1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bitstring.h> 45 #include <sys/elf.h> 46 #include <sys/eventhandler.h> 47 #include <sys/exec.h> 48 #include <sys/jail.h> 49 #include <sys/kernel.h> 50 #include <sys/limits.h> 51 #include <sys/lock.h> 52 #include <sys/loginclass.h> 53 #include <sys/malloc.h> 54 #include <sys/mman.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/smp.h> 66 #include <sys/stack.h> 67 #include <sys/stat.h> 68 #include <sys/sysctl.h> 69 #include <sys/filedesc.h> 70 #include <sys/tty.h> 71 #include <sys/signalvar.h> 72 #include <sys/sdt.h> 73 #include <sys/sx.h> 74 #include <sys/user.h> 75 #include <sys/vnode.h> 76 #include <sys/wait.h> 77 78 #ifdef DDB 79 #include <ddb/ddb.h> 80 #endif 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/vm_extern.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #include <fs/devfs/devfs.h> 92 93 #ifdef COMPAT_FREEBSD32 94 #include <compat/freebsd32/freebsd32.h> 95 #include <compat/freebsd32/freebsd32_util.h> 96 #endif 97 98 SDT_PROVIDER_DEFINE(proc); 99 100 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 101 MALLOC_DEFINE(M_SESSION, "session", "session header"); 102 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 103 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 104 105 static void fixjobc_enterpgrp(struct proc *p, struct pgrp *pgrp); 106 static void doenterpgrp(struct proc *, struct pgrp *); 107 static void orphanpg(struct pgrp *pg); 108 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 109 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 110 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 111 int preferthread); 112 static void pgadjustjobc(struct pgrp *pgrp, bool entering); 113 static void pgdelete(struct pgrp *); 114 static int proc_ctor(void *mem, int size, void *arg, int flags); 115 static void proc_dtor(void *mem, int size, void *arg); 116 static int proc_init(void *mem, int size, int flags); 117 static void proc_fini(void *mem, int size); 118 static void pargs_free(struct pargs *pa); 119 120 /* 121 * Other process lists 122 */ 123 struct pidhashhead *pidhashtbl; 124 struct sx *pidhashtbl_lock; 125 u_long pidhash; 126 u_long pidhashlock; 127 struct pgrphashhead *pgrphashtbl; 128 u_long pgrphash; 129 struct proclist allproc; 130 struct sx __exclusive_cache_line allproc_lock; 131 struct sx __exclusive_cache_line proctree_lock; 132 struct mtx __exclusive_cache_line ppeers_lock; 133 struct mtx __exclusive_cache_line procid_lock; 134 uma_zone_t proc_zone; 135 136 /* 137 * The offset of various fields in struct proc and struct thread. 138 * These are used by kernel debuggers to enumerate kernel threads and 139 * processes. 140 */ 141 const int proc_off_p_pid = offsetof(struct proc, p_pid); 142 const int proc_off_p_comm = offsetof(struct proc, p_comm); 143 const int proc_off_p_list = offsetof(struct proc, p_list); 144 const int proc_off_p_threads = offsetof(struct proc, p_threads); 145 const int thread_off_td_tid = offsetof(struct thread, td_tid); 146 const int thread_off_td_name = offsetof(struct thread, td_name); 147 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 148 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 149 const int thread_off_td_plist = offsetof(struct thread, td_plist); 150 151 EVENTHANDLER_LIST_DEFINE(process_ctor); 152 EVENTHANDLER_LIST_DEFINE(process_dtor); 153 EVENTHANDLER_LIST_DEFINE(process_init); 154 EVENTHANDLER_LIST_DEFINE(process_fini); 155 EVENTHANDLER_LIST_DEFINE(process_exit); 156 EVENTHANDLER_LIST_DEFINE(process_fork); 157 EVENTHANDLER_LIST_DEFINE(process_exec); 158 159 int kstack_pages = KSTACK_PAGES; 160 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 161 "Kernel stack size in pages"); 162 static int vmmap_skip_res_cnt = 0; 163 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 164 &vmmap_skip_res_cnt, 0, 165 "Skip calculation of the pages resident count in kern.proc.vmmap"); 166 167 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 168 #ifdef COMPAT_FREEBSD32 169 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 170 #endif 171 172 /* 173 * Initialize global process hashing structures. 174 */ 175 void 176 procinit(void) 177 { 178 u_long i; 179 180 sx_init(&allproc_lock, "allproc"); 181 sx_init(&proctree_lock, "proctree"); 182 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 183 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 184 LIST_INIT(&allproc); 185 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 186 pidhashlock = (pidhash + 1) / 64; 187 if (pidhashlock > 0) 188 pidhashlock--; 189 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 190 M_PROC, M_WAITOK | M_ZERO); 191 for (i = 0; i < pidhashlock + 1; i++) 192 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 193 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 194 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 195 proc_ctor, proc_dtor, proc_init, proc_fini, 196 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 197 uihashinit(); 198 } 199 200 /* 201 * Prepare a proc for use. 202 */ 203 static int 204 proc_ctor(void *mem, int size, void *arg, int flags) 205 { 206 struct proc *p; 207 struct thread *td; 208 209 p = (struct proc *)mem; 210 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 211 td = FIRST_THREAD_IN_PROC(p); 212 if (td != NULL) { 213 /* Make sure all thread constructors are executed */ 214 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 215 } 216 return (0); 217 } 218 219 /* 220 * Reclaim a proc after use. 221 */ 222 static void 223 proc_dtor(void *mem, int size, void *arg) 224 { 225 struct proc *p; 226 struct thread *td; 227 228 /* INVARIANTS checks go here */ 229 p = (struct proc *)mem; 230 td = FIRST_THREAD_IN_PROC(p); 231 if (td != NULL) { 232 #ifdef INVARIANTS 233 KASSERT((p->p_numthreads == 1), 234 ("bad number of threads in exiting process")); 235 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 236 #endif 237 /* Free all OSD associated to this thread. */ 238 osd_thread_exit(td); 239 td_softdep_cleanup(td); 240 MPASS(td->td_su == NULL); 241 242 /* Make sure all thread destructors are executed */ 243 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 244 } 245 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 246 if (p->p_ksi != NULL) 247 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 248 } 249 250 /* 251 * Initialize type-stable parts of a proc (when newly created). 252 */ 253 static int 254 proc_init(void *mem, int size, int flags) 255 { 256 struct proc *p; 257 258 p = (struct proc *)mem; 259 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 260 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 261 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 262 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 263 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 264 cv_init(&p->p_pwait, "ppwait"); 265 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 266 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 267 p->p_stats = pstats_alloc(); 268 p->p_pgrp = NULL; 269 return (0); 270 } 271 272 /* 273 * UMA should ensure that this function is never called. 274 * Freeing a proc structure would violate type stability. 275 */ 276 static void 277 proc_fini(void *mem, int size) 278 { 279 #ifdef notnow 280 struct proc *p; 281 282 p = (struct proc *)mem; 283 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 284 pstats_free(p->p_stats); 285 thread_free(FIRST_THREAD_IN_PROC(p)); 286 mtx_destroy(&p->p_mtx); 287 if (p->p_ksi != NULL) 288 ksiginfo_free(p->p_ksi); 289 #else 290 panic("proc reclaimed"); 291 #endif 292 } 293 294 /* 295 * PID space management. 296 * 297 * These bitmaps are used by fork_findpid. 298 */ 299 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 300 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 301 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 302 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 303 304 static bitstr_t *proc_id_array[] = { 305 proc_id_pidmap, 306 proc_id_grpidmap, 307 proc_id_sessidmap, 308 proc_id_reapmap, 309 }; 310 311 void 312 proc_id_set(int type, pid_t id) 313 { 314 315 KASSERT(type >= 0 && type < nitems(proc_id_array), 316 ("invalid type %d\n", type)); 317 mtx_lock(&procid_lock); 318 KASSERT(bit_test(proc_id_array[type], id) == 0, 319 ("bit %d already set in %d\n", id, type)); 320 bit_set(proc_id_array[type], id); 321 mtx_unlock(&procid_lock); 322 } 323 324 void 325 proc_id_set_cond(int type, pid_t id) 326 { 327 328 KASSERT(type >= 0 && type < nitems(proc_id_array), 329 ("invalid type %d\n", type)); 330 if (bit_test(proc_id_array[type], id)) 331 return; 332 mtx_lock(&procid_lock); 333 bit_set(proc_id_array[type], id); 334 mtx_unlock(&procid_lock); 335 } 336 337 void 338 proc_id_clear(int type, pid_t id) 339 { 340 341 KASSERT(type >= 0 && type < nitems(proc_id_array), 342 ("invalid type %d\n", type)); 343 mtx_lock(&procid_lock); 344 KASSERT(bit_test(proc_id_array[type], id) != 0, 345 ("bit %d not set in %d\n", id, type)); 346 bit_clear(proc_id_array[type], id); 347 mtx_unlock(&procid_lock); 348 } 349 350 /* 351 * Is p an inferior of the current process? 352 */ 353 int 354 inferior(struct proc *p) 355 { 356 357 sx_assert(&proctree_lock, SX_LOCKED); 358 PROC_LOCK_ASSERT(p, MA_OWNED); 359 for (; p != curproc; p = proc_realparent(p)) { 360 if (p->p_pid == 0) 361 return (0); 362 } 363 return (1); 364 } 365 366 /* 367 * Shared lock all the pid hash lists. 368 */ 369 void 370 pidhash_slockall(void) 371 { 372 u_long i; 373 374 for (i = 0; i < pidhashlock + 1; i++) 375 sx_slock(&pidhashtbl_lock[i]); 376 } 377 378 /* 379 * Shared unlock all the pid hash lists. 380 */ 381 void 382 pidhash_sunlockall(void) 383 { 384 u_long i; 385 386 for (i = 0; i < pidhashlock + 1; i++) 387 sx_sunlock(&pidhashtbl_lock[i]); 388 } 389 390 /* 391 * Similar to pfind_any(), this function finds zombies. 392 */ 393 struct proc * 394 pfind_any_locked(pid_t pid) 395 { 396 struct proc *p; 397 398 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 399 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 400 if (p->p_pid == pid) { 401 PROC_LOCK(p); 402 if (p->p_state == PRS_NEW) { 403 PROC_UNLOCK(p); 404 p = NULL; 405 } 406 break; 407 } 408 } 409 return (p); 410 } 411 412 /* 413 * Locate a process by number. 414 * 415 * By not returning processes in the PRS_NEW state, we allow callers to avoid 416 * testing for that condition to avoid dereferencing p_ucred, et al. 417 */ 418 static __always_inline struct proc * 419 _pfind(pid_t pid, bool zombie) 420 { 421 struct proc *p; 422 423 p = curproc; 424 if (p->p_pid == pid) { 425 PROC_LOCK(p); 426 return (p); 427 } 428 sx_slock(PIDHASHLOCK(pid)); 429 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 430 if (p->p_pid == pid) { 431 PROC_LOCK(p); 432 if (p->p_state == PRS_NEW || 433 (!zombie && p->p_state == PRS_ZOMBIE)) { 434 PROC_UNLOCK(p); 435 p = NULL; 436 } 437 break; 438 } 439 } 440 sx_sunlock(PIDHASHLOCK(pid)); 441 return (p); 442 } 443 444 struct proc * 445 pfind(pid_t pid) 446 { 447 448 return (_pfind(pid, false)); 449 } 450 451 /* 452 * Same as pfind but allow zombies. 453 */ 454 struct proc * 455 pfind_any(pid_t pid) 456 { 457 458 return (_pfind(pid, true)); 459 } 460 461 /* 462 * Locate a process group by number. 463 * The caller must hold proctree_lock. 464 */ 465 struct pgrp * 466 pgfind(pid_t pgid) 467 { 468 struct pgrp *pgrp; 469 470 sx_assert(&proctree_lock, SX_LOCKED); 471 472 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 473 if (pgrp->pg_id == pgid) { 474 PGRP_LOCK(pgrp); 475 return (pgrp); 476 } 477 } 478 return (NULL); 479 } 480 481 /* 482 * Locate process and do additional manipulations, depending on flags. 483 */ 484 int 485 pget(pid_t pid, int flags, struct proc **pp) 486 { 487 struct proc *p; 488 struct thread *td1; 489 int error; 490 491 p = curproc; 492 if (p->p_pid == pid) { 493 PROC_LOCK(p); 494 } else { 495 p = NULL; 496 if (pid <= PID_MAX) { 497 if ((flags & PGET_NOTWEXIT) == 0) 498 p = pfind_any(pid); 499 else 500 p = pfind(pid); 501 } else if ((flags & PGET_NOTID) == 0) { 502 td1 = tdfind(pid, -1); 503 if (td1 != NULL) 504 p = td1->td_proc; 505 } 506 if (p == NULL) 507 return (ESRCH); 508 if ((flags & PGET_CANSEE) != 0) { 509 error = p_cansee(curthread, p); 510 if (error != 0) 511 goto errout; 512 } 513 } 514 if ((flags & PGET_CANDEBUG) != 0) { 515 error = p_candebug(curthread, p); 516 if (error != 0) 517 goto errout; 518 } 519 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 520 error = EPERM; 521 goto errout; 522 } 523 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 524 error = ESRCH; 525 goto errout; 526 } 527 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 528 /* 529 * XXXRW: Not clear ESRCH is the right error during proc 530 * execve(). 531 */ 532 error = ESRCH; 533 goto errout; 534 } 535 if ((flags & PGET_HOLD) != 0) { 536 _PHOLD(p); 537 PROC_UNLOCK(p); 538 } 539 *pp = p; 540 return (0); 541 errout: 542 PROC_UNLOCK(p); 543 return (error); 544 } 545 546 /* 547 * Create a new process group. 548 * pgid must be equal to the pid of p. 549 * Begin a new session if required. 550 */ 551 int 552 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 553 { 554 555 sx_assert(&proctree_lock, SX_XLOCKED); 556 557 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 558 KASSERT(p->p_pid == pgid, 559 ("enterpgrp: new pgrp and pid != pgid")); 560 KASSERT(pgfind(pgid) == NULL, 561 ("enterpgrp: pgrp with pgid exists")); 562 KASSERT(!SESS_LEADER(p), 563 ("enterpgrp: session leader attempted setpgrp")); 564 565 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 566 567 if (sess != NULL) { 568 /* 569 * new session 570 */ 571 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 572 PROC_LOCK(p); 573 p->p_flag &= ~P_CONTROLT; 574 PROC_UNLOCK(p); 575 PGRP_LOCK(pgrp); 576 sess->s_leader = p; 577 sess->s_sid = p->p_pid; 578 proc_id_set(PROC_ID_SESSION, p->p_pid); 579 refcount_init(&sess->s_count, 1); 580 sess->s_ttyvp = NULL; 581 sess->s_ttydp = NULL; 582 sess->s_ttyp = NULL; 583 bcopy(p->p_session->s_login, sess->s_login, 584 sizeof(sess->s_login)); 585 pgrp->pg_session = sess; 586 KASSERT(p == curproc, 587 ("enterpgrp: mksession and p != curproc")); 588 } else { 589 pgrp->pg_session = p->p_session; 590 sess_hold(pgrp->pg_session); 591 PGRP_LOCK(pgrp); 592 } 593 pgrp->pg_id = pgid; 594 proc_id_set(PROC_ID_GROUP, p->p_pid); 595 LIST_INIT(&pgrp->pg_members); 596 597 /* 598 * As we have an exclusive lock of proctree_lock, 599 * this should not deadlock. 600 */ 601 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 602 pgrp->pg_jobc = 0; 603 SLIST_INIT(&pgrp->pg_sigiolst); 604 PGRP_UNLOCK(pgrp); 605 606 doenterpgrp(p, pgrp); 607 608 return (0); 609 } 610 611 /* 612 * Move p to an existing process group 613 */ 614 int 615 enterthispgrp(struct proc *p, struct pgrp *pgrp) 616 { 617 618 sx_assert(&proctree_lock, SX_XLOCKED); 619 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 620 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 621 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 622 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 623 KASSERT(pgrp->pg_session == p->p_session, 624 ("%s: pgrp's session %p, p->p_session %p.\n", 625 __func__, 626 pgrp->pg_session, 627 p->p_session)); 628 KASSERT(pgrp != p->p_pgrp, 629 ("%s: p belongs to pgrp.", __func__)); 630 631 doenterpgrp(p, pgrp); 632 633 return (0); 634 } 635 636 /* 637 * If true, any child of q which belongs to group pgrp, qualifies the 638 * process group pgrp as not orphaned. 639 */ 640 static bool 641 isjobproc(struct proc *q, struct pgrp *pgrp) 642 { 643 sx_assert(&proctree_lock, SX_LOCKED); 644 return (q->p_pgrp != pgrp && 645 q->p_pgrp->pg_session == pgrp->pg_session); 646 } 647 648 static struct proc * 649 jobc_reaper(struct proc *p) 650 { 651 struct proc *pp; 652 653 sx_assert(&proctree_lock, SX_LOCKED); 654 655 for (pp = p;;) { 656 pp = pp->p_reaper; 657 if (pp->p_reaper == pp || 658 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 659 return (pp); 660 } 661 } 662 663 static struct proc * 664 jobc_parent(struct proc *p) 665 { 666 struct proc *pp; 667 668 sx_assert(&proctree_lock, SX_LOCKED); 669 670 pp = proc_realparent(p); 671 if (pp->p_pptr == NULL || 672 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 673 return (pp); 674 return (jobc_reaper(pp)); 675 } 676 677 #ifdef INVARIANTS 678 static void 679 check_pgrp_jobc(struct pgrp *pgrp) 680 { 681 struct proc *q; 682 int cnt; 683 684 sx_assert(&proctree_lock, SX_LOCKED); 685 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 686 687 cnt = 0; 688 PGRP_LOCK(pgrp); 689 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) { 690 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 || 691 q->p_pptr == NULL) 692 continue; 693 if (isjobproc(jobc_parent(q), pgrp)) 694 cnt++; 695 } 696 KASSERT(pgrp->pg_jobc == cnt, ("pgrp %d %p pg_jobc %d cnt %d", 697 pgrp->pg_id, pgrp, pgrp->pg_jobc, cnt)); 698 PGRP_UNLOCK(pgrp); 699 } 700 #endif 701 702 /* 703 * Move p to a process group 704 */ 705 static void 706 doenterpgrp(struct proc *p, struct pgrp *pgrp) 707 { 708 struct pgrp *savepgrp; 709 710 sx_assert(&proctree_lock, SX_XLOCKED); 711 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 712 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 713 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 714 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 715 716 savepgrp = p->p_pgrp; 717 718 #ifdef INVARIANTS 719 check_pgrp_jobc(pgrp); 720 check_pgrp_jobc(savepgrp); 721 #endif 722 723 /* 724 * Adjust eligibility of affected pgrps to participate in job control. 725 */ 726 fixjobc_enterpgrp(p, pgrp); 727 728 PGRP_LOCK(pgrp); 729 PGRP_LOCK(savepgrp); 730 PROC_LOCK(p); 731 LIST_REMOVE(p, p_pglist); 732 p->p_pgrp = pgrp; 733 PROC_UNLOCK(p); 734 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 735 PGRP_UNLOCK(savepgrp); 736 PGRP_UNLOCK(pgrp); 737 if (LIST_EMPTY(&savepgrp->pg_members)) 738 pgdelete(savepgrp); 739 } 740 741 /* 742 * remove process from process group 743 */ 744 int 745 leavepgrp(struct proc *p) 746 { 747 struct pgrp *savepgrp; 748 749 sx_assert(&proctree_lock, SX_XLOCKED); 750 savepgrp = p->p_pgrp; 751 PGRP_LOCK(savepgrp); 752 PROC_LOCK(p); 753 LIST_REMOVE(p, p_pglist); 754 p->p_pgrp = NULL; 755 PROC_UNLOCK(p); 756 PGRP_UNLOCK(savepgrp); 757 if (LIST_EMPTY(&savepgrp->pg_members)) 758 pgdelete(savepgrp); 759 return (0); 760 } 761 762 /* 763 * delete a process group 764 */ 765 static void 766 pgdelete(struct pgrp *pgrp) 767 { 768 struct session *savesess; 769 struct tty *tp; 770 771 sx_assert(&proctree_lock, SX_XLOCKED); 772 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 773 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 774 775 /* 776 * Reset any sigio structures pointing to us as a result of 777 * F_SETOWN with our pgid. The proctree lock ensures that 778 * new sigio structures will not be added after this point. 779 */ 780 funsetownlst(&pgrp->pg_sigiolst); 781 782 PGRP_LOCK(pgrp); 783 tp = pgrp->pg_session->s_ttyp; 784 LIST_REMOVE(pgrp, pg_hash); 785 savesess = pgrp->pg_session; 786 PGRP_UNLOCK(pgrp); 787 788 /* Remove the reference to the pgrp before deallocating it. */ 789 if (tp != NULL) { 790 tty_lock(tp); 791 tty_rel_pgrp(tp, pgrp); 792 } 793 794 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 795 mtx_destroy(&pgrp->pg_mtx); 796 free(pgrp, M_PGRP); 797 sess_release(savesess); 798 } 799 800 static void 801 pgadjustjobc(struct pgrp *pgrp, bool entering) 802 { 803 804 PGRP_LOCK(pgrp); 805 if (entering) { 806 MPASS(pgrp->pg_jobc >= 0); 807 pgrp->pg_jobc++; 808 } else { 809 MPASS(pgrp->pg_jobc > 0); 810 --pgrp->pg_jobc; 811 if (pgrp->pg_jobc == 0) 812 orphanpg(pgrp); 813 } 814 PGRP_UNLOCK(pgrp); 815 } 816 817 static void 818 fixjobc_enterpgrp_q(struct pgrp *pgrp, struct proc *p, struct proc *q, bool adj) 819 { 820 struct pgrp *childpgrp; 821 bool future_jobc; 822 823 sx_assert(&proctree_lock, SX_LOCKED); 824 825 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0) 826 return; 827 childpgrp = q->p_pgrp; 828 future_jobc = childpgrp != pgrp && 829 childpgrp->pg_session == pgrp->pg_session; 830 831 if ((adj && !isjobproc(p, childpgrp) && future_jobc) || 832 (!adj && isjobproc(p, childpgrp) && !future_jobc)) 833 pgadjustjobc(childpgrp, adj); 834 } 835 836 /* 837 * Adjust pgrp jobc counters when specified process changes process group. 838 * We count the number of processes in each process group that "qualify" 839 * the group for terminal job control (those with a parent in a different 840 * process group of the same session). If that count reaches zero, the 841 * process group becomes orphaned. Check both the specified process' 842 * process group and that of its children. 843 * We increment eligibility counts before decrementing, otherwise we 844 * could reach 0 spuriously during the decrement. 845 */ 846 static void 847 fixjobc_enterpgrp(struct proc *p, struct pgrp *pgrp) 848 { 849 struct proc *q; 850 851 sx_assert(&proctree_lock, SX_LOCKED); 852 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 853 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 854 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 855 856 if (p->p_pgrp == pgrp) 857 return; 858 859 if (isjobproc(jobc_parent(p), pgrp)) 860 pgadjustjobc(pgrp, true); 861 LIST_FOREACH(q, &p->p_children, p_sibling) { 862 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 863 continue; 864 fixjobc_enterpgrp_q(pgrp, p, q, true); 865 } 866 LIST_FOREACH(q, &p->p_orphans, p_orphan) 867 fixjobc_enterpgrp_q(pgrp, p, q, true); 868 869 if (isjobproc(jobc_parent(p), p->p_pgrp)) 870 pgadjustjobc(p->p_pgrp, false); 871 LIST_FOREACH(q, &p->p_children, p_sibling) { 872 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 873 continue; 874 fixjobc_enterpgrp_q(pgrp, p, q, false); 875 } 876 LIST_FOREACH(q, &p->p_orphans, p_orphan) 877 fixjobc_enterpgrp_q(pgrp, p, q, false); 878 } 879 880 static void 881 fixjobc_kill_q(struct proc *p, struct proc *q, bool adj) 882 { 883 struct pgrp *childpgrp; 884 885 sx_assert(&proctree_lock, SX_LOCKED); 886 887 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0) 888 return; 889 childpgrp = q->p_pgrp; 890 891 if ((adj && isjobproc(jobc_reaper(q), childpgrp) && 892 !isjobproc(p, childpgrp)) || (!adj && !isjobproc(jobc_reaper(q), 893 childpgrp) && isjobproc(p, childpgrp))) 894 pgadjustjobc(childpgrp, adj); 895 } 896 897 static void 898 fixjobc_kill(struct proc *p) 899 { 900 struct proc *q; 901 struct pgrp *pgrp; 902 903 sx_assert(&proctree_lock, SX_LOCKED); 904 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 905 pgrp = p->p_pgrp; 906 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 907 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 908 #ifdef INVARIANTS 909 check_pgrp_jobc(pgrp); 910 #endif 911 912 /* 913 * p no longer affects process group orphanage for children. 914 * It is marked by the flag because p is only physically 915 * removed from its process group on wait(2). 916 */ 917 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0); 918 p->p_treeflag |= P_TREE_GRPEXITED; 919 920 /* 921 * Check p's parent to see whether p qualifies its own process 922 * group; if so, adjust count for p's process group. 923 */ 924 if (isjobproc(jobc_parent(p), pgrp)) 925 pgadjustjobc(pgrp, false); 926 927 /* 928 * Check this process' children to see whether they qualify 929 * their process groups after reparenting to reaper. If so, 930 * adjust counts for children's process groups. 931 */ 932 LIST_FOREACH(q, &p->p_children, p_sibling) { 933 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 934 continue; 935 fixjobc_kill_q(p, q, true); 936 } 937 LIST_FOREACH(q, &p->p_orphans, p_orphan) 938 fixjobc_kill_q(p, q, true); 939 LIST_FOREACH(q, &p->p_children, p_sibling) { 940 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 941 continue; 942 fixjobc_kill_q(p, q, false); 943 } 944 LIST_FOREACH(q, &p->p_orphans, p_orphan) 945 fixjobc_kill_q(p, q, false); 946 947 #ifdef INVARIANTS 948 check_pgrp_jobc(pgrp); 949 #endif 950 } 951 952 void 953 killjobc(void) 954 { 955 struct session *sp; 956 struct tty *tp; 957 struct proc *p; 958 struct vnode *ttyvp; 959 960 p = curproc; 961 MPASS(p->p_flag & P_WEXIT); 962 sx_assert(&proctree_lock, SX_LOCKED); 963 964 if (SESS_LEADER(p)) { 965 sp = p->p_session; 966 967 /* 968 * s_ttyp is not zero'd; we use this to indicate that 969 * the session once had a controlling terminal. (for 970 * logging and informational purposes) 971 */ 972 SESS_LOCK(sp); 973 ttyvp = sp->s_ttyvp; 974 tp = sp->s_ttyp; 975 sp->s_ttyvp = NULL; 976 sp->s_ttydp = NULL; 977 sp->s_leader = NULL; 978 SESS_UNLOCK(sp); 979 980 /* 981 * Signal foreground pgrp and revoke access to 982 * controlling terminal if it has not been revoked 983 * already. 984 * 985 * Because the TTY may have been revoked in the mean 986 * time and could already have a new session associated 987 * with it, make sure we don't send a SIGHUP to a 988 * foreground process group that does not belong to this 989 * session. 990 */ 991 992 if (tp != NULL) { 993 tty_lock(tp); 994 if (tp->t_session == sp) 995 tty_signal_pgrp(tp, SIGHUP); 996 tty_unlock(tp); 997 } 998 999 if (ttyvp != NULL) { 1000 sx_xunlock(&proctree_lock); 1001 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 1002 VOP_REVOKE(ttyvp, REVOKEALL); 1003 VOP_UNLOCK(ttyvp); 1004 } 1005 devfs_ctty_unref(ttyvp); 1006 sx_xlock(&proctree_lock); 1007 } 1008 } 1009 fixjobc_kill(p); 1010 } 1011 1012 /* 1013 * A process group has become orphaned; 1014 * if there are any stopped processes in the group, 1015 * hang-up all process in that group. 1016 */ 1017 static void 1018 orphanpg(struct pgrp *pg) 1019 { 1020 struct proc *p; 1021 1022 PGRP_LOCK_ASSERT(pg, MA_OWNED); 1023 1024 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1025 PROC_LOCK(p); 1026 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 1027 PROC_UNLOCK(p); 1028 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1029 PROC_LOCK(p); 1030 kern_psignal(p, SIGHUP); 1031 kern_psignal(p, SIGCONT); 1032 PROC_UNLOCK(p); 1033 } 1034 return; 1035 } 1036 PROC_UNLOCK(p); 1037 } 1038 } 1039 1040 void 1041 sess_hold(struct session *s) 1042 { 1043 1044 refcount_acquire(&s->s_count); 1045 } 1046 1047 void 1048 sess_release(struct session *s) 1049 { 1050 1051 if (refcount_release(&s->s_count)) { 1052 if (s->s_ttyp != NULL) { 1053 tty_lock(s->s_ttyp); 1054 tty_rel_sess(s->s_ttyp, s); 1055 } 1056 proc_id_clear(PROC_ID_SESSION, s->s_sid); 1057 mtx_destroy(&s->s_mtx); 1058 free(s, M_SESSION); 1059 } 1060 } 1061 1062 #ifdef DDB 1063 1064 static void 1065 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p) 1066 { 1067 db_printf( 1068 " pid %d at %p pr %d pgrp %p e %d jc %d\n", 1069 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid, 1070 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0, 1071 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp)); 1072 } 1073 1074 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 1075 { 1076 struct pgrp *pgrp; 1077 struct proc *p; 1078 int i; 1079 1080 for (i = 0; i <= pgrphash; i++) { 1081 if (!LIST_EMPTY(&pgrphashtbl[i])) { 1082 db_printf("indx %d\n", i); 1083 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 1084 db_printf( 1085 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n", 1086 pgrp, (int)pgrp->pg_id, pgrp->pg_session, 1087 pgrp->pg_session->s_count, 1088 LIST_FIRST(&pgrp->pg_members)); 1089 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 1090 db_print_pgrp_one(pgrp, p); 1091 } 1092 } 1093 } 1094 } 1095 #endif /* DDB */ 1096 1097 /* 1098 * Calculate the kinfo_proc members which contain process-wide 1099 * informations. 1100 * Must be called with the target process locked. 1101 */ 1102 static void 1103 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 1104 { 1105 struct thread *td; 1106 1107 PROC_LOCK_ASSERT(p, MA_OWNED); 1108 1109 kp->ki_estcpu = 0; 1110 kp->ki_pctcpu = 0; 1111 FOREACH_THREAD_IN_PROC(p, td) { 1112 thread_lock(td); 1113 kp->ki_pctcpu += sched_pctcpu(td); 1114 kp->ki_estcpu += sched_estcpu(td); 1115 thread_unlock(td); 1116 } 1117 } 1118 1119 /* 1120 * Clear kinfo_proc and fill in any information that is common 1121 * to all threads in the process. 1122 * Must be called with the target process locked. 1123 */ 1124 static void 1125 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 1126 { 1127 struct thread *td0; 1128 struct tty *tp; 1129 struct session *sp; 1130 struct ucred *cred; 1131 struct sigacts *ps; 1132 struct timeval boottime; 1133 1134 PROC_LOCK_ASSERT(p, MA_OWNED); 1135 bzero(kp, sizeof(*kp)); 1136 1137 kp->ki_structsize = sizeof(*kp); 1138 kp->ki_paddr = p; 1139 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 1140 kp->ki_args = p->p_args; 1141 kp->ki_textvp = p->p_textvp; 1142 #ifdef KTRACE 1143 kp->ki_tracep = p->p_tracevp; 1144 kp->ki_traceflag = p->p_traceflag; 1145 #endif 1146 kp->ki_fd = p->p_fd; 1147 kp->ki_vmspace = p->p_vmspace; 1148 kp->ki_flag = p->p_flag; 1149 kp->ki_flag2 = p->p_flag2; 1150 cred = p->p_ucred; 1151 if (cred) { 1152 kp->ki_uid = cred->cr_uid; 1153 kp->ki_ruid = cred->cr_ruid; 1154 kp->ki_svuid = cred->cr_svuid; 1155 kp->ki_cr_flags = 0; 1156 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1157 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1158 /* XXX bde doesn't like KI_NGROUPS */ 1159 if (cred->cr_ngroups > KI_NGROUPS) { 1160 kp->ki_ngroups = KI_NGROUPS; 1161 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1162 } else 1163 kp->ki_ngroups = cred->cr_ngroups; 1164 bcopy(cred->cr_groups, kp->ki_groups, 1165 kp->ki_ngroups * sizeof(gid_t)); 1166 kp->ki_rgid = cred->cr_rgid; 1167 kp->ki_svgid = cred->cr_svgid; 1168 /* If jailed(cred), emulate the old P_JAILED flag. */ 1169 if (jailed(cred)) { 1170 kp->ki_flag |= P_JAILED; 1171 /* If inside the jail, use 0 as a jail ID. */ 1172 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1173 kp->ki_jid = cred->cr_prison->pr_id; 1174 } 1175 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1176 sizeof(kp->ki_loginclass)); 1177 } 1178 ps = p->p_sigacts; 1179 if (ps) { 1180 mtx_lock(&ps->ps_mtx); 1181 kp->ki_sigignore = ps->ps_sigignore; 1182 kp->ki_sigcatch = ps->ps_sigcatch; 1183 mtx_unlock(&ps->ps_mtx); 1184 } 1185 if (p->p_state != PRS_NEW && 1186 p->p_state != PRS_ZOMBIE && 1187 p->p_vmspace != NULL) { 1188 struct vmspace *vm = p->p_vmspace; 1189 1190 kp->ki_size = vm->vm_map.size; 1191 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1192 FOREACH_THREAD_IN_PROC(p, td0) { 1193 if (!TD_IS_SWAPPED(td0)) 1194 kp->ki_rssize += td0->td_kstack_pages; 1195 } 1196 kp->ki_swrss = vm->vm_swrss; 1197 kp->ki_tsize = vm->vm_tsize; 1198 kp->ki_dsize = vm->vm_dsize; 1199 kp->ki_ssize = vm->vm_ssize; 1200 } else if (p->p_state == PRS_ZOMBIE) 1201 kp->ki_stat = SZOMB; 1202 if (kp->ki_flag & P_INMEM) 1203 kp->ki_sflag = PS_INMEM; 1204 else 1205 kp->ki_sflag = 0; 1206 /* Calculate legacy swtime as seconds since 'swtick'. */ 1207 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1208 kp->ki_pid = p->p_pid; 1209 kp->ki_nice = p->p_nice; 1210 kp->ki_fibnum = p->p_fibnum; 1211 kp->ki_start = p->p_stats->p_start; 1212 getboottime(&boottime); 1213 timevaladd(&kp->ki_start, &boottime); 1214 PROC_STATLOCK(p); 1215 rufetch(p, &kp->ki_rusage); 1216 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1217 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1218 PROC_STATUNLOCK(p); 1219 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1220 /* Some callers want child times in a single value. */ 1221 kp->ki_childtime = kp->ki_childstime; 1222 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1223 1224 FOREACH_THREAD_IN_PROC(p, td0) 1225 kp->ki_cow += td0->td_cow; 1226 1227 tp = NULL; 1228 if (p->p_pgrp) { 1229 kp->ki_pgid = p->p_pgrp->pg_id; 1230 kp->ki_jobc = p->p_pgrp->pg_jobc; 1231 sp = p->p_pgrp->pg_session; 1232 1233 if (sp != NULL) { 1234 kp->ki_sid = sp->s_sid; 1235 SESS_LOCK(sp); 1236 strlcpy(kp->ki_login, sp->s_login, 1237 sizeof(kp->ki_login)); 1238 if (sp->s_ttyvp) 1239 kp->ki_kiflag |= KI_CTTY; 1240 if (SESS_LEADER(p)) 1241 kp->ki_kiflag |= KI_SLEADER; 1242 /* XXX proctree_lock */ 1243 tp = sp->s_ttyp; 1244 SESS_UNLOCK(sp); 1245 } 1246 } 1247 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1248 kp->ki_tdev = tty_udev(tp); 1249 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1250 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1251 if (tp->t_session) 1252 kp->ki_tsid = tp->t_session->s_sid; 1253 } else { 1254 kp->ki_tdev = NODEV; 1255 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1256 } 1257 if (p->p_comm[0] != '\0') 1258 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1259 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1260 p->p_sysent->sv_name[0] != '\0') 1261 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1262 kp->ki_siglist = p->p_siglist; 1263 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1264 kp->ki_acflag = p->p_acflag; 1265 kp->ki_lock = p->p_lock; 1266 if (p->p_pptr) { 1267 kp->ki_ppid = p->p_oppid; 1268 if (p->p_flag & P_TRACED) 1269 kp->ki_tracer = p->p_pptr->p_pid; 1270 } 1271 } 1272 1273 /* 1274 * Fill in information that is thread specific. Must be called with 1275 * target process locked. If 'preferthread' is set, overwrite certain 1276 * process-related fields that are maintained for both threads and 1277 * processes. 1278 */ 1279 static void 1280 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1281 { 1282 struct proc *p; 1283 1284 p = td->td_proc; 1285 kp->ki_tdaddr = td; 1286 PROC_LOCK_ASSERT(p, MA_OWNED); 1287 1288 if (preferthread) 1289 PROC_STATLOCK(p); 1290 thread_lock(td); 1291 if (td->td_wmesg != NULL) 1292 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1293 else 1294 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1295 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1296 sizeof(kp->ki_tdname)) { 1297 strlcpy(kp->ki_moretdname, 1298 td->td_name + sizeof(kp->ki_tdname) - 1, 1299 sizeof(kp->ki_moretdname)); 1300 } else { 1301 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1302 } 1303 if (TD_ON_LOCK(td)) { 1304 kp->ki_kiflag |= KI_LOCKBLOCK; 1305 strlcpy(kp->ki_lockname, td->td_lockname, 1306 sizeof(kp->ki_lockname)); 1307 } else { 1308 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1309 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1310 } 1311 1312 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1313 if (TD_ON_RUNQ(td) || 1314 TD_CAN_RUN(td) || 1315 TD_IS_RUNNING(td)) { 1316 kp->ki_stat = SRUN; 1317 } else if (P_SHOULDSTOP(p)) { 1318 kp->ki_stat = SSTOP; 1319 } else if (TD_IS_SLEEPING(td)) { 1320 kp->ki_stat = SSLEEP; 1321 } else if (TD_ON_LOCK(td)) { 1322 kp->ki_stat = SLOCK; 1323 } else { 1324 kp->ki_stat = SWAIT; 1325 } 1326 } else if (p->p_state == PRS_ZOMBIE) { 1327 kp->ki_stat = SZOMB; 1328 } else { 1329 kp->ki_stat = SIDL; 1330 } 1331 1332 /* Things in the thread */ 1333 kp->ki_wchan = td->td_wchan; 1334 kp->ki_pri.pri_level = td->td_priority; 1335 kp->ki_pri.pri_native = td->td_base_pri; 1336 1337 /* 1338 * Note: legacy fields; clamp at the old NOCPU value and/or 1339 * the maximum u_char CPU value. 1340 */ 1341 if (td->td_lastcpu == NOCPU) 1342 kp->ki_lastcpu_old = NOCPU_OLD; 1343 else if (td->td_lastcpu > MAXCPU_OLD) 1344 kp->ki_lastcpu_old = MAXCPU_OLD; 1345 else 1346 kp->ki_lastcpu_old = td->td_lastcpu; 1347 1348 if (td->td_oncpu == NOCPU) 1349 kp->ki_oncpu_old = NOCPU_OLD; 1350 else if (td->td_oncpu > MAXCPU_OLD) 1351 kp->ki_oncpu_old = MAXCPU_OLD; 1352 else 1353 kp->ki_oncpu_old = td->td_oncpu; 1354 1355 kp->ki_lastcpu = td->td_lastcpu; 1356 kp->ki_oncpu = td->td_oncpu; 1357 kp->ki_tdflags = td->td_flags; 1358 kp->ki_tid = td->td_tid; 1359 kp->ki_numthreads = p->p_numthreads; 1360 kp->ki_pcb = td->td_pcb; 1361 kp->ki_kstack = (void *)td->td_kstack; 1362 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1363 kp->ki_pri.pri_class = td->td_pri_class; 1364 kp->ki_pri.pri_user = td->td_user_pri; 1365 1366 if (preferthread) { 1367 rufetchtd(td, &kp->ki_rusage); 1368 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1369 kp->ki_pctcpu = sched_pctcpu(td); 1370 kp->ki_estcpu = sched_estcpu(td); 1371 kp->ki_cow = td->td_cow; 1372 } 1373 1374 /* We can't get this anymore but ps etc never used it anyway. */ 1375 kp->ki_rqindex = 0; 1376 1377 if (preferthread) 1378 kp->ki_siglist = td->td_siglist; 1379 kp->ki_sigmask = td->td_sigmask; 1380 thread_unlock(td); 1381 if (preferthread) 1382 PROC_STATUNLOCK(p); 1383 } 1384 1385 /* 1386 * Fill in a kinfo_proc structure for the specified process. 1387 * Must be called with the target process locked. 1388 */ 1389 void 1390 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1391 { 1392 1393 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1394 1395 fill_kinfo_proc_only(p, kp); 1396 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1397 fill_kinfo_aggregate(p, kp); 1398 } 1399 1400 struct pstats * 1401 pstats_alloc(void) 1402 { 1403 1404 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1405 } 1406 1407 /* 1408 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1409 */ 1410 void 1411 pstats_fork(struct pstats *src, struct pstats *dst) 1412 { 1413 1414 bzero(&dst->pstat_startzero, 1415 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1416 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1417 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1418 } 1419 1420 void 1421 pstats_free(struct pstats *ps) 1422 { 1423 1424 free(ps, M_SUBPROC); 1425 } 1426 1427 #ifdef COMPAT_FREEBSD32 1428 1429 /* 1430 * This function is typically used to copy out the kernel address, so 1431 * it can be replaced by assignment of zero. 1432 */ 1433 static inline uint32_t 1434 ptr32_trim(const void *ptr) 1435 { 1436 uintptr_t uptr; 1437 1438 uptr = (uintptr_t)ptr; 1439 return ((uptr > UINT_MAX) ? 0 : uptr); 1440 } 1441 1442 #define PTRTRIM_CP(src,dst,fld) \ 1443 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1444 1445 static void 1446 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1447 { 1448 int i; 1449 1450 bzero(ki32, sizeof(struct kinfo_proc32)); 1451 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1452 CP(*ki, *ki32, ki_layout); 1453 PTRTRIM_CP(*ki, *ki32, ki_args); 1454 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1455 PTRTRIM_CP(*ki, *ki32, ki_addr); 1456 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1457 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1458 PTRTRIM_CP(*ki, *ki32, ki_fd); 1459 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1460 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1461 CP(*ki, *ki32, ki_pid); 1462 CP(*ki, *ki32, ki_ppid); 1463 CP(*ki, *ki32, ki_pgid); 1464 CP(*ki, *ki32, ki_tpgid); 1465 CP(*ki, *ki32, ki_sid); 1466 CP(*ki, *ki32, ki_tsid); 1467 CP(*ki, *ki32, ki_jobc); 1468 CP(*ki, *ki32, ki_tdev); 1469 CP(*ki, *ki32, ki_tdev_freebsd11); 1470 CP(*ki, *ki32, ki_siglist); 1471 CP(*ki, *ki32, ki_sigmask); 1472 CP(*ki, *ki32, ki_sigignore); 1473 CP(*ki, *ki32, ki_sigcatch); 1474 CP(*ki, *ki32, ki_uid); 1475 CP(*ki, *ki32, ki_ruid); 1476 CP(*ki, *ki32, ki_svuid); 1477 CP(*ki, *ki32, ki_rgid); 1478 CP(*ki, *ki32, ki_svgid); 1479 CP(*ki, *ki32, ki_ngroups); 1480 for (i = 0; i < KI_NGROUPS; i++) 1481 CP(*ki, *ki32, ki_groups[i]); 1482 CP(*ki, *ki32, ki_size); 1483 CP(*ki, *ki32, ki_rssize); 1484 CP(*ki, *ki32, ki_swrss); 1485 CP(*ki, *ki32, ki_tsize); 1486 CP(*ki, *ki32, ki_dsize); 1487 CP(*ki, *ki32, ki_ssize); 1488 CP(*ki, *ki32, ki_xstat); 1489 CP(*ki, *ki32, ki_acflag); 1490 CP(*ki, *ki32, ki_pctcpu); 1491 CP(*ki, *ki32, ki_estcpu); 1492 CP(*ki, *ki32, ki_slptime); 1493 CP(*ki, *ki32, ki_swtime); 1494 CP(*ki, *ki32, ki_cow); 1495 CP(*ki, *ki32, ki_runtime); 1496 TV_CP(*ki, *ki32, ki_start); 1497 TV_CP(*ki, *ki32, ki_childtime); 1498 CP(*ki, *ki32, ki_flag); 1499 CP(*ki, *ki32, ki_kiflag); 1500 CP(*ki, *ki32, ki_traceflag); 1501 CP(*ki, *ki32, ki_stat); 1502 CP(*ki, *ki32, ki_nice); 1503 CP(*ki, *ki32, ki_lock); 1504 CP(*ki, *ki32, ki_rqindex); 1505 CP(*ki, *ki32, ki_oncpu); 1506 CP(*ki, *ki32, ki_lastcpu); 1507 1508 /* XXX TODO: wrap cpu value as appropriate */ 1509 CP(*ki, *ki32, ki_oncpu_old); 1510 CP(*ki, *ki32, ki_lastcpu_old); 1511 1512 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1513 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1514 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1515 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1516 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1517 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1518 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1519 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1520 CP(*ki, *ki32, ki_tracer); 1521 CP(*ki, *ki32, ki_flag2); 1522 CP(*ki, *ki32, ki_fibnum); 1523 CP(*ki, *ki32, ki_cr_flags); 1524 CP(*ki, *ki32, ki_jid); 1525 CP(*ki, *ki32, ki_numthreads); 1526 CP(*ki, *ki32, ki_tid); 1527 CP(*ki, *ki32, ki_pri); 1528 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1529 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1530 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1531 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1532 PTRTRIM_CP(*ki, *ki32, ki_udata); 1533 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1534 CP(*ki, *ki32, ki_sflag); 1535 CP(*ki, *ki32, ki_tdflags); 1536 } 1537 #endif 1538 1539 static ssize_t 1540 kern_proc_out_size(struct proc *p, int flags) 1541 { 1542 ssize_t size = 0; 1543 1544 PROC_LOCK_ASSERT(p, MA_OWNED); 1545 1546 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1547 #ifdef COMPAT_FREEBSD32 1548 if ((flags & KERN_PROC_MASK32) != 0) { 1549 size += sizeof(struct kinfo_proc32); 1550 } else 1551 #endif 1552 size += sizeof(struct kinfo_proc); 1553 } else { 1554 #ifdef COMPAT_FREEBSD32 1555 if ((flags & KERN_PROC_MASK32) != 0) 1556 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1557 else 1558 #endif 1559 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1560 } 1561 PROC_UNLOCK(p); 1562 return (size); 1563 } 1564 1565 int 1566 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1567 { 1568 struct thread *td; 1569 struct kinfo_proc ki; 1570 #ifdef COMPAT_FREEBSD32 1571 struct kinfo_proc32 ki32; 1572 #endif 1573 int error; 1574 1575 PROC_LOCK_ASSERT(p, MA_OWNED); 1576 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1577 1578 error = 0; 1579 fill_kinfo_proc(p, &ki); 1580 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1581 #ifdef COMPAT_FREEBSD32 1582 if ((flags & KERN_PROC_MASK32) != 0) { 1583 freebsd32_kinfo_proc_out(&ki, &ki32); 1584 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1585 error = ENOMEM; 1586 } else 1587 #endif 1588 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1589 error = ENOMEM; 1590 } else { 1591 FOREACH_THREAD_IN_PROC(p, td) { 1592 fill_kinfo_thread(td, &ki, 1); 1593 #ifdef COMPAT_FREEBSD32 1594 if ((flags & KERN_PROC_MASK32) != 0) { 1595 freebsd32_kinfo_proc_out(&ki, &ki32); 1596 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1597 error = ENOMEM; 1598 } else 1599 #endif 1600 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1601 error = ENOMEM; 1602 if (error != 0) 1603 break; 1604 } 1605 } 1606 PROC_UNLOCK(p); 1607 return (error); 1608 } 1609 1610 static int 1611 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1612 { 1613 struct sbuf sb; 1614 struct kinfo_proc ki; 1615 int error, error2; 1616 1617 if (req->oldptr == NULL) 1618 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1619 1620 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1621 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1622 error = kern_proc_out(p, &sb, flags); 1623 error2 = sbuf_finish(&sb); 1624 sbuf_delete(&sb); 1625 if (error != 0) 1626 return (error); 1627 else if (error2 != 0) 1628 return (error2); 1629 return (0); 1630 } 1631 1632 int 1633 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1634 { 1635 struct proc *p; 1636 int error, i, j; 1637 1638 for (i = 0; i < pidhashlock + 1; i++) { 1639 sx_slock(&pidhashtbl_lock[i]); 1640 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1641 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1642 if (p->p_state == PRS_NEW) 1643 continue; 1644 error = cb(p, cbarg); 1645 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1646 if (error != 0) { 1647 sx_sunlock(&pidhashtbl_lock[i]); 1648 return (error); 1649 } 1650 } 1651 } 1652 sx_sunlock(&pidhashtbl_lock[i]); 1653 } 1654 return (0); 1655 } 1656 1657 struct kern_proc_out_args { 1658 struct sysctl_req *req; 1659 int flags; 1660 int oid_number; 1661 int *name; 1662 }; 1663 1664 static int 1665 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1666 { 1667 struct kern_proc_out_args *arg = origarg; 1668 int *name = arg->name; 1669 int oid_number = arg->oid_number; 1670 int flags = arg->flags; 1671 struct sysctl_req *req = arg->req; 1672 int error = 0; 1673 1674 PROC_LOCK(p); 1675 1676 KASSERT(p->p_ucred != NULL, 1677 ("process credential is NULL for non-NEW proc")); 1678 /* 1679 * Show a user only appropriate processes. 1680 */ 1681 if (p_cansee(curthread, p)) 1682 goto skip; 1683 /* 1684 * TODO - make more efficient (see notes below). 1685 * do by session. 1686 */ 1687 switch (oid_number) { 1688 case KERN_PROC_GID: 1689 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1690 goto skip; 1691 break; 1692 1693 case KERN_PROC_PGRP: 1694 /* could do this by traversing pgrp */ 1695 if (p->p_pgrp == NULL || 1696 p->p_pgrp->pg_id != (pid_t)name[0]) 1697 goto skip; 1698 break; 1699 1700 case KERN_PROC_RGID: 1701 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1702 goto skip; 1703 break; 1704 1705 case KERN_PROC_SESSION: 1706 if (p->p_session == NULL || 1707 p->p_session->s_sid != (pid_t)name[0]) 1708 goto skip; 1709 break; 1710 1711 case KERN_PROC_TTY: 1712 if ((p->p_flag & P_CONTROLT) == 0 || 1713 p->p_session == NULL) 1714 goto skip; 1715 /* XXX proctree_lock */ 1716 SESS_LOCK(p->p_session); 1717 if (p->p_session->s_ttyp == NULL || 1718 tty_udev(p->p_session->s_ttyp) != 1719 (dev_t)name[0]) { 1720 SESS_UNLOCK(p->p_session); 1721 goto skip; 1722 } 1723 SESS_UNLOCK(p->p_session); 1724 break; 1725 1726 case KERN_PROC_UID: 1727 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1728 goto skip; 1729 break; 1730 1731 case KERN_PROC_RUID: 1732 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1733 goto skip; 1734 break; 1735 1736 case KERN_PROC_PROC: 1737 break; 1738 1739 default: 1740 break; 1741 } 1742 error = sysctl_out_proc(p, req, flags); 1743 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1744 return (error); 1745 skip: 1746 PROC_UNLOCK(p); 1747 return (0); 1748 } 1749 1750 static int 1751 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1752 { 1753 struct kern_proc_out_args iterarg; 1754 int *name = (int *)arg1; 1755 u_int namelen = arg2; 1756 struct proc *p; 1757 int flags, oid_number; 1758 int error = 0; 1759 1760 oid_number = oidp->oid_number; 1761 if (oid_number != KERN_PROC_ALL && 1762 (oid_number & KERN_PROC_INC_THREAD) == 0) 1763 flags = KERN_PROC_NOTHREADS; 1764 else { 1765 flags = 0; 1766 oid_number &= ~KERN_PROC_INC_THREAD; 1767 } 1768 #ifdef COMPAT_FREEBSD32 1769 if (req->flags & SCTL_MASK32) 1770 flags |= KERN_PROC_MASK32; 1771 #endif 1772 if (oid_number == KERN_PROC_PID) { 1773 if (namelen != 1) 1774 return (EINVAL); 1775 error = sysctl_wire_old_buffer(req, 0); 1776 if (error) 1777 return (error); 1778 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1779 if (error == 0) 1780 error = sysctl_out_proc(p, req, flags); 1781 return (error); 1782 } 1783 1784 switch (oid_number) { 1785 case KERN_PROC_ALL: 1786 if (namelen != 0) 1787 return (EINVAL); 1788 break; 1789 case KERN_PROC_PROC: 1790 if (namelen != 0 && namelen != 1) 1791 return (EINVAL); 1792 break; 1793 default: 1794 if (namelen != 1) 1795 return (EINVAL); 1796 break; 1797 } 1798 1799 if (req->oldptr == NULL) { 1800 /* overestimate by 5 procs */ 1801 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1802 if (error) 1803 return (error); 1804 } else { 1805 error = sysctl_wire_old_buffer(req, 0); 1806 if (error != 0) 1807 return (error); 1808 } 1809 iterarg.flags = flags; 1810 iterarg.oid_number = oid_number; 1811 iterarg.req = req; 1812 iterarg.name = name; 1813 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1814 return (error); 1815 } 1816 1817 struct pargs * 1818 pargs_alloc(int len) 1819 { 1820 struct pargs *pa; 1821 1822 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1823 M_WAITOK); 1824 refcount_init(&pa->ar_ref, 1); 1825 pa->ar_length = len; 1826 return (pa); 1827 } 1828 1829 static void 1830 pargs_free(struct pargs *pa) 1831 { 1832 1833 free(pa, M_PARGS); 1834 } 1835 1836 void 1837 pargs_hold(struct pargs *pa) 1838 { 1839 1840 if (pa == NULL) 1841 return; 1842 refcount_acquire(&pa->ar_ref); 1843 } 1844 1845 void 1846 pargs_drop(struct pargs *pa) 1847 { 1848 1849 if (pa == NULL) 1850 return; 1851 if (refcount_release(&pa->ar_ref)) 1852 pargs_free(pa); 1853 } 1854 1855 static int 1856 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1857 size_t len) 1858 { 1859 ssize_t n; 1860 1861 /* 1862 * This may return a short read if the string is shorter than the chunk 1863 * and is aligned at the end of the page, and the following page is not 1864 * mapped. 1865 */ 1866 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1867 if (n <= 0) 1868 return (ENOMEM); 1869 return (0); 1870 } 1871 1872 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1873 1874 enum proc_vector_type { 1875 PROC_ARG, 1876 PROC_ENV, 1877 PROC_AUX, 1878 }; 1879 1880 #ifdef COMPAT_FREEBSD32 1881 static int 1882 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1883 size_t *vsizep, enum proc_vector_type type) 1884 { 1885 struct freebsd32_ps_strings pss; 1886 Elf32_Auxinfo aux; 1887 vm_offset_t vptr, ptr; 1888 uint32_t *proc_vector32; 1889 char **proc_vector; 1890 size_t vsize, size; 1891 int i, error; 1892 1893 error = 0; 1894 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1895 sizeof(pss)) != sizeof(pss)) 1896 return (ENOMEM); 1897 switch (type) { 1898 case PROC_ARG: 1899 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1900 vsize = pss.ps_nargvstr; 1901 if (vsize > ARG_MAX) 1902 return (ENOEXEC); 1903 size = vsize * sizeof(int32_t); 1904 break; 1905 case PROC_ENV: 1906 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1907 vsize = pss.ps_nenvstr; 1908 if (vsize > ARG_MAX) 1909 return (ENOEXEC); 1910 size = vsize * sizeof(int32_t); 1911 break; 1912 case PROC_AUX: 1913 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1914 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1915 if (vptr % 4 != 0) 1916 return (ENOEXEC); 1917 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1918 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1919 sizeof(aux)) 1920 return (ENOMEM); 1921 if (aux.a_type == AT_NULL) 1922 break; 1923 ptr += sizeof(aux); 1924 } 1925 if (aux.a_type != AT_NULL) 1926 return (ENOEXEC); 1927 vsize = i + 1; 1928 size = vsize * sizeof(aux); 1929 break; 1930 default: 1931 KASSERT(0, ("Wrong proc vector type: %d", type)); 1932 return (EINVAL); 1933 } 1934 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1935 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1936 error = ENOMEM; 1937 goto done; 1938 } 1939 if (type == PROC_AUX) { 1940 *proc_vectorp = (char **)proc_vector32; 1941 *vsizep = vsize; 1942 return (0); 1943 } 1944 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1945 for (i = 0; i < (int)vsize; i++) 1946 proc_vector[i] = PTRIN(proc_vector32[i]); 1947 *proc_vectorp = proc_vector; 1948 *vsizep = vsize; 1949 done: 1950 free(proc_vector32, M_TEMP); 1951 return (error); 1952 } 1953 #endif 1954 1955 static int 1956 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1957 size_t *vsizep, enum proc_vector_type type) 1958 { 1959 struct ps_strings pss; 1960 Elf_Auxinfo aux; 1961 vm_offset_t vptr, ptr; 1962 char **proc_vector; 1963 size_t vsize, size; 1964 int i; 1965 1966 #ifdef COMPAT_FREEBSD32 1967 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1968 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1969 #endif 1970 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1971 sizeof(pss)) != sizeof(pss)) 1972 return (ENOMEM); 1973 switch (type) { 1974 case PROC_ARG: 1975 vptr = (vm_offset_t)pss.ps_argvstr; 1976 vsize = pss.ps_nargvstr; 1977 if (vsize > ARG_MAX) 1978 return (ENOEXEC); 1979 size = vsize * sizeof(char *); 1980 break; 1981 case PROC_ENV: 1982 vptr = (vm_offset_t)pss.ps_envstr; 1983 vsize = pss.ps_nenvstr; 1984 if (vsize > ARG_MAX) 1985 return (ENOEXEC); 1986 size = vsize * sizeof(char *); 1987 break; 1988 case PROC_AUX: 1989 /* 1990 * The aux array is just above env array on the stack. Check 1991 * that the address is naturally aligned. 1992 */ 1993 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1994 * sizeof(char *); 1995 #if __ELF_WORD_SIZE == 64 1996 if (vptr % sizeof(uint64_t) != 0) 1997 #else 1998 if (vptr % sizeof(uint32_t) != 0) 1999 #endif 2000 return (ENOEXEC); 2001 /* 2002 * We count the array size reading the aux vectors from the 2003 * stack until AT_NULL vector is returned. So (to keep the code 2004 * simple) we read the process stack twice: the first time here 2005 * to find the size and the second time when copying the vectors 2006 * to the allocated proc_vector. 2007 */ 2008 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 2009 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 2010 sizeof(aux)) 2011 return (ENOMEM); 2012 if (aux.a_type == AT_NULL) 2013 break; 2014 ptr += sizeof(aux); 2015 } 2016 /* 2017 * If the PROC_AUXV_MAX entries are iterated over, and we have 2018 * not reached AT_NULL, it is most likely we are reading wrong 2019 * data: either the process doesn't have auxv array or data has 2020 * been modified. Return the error in this case. 2021 */ 2022 if (aux.a_type != AT_NULL) 2023 return (ENOEXEC); 2024 vsize = i + 1; 2025 size = vsize * sizeof(aux); 2026 break; 2027 default: 2028 KASSERT(0, ("Wrong proc vector type: %d", type)); 2029 return (EINVAL); /* In case we are built without INVARIANTS. */ 2030 } 2031 proc_vector = malloc(size, M_TEMP, M_WAITOK); 2032 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 2033 free(proc_vector, M_TEMP); 2034 return (ENOMEM); 2035 } 2036 *proc_vectorp = proc_vector; 2037 *vsizep = vsize; 2038 2039 return (0); 2040 } 2041 2042 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 2043 2044 static int 2045 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 2046 enum proc_vector_type type) 2047 { 2048 size_t done, len, nchr, vsize; 2049 int error, i; 2050 char **proc_vector, *sptr; 2051 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 2052 2053 PROC_ASSERT_HELD(p); 2054 2055 /* 2056 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 2057 */ 2058 nchr = 2 * (PATH_MAX + ARG_MAX); 2059 2060 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 2061 if (error != 0) 2062 return (error); 2063 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 2064 /* 2065 * The program may have scribbled into its argv array, e.g. to 2066 * remove some arguments. If that has happened, break out 2067 * before trying to read from NULL. 2068 */ 2069 if (proc_vector[i] == NULL) 2070 break; 2071 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 2072 error = proc_read_string(td, p, sptr, pss_string, 2073 sizeof(pss_string)); 2074 if (error != 0) 2075 goto done; 2076 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 2077 if (done + len >= nchr) 2078 len = nchr - done - 1; 2079 sbuf_bcat(sb, pss_string, len); 2080 if (len != GET_PS_STRINGS_CHUNK_SZ) 2081 break; 2082 done += GET_PS_STRINGS_CHUNK_SZ; 2083 } 2084 sbuf_bcat(sb, "", 1); 2085 done += len + 1; 2086 } 2087 done: 2088 free(proc_vector, M_TEMP); 2089 return (error); 2090 } 2091 2092 int 2093 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 2094 { 2095 2096 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 2097 } 2098 2099 int 2100 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 2101 { 2102 2103 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 2104 } 2105 2106 int 2107 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 2108 { 2109 size_t vsize, size; 2110 char **auxv; 2111 int error; 2112 2113 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 2114 if (error == 0) { 2115 #ifdef COMPAT_FREEBSD32 2116 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 2117 size = vsize * sizeof(Elf32_Auxinfo); 2118 else 2119 #endif 2120 size = vsize * sizeof(Elf_Auxinfo); 2121 if (sbuf_bcat(sb, auxv, size) != 0) 2122 error = ENOMEM; 2123 free(auxv, M_TEMP); 2124 } 2125 return (error); 2126 } 2127 2128 /* 2129 * This sysctl allows a process to retrieve the argument list or process 2130 * title for another process without groping around in the address space 2131 * of the other process. It also allow a process to set its own "process 2132 * title to a string of its own choice. 2133 */ 2134 static int 2135 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 2136 { 2137 int *name = (int *)arg1; 2138 u_int namelen = arg2; 2139 struct pargs *newpa, *pa; 2140 struct proc *p; 2141 struct sbuf sb; 2142 int flags, error = 0, error2; 2143 pid_t pid; 2144 2145 if (namelen != 1) 2146 return (EINVAL); 2147 2148 pid = (pid_t)name[0]; 2149 /* 2150 * If the query is for this process and it is single-threaded, there 2151 * is nobody to modify pargs, thus we can just read. 2152 */ 2153 p = curproc; 2154 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2155 (pa = p->p_args) != NULL) 2156 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2157 2158 flags = PGET_CANSEE; 2159 if (req->newptr != NULL) 2160 flags |= PGET_ISCURRENT; 2161 error = pget(pid, flags, &p); 2162 if (error) 2163 return (error); 2164 2165 pa = p->p_args; 2166 if (pa != NULL) { 2167 pargs_hold(pa); 2168 PROC_UNLOCK(p); 2169 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2170 pargs_drop(pa); 2171 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2172 _PHOLD(p); 2173 PROC_UNLOCK(p); 2174 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2175 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2176 error = proc_getargv(curthread, p, &sb); 2177 error2 = sbuf_finish(&sb); 2178 PRELE(p); 2179 sbuf_delete(&sb); 2180 if (error == 0 && error2 != 0) 2181 error = error2; 2182 } else { 2183 PROC_UNLOCK(p); 2184 } 2185 if (error != 0 || req->newptr == NULL) 2186 return (error); 2187 2188 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2189 return (ENOMEM); 2190 2191 if (req->newlen == 0) { 2192 /* 2193 * Clear the argument pointer, so that we'll fetch arguments 2194 * with proc_getargv() until further notice. 2195 */ 2196 newpa = NULL; 2197 } else { 2198 newpa = pargs_alloc(req->newlen); 2199 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2200 if (error != 0) { 2201 pargs_free(newpa); 2202 return (error); 2203 } 2204 } 2205 PROC_LOCK(p); 2206 pa = p->p_args; 2207 p->p_args = newpa; 2208 PROC_UNLOCK(p); 2209 pargs_drop(pa); 2210 return (0); 2211 } 2212 2213 /* 2214 * This sysctl allows a process to retrieve environment of another process. 2215 */ 2216 static int 2217 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2218 { 2219 int *name = (int *)arg1; 2220 u_int namelen = arg2; 2221 struct proc *p; 2222 struct sbuf sb; 2223 int error, error2; 2224 2225 if (namelen != 1) 2226 return (EINVAL); 2227 2228 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2229 if (error != 0) 2230 return (error); 2231 if ((p->p_flag & P_SYSTEM) != 0) { 2232 PRELE(p); 2233 return (0); 2234 } 2235 2236 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2237 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2238 error = proc_getenvv(curthread, p, &sb); 2239 error2 = sbuf_finish(&sb); 2240 PRELE(p); 2241 sbuf_delete(&sb); 2242 return (error != 0 ? error : error2); 2243 } 2244 2245 /* 2246 * This sysctl allows a process to retrieve ELF auxiliary vector of 2247 * another process. 2248 */ 2249 static int 2250 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2251 { 2252 int *name = (int *)arg1; 2253 u_int namelen = arg2; 2254 struct proc *p; 2255 struct sbuf sb; 2256 int error, error2; 2257 2258 if (namelen != 1) 2259 return (EINVAL); 2260 2261 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2262 if (error != 0) 2263 return (error); 2264 if ((p->p_flag & P_SYSTEM) != 0) { 2265 PRELE(p); 2266 return (0); 2267 } 2268 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2269 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2270 error = proc_getauxv(curthread, p, &sb); 2271 error2 = sbuf_finish(&sb); 2272 PRELE(p); 2273 sbuf_delete(&sb); 2274 return (error != 0 ? error : error2); 2275 } 2276 2277 /* 2278 * This sysctl allows a process to retrieve the path of the executable for 2279 * itself or another process. 2280 */ 2281 static int 2282 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2283 { 2284 pid_t *pidp = (pid_t *)arg1; 2285 unsigned int arglen = arg2; 2286 struct proc *p; 2287 struct vnode *vp; 2288 char *retbuf, *freebuf; 2289 int error; 2290 2291 if (arglen != 1) 2292 return (EINVAL); 2293 if (*pidp == -1) { /* -1 means this process */ 2294 p = req->td->td_proc; 2295 } else { 2296 error = pget(*pidp, PGET_CANSEE, &p); 2297 if (error != 0) 2298 return (error); 2299 } 2300 2301 vp = p->p_textvp; 2302 if (vp == NULL) { 2303 if (*pidp != -1) 2304 PROC_UNLOCK(p); 2305 return (0); 2306 } 2307 vref(vp); 2308 if (*pidp != -1) 2309 PROC_UNLOCK(p); 2310 error = vn_fullpath(vp, &retbuf, &freebuf); 2311 vrele(vp); 2312 if (error) 2313 return (error); 2314 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2315 free(freebuf, M_TEMP); 2316 return (error); 2317 } 2318 2319 static int 2320 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2321 { 2322 struct proc *p; 2323 char *sv_name; 2324 int *name; 2325 int namelen; 2326 int error; 2327 2328 namelen = arg2; 2329 if (namelen != 1) 2330 return (EINVAL); 2331 2332 name = (int *)arg1; 2333 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2334 if (error != 0) 2335 return (error); 2336 sv_name = p->p_sysent->sv_name; 2337 PROC_UNLOCK(p); 2338 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2339 } 2340 2341 #ifdef KINFO_OVMENTRY_SIZE 2342 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2343 #endif 2344 2345 #ifdef COMPAT_FREEBSD7 2346 static int 2347 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2348 { 2349 vm_map_entry_t entry, tmp_entry; 2350 unsigned int last_timestamp; 2351 char *fullpath, *freepath; 2352 struct kinfo_ovmentry *kve; 2353 struct vattr va; 2354 struct ucred *cred; 2355 int error, *name; 2356 struct vnode *vp; 2357 struct proc *p; 2358 vm_map_t map; 2359 struct vmspace *vm; 2360 2361 name = (int *)arg1; 2362 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2363 if (error != 0) 2364 return (error); 2365 vm = vmspace_acquire_ref(p); 2366 if (vm == NULL) { 2367 PRELE(p); 2368 return (ESRCH); 2369 } 2370 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2371 2372 map = &vm->vm_map; 2373 vm_map_lock_read(map); 2374 VM_MAP_ENTRY_FOREACH(entry, map) { 2375 vm_object_t obj, tobj, lobj; 2376 vm_offset_t addr; 2377 2378 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2379 continue; 2380 2381 bzero(kve, sizeof(*kve)); 2382 kve->kve_structsize = sizeof(*kve); 2383 2384 kve->kve_private_resident = 0; 2385 obj = entry->object.vm_object; 2386 if (obj != NULL) { 2387 VM_OBJECT_RLOCK(obj); 2388 if (obj->shadow_count == 1) 2389 kve->kve_private_resident = 2390 obj->resident_page_count; 2391 } 2392 kve->kve_resident = 0; 2393 addr = entry->start; 2394 while (addr < entry->end) { 2395 if (pmap_extract(map->pmap, addr)) 2396 kve->kve_resident++; 2397 addr += PAGE_SIZE; 2398 } 2399 2400 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2401 if (tobj != obj) { 2402 VM_OBJECT_RLOCK(tobj); 2403 kve->kve_offset += tobj->backing_object_offset; 2404 } 2405 if (lobj != obj) 2406 VM_OBJECT_RUNLOCK(lobj); 2407 lobj = tobj; 2408 } 2409 2410 kve->kve_start = (void*)entry->start; 2411 kve->kve_end = (void*)entry->end; 2412 kve->kve_offset += (off_t)entry->offset; 2413 2414 if (entry->protection & VM_PROT_READ) 2415 kve->kve_protection |= KVME_PROT_READ; 2416 if (entry->protection & VM_PROT_WRITE) 2417 kve->kve_protection |= KVME_PROT_WRITE; 2418 if (entry->protection & VM_PROT_EXECUTE) 2419 kve->kve_protection |= KVME_PROT_EXEC; 2420 2421 if (entry->eflags & MAP_ENTRY_COW) 2422 kve->kve_flags |= KVME_FLAG_COW; 2423 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2424 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2425 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2426 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2427 2428 last_timestamp = map->timestamp; 2429 vm_map_unlock_read(map); 2430 2431 kve->kve_fileid = 0; 2432 kve->kve_fsid = 0; 2433 freepath = NULL; 2434 fullpath = ""; 2435 if (lobj) { 2436 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2437 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2438 kve->kve_type = KVME_TYPE_UNKNOWN; 2439 if (vp != NULL) 2440 vref(vp); 2441 if (lobj != obj) 2442 VM_OBJECT_RUNLOCK(lobj); 2443 2444 kve->kve_ref_count = obj->ref_count; 2445 kve->kve_shadow_count = obj->shadow_count; 2446 VM_OBJECT_RUNLOCK(obj); 2447 if (vp != NULL) { 2448 vn_fullpath(vp, &fullpath, &freepath); 2449 cred = curthread->td_ucred; 2450 vn_lock(vp, LK_SHARED | LK_RETRY); 2451 if (VOP_GETATTR(vp, &va, cred) == 0) { 2452 kve->kve_fileid = va.va_fileid; 2453 /* truncate */ 2454 kve->kve_fsid = va.va_fsid; 2455 } 2456 vput(vp); 2457 } 2458 } else { 2459 kve->kve_type = KVME_TYPE_NONE; 2460 kve->kve_ref_count = 0; 2461 kve->kve_shadow_count = 0; 2462 } 2463 2464 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2465 if (freepath != NULL) 2466 free(freepath, M_TEMP); 2467 2468 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2469 vm_map_lock_read(map); 2470 if (error) 2471 break; 2472 if (last_timestamp != map->timestamp) { 2473 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2474 entry = tmp_entry; 2475 } 2476 } 2477 vm_map_unlock_read(map); 2478 vmspace_free(vm); 2479 PRELE(p); 2480 free(kve, M_TEMP); 2481 return (error); 2482 } 2483 #endif /* COMPAT_FREEBSD7 */ 2484 2485 #ifdef KINFO_VMENTRY_SIZE 2486 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2487 #endif 2488 2489 void 2490 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2491 int *resident_count, bool *super) 2492 { 2493 vm_object_t obj, tobj; 2494 vm_page_t m, m_adv; 2495 vm_offset_t addr; 2496 vm_paddr_t pa; 2497 vm_pindex_t pi, pi_adv, pindex; 2498 2499 *super = false; 2500 *resident_count = 0; 2501 if (vmmap_skip_res_cnt) 2502 return; 2503 2504 pa = 0; 2505 obj = entry->object.vm_object; 2506 addr = entry->start; 2507 m_adv = NULL; 2508 pi = OFF_TO_IDX(entry->offset); 2509 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2510 if (m_adv != NULL) { 2511 m = m_adv; 2512 } else { 2513 pi_adv = atop(entry->end - addr); 2514 pindex = pi; 2515 for (tobj = obj;; tobj = tobj->backing_object) { 2516 m = vm_page_find_least(tobj, pindex); 2517 if (m != NULL) { 2518 if (m->pindex == pindex) 2519 break; 2520 if (pi_adv > m->pindex - pindex) { 2521 pi_adv = m->pindex - pindex; 2522 m_adv = m; 2523 } 2524 } 2525 if (tobj->backing_object == NULL) 2526 goto next; 2527 pindex += OFF_TO_IDX(tobj-> 2528 backing_object_offset); 2529 } 2530 } 2531 m_adv = NULL; 2532 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2533 (addr & (pagesizes[1] - 1)) == 0 && 2534 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2535 *super = true; 2536 pi_adv = atop(pagesizes[1]); 2537 } else { 2538 /* 2539 * We do not test the found page on validity. 2540 * Either the page is busy and being paged in, 2541 * or it was invalidated. The first case 2542 * should be counted as resident, the second 2543 * is not so clear; we do account both. 2544 */ 2545 pi_adv = 1; 2546 } 2547 *resident_count += pi_adv; 2548 next:; 2549 } 2550 } 2551 2552 /* 2553 * Must be called with the process locked and will return unlocked. 2554 */ 2555 int 2556 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2557 { 2558 vm_map_entry_t entry, tmp_entry; 2559 struct vattr va; 2560 vm_map_t map; 2561 vm_object_t obj, tobj, lobj; 2562 char *fullpath, *freepath; 2563 struct kinfo_vmentry *kve; 2564 struct ucred *cred; 2565 struct vnode *vp; 2566 struct vmspace *vm; 2567 vm_offset_t addr; 2568 unsigned int last_timestamp; 2569 int error; 2570 bool super; 2571 2572 PROC_LOCK_ASSERT(p, MA_OWNED); 2573 2574 _PHOLD(p); 2575 PROC_UNLOCK(p); 2576 vm = vmspace_acquire_ref(p); 2577 if (vm == NULL) { 2578 PRELE(p); 2579 return (ESRCH); 2580 } 2581 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2582 2583 error = 0; 2584 map = &vm->vm_map; 2585 vm_map_lock_read(map); 2586 VM_MAP_ENTRY_FOREACH(entry, map) { 2587 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2588 continue; 2589 2590 addr = entry->end; 2591 bzero(kve, sizeof(*kve)); 2592 obj = entry->object.vm_object; 2593 if (obj != NULL) { 2594 for (tobj = obj; tobj != NULL; 2595 tobj = tobj->backing_object) { 2596 VM_OBJECT_RLOCK(tobj); 2597 kve->kve_offset += tobj->backing_object_offset; 2598 lobj = tobj; 2599 } 2600 if (obj->backing_object == NULL) 2601 kve->kve_private_resident = 2602 obj->resident_page_count; 2603 kern_proc_vmmap_resident(map, entry, 2604 &kve->kve_resident, &super); 2605 if (super) 2606 kve->kve_flags |= KVME_FLAG_SUPER; 2607 for (tobj = obj; tobj != NULL; 2608 tobj = tobj->backing_object) { 2609 if (tobj != obj && tobj != lobj) 2610 VM_OBJECT_RUNLOCK(tobj); 2611 } 2612 } else { 2613 lobj = NULL; 2614 } 2615 2616 kve->kve_start = entry->start; 2617 kve->kve_end = entry->end; 2618 kve->kve_offset += entry->offset; 2619 2620 if (entry->protection & VM_PROT_READ) 2621 kve->kve_protection |= KVME_PROT_READ; 2622 if (entry->protection & VM_PROT_WRITE) 2623 kve->kve_protection |= KVME_PROT_WRITE; 2624 if (entry->protection & VM_PROT_EXECUTE) 2625 kve->kve_protection |= KVME_PROT_EXEC; 2626 2627 if (entry->eflags & MAP_ENTRY_COW) 2628 kve->kve_flags |= KVME_FLAG_COW; 2629 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2630 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2631 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2632 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2633 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2634 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2635 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2636 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2637 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2638 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2639 2640 last_timestamp = map->timestamp; 2641 vm_map_unlock_read(map); 2642 2643 freepath = NULL; 2644 fullpath = ""; 2645 if (lobj != NULL) { 2646 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2647 if (vp != NULL) 2648 vref(vp); 2649 if (lobj != obj) 2650 VM_OBJECT_RUNLOCK(lobj); 2651 2652 kve->kve_ref_count = obj->ref_count; 2653 kve->kve_shadow_count = obj->shadow_count; 2654 VM_OBJECT_RUNLOCK(obj); 2655 if (vp != NULL) { 2656 vn_fullpath(vp, &fullpath, &freepath); 2657 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2658 cred = curthread->td_ucred; 2659 vn_lock(vp, LK_SHARED | LK_RETRY); 2660 if (VOP_GETATTR(vp, &va, cred) == 0) { 2661 kve->kve_vn_fileid = va.va_fileid; 2662 kve->kve_vn_fsid = va.va_fsid; 2663 kve->kve_vn_fsid_freebsd11 = 2664 kve->kve_vn_fsid; /* truncate */ 2665 kve->kve_vn_mode = 2666 MAKEIMODE(va.va_type, va.va_mode); 2667 kve->kve_vn_size = va.va_size; 2668 kve->kve_vn_rdev = va.va_rdev; 2669 kve->kve_vn_rdev_freebsd11 = 2670 kve->kve_vn_rdev; /* truncate */ 2671 kve->kve_status = KF_ATTR_VALID; 2672 } 2673 vput(vp); 2674 } 2675 } else { 2676 kve->kve_type = KVME_TYPE_NONE; 2677 kve->kve_ref_count = 0; 2678 kve->kve_shadow_count = 0; 2679 } 2680 2681 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2682 if (freepath != NULL) 2683 free(freepath, M_TEMP); 2684 2685 /* Pack record size down */ 2686 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2687 kve->kve_structsize = 2688 offsetof(struct kinfo_vmentry, kve_path) + 2689 strlen(kve->kve_path) + 1; 2690 else 2691 kve->kve_structsize = sizeof(*kve); 2692 kve->kve_structsize = roundup(kve->kve_structsize, 2693 sizeof(uint64_t)); 2694 2695 /* Halt filling and truncate rather than exceeding maxlen */ 2696 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2697 error = 0; 2698 vm_map_lock_read(map); 2699 break; 2700 } else if (maxlen != -1) 2701 maxlen -= kve->kve_structsize; 2702 2703 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2704 error = ENOMEM; 2705 vm_map_lock_read(map); 2706 if (error != 0) 2707 break; 2708 if (last_timestamp != map->timestamp) { 2709 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2710 entry = tmp_entry; 2711 } 2712 } 2713 vm_map_unlock_read(map); 2714 vmspace_free(vm); 2715 PRELE(p); 2716 free(kve, M_TEMP); 2717 return (error); 2718 } 2719 2720 static int 2721 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2722 { 2723 struct proc *p; 2724 struct sbuf sb; 2725 int error, error2, *name; 2726 2727 name = (int *)arg1; 2728 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2729 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2730 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2731 if (error != 0) { 2732 sbuf_delete(&sb); 2733 return (error); 2734 } 2735 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2736 error2 = sbuf_finish(&sb); 2737 sbuf_delete(&sb); 2738 return (error != 0 ? error : error2); 2739 } 2740 2741 #if defined(STACK) || defined(DDB) 2742 static int 2743 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2744 { 2745 struct kinfo_kstack *kkstp; 2746 int error, i, *name, numthreads; 2747 lwpid_t *lwpidarray; 2748 struct thread *td; 2749 struct stack *st; 2750 struct sbuf sb; 2751 struct proc *p; 2752 2753 name = (int *)arg1; 2754 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2755 if (error != 0) 2756 return (error); 2757 2758 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2759 st = stack_create(M_WAITOK); 2760 2761 lwpidarray = NULL; 2762 PROC_LOCK(p); 2763 do { 2764 if (lwpidarray != NULL) { 2765 free(lwpidarray, M_TEMP); 2766 lwpidarray = NULL; 2767 } 2768 numthreads = p->p_numthreads; 2769 PROC_UNLOCK(p); 2770 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2771 M_WAITOK | M_ZERO); 2772 PROC_LOCK(p); 2773 } while (numthreads < p->p_numthreads); 2774 2775 /* 2776 * XXXRW: During the below loop, execve(2) and countless other sorts 2777 * of changes could have taken place. Should we check to see if the 2778 * vmspace has been replaced, or the like, in order to prevent 2779 * giving a snapshot that spans, say, execve(2), with some threads 2780 * before and some after? Among other things, the credentials could 2781 * have changed, in which case the right to extract debug info might 2782 * no longer be assured. 2783 */ 2784 i = 0; 2785 FOREACH_THREAD_IN_PROC(p, td) { 2786 KASSERT(i < numthreads, 2787 ("sysctl_kern_proc_kstack: numthreads")); 2788 lwpidarray[i] = td->td_tid; 2789 i++; 2790 } 2791 PROC_UNLOCK(p); 2792 numthreads = i; 2793 for (i = 0; i < numthreads; i++) { 2794 td = tdfind(lwpidarray[i], p->p_pid); 2795 if (td == NULL) { 2796 continue; 2797 } 2798 bzero(kkstp, sizeof(*kkstp)); 2799 (void)sbuf_new(&sb, kkstp->kkst_trace, 2800 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2801 thread_lock(td); 2802 kkstp->kkst_tid = td->td_tid; 2803 if (TD_IS_SWAPPED(td)) 2804 kkstp->kkst_state = KKST_STATE_SWAPPED; 2805 else if (stack_save_td(st, td) == 0) 2806 kkstp->kkst_state = KKST_STATE_STACKOK; 2807 else 2808 kkstp->kkst_state = KKST_STATE_RUNNING; 2809 thread_unlock(td); 2810 PROC_UNLOCK(p); 2811 stack_sbuf_print(&sb, st); 2812 sbuf_finish(&sb); 2813 sbuf_delete(&sb); 2814 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2815 if (error) 2816 break; 2817 } 2818 PRELE(p); 2819 if (lwpidarray != NULL) 2820 free(lwpidarray, M_TEMP); 2821 stack_destroy(st); 2822 free(kkstp, M_TEMP); 2823 return (error); 2824 } 2825 #endif 2826 2827 /* 2828 * This sysctl allows a process to retrieve the full list of groups from 2829 * itself or another process. 2830 */ 2831 static int 2832 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2833 { 2834 pid_t *pidp = (pid_t *)arg1; 2835 unsigned int arglen = arg2; 2836 struct proc *p; 2837 struct ucred *cred; 2838 int error; 2839 2840 if (arglen != 1) 2841 return (EINVAL); 2842 if (*pidp == -1) { /* -1 means this process */ 2843 p = req->td->td_proc; 2844 PROC_LOCK(p); 2845 } else { 2846 error = pget(*pidp, PGET_CANSEE, &p); 2847 if (error != 0) 2848 return (error); 2849 } 2850 2851 cred = crhold(p->p_ucred); 2852 PROC_UNLOCK(p); 2853 2854 error = SYSCTL_OUT(req, cred->cr_groups, 2855 cred->cr_ngroups * sizeof(gid_t)); 2856 crfree(cred); 2857 return (error); 2858 } 2859 2860 /* 2861 * This sysctl allows a process to retrieve or/and set the resource limit for 2862 * another process. 2863 */ 2864 static int 2865 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2866 { 2867 int *name = (int *)arg1; 2868 u_int namelen = arg2; 2869 struct rlimit rlim; 2870 struct proc *p; 2871 u_int which; 2872 int flags, error; 2873 2874 if (namelen != 2) 2875 return (EINVAL); 2876 2877 which = (u_int)name[1]; 2878 if (which >= RLIM_NLIMITS) 2879 return (EINVAL); 2880 2881 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2882 return (EINVAL); 2883 2884 flags = PGET_HOLD | PGET_NOTWEXIT; 2885 if (req->newptr != NULL) 2886 flags |= PGET_CANDEBUG; 2887 else 2888 flags |= PGET_CANSEE; 2889 error = pget((pid_t)name[0], flags, &p); 2890 if (error != 0) 2891 return (error); 2892 2893 /* 2894 * Retrieve limit. 2895 */ 2896 if (req->oldptr != NULL) { 2897 PROC_LOCK(p); 2898 lim_rlimit_proc(p, which, &rlim); 2899 PROC_UNLOCK(p); 2900 } 2901 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2902 if (error != 0) 2903 goto errout; 2904 2905 /* 2906 * Set limit. 2907 */ 2908 if (req->newptr != NULL) { 2909 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2910 if (error == 0) 2911 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2912 } 2913 2914 errout: 2915 PRELE(p); 2916 return (error); 2917 } 2918 2919 /* 2920 * This sysctl allows a process to retrieve ps_strings structure location of 2921 * another process. 2922 */ 2923 static int 2924 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2925 { 2926 int *name = (int *)arg1; 2927 u_int namelen = arg2; 2928 struct proc *p; 2929 vm_offset_t ps_strings; 2930 int error; 2931 #ifdef COMPAT_FREEBSD32 2932 uint32_t ps_strings32; 2933 #endif 2934 2935 if (namelen != 1) 2936 return (EINVAL); 2937 2938 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2939 if (error != 0) 2940 return (error); 2941 #ifdef COMPAT_FREEBSD32 2942 if ((req->flags & SCTL_MASK32) != 0) { 2943 /* 2944 * We return 0 if the 32 bit emulation request is for a 64 bit 2945 * process. 2946 */ 2947 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2948 PTROUT(p->p_sysent->sv_psstrings) : 0; 2949 PROC_UNLOCK(p); 2950 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2951 return (error); 2952 } 2953 #endif 2954 ps_strings = p->p_sysent->sv_psstrings; 2955 PROC_UNLOCK(p); 2956 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2957 return (error); 2958 } 2959 2960 /* 2961 * This sysctl allows a process to retrieve umask of another process. 2962 */ 2963 static int 2964 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2965 { 2966 int *name = (int *)arg1; 2967 u_int namelen = arg2; 2968 struct proc *p; 2969 int error; 2970 u_short fd_cmask; 2971 pid_t pid; 2972 2973 if (namelen != 1) 2974 return (EINVAL); 2975 2976 pid = (pid_t)name[0]; 2977 p = curproc; 2978 if (pid == p->p_pid || pid == 0) { 2979 fd_cmask = p->p_fd->fd_cmask; 2980 goto out; 2981 } 2982 2983 error = pget(pid, PGET_WANTREAD, &p); 2984 if (error != 0) 2985 return (error); 2986 2987 fd_cmask = p->p_fd->fd_cmask; 2988 PRELE(p); 2989 out: 2990 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2991 return (error); 2992 } 2993 2994 /* 2995 * This sysctl allows a process to set and retrieve binary osreldate of 2996 * another process. 2997 */ 2998 static int 2999 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 3000 { 3001 int *name = (int *)arg1; 3002 u_int namelen = arg2; 3003 struct proc *p; 3004 int flags, error, osrel; 3005 3006 if (namelen != 1) 3007 return (EINVAL); 3008 3009 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 3010 return (EINVAL); 3011 3012 flags = PGET_HOLD | PGET_NOTWEXIT; 3013 if (req->newptr != NULL) 3014 flags |= PGET_CANDEBUG; 3015 else 3016 flags |= PGET_CANSEE; 3017 error = pget((pid_t)name[0], flags, &p); 3018 if (error != 0) 3019 return (error); 3020 3021 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 3022 if (error != 0) 3023 goto errout; 3024 3025 if (req->newptr != NULL) { 3026 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 3027 if (error != 0) 3028 goto errout; 3029 if (osrel < 0) { 3030 error = EINVAL; 3031 goto errout; 3032 } 3033 p->p_osrel = osrel; 3034 } 3035 errout: 3036 PRELE(p); 3037 return (error); 3038 } 3039 3040 static int 3041 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 3042 { 3043 int *name = (int *)arg1; 3044 u_int namelen = arg2; 3045 struct proc *p; 3046 struct kinfo_sigtramp kst; 3047 const struct sysentvec *sv; 3048 int error; 3049 #ifdef COMPAT_FREEBSD32 3050 struct kinfo_sigtramp32 kst32; 3051 #endif 3052 3053 if (namelen != 1) 3054 return (EINVAL); 3055 3056 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3057 if (error != 0) 3058 return (error); 3059 sv = p->p_sysent; 3060 #ifdef COMPAT_FREEBSD32 3061 if ((req->flags & SCTL_MASK32) != 0) { 3062 bzero(&kst32, sizeof(kst32)); 3063 if (SV_PROC_FLAG(p, SV_ILP32)) { 3064 if (sv->sv_sigcode_base != 0) { 3065 kst32.ksigtramp_start = sv->sv_sigcode_base; 3066 kst32.ksigtramp_end = sv->sv_sigcode_base + 3067 *sv->sv_szsigcode; 3068 } else { 3069 kst32.ksigtramp_start = sv->sv_psstrings - 3070 *sv->sv_szsigcode; 3071 kst32.ksigtramp_end = sv->sv_psstrings; 3072 } 3073 } 3074 PROC_UNLOCK(p); 3075 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 3076 return (error); 3077 } 3078 #endif 3079 bzero(&kst, sizeof(kst)); 3080 if (sv->sv_sigcode_base != 0) { 3081 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 3082 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 3083 *sv->sv_szsigcode; 3084 } else { 3085 kst.ksigtramp_start = (char *)sv->sv_psstrings - 3086 *sv->sv_szsigcode; 3087 kst.ksigtramp_end = (char *)sv->sv_psstrings; 3088 } 3089 PROC_UNLOCK(p); 3090 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 3091 return (error); 3092 } 3093 3094 static int 3095 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 3096 { 3097 int *name = (int *)arg1; 3098 u_int namelen = arg2; 3099 pid_t pid; 3100 struct proc *p; 3101 struct thread *td1; 3102 uintptr_t addr; 3103 #ifdef COMPAT_FREEBSD32 3104 uint32_t addr32; 3105 #endif 3106 int error; 3107 3108 if (namelen != 1 || req->newptr != NULL) 3109 return (EINVAL); 3110 3111 pid = (pid_t)name[0]; 3112 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 3113 if (error != 0) 3114 return (error); 3115 3116 PROC_LOCK(p); 3117 #ifdef COMPAT_FREEBSD32 3118 if (SV_CURPROC_FLAG(SV_ILP32)) { 3119 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3120 error = EINVAL; 3121 goto errlocked; 3122 } 3123 } 3124 #endif 3125 if (pid <= PID_MAX) { 3126 td1 = FIRST_THREAD_IN_PROC(p); 3127 } else { 3128 FOREACH_THREAD_IN_PROC(p, td1) { 3129 if (td1->td_tid == pid) 3130 break; 3131 } 3132 } 3133 if (td1 == NULL) { 3134 error = ESRCH; 3135 goto errlocked; 3136 } 3137 /* 3138 * The access to the private thread flags. It is fine as far 3139 * as no out-of-thin-air values are read from td_pflags, and 3140 * usermode read of the td_sigblock_ptr is racy inherently, 3141 * since target process might have already changed it 3142 * meantime. 3143 */ 3144 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3145 addr = (uintptr_t)td1->td_sigblock_ptr; 3146 else 3147 error = ENOTTY; 3148 3149 errlocked: 3150 _PRELE(p); 3151 PROC_UNLOCK(p); 3152 if (error != 0) 3153 return (error); 3154 3155 #ifdef COMPAT_FREEBSD32 3156 if (SV_CURPROC_FLAG(SV_ILP32)) { 3157 addr32 = addr; 3158 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3159 } else 3160 #endif 3161 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3162 return (error); 3163 } 3164 3165 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3166 "Process table"); 3167 3168 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3169 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3170 "Return entire process table"); 3171 3172 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3173 sysctl_kern_proc, "Process table"); 3174 3175 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3176 sysctl_kern_proc, "Process table"); 3177 3178 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3179 sysctl_kern_proc, "Process table"); 3180 3181 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3182 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3183 3184 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3185 sysctl_kern_proc, "Process table"); 3186 3187 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3188 sysctl_kern_proc, "Process table"); 3189 3190 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3191 sysctl_kern_proc, "Process table"); 3192 3193 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3194 sysctl_kern_proc, "Process table"); 3195 3196 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3197 sysctl_kern_proc, "Return process table, no threads"); 3198 3199 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3200 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3201 sysctl_kern_proc_args, "Process argument list"); 3202 3203 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3204 sysctl_kern_proc_env, "Process environment"); 3205 3206 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3207 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3208 3209 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3210 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3211 3212 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3213 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3214 "Process syscall vector name (ABI type)"); 3215 3216 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3217 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3218 3219 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3220 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3221 3222 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3223 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3224 3225 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3226 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3227 3228 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3229 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3230 3231 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3232 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3233 3234 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3235 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3236 3237 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3238 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3239 3240 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3241 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3242 "Return process table, no threads"); 3243 3244 #ifdef COMPAT_FREEBSD7 3245 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3246 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3247 #endif 3248 3249 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3250 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3251 3252 #if defined(STACK) || defined(DDB) 3253 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3254 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3255 #endif 3256 3257 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3258 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3259 3260 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3261 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3262 "Process resource limits"); 3263 3264 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3265 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3266 "Process ps_strings location"); 3267 3268 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3269 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3270 3271 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3272 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3273 "Process binary osreldate"); 3274 3275 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3276 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3277 "Process signal trampoline location"); 3278 3279 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3280 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3281 "Thread sigfastblock address"); 3282 3283 int allproc_gen; 3284 3285 /* 3286 * stop_all_proc() purpose is to stop all process which have usermode, 3287 * except current process for obvious reasons. This makes it somewhat 3288 * unreliable when invoked from multithreaded process. The service 3289 * must not be user-callable anyway. 3290 */ 3291 void 3292 stop_all_proc(void) 3293 { 3294 struct proc *cp, *p; 3295 int r, gen; 3296 bool restart, seen_stopped, seen_exiting, stopped_some; 3297 3298 cp = curproc; 3299 allproc_loop: 3300 sx_xlock(&allproc_lock); 3301 gen = allproc_gen; 3302 seen_exiting = seen_stopped = stopped_some = restart = false; 3303 LIST_REMOVE(cp, p_list); 3304 LIST_INSERT_HEAD(&allproc, cp, p_list); 3305 for (;;) { 3306 p = LIST_NEXT(cp, p_list); 3307 if (p == NULL) 3308 break; 3309 LIST_REMOVE(cp, p_list); 3310 LIST_INSERT_AFTER(p, cp, p_list); 3311 PROC_LOCK(p); 3312 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3313 PROC_UNLOCK(p); 3314 continue; 3315 } 3316 if ((p->p_flag & P_WEXIT) != 0) { 3317 seen_exiting = true; 3318 PROC_UNLOCK(p); 3319 continue; 3320 } 3321 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3322 /* 3323 * Stopped processes are tolerated when there 3324 * are no other processes which might continue 3325 * them. P_STOPPED_SINGLE but not 3326 * P_TOTAL_STOP process still has at least one 3327 * thread running. 3328 */ 3329 seen_stopped = true; 3330 PROC_UNLOCK(p); 3331 continue; 3332 } 3333 sx_xunlock(&allproc_lock); 3334 _PHOLD(p); 3335 r = thread_single(p, SINGLE_ALLPROC); 3336 if (r != 0) 3337 restart = true; 3338 else 3339 stopped_some = true; 3340 _PRELE(p); 3341 PROC_UNLOCK(p); 3342 sx_xlock(&allproc_lock); 3343 } 3344 /* Catch forked children we did not see in iteration. */ 3345 if (gen != allproc_gen) 3346 restart = true; 3347 sx_xunlock(&allproc_lock); 3348 if (restart || stopped_some || seen_exiting || seen_stopped) { 3349 kern_yield(PRI_USER); 3350 goto allproc_loop; 3351 } 3352 } 3353 3354 void 3355 resume_all_proc(void) 3356 { 3357 struct proc *cp, *p; 3358 3359 cp = curproc; 3360 sx_xlock(&allproc_lock); 3361 again: 3362 LIST_REMOVE(cp, p_list); 3363 LIST_INSERT_HEAD(&allproc, cp, p_list); 3364 for (;;) { 3365 p = LIST_NEXT(cp, p_list); 3366 if (p == NULL) 3367 break; 3368 LIST_REMOVE(cp, p_list); 3369 LIST_INSERT_AFTER(p, cp, p_list); 3370 PROC_LOCK(p); 3371 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3372 sx_xunlock(&allproc_lock); 3373 _PHOLD(p); 3374 thread_single_end(p, SINGLE_ALLPROC); 3375 _PRELE(p); 3376 PROC_UNLOCK(p); 3377 sx_xlock(&allproc_lock); 3378 } else { 3379 PROC_UNLOCK(p); 3380 } 3381 } 3382 /* Did the loop above missed any stopped process ? */ 3383 FOREACH_PROC_IN_SYSTEM(p) { 3384 /* No need for proc lock. */ 3385 if ((p->p_flag & P_TOTAL_STOP) != 0) 3386 goto again; 3387 } 3388 sx_xunlock(&allproc_lock); 3389 } 3390 3391 /* #define TOTAL_STOP_DEBUG 1 */ 3392 #ifdef TOTAL_STOP_DEBUG 3393 volatile static int ap_resume; 3394 #include <sys/mount.h> 3395 3396 static int 3397 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3398 { 3399 int error, val; 3400 3401 val = 0; 3402 ap_resume = 0; 3403 error = sysctl_handle_int(oidp, &val, 0, req); 3404 if (error != 0 || req->newptr == NULL) 3405 return (error); 3406 if (val != 0) { 3407 stop_all_proc(); 3408 syncer_suspend(); 3409 while (ap_resume == 0) 3410 ; 3411 syncer_resume(); 3412 resume_all_proc(); 3413 } 3414 return (0); 3415 } 3416 3417 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3418 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3419 sysctl_debug_stop_all_proc, "I", 3420 ""); 3421 #endif 3422