1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/refcount.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysent.h> 53 #include <sys/sched.h> 54 #include <sys/smp.h> 55 #include <sys/stack.h> 56 #include <sys/sysctl.h> 57 #include <sys/filedesc.h> 58 #include <sys/tty.h> 59 #include <sys/signalvar.h> 60 #include <sys/sdt.h> 61 #include <sys/sx.h> 62 #include <sys/user.h> 63 #include <sys/jail.h> 64 #include <sys/vnode.h> 65 #include <sys/eventhandler.h> 66 #ifdef KTRACE 67 #include <sys/uio.h> 68 #include <sys/ktrace.h> 69 #endif 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/vm.h> 76 #include <vm/vm_extern.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_object.h> 80 #include <vm/uma.h> 81 82 SDT_PROVIDER_DEFINE(proc); 83 SDT_PROBE_DEFINE(proc, kernel, ctor, entry); 84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 88 SDT_PROBE_DEFINE(proc, kernel, ctor, return); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 93 SDT_PROBE_DEFINE(proc, kernel, dtor, entry); 94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 98 SDT_PROBE_DEFINE(proc, kernel, dtor, return); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 102 SDT_PROBE_DEFINE(proc, kernel, init, entry); 103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 106 SDT_PROBE_DEFINE(proc, kernel, init, return); 107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 110 111 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 112 MALLOC_DEFINE(M_SESSION, "session", "session header"); 113 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 114 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 115 116 static void doenterpgrp(struct proc *, struct pgrp *); 117 static void orphanpg(struct pgrp *pg); 118 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 119 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 120 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 121 int preferthread); 122 static void pgadjustjobc(struct pgrp *pgrp, int entering); 123 static void pgdelete(struct pgrp *); 124 static int proc_ctor(void *mem, int size, void *arg, int flags); 125 static void proc_dtor(void *mem, int size, void *arg); 126 static int proc_init(void *mem, int size, int flags); 127 static void proc_fini(void *mem, int size); 128 static void pargs_free(struct pargs *pa); 129 130 /* 131 * Other process lists 132 */ 133 struct pidhashhead *pidhashtbl; 134 u_long pidhash; 135 struct pgrphashhead *pgrphashtbl; 136 u_long pgrphash; 137 struct proclist allproc; 138 struct proclist zombproc; 139 struct sx allproc_lock; 140 struct sx proctree_lock; 141 struct mtx ppeers_lock; 142 uma_zone_t proc_zone; 143 uma_zone_t ithread_zone; 144 145 int kstack_pages = KSTACK_PAGES; 146 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 147 148 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 149 150 /* 151 * Initialize global process hashing structures. 152 */ 153 void 154 procinit() 155 { 156 157 sx_init(&allproc_lock, "allproc"); 158 sx_init(&proctree_lock, "proctree"); 159 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 160 LIST_INIT(&allproc); 161 LIST_INIT(&zombproc); 162 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 163 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 164 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 165 proc_ctor, proc_dtor, proc_init, proc_fini, 166 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 167 uihashinit(); 168 } 169 170 /* 171 * Prepare a proc for use. 172 */ 173 static int 174 proc_ctor(void *mem, int size, void *arg, int flags) 175 { 176 struct proc *p; 177 178 p = (struct proc *)mem; 179 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 180 EVENTHANDLER_INVOKE(process_ctor, p); 181 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 182 return (0); 183 } 184 185 /* 186 * Reclaim a proc after use. 187 */ 188 static void 189 proc_dtor(void *mem, int size, void *arg) 190 { 191 struct proc *p; 192 struct thread *td; 193 194 /* INVARIANTS checks go here */ 195 p = (struct proc *)mem; 196 td = FIRST_THREAD_IN_PROC(p); 197 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 198 if (td != NULL) { 199 #ifdef INVARIANTS 200 KASSERT((p->p_numthreads == 1), 201 ("bad number of threads in exiting process")); 202 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 203 #endif 204 /* Free all OSD associated to this thread. */ 205 osd_thread_exit(td); 206 207 /* Dispose of an alternate kstack, if it exists. 208 * XXX What if there are more than one thread in the proc? 209 * The first thread in the proc is special and not 210 * freed, so you gotta do this here. 211 */ 212 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 213 vm_thread_dispose_altkstack(td); 214 } 215 EVENTHANDLER_INVOKE(process_dtor, p); 216 if (p->p_ksi != NULL) 217 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 218 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 219 } 220 221 /* 222 * Initialize type-stable parts of a proc (when newly created). 223 */ 224 static int 225 proc_init(void *mem, int size, int flags) 226 { 227 struct proc *p; 228 229 p = (struct proc *)mem; 230 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 231 p->p_sched = (struct p_sched *)&p[1]; 232 bzero(&p->p_mtx, sizeof(struct mtx)); 233 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 234 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 235 cv_init(&p->p_pwait, "ppwait"); 236 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 237 EVENTHANDLER_INVOKE(process_init, p); 238 p->p_stats = pstats_alloc(); 239 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 240 return (0); 241 } 242 243 /* 244 * UMA should ensure that this function is never called. 245 * Freeing a proc structure would violate type stability. 246 */ 247 static void 248 proc_fini(void *mem, int size) 249 { 250 #ifdef notnow 251 struct proc *p; 252 253 p = (struct proc *)mem; 254 EVENTHANDLER_INVOKE(process_fini, p); 255 pstats_free(p->p_stats); 256 thread_free(FIRST_THREAD_IN_PROC(p)); 257 mtx_destroy(&p->p_mtx); 258 if (p->p_ksi != NULL) 259 ksiginfo_free(p->p_ksi); 260 #else 261 panic("proc reclaimed"); 262 #endif 263 } 264 265 /* 266 * Is p an inferior of the current process? 267 */ 268 int 269 inferior(p) 270 register struct proc *p; 271 { 272 273 sx_assert(&proctree_lock, SX_LOCKED); 274 for (; p != curproc; p = p->p_pptr) 275 if (p->p_pid == 0) 276 return (0); 277 return (1); 278 } 279 280 /* 281 * Locate a process by number; return only "live" processes -- i.e., neither 282 * zombies nor newly born but incompletely initialized processes. By not 283 * returning processes in the PRS_NEW state, we allow callers to avoid 284 * testing for that condition to avoid dereferencing p_ucred, et al. 285 */ 286 struct proc * 287 pfind(pid) 288 register pid_t pid; 289 { 290 register struct proc *p; 291 292 sx_slock(&allproc_lock); 293 LIST_FOREACH(p, PIDHASH(pid), p_hash) 294 if (p->p_pid == pid) { 295 if (p->p_state == PRS_NEW) { 296 p = NULL; 297 break; 298 } 299 PROC_LOCK(p); 300 break; 301 } 302 sx_sunlock(&allproc_lock); 303 return (p); 304 } 305 306 /* 307 * Locate a process group by number. 308 * The caller must hold proctree_lock. 309 */ 310 struct pgrp * 311 pgfind(pgid) 312 register pid_t pgid; 313 { 314 register struct pgrp *pgrp; 315 316 sx_assert(&proctree_lock, SX_LOCKED); 317 318 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 319 if (pgrp->pg_id == pgid) { 320 PGRP_LOCK(pgrp); 321 return (pgrp); 322 } 323 } 324 return (NULL); 325 } 326 327 /* 328 * Create a new process group. 329 * pgid must be equal to the pid of p. 330 * Begin a new session if required. 331 */ 332 int 333 enterpgrp(p, pgid, pgrp, sess) 334 register struct proc *p; 335 pid_t pgid; 336 struct pgrp *pgrp; 337 struct session *sess; 338 { 339 struct pgrp *pgrp2; 340 341 sx_assert(&proctree_lock, SX_XLOCKED); 342 343 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 344 KASSERT(p->p_pid == pgid, 345 ("enterpgrp: new pgrp and pid != pgid")); 346 347 pgrp2 = pgfind(pgid); 348 349 KASSERT(pgrp2 == NULL, 350 ("enterpgrp: pgrp with pgid exists")); 351 KASSERT(!SESS_LEADER(p), 352 ("enterpgrp: session leader attempted setpgrp")); 353 354 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 355 356 if (sess != NULL) { 357 /* 358 * new session 359 */ 360 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 361 PROC_LOCK(p); 362 p->p_flag &= ~P_CONTROLT; 363 PROC_UNLOCK(p); 364 PGRP_LOCK(pgrp); 365 sess->s_leader = p; 366 sess->s_sid = p->p_pid; 367 refcount_init(&sess->s_count, 1); 368 sess->s_ttyvp = NULL; 369 sess->s_ttyp = NULL; 370 bcopy(p->p_session->s_login, sess->s_login, 371 sizeof(sess->s_login)); 372 pgrp->pg_session = sess; 373 KASSERT(p == curproc, 374 ("enterpgrp: mksession and p != curproc")); 375 } else { 376 pgrp->pg_session = p->p_session; 377 sess_hold(pgrp->pg_session); 378 PGRP_LOCK(pgrp); 379 } 380 pgrp->pg_id = pgid; 381 LIST_INIT(&pgrp->pg_members); 382 383 /* 384 * As we have an exclusive lock of proctree_lock, 385 * this should not deadlock. 386 */ 387 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 388 pgrp->pg_jobc = 0; 389 SLIST_INIT(&pgrp->pg_sigiolst); 390 PGRP_UNLOCK(pgrp); 391 392 doenterpgrp(p, pgrp); 393 394 return (0); 395 } 396 397 /* 398 * Move p to an existing process group 399 */ 400 int 401 enterthispgrp(p, pgrp) 402 register struct proc *p; 403 struct pgrp *pgrp; 404 { 405 406 sx_assert(&proctree_lock, SX_XLOCKED); 407 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 408 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 409 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 410 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 411 KASSERT(pgrp->pg_session == p->p_session, 412 ("%s: pgrp's session %p, p->p_session %p.\n", 413 __func__, 414 pgrp->pg_session, 415 p->p_session)); 416 KASSERT(pgrp != p->p_pgrp, 417 ("%s: p belongs to pgrp.", __func__)); 418 419 doenterpgrp(p, pgrp); 420 421 return (0); 422 } 423 424 /* 425 * Move p to a process group 426 */ 427 static void 428 doenterpgrp(p, pgrp) 429 struct proc *p; 430 struct pgrp *pgrp; 431 { 432 struct pgrp *savepgrp; 433 434 sx_assert(&proctree_lock, SX_XLOCKED); 435 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 436 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 437 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 438 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 439 440 savepgrp = p->p_pgrp; 441 442 /* 443 * Adjust eligibility of affected pgrps to participate in job control. 444 * Increment eligibility counts before decrementing, otherwise we 445 * could reach 0 spuriously during the first call. 446 */ 447 fixjobc(p, pgrp, 1); 448 fixjobc(p, p->p_pgrp, 0); 449 450 PGRP_LOCK(pgrp); 451 PGRP_LOCK(savepgrp); 452 PROC_LOCK(p); 453 LIST_REMOVE(p, p_pglist); 454 p->p_pgrp = pgrp; 455 PROC_UNLOCK(p); 456 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 457 PGRP_UNLOCK(savepgrp); 458 PGRP_UNLOCK(pgrp); 459 if (LIST_EMPTY(&savepgrp->pg_members)) 460 pgdelete(savepgrp); 461 } 462 463 /* 464 * remove process from process group 465 */ 466 int 467 leavepgrp(p) 468 register struct proc *p; 469 { 470 struct pgrp *savepgrp; 471 472 sx_assert(&proctree_lock, SX_XLOCKED); 473 savepgrp = p->p_pgrp; 474 PGRP_LOCK(savepgrp); 475 PROC_LOCK(p); 476 LIST_REMOVE(p, p_pglist); 477 p->p_pgrp = NULL; 478 PROC_UNLOCK(p); 479 PGRP_UNLOCK(savepgrp); 480 if (LIST_EMPTY(&savepgrp->pg_members)) 481 pgdelete(savepgrp); 482 return (0); 483 } 484 485 /* 486 * delete a process group 487 */ 488 static void 489 pgdelete(pgrp) 490 register struct pgrp *pgrp; 491 { 492 struct session *savesess; 493 struct tty *tp; 494 495 sx_assert(&proctree_lock, SX_XLOCKED); 496 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 497 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 498 499 /* 500 * Reset any sigio structures pointing to us as a result of 501 * F_SETOWN with our pgid. 502 */ 503 funsetownlst(&pgrp->pg_sigiolst); 504 505 PGRP_LOCK(pgrp); 506 tp = pgrp->pg_session->s_ttyp; 507 LIST_REMOVE(pgrp, pg_hash); 508 savesess = pgrp->pg_session; 509 PGRP_UNLOCK(pgrp); 510 511 /* Remove the reference to the pgrp before deallocating it. */ 512 if (tp != NULL) { 513 tty_lock(tp); 514 tty_rel_pgrp(tp, pgrp); 515 } 516 517 mtx_destroy(&pgrp->pg_mtx); 518 free(pgrp, M_PGRP); 519 sess_release(savesess); 520 } 521 522 static void 523 pgadjustjobc(pgrp, entering) 524 struct pgrp *pgrp; 525 int entering; 526 { 527 528 PGRP_LOCK(pgrp); 529 if (entering) 530 pgrp->pg_jobc++; 531 else { 532 --pgrp->pg_jobc; 533 if (pgrp->pg_jobc == 0) 534 orphanpg(pgrp); 535 } 536 PGRP_UNLOCK(pgrp); 537 } 538 539 /* 540 * Adjust pgrp jobc counters when specified process changes process group. 541 * We count the number of processes in each process group that "qualify" 542 * the group for terminal job control (those with a parent in a different 543 * process group of the same session). If that count reaches zero, the 544 * process group becomes orphaned. Check both the specified process' 545 * process group and that of its children. 546 * entering == 0 => p is leaving specified group. 547 * entering == 1 => p is entering specified group. 548 */ 549 void 550 fixjobc(p, pgrp, entering) 551 register struct proc *p; 552 register struct pgrp *pgrp; 553 int entering; 554 { 555 register struct pgrp *hispgrp; 556 register struct session *mysession; 557 558 sx_assert(&proctree_lock, SX_LOCKED); 559 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 560 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 561 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 562 563 /* 564 * Check p's parent to see whether p qualifies its own process 565 * group; if so, adjust count for p's process group. 566 */ 567 mysession = pgrp->pg_session; 568 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 569 hispgrp->pg_session == mysession) 570 pgadjustjobc(pgrp, entering); 571 572 /* 573 * Check this process' children to see whether they qualify 574 * their process groups; if so, adjust counts for children's 575 * process groups. 576 */ 577 LIST_FOREACH(p, &p->p_children, p_sibling) { 578 hispgrp = p->p_pgrp; 579 if (hispgrp == pgrp || 580 hispgrp->pg_session != mysession) 581 continue; 582 PROC_LOCK(p); 583 if (p->p_state == PRS_ZOMBIE) { 584 PROC_UNLOCK(p); 585 continue; 586 } 587 PROC_UNLOCK(p); 588 pgadjustjobc(hispgrp, entering); 589 } 590 } 591 592 /* 593 * A process group has become orphaned; 594 * if there are any stopped processes in the group, 595 * hang-up all process in that group. 596 */ 597 static void 598 orphanpg(pg) 599 struct pgrp *pg; 600 { 601 register struct proc *p; 602 603 PGRP_LOCK_ASSERT(pg, MA_OWNED); 604 605 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 606 PROC_LOCK(p); 607 if (P_SHOULDSTOP(p)) { 608 PROC_UNLOCK(p); 609 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 610 PROC_LOCK(p); 611 psignal(p, SIGHUP); 612 psignal(p, SIGCONT); 613 PROC_UNLOCK(p); 614 } 615 return; 616 } 617 PROC_UNLOCK(p); 618 } 619 } 620 621 void 622 sess_hold(struct session *s) 623 { 624 625 refcount_acquire(&s->s_count); 626 } 627 628 void 629 sess_release(struct session *s) 630 { 631 632 if (refcount_release(&s->s_count)) { 633 if (s->s_ttyp != NULL) { 634 tty_lock(s->s_ttyp); 635 tty_rel_sess(s->s_ttyp, s); 636 } 637 mtx_destroy(&s->s_mtx); 638 free(s, M_SESSION); 639 } 640 } 641 642 #include "opt_ddb.h" 643 #ifdef DDB 644 #include <ddb/ddb.h> 645 646 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 647 { 648 register struct pgrp *pgrp; 649 register struct proc *p; 650 register int i; 651 652 for (i = 0; i <= pgrphash; i++) { 653 if (!LIST_EMPTY(&pgrphashtbl[i])) { 654 printf("\tindx %d\n", i); 655 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 656 printf( 657 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 658 (void *)pgrp, (long)pgrp->pg_id, 659 (void *)pgrp->pg_session, 660 pgrp->pg_session->s_count, 661 (void *)LIST_FIRST(&pgrp->pg_members)); 662 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 663 printf("\t\tpid %ld addr %p pgrp %p\n", 664 (long)p->p_pid, (void *)p, 665 (void *)p->p_pgrp); 666 } 667 } 668 } 669 } 670 } 671 #endif /* DDB */ 672 673 /* 674 * Calculate the kinfo_proc members which contain process-wide 675 * informations. 676 * Must be called with the target process locked. 677 */ 678 static void 679 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 680 { 681 struct thread *td; 682 683 PROC_LOCK_ASSERT(p, MA_OWNED); 684 685 kp->ki_estcpu = 0; 686 kp->ki_pctcpu = 0; 687 kp->ki_runtime = 0; 688 FOREACH_THREAD_IN_PROC(p, td) { 689 thread_lock(td); 690 kp->ki_pctcpu += sched_pctcpu(td); 691 kp->ki_runtime += cputick2usec(td->td_runtime); 692 kp->ki_estcpu += td->td_estcpu; 693 thread_unlock(td); 694 } 695 } 696 697 /* 698 * Clear kinfo_proc and fill in any information that is common 699 * to all threads in the process. 700 * Must be called with the target process locked. 701 */ 702 static void 703 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 704 { 705 struct thread *td0; 706 struct tty *tp; 707 struct session *sp; 708 struct ucred *cred; 709 struct sigacts *ps; 710 711 PROC_LOCK_ASSERT(p, MA_OWNED); 712 bzero(kp, sizeof(*kp)); 713 714 kp->ki_structsize = sizeof(*kp); 715 kp->ki_paddr = p; 716 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 717 kp->ki_args = p->p_args; 718 kp->ki_textvp = p->p_textvp; 719 #ifdef KTRACE 720 kp->ki_tracep = p->p_tracevp; 721 mtx_lock(&ktrace_mtx); 722 kp->ki_traceflag = p->p_traceflag; 723 mtx_unlock(&ktrace_mtx); 724 #endif 725 kp->ki_fd = p->p_fd; 726 kp->ki_vmspace = p->p_vmspace; 727 kp->ki_flag = p->p_flag; 728 cred = p->p_ucred; 729 if (cred) { 730 kp->ki_uid = cred->cr_uid; 731 kp->ki_ruid = cred->cr_ruid; 732 kp->ki_svuid = cred->cr_svuid; 733 kp->ki_ngroups = cred->cr_ngroups; 734 kp->ki_groups = cred->cr_groups; 735 kp->ki_rgid = cred->cr_rgid; 736 kp->ki_svgid = cred->cr_svgid; 737 kp->ki_cr_flags = cred->cr_flags; 738 /* If jailed(cred), emulate the old P_JAILED flag. */ 739 if (jailed(cred)) { 740 kp->ki_flag |= P_JAILED; 741 /* If inside the jail, use 0 as a jail ID. */ 742 if (cred->cr_prison != curthread->td_ucred->cr_prison) 743 kp->ki_jid = cred->cr_prison->pr_id; 744 } 745 } 746 ps = p->p_sigacts; 747 if (ps) { 748 mtx_lock(&ps->ps_mtx); 749 kp->ki_sigignore = ps->ps_sigignore; 750 kp->ki_sigcatch = ps->ps_sigcatch; 751 mtx_unlock(&ps->ps_mtx); 752 } 753 PROC_SLOCK(p); 754 if (p->p_state != PRS_NEW && 755 p->p_state != PRS_ZOMBIE && 756 p->p_vmspace != NULL) { 757 struct vmspace *vm = p->p_vmspace; 758 759 kp->ki_size = vm->vm_map.size; 760 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 761 FOREACH_THREAD_IN_PROC(p, td0) { 762 if (!TD_IS_SWAPPED(td0)) 763 kp->ki_rssize += td0->td_kstack_pages; 764 if (td0->td_altkstack_obj != NULL) 765 kp->ki_rssize += td0->td_altkstack_pages; 766 } 767 kp->ki_swrss = vm->vm_swrss; 768 kp->ki_tsize = vm->vm_tsize; 769 kp->ki_dsize = vm->vm_dsize; 770 kp->ki_ssize = vm->vm_ssize; 771 } else if (p->p_state == PRS_ZOMBIE) 772 kp->ki_stat = SZOMB; 773 if (kp->ki_flag & P_INMEM) 774 kp->ki_sflag = PS_INMEM; 775 else 776 kp->ki_sflag = 0; 777 /* Calculate legacy swtime as seconds since 'swtick'. */ 778 kp->ki_swtime = (ticks - p->p_swtick) / hz; 779 kp->ki_pid = p->p_pid; 780 kp->ki_nice = p->p_nice; 781 rufetch(p, &kp->ki_rusage); 782 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 783 PROC_SUNLOCK(p); 784 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 785 kp->ki_start = p->p_stats->p_start; 786 timevaladd(&kp->ki_start, &boottime); 787 PROC_SLOCK(p); 788 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 789 PROC_SUNLOCK(p); 790 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 791 792 /* Some callers want child-times in a single value */ 793 kp->ki_childtime = kp->ki_childstime; 794 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 795 } 796 tp = NULL; 797 if (p->p_pgrp) { 798 kp->ki_pgid = p->p_pgrp->pg_id; 799 kp->ki_jobc = p->p_pgrp->pg_jobc; 800 sp = p->p_pgrp->pg_session; 801 802 if (sp != NULL) { 803 kp->ki_sid = sp->s_sid; 804 SESS_LOCK(sp); 805 strlcpy(kp->ki_login, sp->s_login, 806 sizeof(kp->ki_login)); 807 if (sp->s_ttyvp) 808 kp->ki_kiflag |= KI_CTTY; 809 if (SESS_LEADER(p)) 810 kp->ki_kiflag |= KI_SLEADER; 811 /* XXX proctree_lock */ 812 tp = sp->s_ttyp; 813 SESS_UNLOCK(sp); 814 } 815 } 816 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 817 kp->ki_tdev = tty_udev(tp); 818 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 819 if (tp->t_session) 820 kp->ki_tsid = tp->t_session->s_sid; 821 } else 822 kp->ki_tdev = NODEV; 823 if (p->p_comm[0] != '\0') 824 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 825 if (p->p_sysent && p->p_sysent->sv_name != NULL && 826 p->p_sysent->sv_name[0] != '\0') 827 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 828 kp->ki_siglist = p->p_siglist; 829 kp->ki_xstat = p->p_xstat; 830 kp->ki_acflag = p->p_acflag; 831 kp->ki_lock = p->p_lock; 832 if (p->p_pptr) 833 kp->ki_ppid = p->p_pptr->p_pid; 834 } 835 836 /* 837 * Fill in information that is thread specific. Must be called with p_slock 838 * locked. If 'preferthread' is set, overwrite certain process-related 839 * fields that are maintained for both threads and processes. 840 */ 841 static void 842 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 843 { 844 struct proc *p; 845 846 p = td->td_proc; 847 PROC_LOCK_ASSERT(p, MA_OWNED); 848 849 thread_lock(td); 850 if (td->td_wmesg != NULL) 851 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 852 else 853 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 854 if (td->td_name[0] != '\0') 855 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 856 if (TD_ON_LOCK(td)) { 857 kp->ki_kiflag |= KI_LOCKBLOCK; 858 strlcpy(kp->ki_lockname, td->td_lockname, 859 sizeof(kp->ki_lockname)); 860 } else { 861 kp->ki_kiflag &= ~KI_LOCKBLOCK; 862 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 863 } 864 865 if (p->p_state == PRS_NORMAL) { /* approximate. */ 866 if (TD_ON_RUNQ(td) || 867 TD_CAN_RUN(td) || 868 TD_IS_RUNNING(td)) { 869 kp->ki_stat = SRUN; 870 } else if (P_SHOULDSTOP(p)) { 871 kp->ki_stat = SSTOP; 872 } else if (TD_IS_SLEEPING(td)) { 873 kp->ki_stat = SSLEEP; 874 } else if (TD_ON_LOCK(td)) { 875 kp->ki_stat = SLOCK; 876 } else { 877 kp->ki_stat = SWAIT; 878 } 879 } else if (p->p_state == PRS_ZOMBIE) { 880 kp->ki_stat = SZOMB; 881 } else { 882 kp->ki_stat = SIDL; 883 } 884 885 /* Things in the thread */ 886 kp->ki_wchan = td->td_wchan; 887 kp->ki_pri.pri_level = td->td_priority; 888 kp->ki_pri.pri_native = td->td_base_pri; 889 kp->ki_lastcpu = td->td_lastcpu; 890 kp->ki_oncpu = td->td_oncpu; 891 kp->ki_tdflags = td->td_flags; 892 kp->ki_tid = td->td_tid; 893 kp->ki_numthreads = p->p_numthreads; 894 kp->ki_pcb = td->td_pcb; 895 kp->ki_kstack = (void *)td->td_kstack; 896 kp->ki_slptime = (ticks - td->td_slptick) / hz; 897 kp->ki_pri.pri_class = td->td_pri_class; 898 kp->ki_pri.pri_user = td->td_user_pri; 899 900 if (preferthread) { 901 kp->ki_runtime = cputick2usec(td->td_runtime); 902 kp->ki_pctcpu = sched_pctcpu(td); 903 kp->ki_estcpu = td->td_estcpu; 904 } 905 906 /* We can't get this anymore but ps etc never used it anyway. */ 907 kp->ki_rqindex = 0; 908 909 SIGSETOR(kp->ki_siglist, td->td_siglist); 910 kp->ki_sigmask = td->td_sigmask; 911 thread_unlock(td); 912 } 913 914 /* 915 * Fill in a kinfo_proc structure for the specified process. 916 * Must be called with the target process locked. 917 */ 918 void 919 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 920 { 921 922 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 923 924 fill_kinfo_proc_only(p, kp); 925 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 926 fill_kinfo_aggregate(p, kp); 927 } 928 929 struct pstats * 930 pstats_alloc(void) 931 { 932 933 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 934 } 935 936 /* 937 * Copy parts of p_stats; zero the rest of p_stats (statistics). 938 */ 939 void 940 pstats_fork(struct pstats *src, struct pstats *dst) 941 { 942 943 bzero(&dst->pstat_startzero, 944 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 945 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 946 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 947 } 948 949 void 950 pstats_free(struct pstats *ps) 951 { 952 953 free(ps, M_SUBPROC); 954 } 955 956 /* 957 * Locate a zombie process by number 958 */ 959 struct proc * 960 zpfind(pid_t pid) 961 { 962 struct proc *p; 963 964 sx_slock(&allproc_lock); 965 LIST_FOREACH(p, &zombproc, p_list) 966 if (p->p_pid == pid) { 967 PROC_LOCK(p); 968 break; 969 } 970 sx_sunlock(&allproc_lock); 971 return (p); 972 } 973 974 #define KERN_PROC_ZOMBMASK 0x3 975 #define KERN_PROC_NOTHREADS 0x4 976 977 /* 978 * Must be called with the process locked and will return with it unlocked. 979 */ 980 static int 981 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 982 { 983 struct thread *td; 984 struct kinfo_proc kinfo_proc; 985 int error = 0; 986 struct proc *np; 987 pid_t pid = p->p_pid; 988 989 PROC_LOCK_ASSERT(p, MA_OWNED); 990 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 991 992 fill_kinfo_proc(p, &kinfo_proc); 993 if (flags & KERN_PROC_NOTHREADS) 994 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 995 sizeof(kinfo_proc)); 996 else { 997 FOREACH_THREAD_IN_PROC(p, td) { 998 fill_kinfo_thread(td, &kinfo_proc, 1); 999 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 1000 sizeof(kinfo_proc)); 1001 if (error) 1002 break; 1003 } 1004 } 1005 PROC_UNLOCK(p); 1006 if (error) 1007 return (error); 1008 if (flags & KERN_PROC_ZOMBMASK) 1009 np = zpfind(pid); 1010 else { 1011 if (pid == 0) 1012 return (0); 1013 np = pfind(pid); 1014 } 1015 if (np == NULL) 1016 return (ESRCH); 1017 if (np != p) { 1018 PROC_UNLOCK(np); 1019 return (ESRCH); 1020 } 1021 PROC_UNLOCK(np); 1022 return (0); 1023 } 1024 1025 static int 1026 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1027 { 1028 int *name = (int*) arg1; 1029 u_int namelen = arg2; 1030 struct proc *p; 1031 int flags, doingzomb, oid_number; 1032 int error = 0; 1033 1034 oid_number = oidp->oid_number; 1035 if (oid_number != KERN_PROC_ALL && 1036 (oid_number & KERN_PROC_INC_THREAD) == 0) 1037 flags = KERN_PROC_NOTHREADS; 1038 else { 1039 flags = 0; 1040 oid_number &= ~KERN_PROC_INC_THREAD; 1041 } 1042 if (oid_number == KERN_PROC_PID) { 1043 if (namelen != 1) 1044 return (EINVAL); 1045 error = sysctl_wire_old_buffer(req, 0); 1046 if (error) 1047 return (error); 1048 p = pfind((pid_t)name[0]); 1049 if (!p) 1050 return (ESRCH); 1051 if ((error = p_cansee(curthread, p))) { 1052 PROC_UNLOCK(p); 1053 return (error); 1054 } 1055 error = sysctl_out_proc(p, req, flags); 1056 return (error); 1057 } 1058 1059 switch (oid_number) { 1060 case KERN_PROC_ALL: 1061 if (namelen != 0) 1062 return (EINVAL); 1063 break; 1064 case KERN_PROC_PROC: 1065 if (namelen != 0 && namelen != 1) 1066 return (EINVAL); 1067 break; 1068 default: 1069 if (namelen != 1) 1070 return (EINVAL); 1071 break; 1072 } 1073 1074 if (!req->oldptr) { 1075 /* overestimate by 5 procs */ 1076 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1077 if (error) 1078 return (error); 1079 } 1080 error = sysctl_wire_old_buffer(req, 0); 1081 if (error != 0) 1082 return (error); 1083 sx_slock(&allproc_lock); 1084 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1085 if (!doingzomb) 1086 p = LIST_FIRST(&allproc); 1087 else 1088 p = LIST_FIRST(&zombproc); 1089 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1090 /* 1091 * Skip embryonic processes. 1092 */ 1093 PROC_SLOCK(p); 1094 if (p->p_state == PRS_NEW) { 1095 PROC_SUNLOCK(p); 1096 continue; 1097 } 1098 PROC_SUNLOCK(p); 1099 PROC_LOCK(p); 1100 KASSERT(p->p_ucred != NULL, 1101 ("process credential is NULL for non-NEW proc")); 1102 /* 1103 * Show a user only appropriate processes. 1104 */ 1105 if (p_cansee(curthread, p)) { 1106 PROC_UNLOCK(p); 1107 continue; 1108 } 1109 /* 1110 * TODO - make more efficient (see notes below). 1111 * do by session. 1112 */ 1113 switch (oid_number) { 1114 1115 case KERN_PROC_GID: 1116 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1117 PROC_UNLOCK(p); 1118 continue; 1119 } 1120 break; 1121 1122 case KERN_PROC_PGRP: 1123 /* could do this by traversing pgrp */ 1124 if (p->p_pgrp == NULL || 1125 p->p_pgrp->pg_id != (pid_t)name[0]) { 1126 PROC_UNLOCK(p); 1127 continue; 1128 } 1129 break; 1130 1131 case KERN_PROC_RGID: 1132 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1133 PROC_UNLOCK(p); 1134 continue; 1135 } 1136 break; 1137 1138 case KERN_PROC_SESSION: 1139 if (p->p_session == NULL || 1140 p->p_session->s_sid != (pid_t)name[0]) { 1141 PROC_UNLOCK(p); 1142 continue; 1143 } 1144 break; 1145 1146 case KERN_PROC_TTY: 1147 if ((p->p_flag & P_CONTROLT) == 0 || 1148 p->p_session == NULL) { 1149 PROC_UNLOCK(p); 1150 continue; 1151 } 1152 /* XXX proctree_lock */ 1153 SESS_LOCK(p->p_session); 1154 if (p->p_session->s_ttyp == NULL || 1155 tty_udev(p->p_session->s_ttyp) != 1156 (dev_t)name[0]) { 1157 SESS_UNLOCK(p->p_session); 1158 PROC_UNLOCK(p); 1159 continue; 1160 } 1161 SESS_UNLOCK(p->p_session); 1162 break; 1163 1164 case KERN_PROC_UID: 1165 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1166 PROC_UNLOCK(p); 1167 continue; 1168 } 1169 break; 1170 1171 case KERN_PROC_RUID: 1172 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1173 PROC_UNLOCK(p); 1174 continue; 1175 } 1176 break; 1177 1178 case KERN_PROC_PROC: 1179 break; 1180 1181 default: 1182 break; 1183 1184 } 1185 1186 error = sysctl_out_proc(p, req, flags | doingzomb); 1187 if (error) { 1188 sx_sunlock(&allproc_lock); 1189 return (error); 1190 } 1191 } 1192 } 1193 sx_sunlock(&allproc_lock); 1194 return (0); 1195 } 1196 1197 struct pargs * 1198 pargs_alloc(int len) 1199 { 1200 struct pargs *pa; 1201 1202 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1203 M_WAITOK); 1204 refcount_init(&pa->ar_ref, 1); 1205 pa->ar_length = len; 1206 return (pa); 1207 } 1208 1209 static void 1210 pargs_free(struct pargs *pa) 1211 { 1212 1213 free(pa, M_PARGS); 1214 } 1215 1216 void 1217 pargs_hold(struct pargs *pa) 1218 { 1219 1220 if (pa == NULL) 1221 return; 1222 refcount_acquire(&pa->ar_ref); 1223 } 1224 1225 void 1226 pargs_drop(struct pargs *pa) 1227 { 1228 1229 if (pa == NULL) 1230 return; 1231 if (refcount_release(&pa->ar_ref)) 1232 pargs_free(pa); 1233 } 1234 1235 /* 1236 * This sysctl allows a process to retrieve the argument list or process 1237 * title for another process without groping around in the address space 1238 * of the other process. It also allow a process to set its own "process 1239 * title to a string of its own choice. 1240 */ 1241 static int 1242 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1243 { 1244 int *name = (int*) arg1; 1245 u_int namelen = arg2; 1246 struct pargs *newpa, *pa; 1247 struct proc *p; 1248 int error = 0; 1249 1250 if (namelen != 1) 1251 return (EINVAL); 1252 1253 p = pfind((pid_t)name[0]); 1254 if (!p) 1255 return (ESRCH); 1256 1257 if ((error = p_cansee(curthread, p)) != 0) { 1258 PROC_UNLOCK(p); 1259 return (error); 1260 } 1261 1262 if (req->newptr && curproc != p) { 1263 PROC_UNLOCK(p); 1264 return (EPERM); 1265 } 1266 1267 pa = p->p_args; 1268 pargs_hold(pa); 1269 PROC_UNLOCK(p); 1270 if (req->oldptr != NULL && pa != NULL) 1271 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1272 pargs_drop(pa); 1273 if (error != 0 || req->newptr == NULL) 1274 return (error); 1275 1276 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1277 return (ENOMEM); 1278 newpa = pargs_alloc(req->newlen); 1279 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1280 if (error != 0) { 1281 pargs_free(newpa); 1282 return (error); 1283 } 1284 PROC_LOCK(p); 1285 pa = p->p_args; 1286 p->p_args = newpa; 1287 PROC_UNLOCK(p); 1288 pargs_drop(pa); 1289 return (0); 1290 } 1291 1292 /* 1293 * This sysctl allows a process to retrieve the path of the executable for 1294 * itself or another process. 1295 */ 1296 static int 1297 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1298 { 1299 pid_t *pidp = (pid_t *)arg1; 1300 unsigned int arglen = arg2; 1301 struct proc *p; 1302 struct vnode *vp; 1303 char *retbuf, *freebuf; 1304 int error, vfslocked; 1305 1306 if (arglen != 1) 1307 return (EINVAL); 1308 if (*pidp == -1) { /* -1 means this process */ 1309 p = req->td->td_proc; 1310 } else { 1311 p = pfind(*pidp); 1312 if (p == NULL) 1313 return (ESRCH); 1314 if ((error = p_cansee(curthread, p)) != 0) { 1315 PROC_UNLOCK(p); 1316 return (error); 1317 } 1318 } 1319 1320 vp = p->p_textvp; 1321 if (vp == NULL) { 1322 if (*pidp != -1) 1323 PROC_UNLOCK(p); 1324 return (0); 1325 } 1326 vref(vp); 1327 if (*pidp != -1) 1328 PROC_UNLOCK(p); 1329 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1330 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1331 vrele(vp); 1332 VFS_UNLOCK_GIANT(vfslocked); 1333 if (error) 1334 return (error); 1335 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1336 free(freebuf, M_TEMP); 1337 return (error); 1338 } 1339 1340 static int 1341 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1342 { 1343 struct proc *p; 1344 char *sv_name; 1345 int *name; 1346 int namelen; 1347 int error; 1348 1349 namelen = arg2; 1350 if (namelen != 1) 1351 return (EINVAL); 1352 1353 name = (int *)arg1; 1354 if ((p = pfind((pid_t)name[0])) == NULL) 1355 return (ESRCH); 1356 if ((error = p_cansee(curthread, p))) { 1357 PROC_UNLOCK(p); 1358 return (error); 1359 } 1360 sv_name = p->p_sysent->sv_name; 1361 PROC_UNLOCK(p); 1362 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1363 } 1364 1365 #ifdef KINFO_OVMENTRY_SIZE 1366 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1367 #endif 1368 1369 #ifdef COMPAT_FREEBSD7 1370 static int 1371 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1372 { 1373 vm_map_entry_t entry, tmp_entry; 1374 unsigned int last_timestamp; 1375 char *fullpath, *freepath; 1376 struct kinfo_ovmentry *kve; 1377 struct vattr va; 1378 struct ucred *cred; 1379 int error, *name; 1380 struct vnode *vp; 1381 struct proc *p; 1382 vm_map_t map; 1383 struct vmspace *vm; 1384 1385 name = (int *)arg1; 1386 if ((p = pfind((pid_t)name[0])) == NULL) 1387 return (ESRCH); 1388 if (p->p_flag & P_WEXIT) { 1389 PROC_UNLOCK(p); 1390 return (ESRCH); 1391 } 1392 if ((error = p_candebug(curthread, p))) { 1393 PROC_UNLOCK(p); 1394 return (error); 1395 } 1396 _PHOLD(p); 1397 PROC_UNLOCK(p); 1398 vm = vmspace_acquire_ref(p); 1399 if (vm == NULL) { 1400 PRELE(p); 1401 return (ESRCH); 1402 } 1403 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1404 1405 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1406 vm_map_lock_read(map); 1407 for (entry = map->header.next; entry != &map->header; 1408 entry = entry->next) { 1409 vm_object_t obj, tobj, lobj; 1410 vm_offset_t addr; 1411 int vfslocked; 1412 1413 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1414 continue; 1415 1416 bzero(kve, sizeof(*kve)); 1417 kve->kve_structsize = sizeof(*kve); 1418 1419 kve->kve_private_resident = 0; 1420 obj = entry->object.vm_object; 1421 if (obj != NULL) { 1422 VM_OBJECT_LOCK(obj); 1423 if (obj->shadow_count == 1) 1424 kve->kve_private_resident = 1425 obj->resident_page_count; 1426 } 1427 kve->kve_resident = 0; 1428 addr = entry->start; 1429 while (addr < entry->end) { 1430 if (pmap_extract(map->pmap, addr)) 1431 kve->kve_resident++; 1432 addr += PAGE_SIZE; 1433 } 1434 1435 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1436 if (tobj != obj) 1437 VM_OBJECT_LOCK(tobj); 1438 if (lobj != obj) 1439 VM_OBJECT_UNLOCK(lobj); 1440 lobj = tobj; 1441 } 1442 1443 kve->kve_start = (void*)entry->start; 1444 kve->kve_end = (void*)entry->end; 1445 kve->kve_offset = (off_t)entry->offset; 1446 1447 if (entry->protection & VM_PROT_READ) 1448 kve->kve_protection |= KVME_PROT_READ; 1449 if (entry->protection & VM_PROT_WRITE) 1450 kve->kve_protection |= KVME_PROT_WRITE; 1451 if (entry->protection & VM_PROT_EXECUTE) 1452 kve->kve_protection |= KVME_PROT_EXEC; 1453 1454 if (entry->eflags & MAP_ENTRY_COW) 1455 kve->kve_flags |= KVME_FLAG_COW; 1456 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1457 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1458 1459 last_timestamp = map->timestamp; 1460 vm_map_unlock_read(map); 1461 1462 kve->kve_fileid = 0; 1463 kve->kve_fsid = 0; 1464 freepath = NULL; 1465 fullpath = ""; 1466 if (lobj) { 1467 vp = NULL; 1468 switch (lobj->type) { 1469 case OBJT_DEFAULT: 1470 kve->kve_type = KVME_TYPE_DEFAULT; 1471 break; 1472 case OBJT_VNODE: 1473 kve->kve_type = KVME_TYPE_VNODE; 1474 vp = lobj->handle; 1475 vref(vp); 1476 break; 1477 case OBJT_SWAP: 1478 kve->kve_type = KVME_TYPE_SWAP; 1479 break; 1480 case OBJT_DEVICE: 1481 kve->kve_type = KVME_TYPE_DEVICE; 1482 break; 1483 case OBJT_PHYS: 1484 kve->kve_type = KVME_TYPE_PHYS; 1485 break; 1486 case OBJT_DEAD: 1487 kve->kve_type = KVME_TYPE_DEAD; 1488 break; 1489 default: 1490 kve->kve_type = KVME_TYPE_UNKNOWN; 1491 break; 1492 } 1493 if (lobj != obj) 1494 VM_OBJECT_UNLOCK(lobj); 1495 1496 kve->kve_ref_count = obj->ref_count; 1497 kve->kve_shadow_count = obj->shadow_count; 1498 VM_OBJECT_UNLOCK(obj); 1499 if (vp != NULL) { 1500 vn_fullpath(curthread, vp, &fullpath, 1501 &freepath); 1502 cred = curthread->td_ucred; 1503 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1504 vn_lock(vp, LK_SHARED | LK_RETRY); 1505 if (VOP_GETATTR(vp, &va, cred) == 0) { 1506 kve->kve_fileid = va.va_fileid; 1507 kve->kve_fsid = va.va_fsid; 1508 } 1509 vput(vp); 1510 VFS_UNLOCK_GIANT(vfslocked); 1511 } 1512 } else { 1513 kve->kve_type = KVME_TYPE_NONE; 1514 kve->kve_ref_count = 0; 1515 kve->kve_shadow_count = 0; 1516 } 1517 1518 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1519 if (freepath != NULL) 1520 free(freepath, M_TEMP); 1521 1522 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1523 vm_map_lock_read(map); 1524 if (error) 1525 break; 1526 if (last_timestamp != map->timestamp) { 1527 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1528 entry = tmp_entry; 1529 } 1530 } 1531 vm_map_unlock_read(map); 1532 vmspace_free(vm); 1533 PRELE(p); 1534 free(kve, M_TEMP); 1535 return (error); 1536 } 1537 #endif /* COMPAT_FREEBSD7 */ 1538 1539 #ifdef KINFO_VMENTRY_SIZE 1540 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1541 #endif 1542 1543 static int 1544 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1545 { 1546 vm_map_entry_t entry, tmp_entry; 1547 unsigned int last_timestamp; 1548 char *fullpath, *freepath; 1549 struct kinfo_vmentry *kve; 1550 struct vattr va; 1551 struct ucred *cred; 1552 int error, *name; 1553 struct vnode *vp; 1554 struct proc *p; 1555 struct vmspace *vm; 1556 vm_map_t map; 1557 1558 name = (int *)arg1; 1559 if ((p = pfind((pid_t)name[0])) == NULL) 1560 return (ESRCH); 1561 if (p->p_flag & P_WEXIT) { 1562 PROC_UNLOCK(p); 1563 return (ESRCH); 1564 } 1565 if ((error = p_candebug(curthread, p))) { 1566 PROC_UNLOCK(p); 1567 return (error); 1568 } 1569 _PHOLD(p); 1570 PROC_UNLOCK(p); 1571 vm = vmspace_acquire_ref(p); 1572 if (vm == NULL) { 1573 PRELE(p); 1574 return (ESRCH); 1575 } 1576 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1577 1578 map = &vm->vm_map; /* XXXRW: More locking required? */ 1579 vm_map_lock_read(map); 1580 for (entry = map->header.next; entry != &map->header; 1581 entry = entry->next) { 1582 vm_object_t obj, tobj, lobj; 1583 vm_offset_t addr; 1584 int vfslocked; 1585 1586 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1587 continue; 1588 1589 bzero(kve, sizeof(*kve)); 1590 1591 kve->kve_private_resident = 0; 1592 obj = entry->object.vm_object; 1593 if (obj != NULL) { 1594 VM_OBJECT_LOCK(obj); 1595 if (obj->shadow_count == 1) 1596 kve->kve_private_resident = 1597 obj->resident_page_count; 1598 } 1599 kve->kve_resident = 0; 1600 addr = entry->start; 1601 while (addr < entry->end) { 1602 if (pmap_extract(map->pmap, addr)) 1603 kve->kve_resident++; 1604 addr += PAGE_SIZE; 1605 } 1606 1607 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1608 if (tobj != obj) 1609 VM_OBJECT_LOCK(tobj); 1610 if (lobj != obj) 1611 VM_OBJECT_UNLOCK(lobj); 1612 lobj = tobj; 1613 } 1614 1615 kve->kve_start = entry->start; 1616 kve->kve_end = entry->end; 1617 kve->kve_offset = entry->offset; 1618 1619 if (entry->protection & VM_PROT_READ) 1620 kve->kve_protection |= KVME_PROT_READ; 1621 if (entry->protection & VM_PROT_WRITE) 1622 kve->kve_protection |= KVME_PROT_WRITE; 1623 if (entry->protection & VM_PROT_EXECUTE) 1624 kve->kve_protection |= KVME_PROT_EXEC; 1625 1626 if (entry->eflags & MAP_ENTRY_COW) 1627 kve->kve_flags |= KVME_FLAG_COW; 1628 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1629 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1630 1631 last_timestamp = map->timestamp; 1632 vm_map_unlock_read(map); 1633 1634 kve->kve_fileid = 0; 1635 kve->kve_fsid = 0; 1636 freepath = NULL; 1637 fullpath = ""; 1638 if (lobj) { 1639 vp = NULL; 1640 switch (lobj->type) { 1641 case OBJT_DEFAULT: 1642 kve->kve_type = KVME_TYPE_DEFAULT; 1643 break; 1644 case OBJT_VNODE: 1645 kve->kve_type = KVME_TYPE_VNODE; 1646 vp = lobj->handle; 1647 vref(vp); 1648 break; 1649 case OBJT_SWAP: 1650 kve->kve_type = KVME_TYPE_SWAP; 1651 break; 1652 case OBJT_DEVICE: 1653 kve->kve_type = KVME_TYPE_DEVICE; 1654 break; 1655 case OBJT_PHYS: 1656 kve->kve_type = KVME_TYPE_PHYS; 1657 break; 1658 case OBJT_DEAD: 1659 kve->kve_type = KVME_TYPE_DEAD; 1660 break; 1661 default: 1662 kve->kve_type = KVME_TYPE_UNKNOWN; 1663 break; 1664 } 1665 if (lobj != obj) 1666 VM_OBJECT_UNLOCK(lobj); 1667 1668 kve->kve_ref_count = obj->ref_count; 1669 kve->kve_shadow_count = obj->shadow_count; 1670 VM_OBJECT_UNLOCK(obj); 1671 if (vp != NULL) { 1672 vn_fullpath(curthread, vp, &fullpath, 1673 &freepath); 1674 cred = curthread->td_ucred; 1675 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1676 vn_lock(vp, LK_SHARED | LK_RETRY); 1677 if (VOP_GETATTR(vp, &va, cred) == 0) { 1678 kve->kve_fileid = va.va_fileid; 1679 kve->kve_fsid = va.va_fsid; 1680 } 1681 vput(vp); 1682 VFS_UNLOCK_GIANT(vfslocked); 1683 } 1684 } else { 1685 kve->kve_type = KVME_TYPE_NONE; 1686 kve->kve_ref_count = 0; 1687 kve->kve_shadow_count = 0; 1688 } 1689 1690 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1691 if (freepath != NULL) 1692 free(freepath, M_TEMP); 1693 1694 /* Pack record size down */ 1695 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 1696 strlen(kve->kve_path) + 1; 1697 kve->kve_structsize = roundup(kve->kve_structsize, 1698 sizeof(uint64_t)); 1699 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 1700 vm_map_lock_read(map); 1701 if (error) 1702 break; 1703 if (last_timestamp != map->timestamp) { 1704 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1705 entry = tmp_entry; 1706 } 1707 } 1708 vm_map_unlock_read(map); 1709 vmspace_free(vm); 1710 PRELE(p); 1711 free(kve, M_TEMP); 1712 return (error); 1713 } 1714 1715 #if defined(STACK) || defined(DDB) 1716 static int 1717 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1718 { 1719 struct kinfo_kstack *kkstp; 1720 int error, i, *name, numthreads; 1721 lwpid_t *lwpidarray; 1722 struct thread *td; 1723 struct stack *st; 1724 struct sbuf sb; 1725 struct proc *p; 1726 1727 name = (int *)arg1; 1728 if ((p = pfind((pid_t)name[0])) == NULL) 1729 return (ESRCH); 1730 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1731 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1732 PROC_UNLOCK(p); 1733 return (ESRCH); 1734 } 1735 if ((error = p_candebug(curthread, p))) { 1736 PROC_UNLOCK(p); 1737 return (error); 1738 } 1739 _PHOLD(p); 1740 PROC_UNLOCK(p); 1741 1742 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1743 st = stack_create(); 1744 1745 lwpidarray = NULL; 1746 numthreads = 0; 1747 PROC_LOCK(p); 1748 repeat: 1749 if (numthreads < p->p_numthreads) { 1750 if (lwpidarray != NULL) { 1751 free(lwpidarray, M_TEMP); 1752 lwpidarray = NULL; 1753 } 1754 numthreads = p->p_numthreads; 1755 PROC_UNLOCK(p); 1756 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1757 M_WAITOK | M_ZERO); 1758 PROC_LOCK(p); 1759 goto repeat; 1760 } 1761 i = 0; 1762 1763 /* 1764 * XXXRW: During the below loop, execve(2) and countless other sorts 1765 * of changes could have taken place. Should we check to see if the 1766 * vmspace has been replaced, or the like, in order to prevent 1767 * giving a snapshot that spans, say, execve(2), with some threads 1768 * before and some after? Among other things, the credentials could 1769 * have changed, in which case the right to extract debug info might 1770 * no longer be assured. 1771 */ 1772 FOREACH_THREAD_IN_PROC(p, td) { 1773 KASSERT(i < numthreads, 1774 ("sysctl_kern_proc_kstack: numthreads")); 1775 lwpidarray[i] = td->td_tid; 1776 i++; 1777 } 1778 numthreads = i; 1779 for (i = 0; i < numthreads; i++) { 1780 td = thread_find(p, lwpidarray[i]); 1781 if (td == NULL) { 1782 continue; 1783 } 1784 bzero(kkstp, sizeof(*kkstp)); 1785 (void)sbuf_new(&sb, kkstp->kkst_trace, 1786 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1787 thread_lock(td); 1788 kkstp->kkst_tid = td->td_tid; 1789 if (TD_IS_SWAPPED(td)) 1790 kkstp->kkst_state = KKST_STATE_SWAPPED; 1791 else if (TD_IS_RUNNING(td)) 1792 kkstp->kkst_state = KKST_STATE_RUNNING; 1793 else { 1794 kkstp->kkst_state = KKST_STATE_STACKOK; 1795 stack_save_td(st, td); 1796 } 1797 thread_unlock(td); 1798 PROC_UNLOCK(p); 1799 stack_sbuf_print(&sb, st); 1800 sbuf_finish(&sb); 1801 sbuf_delete(&sb); 1802 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1803 PROC_LOCK(p); 1804 if (error) 1805 break; 1806 } 1807 _PRELE(p); 1808 PROC_UNLOCK(p); 1809 if (lwpidarray != NULL) 1810 free(lwpidarray, M_TEMP); 1811 stack_destroy(st); 1812 free(kkstp, M_TEMP); 1813 return (error); 1814 } 1815 #endif 1816 1817 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1818 1819 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 1820 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 1821 "Return entire process table"); 1822 1823 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1824 sysctl_kern_proc, "Process table"); 1825 1826 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 1827 sysctl_kern_proc, "Process table"); 1828 1829 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1830 sysctl_kern_proc, "Process table"); 1831 1832 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 1833 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1834 1835 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 1836 sysctl_kern_proc, "Process table"); 1837 1838 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1839 sysctl_kern_proc, "Process table"); 1840 1841 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1842 sysctl_kern_proc, "Process table"); 1843 1844 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1845 sysctl_kern_proc, "Process table"); 1846 1847 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 1848 sysctl_kern_proc, "Return process table, no threads"); 1849 1850 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1851 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 1852 sysctl_kern_proc_args, "Process argument list"); 1853 1854 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 1855 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 1856 1857 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 1858 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 1859 "Process syscall vector name (ABI type)"); 1860 1861 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1862 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1863 1864 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1865 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1866 1867 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1868 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1869 1870 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1871 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1872 1873 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1874 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1875 1876 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1877 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1878 1879 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1880 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1881 1882 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1883 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1884 1885 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1886 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 1887 "Return process table, no threads"); 1888 1889 #ifdef COMPAT_FREEBSD7 1890 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 1891 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 1892 #endif 1893 1894 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 1895 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 1896 1897 #if defined(STACK) || defined(DDB) 1898 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 1899 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 1900 #endif 1901