xref: /freebsd/sys/kern/kern_proc.c (revision 5773cccf19ef7b97e56c1101aa481c43149224da)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_ktrace.h"
38 #include "opt_kstack_pages.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/kse.h>
48 #include <sys/sched.h>
49 #include <sys/smp.h>
50 #include <sys/sysctl.h>
51 #include <sys/filedesc.h>
52 #include <sys/tty.h>
53 #include <sys/signalvar.h>
54 #include <sys/sx.h>
55 #include <sys/user.h>
56 #include <sys/jail.h>
57 #ifdef KTRACE
58 #include <sys/uio.h>
59 #include <sys/ktrace.h>
60 #endif
61 
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 #include <vm/uma.h>
67 #include <machine/critical.h>
68 
69 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
70 MALLOC_DEFINE(M_SESSION, "session", "session header");
71 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
72 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
73 
74 static struct proc *dopfind(register pid_t);
75 
76 static void doenterpgrp(struct proc *, struct pgrp *);
77 
78 static void pgdelete(struct pgrp *);
79 
80 static void orphanpg(struct pgrp *pg);
81 
82 static void proc_ctor(void *mem, int size, void *arg);
83 static void proc_dtor(void *mem, int size, void *arg);
84 static void proc_init(void *mem, int size);
85 static void proc_fini(void *mem, int size);
86 
87 /*
88  * Other process lists
89  */
90 struct pidhashhead *pidhashtbl;
91 u_long pidhash;
92 struct pgrphashhead *pgrphashtbl;
93 u_long pgrphash;
94 struct proclist allproc;
95 struct proclist zombproc;
96 struct sx allproc_lock;
97 struct sx proctree_lock;
98 struct mtx pargs_ref_lock;
99 struct mtx ppeers_lock;
100 uma_zone_t proc_zone;
101 uma_zone_t ithread_zone;
102 
103 int kstack_pages = KSTACK_PAGES;
104 int uarea_pages = UAREA_PAGES;
105 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
106 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, "");
107 
108 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
109 
110 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
111 
112 /*
113  * Initialize global process hashing structures.
114  */
115 void
116 procinit()
117 {
118 
119 	sx_init(&allproc_lock, "allproc");
120 	sx_init(&proctree_lock, "proctree");
121 	mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF);
122 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
123 	LIST_INIT(&allproc);
124 	LIST_INIT(&zombproc);
125 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
126 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
127 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
128 	    proc_ctor, proc_dtor, proc_init, proc_fini,
129 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
130 	uihashinit();
131 }
132 
133 /*
134  * Prepare a proc for use.
135  */
136 static void
137 proc_ctor(void *mem, int size, void *arg)
138 {
139 	struct proc *p;
140 
141 	p = (struct proc *)mem;
142 }
143 
144 /*
145  * Reclaim a proc after use.
146  */
147 static void
148 proc_dtor(void *mem, int size, void *arg)
149 {
150 	struct proc *p;
151 	struct thread *td;
152 	struct ksegrp *kg;
153 	struct kse *ke;
154 
155 	/* INVARIANTS checks go here */
156 	p = (struct proc *)mem;
157 	KASSERT((p->p_numthreads == 1),
158 	    ("bad number of threads in exiting process"));
159         td = FIRST_THREAD_IN_PROC(p);
160 	KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
161         kg = FIRST_KSEGRP_IN_PROC(p);
162 	KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
163         ke = FIRST_KSE_IN_KSEGRP(kg);
164 	KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
165 
166 	/* Dispose of an alternate kstack, if it exists.
167 	 * XXX What if there are more than one thread in the proc?
168 	 *     The first thread in the proc is special and not
169 	 *     freed, so you gotta do this here.
170 	 */
171 	if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
172 		pmap_dispose_altkstack(td);
173 
174 	/*
175 	 * We want to make sure we know the initial linkages.
176 	 * so for now tear them down and remake them.
177 	 * This is probably un-needed as we can probably rely
178 	 * on the state coming in here from wait4().
179 	 */
180 	proc_linkup(p, kg, ke, td);
181 }
182 
183 /*
184  * Initialize type-stable parts of a proc (when newly created).
185  */
186 static void
187 proc_init(void *mem, int size)
188 {
189 	struct proc *p;
190 	struct thread *td;
191 	struct ksegrp *kg;
192 	struct kse *ke;
193 
194 	p = (struct proc *)mem;
195 	p->p_sched = (struct p_sched *)&p[1];
196 	vm_proc_new(p);
197 	td = thread_alloc();
198 	ke = kse_alloc();
199 	kg = ksegrp_alloc();
200 	proc_linkup(p, kg, ke, td);
201 }
202 
203 /*
204  * Tear down type-stable parts of a proc (just before being discarded)
205  */
206 static void
207 proc_fini(void *mem, int size)
208 {
209 	struct proc *p;
210 	struct thread *td;
211 	struct ksegrp *kg;
212 	struct kse *ke;
213 
214 	p = (struct proc *)mem;
215 	KASSERT((p->p_numthreads == 1),
216 	    ("bad number of threads in freeing process"));
217         td = FIRST_THREAD_IN_PROC(p);
218 	KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
219         kg = FIRST_KSEGRP_IN_PROC(p);
220 	KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
221         ke = FIRST_KSE_IN_KSEGRP(kg);
222 	KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
223 	vm_proc_dispose(p);
224 	thread_free(td);
225 	ksegrp_free(kg);
226 	kse_free(ke);
227 }
228 
229 /*
230  * Is p an inferior of the current process?
231  */
232 int
233 inferior(p)
234 	register struct proc *p;
235 {
236 
237 	sx_assert(&proctree_lock, SX_LOCKED);
238 	for (; p != curproc; p = p->p_pptr)
239 		if (p->p_pid == 0)
240 			return (0);
241 	return (1);
242 }
243 
244 /*
245  * Locate a process by number
246  */
247 struct proc *
248 pfind(pid)
249 	register pid_t pid;
250 {
251 	register struct proc *p;
252 
253 	sx_slock(&allproc_lock);
254 	p = dopfind(pid);
255 	sx_sunlock(&allproc_lock);
256 	return (p);
257 }
258 
259 static struct proc *
260 dopfind(pid)
261 	register pid_t pid;
262 {
263 	register struct proc *p;
264 
265 	sx_assert(&allproc_lock, SX_LOCKED);
266 
267 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
268 		if (p->p_pid == pid) {
269 			PROC_LOCK(p);
270 			break;
271 		}
272 	return (p);
273 }
274 
275 /*
276  * Locate a process group by number.
277  * The caller must hold proctree_lock.
278  */
279 struct pgrp *
280 pgfind(pgid)
281 	register pid_t pgid;
282 {
283 	register struct pgrp *pgrp;
284 
285 	sx_assert(&proctree_lock, SX_LOCKED);
286 
287 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
288 		if (pgrp->pg_id == pgid) {
289 			PGRP_LOCK(pgrp);
290 			return (pgrp);
291 		}
292 	}
293 	return (NULL);
294 }
295 
296 /*
297  * Create a new process group.
298  * pgid must be equal to the pid of p.
299  * Begin a new session if required.
300  */
301 int
302 enterpgrp(p, pgid, pgrp, sess)
303 	register struct proc *p;
304 	pid_t pgid;
305 	struct pgrp *pgrp;
306 	struct session *sess;
307 {
308 	struct pgrp *pgrp2;
309 
310 	sx_assert(&proctree_lock, SX_XLOCKED);
311 
312 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
313 	KASSERT(p->p_pid == pgid,
314 	    ("enterpgrp: new pgrp and pid != pgid"));
315 
316 	pgrp2 = pgfind(pgid);
317 
318 	KASSERT(pgrp2 == NULL,
319 	    ("enterpgrp: pgrp with pgid exists"));
320 	KASSERT(!SESS_LEADER(p),
321 	    ("enterpgrp: session leader attempted setpgrp"));
322 
323 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
324 
325 	if (sess != NULL) {
326 		/*
327 		 * new session
328 		 */
329 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
330 		PROC_LOCK(p);
331 		p->p_flag &= ~P_CONTROLT;
332 		PROC_UNLOCK(p);
333 		PGRP_LOCK(pgrp);
334 		sess->s_leader = p;
335 		sess->s_sid = p->p_pid;
336 		sess->s_count = 1;
337 		sess->s_ttyvp = NULL;
338 		sess->s_ttyp = NULL;
339 		bcopy(p->p_session->s_login, sess->s_login,
340 			    sizeof(sess->s_login));
341 		pgrp->pg_session = sess;
342 		KASSERT(p == curproc,
343 		    ("enterpgrp: mksession and p != curproc"));
344 	} else {
345 		pgrp->pg_session = p->p_session;
346 		SESS_LOCK(pgrp->pg_session);
347 		pgrp->pg_session->s_count++;
348 		SESS_UNLOCK(pgrp->pg_session);
349 		PGRP_LOCK(pgrp);
350 	}
351 	pgrp->pg_id = pgid;
352 	LIST_INIT(&pgrp->pg_members);
353 
354 	/*
355 	 * As we have an exclusive lock of proctree_lock,
356 	 * this should not deadlock.
357 	 */
358 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
359 	pgrp->pg_jobc = 0;
360 	SLIST_INIT(&pgrp->pg_sigiolst);
361 	PGRP_UNLOCK(pgrp);
362 
363 	doenterpgrp(p, pgrp);
364 
365 	return (0);
366 }
367 
368 /*
369  * Move p to an existing process group
370  */
371 int
372 enterthispgrp(p, pgrp)
373 	register struct proc *p;
374 	struct pgrp *pgrp;
375 {
376 
377 	sx_assert(&proctree_lock, SX_XLOCKED);
378 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
379 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
380 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
381 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
382 	KASSERT(pgrp->pg_session == p->p_session,
383 		("%s: pgrp's session %p, p->p_session %p.\n",
384 		__func__,
385 		pgrp->pg_session,
386 		p->p_session));
387 	KASSERT(pgrp != p->p_pgrp,
388 		("%s: p belongs to pgrp.", __func__));
389 
390 	doenterpgrp(p, pgrp);
391 
392 	return (0);
393 }
394 
395 /*
396  * Move p to a process group
397  */
398 static void
399 doenterpgrp(p, pgrp)
400 	struct proc *p;
401 	struct pgrp *pgrp;
402 {
403 	struct pgrp *savepgrp;
404 
405 	sx_assert(&proctree_lock, SX_XLOCKED);
406 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
407 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
408 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
409 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
410 
411 	savepgrp = p->p_pgrp;
412 
413 	/*
414 	 * Adjust eligibility of affected pgrps to participate in job control.
415 	 * Increment eligibility counts before decrementing, otherwise we
416 	 * could reach 0 spuriously during the first call.
417 	 */
418 	fixjobc(p, pgrp, 1);
419 	fixjobc(p, p->p_pgrp, 0);
420 
421 	PGRP_LOCK(pgrp);
422 	PGRP_LOCK(savepgrp);
423 	PROC_LOCK(p);
424 	LIST_REMOVE(p, p_pglist);
425 	p->p_pgrp = pgrp;
426 	PROC_UNLOCK(p);
427 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
428 	PGRP_UNLOCK(savepgrp);
429 	PGRP_UNLOCK(pgrp);
430 	if (LIST_EMPTY(&savepgrp->pg_members))
431 		pgdelete(savepgrp);
432 }
433 
434 /*
435  * remove process from process group
436  */
437 int
438 leavepgrp(p)
439 	register struct proc *p;
440 {
441 	struct pgrp *savepgrp;
442 
443 	sx_assert(&proctree_lock, SX_XLOCKED);
444 	savepgrp = p->p_pgrp;
445 	PGRP_LOCK(savepgrp);
446 	PROC_LOCK(p);
447 	LIST_REMOVE(p, p_pglist);
448 	p->p_pgrp = NULL;
449 	PROC_UNLOCK(p);
450 	PGRP_UNLOCK(savepgrp);
451 	if (LIST_EMPTY(&savepgrp->pg_members))
452 		pgdelete(savepgrp);
453 	return (0);
454 }
455 
456 /*
457  * delete a process group
458  */
459 static void
460 pgdelete(pgrp)
461 	register struct pgrp *pgrp;
462 {
463 	struct session *savesess;
464 
465 	sx_assert(&proctree_lock, SX_XLOCKED);
466 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
467 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
468 
469 	/*
470 	 * Reset any sigio structures pointing to us as a result of
471 	 * F_SETOWN with our pgid.
472 	 */
473 	funsetownlst(&pgrp->pg_sigiolst);
474 
475 	PGRP_LOCK(pgrp);
476 	if (pgrp->pg_session->s_ttyp != NULL &&
477 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
478 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
479 	LIST_REMOVE(pgrp, pg_hash);
480 	savesess = pgrp->pg_session;
481 	SESS_LOCK(savesess);
482 	savesess->s_count--;
483 	SESS_UNLOCK(savesess);
484 	PGRP_UNLOCK(pgrp);
485 	if (savesess->s_count == 0) {
486 		mtx_destroy(&savesess->s_mtx);
487 		FREE(pgrp->pg_session, M_SESSION);
488 	}
489 	mtx_destroy(&pgrp->pg_mtx);
490 	FREE(pgrp, M_PGRP);
491 }
492 
493 /*
494  * Adjust pgrp jobc counters when specified process changes process group.
495  * We count the number of processes in each process group that "qualify"
496  * the group for terminal job control (those with a parent in a different
497  * process group of the same session).  If that count reaches zero, the
498  * process group becomes orphaned.  Check both the specified process'
499  * process group and that of its children.
500  * entering == 0 => p is leaving specified group.
501  * entering == 1 => p is entering specified group.
502  */
503 void
504 fixjobc(p, pgrp, entering)
505 	register struct proc *p;
506 	register struct pgrp *pgrp;
507 	int entering;
508 {
509 	register struct pgrp *hispgrp;
510 	register struct session *mysession;
511 
512 	sx_assert(&proctree_lock, SX_LOCKED);
513 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
514 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
515 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
516 
517 	/*
518 	 * Check p's parent to see whether p qualifies its own process
519 	 * group; if so, adjust count for p's process group.
520 	 */
521 	mysession = pgrp->pg_session;
522 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
523 	    hispgrp->pg_session == mysession) {
524 		PGRP_LOCK(pgrp);
525 		if (entering)
526 			pgrp->pg_jobc++;
527 		else {
528 			--pgrp->pg_jobc;
529 			if (pgrp->pg_jobc == 0)
530 				orphanpg(pgrp);
531 		}
532 		PGRP_UNLOCK(pgrp);
533 	}
534 
535 	/*
536 	 * Check this process' children to see whether they qualify
537 	 * their process groups; if so, adjust counts for children's
538 	 * process groups.
539 	 */
540 	LIST_FOREACH(p, &p->p_children, p_sibling) {
541 		if ((hispgrp = p->p_pgrp) != pgrp &&
542 		    hispgrp->pg_session == mysession &&
543 		    p->p_state != PRS_ZOMBIE) {
544 			PGRP_LOCK(hispgrp);
545 			if (entering)
546 				hispgrp->pg_jobc++;
547 			else {
548 				--hispgrp->pg_jobc;
549 				if (hispgrp->pg_jobc == 0)
550 					orphanpg(hispgrp);
551 			}
552 			PGRP_UNLOCK(hispgrp);
553 		}
554 	}
555 }
556 
557 /*
558  * A process group has become orphaned;
559  * if there are any stopped processes in the group,
560  * hang-up all process in that group.
561  */
562 static void
563 orphanpg(pg)
564 	struct pgrp *pg;
565 {
566 	register struct proc *p;
567 
568 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
569 
570 	mtx_lock_spin(&sched_lock);
571 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
572 		if (P_SHOULDSTOP(p)) {
573 			mtx_unlock_spin(&sched_lock);
574 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
575 				PROC_LOCK(p);
576 				psignal(p, SIGHUP);
577 				psignal(p, SIGCONT);
578 				PROC_UNLOCK(p);
579 			}
580 			return;
581 		}
582 	}
583 	mtx_unlock_spin(&sched_lock);
584 }
585 
586 #include "opt_ddb.h"
587 #ifdef DDB
588 #include <ddb/ddb.h>
589 
590 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
591 {
592 	register struct pgrp *pgrp;
593 	register struct proc *p;
594 	register int i;
595 
596 	for (i = 0; i <= pgrphash; i++) {
597 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
598 			printf("\tindx %d\n", i);
599 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
600 				printf(
601 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
602 				    (void *)pgrp, (long)pgrp->pg_id,
603 				    (void *)pgrp->pg_session,
604 				    pgrp->pg_session->s_count,
605 				    (void *)LIST_FIRST(&pgrp->pg_members));
606 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
607 					printf("\t\tpid %ld addr %p pgrp %p\n",
608 					    (long)p->p_pid, (void *)p,
609 					    (void *)p->p_pgrp);
610 				}
611 			}
612 		}
613 	}
614 }
615 #endif /* DDB */
616 
617 /*
618  * Fill in an kinfo_proc structure for the specified process.
619  * Must be called with the target process locked.
620  */
621 void
622 fill_kinfo_proc(p, kp)
623 	struct proc *p;
624 	struct kinfo_proc *kp;
625 {
626 	struct thread *td;
627 	struct kse *ke;
628 	struct ksegrp *kg;
629 	struct tty *tp;
630 	struct session *sp;
631 	struct timeval tv;
632 
633 	bzero(kp, sizeof(*kp));
634 
635 	kp->ki_structsize = sizeof(*kp);
636 	kp->ki_paddr = p;
637 	PROC_LOCK_ASSERT(p, MA_OWNED);
638 	kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */
639 	kp->ki_args = p->p_args;
640 	kp->ki_textvp = p->p_textvp;
641 #ifdef KTRACE
642 	kp->ki_tracep = p->p_tracep;
643 	mtx_lock(&ktrace_mtx);
644 	kp->ki_traceflag = p->p_traceflag;
645 	mtx_unlock(&ktrace_mtx);
646 #endif
647 	kp->ki_fd = p->p_fd;
648 	kp->ki_vmspace = p->p_vmspace;
649 	if (p->p_ucred) {
650 		kp->ki_uid = p->p_ucred->cr_uid;
651 		kp->ki_ruid = p->p_ucred->cr_ruid;
652 		kp->ki_svuid = p->p_ucred->cr_svuid;
653 		/* XXX bde doesn't like KI_NGROUPS */
654 		kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS);
655 		bcopy(p->p_ucred->cr_groups, kp->ki_groups,
656 		    kp->ki_ngroups * sizeof(gid_t));
657 		kp->ki_rgid = p->p_ucred->cr_rgid;
658 		kp->ki_svgid = p->p_ucred->cr_svgid;
659 	}
660 	if (p->p_procsig) {
661 		kp->ki_sigignore = p->p_procsig->ps_sigignore;
662 		kp->ki_sigcatch = p->p_procsig->ps_sigcatch;
663 	}
664 	mtx_lock_spin(&sched_lock);
665 	if (p->p_state != PRS_NEW &&
666 	    p->p_state != PRS_ZOMBIE &&
667 	    p->p_vmspace != NULL) {
668 		struct vmspace *vm = p->p_vmspace;
669 
670 		kp->ki_size = vm->vm_map.size;
671 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
672 		if (p->p_sflag & PS_INMEM)
673 			kp->ki_rssize += UAREA_PAGES;
674 		FOREACH_THREAD_IN_PROC(p, td) /* XXXKSE: thread swapout check */
675 			kp->ki_rssize += KSTACK_PAGES;
676 		kp->ki_swrss = vm->vm_swrss;
677 		kp->ki_tsize = vm->vm_tsize;
678 		kp->ki_dsize = vm->vm_dsize;
679 		kp->ki_ssize = vm->vm_ssize;
680 	}
681 	if ((p->p_sflag & PS_INMEM) && p->p_stats) {
682 		kp->ki_start = p->p_stats->p_start;
683 		kp->ki_rusage = p->p_stats->p_ru;
684 		kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec +
685 		    p->p_stats->p_cru.ru_stime.tv_sec;
686 		kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec +
687 		    p->p_stats->p_cru.ru_stime.tv_usec;
688 	}
689 	if (p->p_state != PRS_ZOMBIE) {
690 		td = FIRST_THREAD_IN_PROC(p);
691 		if (td == NULL) {
692 			/* XXXKSE: This should never happen. */
693 			printf("fill_kinfo_proc(): pid %d has no threads!\n",
694 			    p->p_pid);
695 			mtx_unlock_spin(&sched_lock);
696 			return;
697 		}
698 		if (!(p->p_flag & P_KSES)) {
699 			if (td->td_wmesg != NULL) {
700 				strlcpy(kp->ki_wmesg, td->td_wmesg,
701 				    sizeof(kp->ki_wmesg));
702 			}
703 			if (TD_ON_LOCK(td)) {
704 				kp->ki_kiflag |= KI_LOCKBLOCK;
705 				strlcpy(kp->ki_lockname, td->td_lockname,
706 				    sizeof(kp->ki_lockname));
707 			}
708 		}
709 
710 		if (p->p_state == PRS_NORMAL) { /*  XXXKSE very approximate */
711 			if (TD_ON_RUNQ(td) ||
712 			    TD_CAN_RUN(td) ||
713 			    TD_IS_RUNNING(td)) {
714 				kp->ki_stat = SRUN;
715 			} else if (P_SHOULDSTOP(p)) {
716 				kp->ki_stat = SSTOP;
717 			} else if (TD_IS_SLEEPING(td)) {
718 				kp->ki_stat = SSLEEP;
719 			} else if (TD_ON_LOCK(td)) {
720 				kp->ki_stat = SLOCK;
721 			} else {
722 				kp->ki_stat = SWAIT;
723 			}
724 		} else {
725 			kp->ki_stat = SIDL;
726 		}
727 
728 		kp->ki_sflag = p->p_sflag;
729 		kp->ki_swtime = p->p_swtime;
730 		kp->ki_pid = p->p_pid;
731 		/* vvv XXXKSE */
732 		if (!(p->p_flag & P_KSES)) {
733 			kg = td->td_ksegrp;
734 			ke = td->td_kse;
735 			KASSERT((ke != NULL), ("fill_kinfo_proc: Null KSE"));
736 			bintime2timeval(&p->p_runtime, &tv);
737 			kp->ki_runtime =
738 			    tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec;
739 
740 			/* things in the KSE GROUP */
741 			kp->ki_estcpu = kg->kg_estcpu;
742 			kp->ki_slptime = kg->kg_slptime;
743 			kp->ki_pri.pri_user = kg->kg_user_pri;
744 			kp->ki_pri.pri_class = kg->kg_pri_class;
745 			kp->ki_nice = kg->kg_nice;
746 
747 			/* Things in the thread */
748 			kp->ki_wchan = td->td_wchan;
749 			kp->ki_pri.pri_level = td->td_priority;
750 			kp->ki_pri.pri_native = td->td_base_pri;
751 			kp->ki_lastcpu = td->td_lastcpu;
752 			kp->ki_tdflags = td->td_flags;
753 			kp->ki_pcb = td->td_pcb;
754 			kp->ki_kstack = (void *)td->td_kstack;
755 
756 			/* Things in the kse */
757 			kp->ki_rqindex = ke->ke_rqindex;
758 			kp->ki_oncpu = ke->ke_oncpu;
759 			kp->ki_pctcpu = sched_pctcpu(ke);
760 		} else {
761 			kp->ki_oncpu = -1;
762 			kp->ki_lastcpu = -1;
763 			kp->ki_tdflags = -1;
764 			/* All the rest are 0 for now */
765 		}
766 		/* ^^^ XXXKSE */
767 	} else {
768 		kp->ki_stat = SZOMB;
769 	}
770 	mtx_unlock_spin(&sched_lock);
771 	sp = NULL;
772 	tp = NULL;
773 	if (p->p_pgrp) {
774 		kp->ki_pgid = p->p_pgrp->pg_id;
775 		kp->ki_jobc = p->p_pgrp->pg_jobc;
776 		sp = p->p_pgrp->pg_session;
777 
778 		if (sp != NULL) {
779 			kp->ki_sid = sp->s_sid;
780 			SESS_LOCK(sp);
781 			strlcpy(kp->ki_login, sp->s_login,
782 			    sizeof(kp->ki_login));
783 			if (sp->s_ttyvp)
784 				kp->ki_kiflag |= KI_CTTY;
785 			if (SESS_LEADER(p))
786 				kp->ki_kiflag |= KI_SLEADER;
787 			tp = sp->s_ttyp;
788 			SESS_UNLOCK(sp);
789 		}
790 	}
791 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
792 		kp->ki_tdev = dev2udev(tp->t_dev);
793 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
794 		if (tp->t_session)
795 			kp->ki_tsid = tp->t_session->s_sid;
796 	} else
797 		kp->ki_tdev = NOUDEV;
798 	if (p->p_comm[0] != '\0') {
799 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
800 		strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm));
801 	}
802 	kp->ki_siglist = p->p_siglist;
803 	kp->ki_sigmask = p->p_sigmask;
804 	kp->ki_xstat = p->p_xstat;
805 	kp->ki_acflag = p->p_acflag;
806 	kp->ki_flag = p->p_flag;
807 	/* If jailed(p->p_ucred), emulate the old P_JAILED flag. */
808 	if (jailed(p->p_ucred))
809 		kp->ki_flag |= P_JAILED;
810 	kp->ki_lock = p->p_lock;
811 	if (p->p_pptr)
812 		kp->ki_ppid = p->p_pptr->p_pid;
813 }
814 
815 /*
816  * Locate a zombie process by number
817  */
818 struct proc *
819 zpfind(pid_t pid)
820 {
821 	struct proc *p;
822 
823 	sx_slock(&allproc_lock);
824 	LIST_FOREACH(p, &zombproc, p_list)
825 		if (p->p_pid == pid) {
826 			PROC_LOCK(p);
827 			break;
828 		}
829 	sx_sunlock(&allproc_lock);
830 	return (p);
831 }
832 
833 
834 /*
835  * Must be called with the process locked and will return with it unlocked.
836  */
837 static int
838 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb)
839 {
840 	struct kinfo_proc kinfo_proc;
841 	int error;
842 	struct proc *np;
843 	pid_t pid = p->p_pid;
844 
845 	PROC_LOCK_ASSERT(p, MA_OWNED);
846 	fill_kinfo_proc(p, &kinfo_proc);
847 	PROC_UNLOCK(p);
848 	error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc));
849 	if (error)
850 		return (error);
851 	if (doingzomb)
852 		np = zpfind(pid);
853 	else {
854 		if (pid == 0)
855 			return (0);
856 		np = pfind(pid);
857 	}
858 	if (np == NULL)
859 		return EAGAIN;
860 	if (np != p) {
861 		PROC_UNLOCK(np);
862 		return EAGAIN;
863 	}
864 	PROC_UNLOCK(np);
865 	return (0);
866 }
867 
868 static int
869 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
870 {
871 	int *name = (int*) arg1;
872 	u_int namelen = arg2;
873 	struct proc *p;
874 	int doingzomb;
875 	int error = 0;
876 
877 	if (oidp->oid_number == KERN_PROC_PID) {
878 		if (namelen != 1)
879 			return (EINVAL);
880 		p = pfind((pid_t)name[0]);
881 		if (!p)
882 			return (0);
883 		if (p_cansee(curthread, p)) {
884 			PROC_UNLOCK(p);
885 			return (0);
886 		}
887 		error = sysctl_out_proc(p, req, 0);
888 		return (error);
889 	}
890 	if (oidp->oid_number == KERN_PROC_ALL && !namelen)
891 		;
892 	else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1)
893 		;
894 	else
895 		return (EINVAL);
896 
897 	if (!req->oldptr) {
898 		/* overestimate by 5 procs */
899 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
900 		if (error)
901 			return (error);
902 	}
903 	sysctl_wire_old_buffer(req, 0);
904 	sx_slock(&allproc_lock);
905 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
906 		if (!doingzomb)
907 			p = LIST_FIRST(&allproc);
908 		else
909 			p = LIST_FIRST(&zombproc);
910 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
911 			PROC_LOCK(p);
912 			/*
913 			 * Show a user only appropriate processes.
914 			 */
915 			if (p_cansee(curthread, p)) {
916 				PROC_UNLOCK(p);
917 				continue;
918 			}
919 			/*
920 			 * Skip embryonic processes.
921 			 */
922 			if (p->p_state == PRS_NEW) {
923 				PROC_UNLOCK(p);
924 				continue;
925 			}
926 			/*
927 			 * TODO - make more efficient (see notes below).
928 			 * do by session.
929 			 */
930 			switch (oidp->oid_number) {
931 
932 			case KERN_PROC_PGRP:
933 				/* could do this by traversing pgrp */
934 				if (p->p_pgrp == NULL ||
935 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
936 					PROC_UNLOCK(p);
937 					continue;
938 				}
939 				break;
940 
941 			case KERN_PROC_TTY:
942 				if ((p->p_flag & P_CONTROLT) == 0 ||
943 				    p->p_session == NULL) {
944 					PROC_UNLOCK(p);
945 					continue;
946 				}
947 				SESS_LOCK(p->p_session);
948 				if (p->p_session->s_ttyp == NULL ||
949 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
950 				    (udev_t)name[0]) {
951 					SESS_UNLOCK(p->p_session);
952 					PROC_UNLOCK(p);
953 					continue;
954 				}
955 				SESS_UNLOCK(p->p_session);
956 				break;
957 
958 			case KERN_PROC_UID:
959 				if (p->p_ucred == NULL ||
960 				    p->p_ucred->cr_uid != (uid_t)name[0]) {
961 					PROC_UNLOCK(p);
962 					continue;
963 				}
964 				break;
965 
966 			case KERN_PROC_RUID:
967 				if (p->p_ucred == NULL ||
968 				    p->p_ucred->cr_ruid != (uid_t)name[0]) {
969 					PROC_UNLOCK(p);
970 					continue;
971 				}
972 				break;
973 			}
974 
975 			error = sysctl_out_proc(p, req, doingzomb);
976 			if (error) {
977 				sx_sunlock(&allproc_lock);
978 				return (error);
979 			}
980 		}
981 	}
982 	sx_sunlock(&allproc_lock);
983 	return (0);
984 }
985 
986 struct pargs *
987 pargs_alloc(int len)
988 {
989 	struct pargs *pa;
990 
991 	MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS,
992 		M_WAITOK);
993 	pa->ar_ref = 1;
994 	pa->ar_length = len;
995 	return (pa);
996 }
997 
998 void
999 pargs_free(struct pargs *pa)
1000 {
1001 
1002 	FREE(pa, M_PARGS);
1003 }
1004 
1005 void
1006 pargs_hold(struct pargs *pa)
1007 {
1008 
1009 	if (pa == NULL)
1010 		return;
1011 	PARGS_LOCK(pa);
1012 	pa->ar_ref++;
1013 	PARGS_UNLOCK(pa);
1014 }
1015 
1016 void
1017 pargs_drop(struct pargs *pa)
1018 {
1019 
1020 	if (pa == NULL)
1021 		return;
1022 	PARGS_LOCK(pa);
1023 	if (--pa->ar_ref == 0) {
1024 		PARGS_UNLOCK(pa);
1025 		pargs_free(pa);
1026 	} else
1027 		PARGS_UNLOCK(pa);
1028 }
1029 
1030 /*
1031  * This sysctl allows a process to retrieve the argument list or process
1032  * title for another process without groping around in the address space
1033  * of the other process.  It also allow a process to set its own "process
1034  * title to a string of its own choice.
1035  */
1036 static int
1037 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1038 {
1039 	int *name = (int*) arg1;
1040 	u_int namelen = arg2;
1041 	struct proc *p;
1042 	struct pargs *pa;
1043 	int error = 0;
1044 
1045 	if (namelen != 1)
1046 		return (EINVAL);
1047 
1048 	p = pfind((pid_t)name[0]);
1049 	if (!p)
1050 		return (0);
1051 
1052 	if ((!ps_argsopen) && p_cansee(curthread, p)) {
1053 		PROC_UNLOCK(p);
1054 		return (0);
1055 	}
1056 	PROC_UNLOCK(p);
1057 
1058 	if (req->newptr && curproc != p)
1059 		return (EPERM);
1060 
1061 	PROC_LOCK(p);
1062 	pa = p->p_args;
1063 	pargs_hold(pa);
1064 	PROC_UNLOCK(p);
1065 	if (req->oldptr && pa != NULL) {
1066 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1067 	}
1068 	pargs_drop(pa);
1069 	if (req->newptr == NULL)
1070 		return (error);
1071 
1072 	PROC_LOCK(p);
1073 	pa = p->p_args;
1074 	p->p_args = NULL;
1075 	PROC_UNLOCK(p);
1076 	pargs_drop(pa);
1077 
1078 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1079 		return (error);
1080 
1081 	pa = pargs_alloc(req->newlen);
1082 	error = SYSCTL_IN(req, pa->ar_args, req->newlen);
1083 	if (!error) {
1084 		PROC_LOCK(p);
1085 		p->p_args = pa;
1086 		PROC_UNLOCK(p);
1087 	} else
1088 		pargs_free(pa);
1089 	return (error);
1090 }
1091 
1092 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1093 
1094 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
1095 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1096 
1097 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
1098 	sysctl_kern_proc, "Process table");
1099 
1100 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
1101 	sysctl_kern_proc, "Process table");
1102 
1103 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
1104 	sysctl_kern_proc, "Process table");
1105 
1106 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
1107 	sysctl_kern_proc, "Process table");
1108 
1109 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
1110 	sysctl_kern_proc, "Process table");
1111 
1112 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
1113 	sysctl_kern_proc_args, "Process argument list");
1114 
1115