 1)
1596 				kve->kve_private_resident =
1597 				    obj->resident_page_count;
1598 		}
1599 		kve->kve_resident = 0;
1600 		addr = entry->start;
1601 		while (addr < entry->end) {
1602 			if (pmap_extract(map->pmap, addr))
1603 				kve->kve_resident++;
1604 			addr += PAGE_SIZE;
1605 		}
1606 
1607 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1608 			if (tobj != obj)
1609 				VM_OBJECT_LOCK(tobj);
1610 			if (lobj != obj)
1611 				VM_OBJECT_UNLOCK(lobj);
1612 			lobj = tobj;
1613 		}
1614 
1615 		kve->kve_start = entry->start;
1616 		kve->kve_end = entry->end;
1617 		kve->kve_offset = entry->offset;
1618 
1619 		if (entry->protection & VM_PROT_READ)
1620 			kve->kve_protection |= KVME_PROT_READ;
1621 		if (entry->protection & VM_PROT_WRITE)
1622 			kve->kve_protection |= KVME_PROT_WRITE;
1623 		if (entry->protection & VM_PROT_EXECUTE)
1624 			kve->kve_protection |= KVME_PROT_EXEC;
1625 
1626 		if (entry->eflags & MAP_ENTRY_COW)
1627 			kve->kve_flags |= KVME_FLAG_COW;
1628 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1629 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1630 
1631 		last_timestamp = map->timestamp;
1632 		vm_map_unlock_read(map);
1633 
1634 		kve->kve_fileid = 0;
1635 		kve->kve_fsid = 0;
1636 		freepath = NULL;
1637 		fullpath = "";
1638 		if (lobj) {
1639 			vp = NULL;
1640 			switch (lobj->type) {
1641 			case OBJT_DEFAULT:
1642 				kve->kve_type = KVME_TYPE_DEFAULT;
1643 				break;
1644 			case OBJT_VNODE:
1645 				kve->kve_type = KVME_TYPE_VNODE;
1646 				vp = lobj->handle;
1647 				vref(vp);
1648 				break;
1649 			case OBJT_SWAP:
1650 				kve->kve_type = KVME_TYPE_SWAP;
1651 				break;
1652 			case OBJT_DEVICE:
1653 				kve->kve_type = KVME_TYPE_DEVICE;
1654 				break;
1655 			case OBJT_PHYS:
1656 				kve->kve_type = KVME_TYPE_PHYS;
1657 				break;
1658 			case OBJT_DEAD:
1659 				kve->kve_type = KVME_TYPE_DEAD;
1660 				break;
1661 			default:
1662 				kve->kve_type = KVME_TYPE_UNKNOWN;
1663 				break;
1664 			}
1665 			if (lobj != obj)
1666 				VM_OBJECT_UNLOCK(lobj);
1667 
1668 			kve->kve_ref_count = obj->ref_count;
1669 			kve->kve_shadow_count = obj->shadow_count;
1670 			VM_OBJECT_UNLOCK(obj);
1671 			if (vp != NULL) {
1672 				vn_fullpath(curthread, vp, &fullpath,
1673 				    &freepath);
1674 				cred = curthread->td_ucred;
1675 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1676 				vn_lock(vp, LK_SHARED | LK_RETRY);
1677 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1678 					kve->kve_fileid = va.va_fileid;
1679 					kve->kve_fsid = va.va_fsid;
1680 				}
1681 				vput(vp);
1682 				VFS_UNLOCK_GIANT(vfslocked);
1683 			}
1684 		} else {
1685 			kve->kve_type = KVME_TYPE_NONE;
1686 			kve->kve_ref_count = 0;
1687 			kve->kve_shadow_count = 0;
1688 		}
1689 
1690 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1691 		if (freepath != NULL)
1692 			free(freepath, M_TEMP);
1693 
1694 		/* Pack record size down */
1695 		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1696 		    strlen(kve->kve_path) + 1;
1697 		kve->kve_structsize = roundup(kve->kve_structsize,
1698 		    sizeof(uint64_t));
1699 		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1700 		vm_map_lock_read(map);
1701 		if (error)
1702 			break;
1703 		if (last_timestamp != map->timestamp) {
1704 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1705 			entry = tmp_entry;
1706 		}
1707 	}
1708 	vm_map_unlock_read(map);
1709 	vmspace_free(vm);
1710 	PRELE(p);
1711 	free(kve, M_TEMP);
1712 	return (error);
1713 }
1714 
1715 #if defined(STACK) || defined(DDB)
1716 static int
1717 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1718 {
1719 	struct kinfo_kstack *kkstp;
1720 	int error, i, *name, numthreads;
1721 	lwpid_t *lwpidarray;
1722 	struct thread *td;
1723 	struct stack *st;
1724 	struct sbuf sb;
1725 	struct proc *p;
1726 
1727 	name = (int *)arg1;
1728 	if ((p = pfind((pid_t)name[0])) == NULL)
1729 		return (ESRCH);
1730 	/* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1731 	if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1732 		PROC_UNLOCK(p);
1733 		return (ESRCH);
1734 	}
1735 	if ((error = p_candebug(curthread, p))) {
1736 		PROC_UNLOCK(p);
1737 		return (error);
1738 	}
1739 	_PHOLD(p);
1740 	PROC_UNLOCK(p);
1741 
1742 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1743 	st = stack_create();
1744 
1745 	lwpidarray = NULL;
1746 	numthreads = 0;
1747 	PROC_LOCK(p);
1748 repeat:
1749 	if (numthreads < p->p_numthreads) {
1750 		if (lwpidarray != NULL) {
1751 			free(lwpidarray, M_TEMP);
1752 			lwpidarray = NULL;
1753 		}
1754 		numthreads = p->p_numthreads;
1755 		PROC_UNLOCK(p);
1756 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1757 		    M_WAITOK | M_ZERO);
1758 		PROC_LOCK(p);
1759 		goto repeat;
1760 	}
1761 	i = 0;
1762 
1763 	/*
1764 	 * XXXRW: During the below loop, execve(2) and countless other sorts
1765 	 * of changes could have taken place.  Should we check to see if the
1766 	 * vmspace has been replaced, or the like, in order to prevent
1767 	 * giving a snapshot that spans, say, execve(2), with some threads
1768 	 * before and some after?  Among other things, the credentials could
1769 	 * have changed, in which case the right to extract debug info might
1770 	 * no longer be assured.
1771 	 */
1772 	FOREACH_THREAD_IN_PROC(p, td) {
1773 		KASSERT(i < numthreads,
1774 		    ("sysctl_kern_proc_kstack: numthreads"));
1775 		lwpidarray[i] = td->td_tid;
1776 		i++;
1777 	}
1778 	numthreads = i;
1779 	for (i = 0; i < numthreads; i++) {
1780 		td = thread_find(p, lwpidarray[i]);
1781 		if (td == NULL) {
1782 			continue;
1783 		}
1784 		bzero(kkstp, sizeof(*kkstp));
1785 		(void)sbuf_new(&sb, kkstp->kkst_trace,
1786 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1787 		thread_lock(td);
1788 		kkstp->kkst_tid = td->td_tid;
1789 		if (TD_IS_SWAPPED(td))
1790 			kkstp->kkst_state = KKST_STATE_SWAPPED;
1791 		else if (TD_IS_RUNNING(td))
1792 			kkstp->kkst_state = KKST_STATE_RUNNING;
1793 		else {
1794 			kkstp->kkst_state = KKST_STATE_STACKOK;
1795 			stack_save_td(st, td);
1796 		}
1797 		thread_unlock(td);
1798 		PROC_UNLOCK(p);
1799 		stack_sbuf_print(&sb, st);
1800 		sbuf_finish(&sb);
1801 		sbuf_delete(&sb);
1802 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1803 		PROC_LOCK(p);
1804 		if (error)
1805 			break;
1806 	}
1807 	_PRELE(p);
1808 	PROC_UNLOCK(p);
1809 	if (lwpidarray != NULL)
1810 		free(lwpidarray, M_TEMP);
1811 	stack_destroy(st);
1812 	free(kkstp, M_TEMP);
1813 	return (error);
1814 }
1815 #endif
1816 
1817 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1818 
1819 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1820 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1821 	"Return entire process table");
1822 
1823 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1824 	sysctl_kern_proc, "Process table");
1825 
1826 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1827 	sysctl_kern_proc, "Process table");
1828 
1829 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1830 	sysctl_kern_proc, "Process table");
1831 
1832 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
1833 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1834 
1835 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
1836 	sysctl_kern_proc, "Process table");
1837 
1838 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1839 	sysctl_kern_proc, "Process table");
1840 
1841 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1842 	sysctl_kern_proc, "Process table");
1843 
1844 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1845 	sysctl_kern_proc, "Process table");
1846 
1847 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
1848 	sysctl_kern_proc, "Return process table, no threads");
1849 
1850 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
1851 	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
1852 	sysctl_kern_proc_args, "Process argument list");
1853 
1854 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
1855 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
1856 
1857 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
1858 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
1859 	"Process syscall vector name (ABI type)");
1860 
1861 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
1862 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1863 
1864 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1865 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1866 
1867 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1868 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1869 
1870 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
1871 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1872 
1873 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1874 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1875 
1876 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1877 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1878 
1879 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1880 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1881 
1882 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1883 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1884 
1885 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1886 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
1887 	"Return process table, no threads");
1888 
1889 #ifdef COMPAT_FREEBSD7
1890 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
1891 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
1892 #endif
1893 
1894 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
1895 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
1896 
1897 #if defined(STACK) || defined(DDB)
1898 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
1899 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
1900 #endif
1901