1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_compat.h" 38 #include "opt_ddb.h" 39 #include "opt_ktrace.h" 40 #include "opt_kstack_pages.h" 41 #include "opt_stack.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/elf.h> 46 #include <sys/eventhandler.h> 47 #include <sys/exec.h> 48 #include <sys/jail.h> 49 #include <sys/kernel.h> 50 #include <sys/limits.h> 51 #include <sys/lock.h> 52 #include <sys/loginclass.h> 53 #include <sys/malloc.h> 54 #include <sys/mman.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/smp.h> 66 #include <sys/stack.h> 67 #include <sys/stat.h> 68 #include <sys/sysctl.h> 69 #include <sys/filedesc.h> 70 #include <sys/tty.h> 71 #include <sys/signalvar.h> 72 #include <sys/sdt.h> 73 #include <sys/sx.h> 74 #include <sys/user.h> 75 #include <sys/vnode.h> 76 #include <sys/wait.h> 77 78 #ifdef DDB 79 #include <ddb/ddb.h> 80 #endif 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/vm_extern.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #ifdef COMPAT_FREEBSD32 92 #include <compat/freebsd32/freebsd32.h> 93 #include <compat/freebsd32/freebsd32_util.h> 94 #endif 95 96 SDT_PROVIDER_DEFINE(proc); 97 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 100 "int"); 101 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 102 "struct thread *"); 103 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 104 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 105 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 106 107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 108 MALLOC_DEFINE(M_SESSION, "session", "session header"); 109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 111 112 static void doenterpgrp(struct proc *, struct pgrp *); 113 static void orphanpg(struct pgrp *pg); 114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 117 int preferthread); 118 static void pgadjustjobc(struct pgrp *pgrp, int entering); 119 static void pgdelete(struct pgrp *); 120 static int proc_ctor(void *mem, int size, void *arg, int flags); 121 static void proc_dtor(void *mem, int size, void *arg); 122 static int proc_init(void *mem, int size, int flags); 123 static void proc_fini(void *mem, int size); 124 static void pargs_free(struct pargs *pa); 125 static struct proc *zpfind_locked(pid_t pid); 126 127 /* 128 * Other process lists 129 */ 130 struct pidhashhead *pidhashtbl; 131 u_long pidhash; 132 struct pgrphashhead *pgrphashtbl; 133 u_long pgrphash; 134 struct proclist allproc; 135 struct proclist zombproc; 136 struct sx __exclusive_cache_line allproc_lock; 137 struct sx __exclusive_cache_line proctree_lock; 138 struct mtx __exclusive_cache_line ppeers_lock; 139 uma_zone_t proc_zone; 140 141 /* 142 * The offset of various fields in struct proc and struct thread. 143 * These are used by kernel debuggers to enumerate kernel threads and 144 * processes. 145 */ 146 const int proc_off_p_pid = offsetof(struct proc, p_pid); 147 const int proc_off_p_comm = offsetof(struct proc, p_comm); 148 const int proc_off_p_list = offsetof(struct proc, p_list); 149 const int proc_off_p_threads = offsetof(struct proc, p_threads); 150 const int thread_off_td_tid = offsetof(struct thread, td_tid); 151 const int thread_off_td_name = offsetof(struct thread, td_name); 152 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 153 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 154 const int thread_off_td_plist = offsetof(struct thread, td_plist); 155 156 EVENTHANDLER_LIST_DEFINE(process_ctor); 157 EVENTHANDLER_LIST_DEFINE(process_dtor); 158 EVENTHANDLER_LIST_DEFINE(process_init); 159 EVENTHANDLER_LIST_DEFINE(process_fini); 160 EVENTHANDLER_LIST_DEFINE(process_exit); 161 EVENTHANDLER_LIST_DEFINE(process_fork); 162 EVENTHANDLER_LIST_DEFINE(process_exec); 163 164 EVENTHANDLER_LIST_DECLARE(thread_ctor); 165 EVENTHANDLER_LIST_DECLARE(thread_dtor); 166 167 int kstack_pages = KSTACK_PAGES; 168 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 169 "Kernel stack size in pages"); 170 static int vmmap_skip_res_cnt = 0; 171 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 172 &vmmap_skip_res_cnt, 0, 173 "Skip calculation of the pages resident count in kern.proc.vmmap"); 174 175 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 176 #ifdef COMPAT_FREEBSD32 177 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 178 #endif 179 180 /* 181 * Initialize global process hashing structures. 182 */ 183 void 184 procinit(void) 185 { 186 187 sx_init(&allproc_lock, "allproc"); 188 sx_init(&proctree_lock, "proctree"); 189 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 190 LIST_INIT(&allproc); 191 LIST_INIT(&zombproc); 192 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 193 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 194 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 195 proc_ctor, proc_dtor, proc_init, proc_fini, 196 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 197 uihashinit(); 198 } 199 200 /* 201 * Prepare a proc for use. 202 */ 203 static int 204 proc_ctor(void *mem, int size, void *arg, int flags) 205 { 206 struct proc *p; 207 struct thread *td; 208 209 p = (struct proc *)mem; 210 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 211 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 212 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 213 td = FIRST_THREAD_IN_PROC(p); 214 if (td != NULL) { 215 /* Make sure all thread constructors are executed */ 216 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 217 } 218 return (0); 219 } 220 221 /* 222 * Reclaim a proc after use. 223 */ 224 static void 225 proc_dtor(void *mem, int size, void *arg) 226 { 227 struct proc *p; 228 struct thread *td; 229 230 /* INVARIANTS checks go here */ 231 p = (struct proc *)mem; 232 td = FIRST_THREAD_IN_PROC(p); 233 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 234 if (td != NULL) { 235 #ifdef INVARIANTS 236 KASSERT((p->p_numthreads == 1), 237 ("bad number of threads in exiting process")); 238 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 239 #endif 240 /* Free all OSD associated to this thread. */ 241 osd_thread_exit(td); 242 td_softdep_cleanup(td); 243 MPASS(td->td_su == NULL); 244 245 /* Make sure all thread destructors are executed */ 246 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 247 } 248 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 249 if (p->p_ksi != NULL) 250 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 251 SDT_PROBE3(proc, , dtor, return, p, size, arg); 252 } 253 254 /* 255 * Initialize type-stable parts of a proc (when newly created). 256 */ 257 static int 258 proc_init(void *mem, int size, int flags) 259 { 260 struct proc *p; 261 262 p = (struct proc *)mem; 263 SDT_PROBE3(proc, , init, entry, p, size, flags); 264 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 265 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 266 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 267 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 268 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 269 cv_init(&p->p_pwait, "ppwait"); 270 cv_init(&p->p_dbgwait, "dbgwait"); 271 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 272 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 273 p->p_stats = pstats_alloc(); 274 p->p_pgrp = NULL; 275 SDT_PROBE3(proc, , init, return, p, size, flags); 276 return (0); 277 } 278 279 /* 280 * UMA should ensure that this function is never called. 281 * Freeing a proc structure would violate type stability. 282 */ 283 static void 284 proc_fini(void *mem, int size) 285 { 286 #ifdef notnow 287 struct proc *p; 288 289 p = (struct proc *)mem; 290 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 291 pstats_free(p->p_stats); 292 thread_free(FIRST_THREAD_IN_PROC(p)); 293 mtx_destroy(&p->p_mtx); 294 if (p->p_ksi != NULL) 295 ksiginfo_free(p->p_ksi); 296 #else 297 panic("proc reclaimed"); 298 #endif 299 } 300 301 /* 302 * Is p an inferior of the current process? 303 */ 304 int 305 inferior(struct proc *p) 306 { 307 308 sx_assert(&proctree_lock, SX_LOCKED); 309 PROC_LOCK_ASSERT(p, MA_OWNED); 310 for (; p != curproc; p = proc_realparent(p)) { 311 if (p->p_pid == 0) 312 return (0); 313 } 314 return (1); 315 } 316 317 struct proc * 318 pfind_locked(pid_t pid) 319 { 320 struct proc *p; 321 322 sx_assert(&allproc_lock, SX_LOCKED); 323 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 324 if (p->p_pid == pid) { 325 PROC_LOCK(p); 326 if (p->p_state == PRS_NEW) { 327 PROC_UNLOCK(p); 328 p = NULL; 329 } 330 break; 331 } 332 } 333 return (p); 334 } 335 336 /* 337 * Locate a process by number; return only "live" processes -- i.e., neither 338 * zombies nor newly born but incompletely initialized processes. By not 339 * returning processes in the PRS_NEW state, we allow callers to avoid 340 * testing for that condition to avoid dereferencing p_ucred, et al. 341 */ 342 struct proc * 343 pfind(pid_t pid) 344 { 345 struct proc *p; 346 347 p = curproc; 348 if (p->p_pid == pid) { 349 PROC_LOCK(p); 350 return (p); 351 } 352 sx_slock(&allproc_lock); 353 p = pfind_locked(pid); 354 sx_sunlock(&allproc_lock); 355 return (p); 356 } 357 358 /* 359 * Same as pfind but allow zombies. 360 */ 361 struct proc * 362 pfind_any(pid_t pid) 363 { 364 struct proc *p; 365 366 sx_slock(&allproc_lock); 367 p = pfind_locked(pid); 368 if (p == NULL) 369 p = zpfind_locked(pid); 370 sx_sunlock(&allproc_lock); 371 372 return (p); 373 } 374 375 static struct proc * 376 pfind_tid_locked(pid_t tid) 377 { 378 struct proc *p; 379 struct thread *td; 380 381 sx_assert(&allproc_lock, SX_LOCKED); 382 FOREACH_PROC_IN_SYSTEM(p) { 383 PROC_LOCK(p); 384 if (p->p_state == PRS_NEW) { 385 PROC_UNLOCK(p); 386 continue; 387 } 388 FOREACH_THREAD_IN_PROC(p, td) { 389 if (td->td_tid == tid) 390 goto found; 391 } 392 PROC_UNLOCK(p); 393 } 394 found: 395 return (p); 396 } 397 398 /* 399 * Locate a process group by number. 400 * The caller must hold proctree_lock. 401 */ 402 struct pgrp * 403 pgfind(pid_t pgid) 404 { 405 struct pgrp *pgrp; 406 407 sx_assert(&proctree_lock, SX_LOCKED); 408 409 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 410 if (pgrp->pg_id == pgid) { 411 PGRP_LOCK(pgrp); 412 return (pgrp); 413 } 414 } 415 return (NULL); 416 } 417 418 /* 419 * Locate process and do additional manipulations, depending on flags. 420 */ 421 int 422 pget(pid_t pid, int flags, struct proc **pp) 423 { 424 struct proc *p; 425 int error; 426 427 p = curproc; 428 if (p->p_pid == pid) { 429 PROC_LOCK(p); 430 } else { 431 sx_slock(&allproc_lock); 432 if (pid <= PID_MAX) { 433 p = pfind_locked(pid); 434 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 435 p = zpfind_locked(pid); 436 } else if ((flags & PGET_NOTID) == 0) { 437 p = pfind_tid_locked(pid); 438 } else { 439 p = NULL; 440 } 441 sx_sunlock(&allproc_lock); 442 if (p == NULL) 443 return (ESRCH); 444 if ((flags & PGET_CANSEE) != 0) { 445 error = p_cansee(curthread, p); 446 if (error != 0) 447 goto errout; 448 } 449 } 450 if ((flags & PGET_CANDEBUG) != 0) { 451 error = p_candebug(curthread, p); 452 if (error != 0) 453 goto errout; 454 } 455 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 456 error = EPERM; 457 goto errout; 458 } 459 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 460 error = ESRCH; 461 goto errout; 462 } 463 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 464 /* 465 * XXXRW: Not clear ESRCH is the right error during proc 466 * execve(). 467 */ 468 error = ESRCH; 469 goto errout; 470 } 471 if ((flags & PGET_HOLD) != 0) { 472 _PHOLD(p); 473 PROC_UNLOCK(p); 474 } 475 *pp = p; 476 return (0); 477 errout: 478 PROC_UNLOCK(p); 479 return (error); 480 } 481 482 /* 483 * Create a new process group. 484 * pgid must be equal to the pid of p. 485 * Begin a new session if required. 486 */ 487 int 488 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 489 { 490 491 sx_assert(&proctree_lock, SX_XLOCKED); 492 493 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 494 KASSERT(p->p_pid == pgid, 495 ("enterpgrp: new pgrp and pid != pgid")); 496 KASSERT(pgfind(pgid) == NULL, 497 ("enterpgrp: pgrp with pgid exists")); 498 KASSERT(!SESS_LEADER(p), 499 ("enterpgrp: session leader attempted setpgrp")); 500 501 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 502 503 if (sess != NULL) { 504 /* 505 * new session 506 */ 507 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 508 PROC_LOCK(p); 509 p->p_flag &= ~P_CONTROLT; 510 PROC_UNLOCK(p); 511 PGRP_LOCK(pgrp); 512 sess->s_leader = p; 513 sess->s_sid = p->p_pid; 514 refcount_init(&sess->s_count, 1); 515 sess->s_ttyvp = NULL; 516 sess->s_ttydp = NULL; 517 sess->s_ttyp = NULL; 518 bcopy(p->p_session->s_login, sess->s_login, 519 sizeof(sess->s_login)); 520 pgrp->pg_session = sess; 521 KASSERT(p == curproc, 522 ("enterpgrp: mksession and p != curproc")); 523 } else { 524 pgrp->pg_session = p->p_session; 525 sess_hold(pgrp->pg_session); 526 PGRP_LOCK(pgrp); 527 } 528 pgrp->pg_id = pgid; 529 LIST_INIT(&pgrp->pg_members); 530 531 /* 532 * As we have an exclusive lock of proctree_lock, 533 * this should not deadlock. 534 */ 535 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 536 pgrp->pg_jobc = 0; 537 SLIST_INIT(&pgrp->pg_sigiolst); 538 PGRP_UNLOCK(pgrp); 539 540 doenterpgrp(p, pgrp); 541 542 return (0); 543 } 544 545 /* 546 * Move p to an existing process group 547 */ 548 int 549 enterthispgrp(struct proc *p, struct pgrp *pgrp) 550 { 551 552 sx_assert(&proctree_lock, SX_XLOCKED); 553 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 554 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 555 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 556 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 557 KASSERT(pgrp->pg_session == p->p_session, 558 ("%s: pgrp's session %p, p->p_session %p.\n", 559 __func__, 560 pgrp->pg_session, 561 p->p_session)); 562 KASSERT(pgrp != p->p_pgrp, 563 ("%s: p belongs to pgrp.", __func__)); 564 565 doenterpgrp(p, pgrp); 566 567 return (0); 568 } 569 570 /* 571 * Move p to a process group 572 */ 573 static void 574 doenterpgrp(struct proc *p, struct pgrp *pgrp) 575 { 576 struct pgrp *savepgrp; 577 578 sx_assert(&proctree_lock, SX_XLOCKED); 579 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 580 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 581 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 582 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 583 584 savepgrp = p->p_pgrp; 585 586 /* 587 * Adjust eligibility of affected pgrps to participate in job control. 588 * Increment eligibility counts before decrementing, otherwise we 589 * could reach 0 spuriously during the first call. 590 */ 591 fixjobc(p, pgrp, 1); 592 fixjobc(p, p->p_pgrp, 0); 593 594 PGRP_LOCK(pgrp); 595 PGRP_LOCK(savepgrp); 596 PROC_LOCK(p); 597 LIST_REMOVE(p, p_pglist); 598 p->p_pgrp = pgrp; 599 PROC_UNLOCK(p); 600 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 601 PGRP_UNLOCK(savepgrp); 602 PGRP_UNLOCK(pgrp); 603 if (LIST_EMPTY(&savepgrp->pg_members)) 604 pgdelete(savepgrp); 605 } 606 607 /* 608 * remove process from process group 609 */ 610 int 611 leavepgrp(struct proc *p) 612 { 613 struct pgrp *savepgrp; 614 615 sx_assert(&proctree_lock, SX_XLOCKED); 616 savepgrp = p->p_pgrp; 617 PGRP_LOCK(savepgrp); 618 PROC_LOCK(p); 619 LIST_REMOVE(p, p_pglist); 620 p->p_pgrp = NULL; 621 PROC_UNLOCK(p); 622 PGRP_UNLOCK(savepgrp); 623 if (LIST_EMPTY(&savepgrp->pg_members)) 624 pgdelete(savepgrp); 625 return (0); 626 } 627 628 /* 629 * delete a process group 630 */ 631 static void 632 pgdelete(struct pgrp *pgrp) 633 { 634 struct session *savesess; 635 struct tty *tp; 636 637 sx_assert(&proctree_lock, SX_XLOCKED); 638 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 639 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 640 641 /* 642 * Reset any sigio structures pointing to us as a result of 643 * F_SETOWN with our pgid. 644 */ 645 funsetownlst(&pgrp->pg_sigiolst); 646 647 PGRP_LOCK(pgrp); 648 tp = pgrp->pg_session->s_ttyp; 649 LIST_REMOVE(pgrp, pg_hash); 650 savesess = pgrp->pg_session; 651 PGRP_UNLOCK(pgrp); 652 653 /* Remove the reference to the pgrp before deallocating it. */ 654 if (tp != NULL) { 655 tty_lock(tp); 656 tty_rel_pgrp(tp, pgrp); 657 } 658 659 mtx_destroy(&pgrp->pg_mtx); 660 free(pgrp, M_PGRP); 661 sess_release(savesess); 662 } 663 664 static void 665 pgadjustjobc(struct pgrp *pgrp, int entering) 666 { 667 668 PGRP_LOCK(pgrp); 669 if (entering) 670 pgrp->pg_jobc++; 671 else { 672 --pgrp->pg_jobc; 673 if (pgrp->pg_jobc == 0) 674 orphanpg(pgrp); 675 } 676 PGRP_UNLOCK(pgrp); 677 } 678 679 /* 680 * Adjust pgrp jobc counters when specified process changes process group. 681 * We count the number of processes in each process group that "qualify" 682 * the group for terminal job control (those with a parent in a different 683 * process group of the same session). If that count reaches zero, the 684 * process group becomes orphaned. Check both the specified process' 685 * process group and that of its children. 686 * entering == 0 => p is leaving specified group. 687 * entering == 1 => p is entering specified group. 688 */ 689 void 690 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 691 { 692 struct pgrp *hispgrp; 693 struct session *mysession; 694 struct proc *q; 695 696 sx_assert(&proctree_lock, SX_LOCKED); 697 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 698 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 699 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 700 701 /* 702 * Check p's parent to see whether p qualifies its own process 703 * group; if so, adjust count for p's process group. 704 */ 705 mysession = pgrp->pg_session; 706 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 707 hispgrp->pg_session == mysession) 708 pgadjustjobc(pgrp, entering); 709 710 /* 711 * Check this process' children to see whether they qualify 712 * their process groups; if so, adjust counts for children's 713 * process groups. 714 */ 715 LIST_FOREACH(q, &p->p_children, p_sibling) { 716 hispgrp = q->p_pgrp; 717 if (hispgrp == pgrp || 718 hispgrp->pg_session != mysession) 719 continue; 720 if (q->p_state == PRS_ZOMBIE) 721 continue; 722 pgadjustjobc(hispgrp, entering); 723 } 724 } 725 726 void 727 killjobc(void) 728 { 729 struct session *sp; 730 struct tty *tp; 731 struct proc *p; 732 struct vnode *ttyvp; 733 734 p = curproc; 735 MPASS(p->p_flag & P_WEXIT); 736 /* 737 * Do a quick check to see if there is anything to do with the 738 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 739 */ 740 PROC_LOCK(p); 741 if (!SESS_LEADER(p) && 742 (p->p_pgrp == p->p_pptr->p_pgrp) && 743 LIST_EMPTY(&p->p_children)) { 744 PROC_UNLOCK(p); 745 return; 746 } 747 PROC_UNLOCK(p); 748 749 sx_xlock(&proctree_lock); 750 if (SESS_LEADER(p)) { 751 sp = p->p_session; 752 753 /* 754 * s_ttyp is not zero'd; we use this to indicate that 755 * the session once had a controlling terminal. (for 756 * logging and informational purposes) 757 */ 758 SESS_LOCK(sp); 759 ttyvp = sp->s_ttyvp; 760 tp = sp->s_ttyp; 761 sp->s_ttyvp = NULL; 762 sp->s_ttydp = NULL; 763 sp->s_leader = NULL; 764 SESS_UNLOCK(sp); 765 766 /* 767 * Signal foreground pgrp and revoke access to 768 * controlling terminal if it has not been revoked 769 * already. 770 * 771 * Because the TTY may have been revoked in the mean 772 * time and could already have a new session associated 773 * with it, make sure we don't send a SIGHUP to a 774 * foreground process group that does not belong to this 775 * session. 776 */ 777 778 if (tp != NULL) { 779 tty_lock(tp); 780 if (tp->t_session == sp) 781 tty_signal_pgrp(tp, SIGHUP); 782 tty_unlock(tp); 783 } 784 785 if (ttyvp != NULL) { 786 sx_xunlock(&proctree_lock); 787 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 788 VOP_REVOKE(ttyvp, REVOKEALL); 789 VOP_UNLOCK(ttyvp, 0); 790 } 791 vrele(ttyvp); 792 sx_xlock(&proctree_lock); 793 } 794 } 795 fixjobc(p, p->p_pgrp, 0); 796 sx_xunlock(&proctree_lock); 797 } 798 799 /* 800 * A process group has become orphaned; 801 * if there are any stopped processes in the group, 802 * hang-up all process in that group. 803 */ 804 static void 805 orphanpg(struct pgrp *pg) 806 { 807 struct proc *p; 808 809 PGRP_LOCK_ASSERT(pg, MA_OWNED); 810 811 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 812 PROC_LOCK(p); 813 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 814 PROC_UNLOCK(p); 815 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 816 PROC_LOCK(p); 817 kern_psignal(p, SIGHUP); 818 kern_psignal(p, SIGCONT); 819 PROC_UNLOCK(p); 820 } 821 return; 822 } 823 PROC_UNLOCK(p); 824 } 825 } 826 827 void 828 sess_hold(struct session *s) 829 { 830 831 refcount_acquire(&s->s_count); 832 } 833 834 void 835 sess_release(struct session *s) 836 { 837 838 if (refcount_release(&s->s_count)) { 839 if (s->s_ttyp != NULL) { 840 tty_lock(s->s_ttyp); 841 tty_rel_sess(s->s_ttyp, s); 842 } 843 mtx_destroy(&s->s_mtx); 844 free(s, M_SESSION); 845 } 846 } 847 848 #ifdef DDB 849 850 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 851 { 852 struct pgrp *pgrp; 853 struct proc *p; 854 int i; 855 856 for (i = 0; i <= pgrphash; i++) { 857 if (!LIST_EMPTY(&pgrphashtbl[i])) { 858 printf("\tindx %d\n", i); 859 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 860 printf( 861 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 862 (void *)pgrp, (long)pgrp->pg_id, 863 (void *)pgrp->pg_session, 864 pgrp->pg_session->s_count, 865 (void *)LIST_FIRST(&pgrp->pg_members)); 866 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 867 printf("\t\tpid %ld addr %p pgrp %p\n", 868 (long)p->p_pid, (void *)p, 869 (void *)p->p_pgrp); 870 } 871 } 872 } 873 } 874 } 875 #endif /* DDB */ 876 877 /* 878 * Calculate the kinfo_proc members which contain process-wide 879 * informations. 880 * Must be called with the target process locked. 881 */ 882 static void 883 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 884 { 885 struct thread *td; 886 887 PROC_LOCK_ASSERT(p, MA_OWNED); 888 889 kp->ki_estcpu = 0; 890 kp->ki_pctcpu = 0; 891 FOREACH_THREAD_IN_PROC(p, td) { 892 thread_lock(td); 893 kp->ki_pctcpu += sched_pctcpu(td); 894 kp->ki_estcpu += sched_estcpu(td); 895 thread_unlock(td); 896 } 897 } 898 899 /* 900 * Clear kinfo_proc and fill in any information that is common 901 * to all threads in the process. 902 * Must be called with the target process locked. 903 */ 904 static void 905 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 906 { 907 struct thread *td0; 908 struct tty *tp; 909 struct session *sp; 910 struct ucred *cred; 911 struct sigacts *ps; 912 struct timeval boottime; 913 914 /* For proc_realparent. */ 915 sx_assert(&proctree_lock, SX_LOCKED); 916 PROC_LOCK_ASSERT(p, MA_OWNED); 917 bzero(kp, sizeof(*kp)); 918 919 kp->ki_structsize = sizeof(*kp); 920 kp->ki_paddr = p; 921 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 922 kp->ki_args = p->p_args; 923 kp->ki_textvp = p->p_textvp; 924 #ifdef KTRACE 925 kp->ki_tracep = p->p_tracevp; 926 kp->ki_traceflag = p->p_traceflag; 927 #endif 928 kp->ki_fd = p->p_fd; 929 kp->ki_vmspace = p->p_vmspace; 930 kp->ki_flag = p->p_flag; 931 kp->ki_flag2 = p->p_flag2; 932 cred = p->p_ucred; 933 if (cred) { 934 kp->ki_uid = cred->cr_uid; 935 kp->ki_ruid = cred->cr_ruid; 936 kp->ki_svuid = cred->cr_svuid; 937 kp->ki_cr_flags = 0; 938 if (cred->cr_flags & CRED_FLAG_CAPMODE) 939 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 940 /* XXX bde doesn't like KI_NGROUPS */ 941 if (cred->cr_ngroups > KI_NGROUPS) { 942 kp->ki_ngroups = KI_NGROUPS; 943 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 944 } else 945 kp->ki_ngroups = cred->cr_ngroups; 946 bcopy(cred->cr_groups, kp->ki_groups, 947 kp->ki_ngroups * sizeof(gid_t)); 948 kp->ki_rgid = cred->cr_rgid; 949 kp->ki_svgid = cred->cr_svgid; 950 /* If jailed(cred), emulate the old P_JAILED flag. */ 951 if (jailed(cred)) { 952 kp->ki_flag |= P_JAILED; 953 /* If inside the jail, use 0 as a jail ID. */ 954 if (cred->cr_prison != curthread->td_ucred->cr_prison) 955 kp->ki_jid = cred->cr_prison->pr_id; 956 } 957 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 958 sizeof(kp->ki_loginclass)); 959 } 960 ps = p->p_sigacts; 961 if (ps) { 962 mtx_lock(&ps->ps_mtx); 963 kp->ki_sigignore = ps->ps_sigignore; 964 kp->ki_sigcatch = ps->ps_sigcatch; 965 mtx_unlock(&ps->ps_mtx); 966 } 967 if (p->p_state != PRS_NEW && 968 p->p_state != PRS_ZOMBIE && 969 p->p_vmspace != NULL) { 970 struct vmspace *vm = p->p_vmspace; 971 972 kp->ki_size = vm->vm_map.size; 973 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 974 FOREACH_THREAD_IN_PROC(p, td0) { 975 if (!TD_IS_SWAPPED(td0)) 976 kp->ki_rssize += td0->td_kstack_pages; 977 } 978 kp->ki_swrss = vm->vm_swrss; 979 kp->ki_tsize = vm->vm_tsize; 980 kp->ki_dsize = vm->vm_dsize; 981 kp->ki_ssize = vm->vm_ssize; 982 } else if (p->p_state == PRS_ZOMBIE) 983 kp->ki_stat = SZOMB; 984 if (kp->ki_flag & P_INMEM) 985 kp->ki_sflag = PS_INMEM; 986 else 987 kp->ki_sflag = 0; 988 /* Calculate legacy swtime as seconds since 'swtick'. */ 989 kp->ki_swtime = (ticks - p->p_swtick) / hz; 990 kp->ki_pid = p->p_pid; 991 kp->ki_nice = p->p_nice; 992 kp->ki_fibnum = p->p_fibnum; 993 kp->ki_start = p->p_stats->p_start; 994 getboottime(&boottime); 995 timevaladd(&kp->ki_start, &boottime); 996 PROC_STATLOCK(p); 997 rufetch(p, &kp->ki_rusage); 998 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 999 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1000 PROC_STATUNLOCK(p); 1001 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1002 /* Some callers want child times in a single value. */ 1003 kp->ki_childtime = kp->ki_childstime; 1004 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1005 1006 FOREACH_THREAD_IN_PROC(p, td0) 1007 kp->ki_cow += td0->td_cow; 1008 1009 tp = NULL; 1010 if (p->p_pgrp) { 1011 kp->ki_pgid = p->p_pgrp->pg_id; 1012 kp->ki_jobc = p->p_pgrp->pg_jobc; 1013 sp = p->p_pgrp->pg_session; 1014 1015 if (sp != NULL) { 1016 kp->ki_sid = sp->s_sid; 1017 SESS_LOCK(sp); 1018 strlcpy(kp->ki_login, sp->s_login, 1019 sizeof(kp->ki_login)); 1020 if (sp->s_ttyvp) 1021 kp->ki_kiflag |= KI_CTTY; 1022 if (SESS_LEADER(p)) 1023 kp->ki_kiflag |= KI_SLEADER; 1024 /* XXX proctree_lock */ 1025 tp = sp->s_ttyp; 1026 SESS_UNLOCK(sp); 1027 } 1028 } 1029 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1030 kp->ki_tdev = tty_udev(tp); 1031 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1032 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1033 if (tp->t_session) 1034 kp->ki_tsid = tp->t_session->s_sid; 1035 } else { 1036 kp->ki_tdev = NODEV; 1037 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1038 } 1039 if (p->p_comm[0] != '\0') 1040 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1041 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1042 p->p_sysent->sv_name[0] != '\0') 1043 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1044 kp->ki_siglist = p->p_siglist; 1045 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1046 kp->ki_acflag = p->p_acflag; 1047 kp->ki_lock = p->p_lock; 1048 if (p->p_pptr) { 1049 kp->ki_ppid = proc_realparent(p)->p_pid; 1050 if (p->p_flag & P_TRACED) 1051 kp->ki_tracer = p->p_pptr->p_pid; 1052 } 1053 } 1054 1055 /* 1056 * Fill in information that is thread specific. Must be called with 1057 * target process locked. If 'preferthread' is set, overwrite certain 1058 * process-related fields that are maintained for both threads and 1059 * processes. 1060 */ 1061 static void 1062 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1063 { 1064 struct proc *p; 1065 1066 p = td->td_proc; 1067 kp->ki_tdaddr = td; 1068 PROC_LOCK_ASSERT(p, MA_OWNED); 1069 1070 if (preferthread) 1071 PROC_STATLOCK(p); 1072 thread_lock(td); 1073 if (td->td_wmesg != NULL) 1074 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1075 else 1076 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1077 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1078 sizeof(kp->ki_tdname)) { 1079 strlcpy(kp->ki_moretdname, 1080 td->td_name + sizeof(kp->ki_tdname) - 1, 1081 sizeof(kp->ki_moretdname)); 1082 } else { 1083 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1084 } 1085 if (TD_ON_LOCK(td)) { 1086 kp->ki_kiflag |= KI_LOCKBLOCK; 1087 strlcpy(kp->ki_lockname, td->td_lockname, 1088 sizeof(kp->ki_lockname)); 1089 } else { 1090 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1091 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1092 } 1093 1094 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1095 if (TD_ON_RUNQ(td) || 1096 TD_CAN_RUN(td) || 1097 TD_IS_RUNNING(td)) { 1098 kp->ki_stat = SRUN; 1099 } else if (P_SHOULDSTOP(p)) { 1100 kp->ki_stat = SSTOP; 1101 } else if (TD_IS_SLEEPING(td)) { 1102 kp->ki_stat = SSLEEP; 1103 } else if (TD_ON_LOCK(td)) { 1104 kp->ki_stat = SLOCK; 1105 } else { 1106 kp->ki_stat = SWAIT; 1107 } 1108 } else if (p->p_state == PRS_ZOMBIE) { 1109 kp->ki_stat = SZOMB; 1110 } else { 1111 kp->ki_stat = SIDL; 1112 } 1113 1114 /* Things in the thread */ 1115 kp->ki_wchan = td->td_wchan; 1116 kp->ki_pri.pri_level = td->td_priority; 1117 kp->ki_pri.pri_native = td->td_base_pri; 1118 1119 /* 1120 * Note: legacy fields; clamp at the old NOCPU value and/or 1121 * the maximum u_char CPU value. 1122 */ 1123 if (td->td_lastcpu == NOCPU) 1124 kp->ki_lastcpu_old = NOCPU_OLD; 1125 else if (td->td_lastcpu > MAXCPU_OLD) 1126 kp->ki_lastcpu_old = MAXCPU_OLD; 1127 else 1128 kp->ki_lastcpu_old = td->td_lastcpu; 1129 1130 if (td->td_oncpu == NOCPU) 1131 kp->ki_oncpu_old = NOCPU_OLD; 1132 else if (td->td_oncpu > MAXCPU_OLD) 1133 kp->ki_oncpu_old = MAXCPU_OLD; 1134 else 1135 kp->ki_oncpu_old = td->td_oncpu; 1136 1137 kp->ki_lastcpu = td->td_lastcpu; 1138 kp->ki_oncpu = td->td_oncpu; 1139 kp->ki_tdflags = td->td_flags; 1140 kp->ki_tid = td->td_tid; 1141 kp->ki_numthreads = p->p_numthreads; 1142 kp->ki_pcb = td->td_pcb; 1143 kp->ki_kstack = (void *)td->td_kstack; 1144 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1145 kp->ki_pri.pri_class = td->td_pri_class; 1146 kp->ki_pri.pri_user = td->td_user_pri; 1147 1148 if (preferthread) { 1149 rufetchtd(td, &kp->ki_rusage); 1150 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1151 kp->ki_pctcpu = sched_pctcpu(td); 1152 kp->ki_estcpu = sched_estcpu(td); 1153 kp->ki_cow = td->td_cow; 1154 } 1155 1156 /* We can't get this anymore but ps etc never used it anyway. */ 1157 kp->ki_rqindex = 0; 1158 1159 if (preferthread) 1160 kp->ki_siglist = td->td_siglist; 1161 kp->ki_sigmask = td->td_sigmask; 1162 thread_unlock(td); 1163 if (preferthread) 1164 PROC_STATUNLOCK(p); 1165 } 1166 1167 /* 1168 * Fill in a kinfo_proc structure for the specified process. 1169 * Must be called with the target process locked. 1170 */ 1171 void 1172 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1173 { 1174 1175 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1176 1177 fill_kinfo_proc_only(p, kp); 1178 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1179 fill_kinfo_aggregate(p, kp); 1180 } 1181 1182 struct pstats * 1183 pstats_alloc(void) 1184 { 1185 1186 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1187 } 1188 1189 /* 1190 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1191 */ 1192 void 1193 pstats_fork(struct pstats *src, struct pstats *dst) 1194 { 1195 1196 bzero(&dst->pstat_startzero, 1197 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1198 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1199 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1200 } 1201 1202 void 1203 pstats_free(struct pstats *ps) 1204 { 1205 1206 free(ps, M_SUBPROC); 1207 } 1208 1209 static struct proc * 1210 zpfind_locked(pid_t pid) 1211 { 1212 struct proc *p; 1213 1214 sx_assert(&allproc_lock, SX_LOCKED); 1215 LIST_FOREACH(p, &zombproc, p_list) { 1216 if (p->p_pid == pid) { 1217 PROC_LOCK(p); 1218 break; 1219 } 1220 } 1221 return (p); 1222 } 1223 1224 /* 1225 * Locate a zombie process by number 1226 */ 1227 struct proc * 1228 zpfind(pid_t pid) 1229 { 1230 struct proc *p; 1231 1232 sx_slock(&allproc_lock); 1233 p = zpfind_locked(pid); 1234 sx_sunlock(&allproc_lock); 1235 return (p); 1236 } 1237 1238 #ifdef COMPAT_FREEBSD32 1239 1240 /* 1241 * This function is typically used to copy out the kernel address, so 1242 * it can be replaced by assignment of zero. 1243 */ 1244 static inline uint32_t 1245 ptr32_trim(void *ptr) 1246 { 1247 uintptr_t uptr; 1248 1249 uptr = (uintptr_t)ptr; 1250 return ((uptr > UINT_MAX) ? 0 : uptr); 1251 } 1252 1253 #define PTRTRIM_CP(src,dst,fld) \ 1254 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1255 1256 static void 1257 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1258 { 1259 int i; 1260 1261 bzero(ki32, sizeof(struct kinfo_proc32)); 1262 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1263 CP(*ki, *ki32, ki_layout); 1264 PTRTRIM_CP(*ki, *ki32, ki_args); 1265 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1266 PTRTRIM_CP(*ki, *ki32, ki_addr); 1267 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1268 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1269 PTRTRIM_CP(*ki, *ki32, ki_fd); 1270 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1271 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1272 CP(*ki, *ki32, ki_pid); 1273 CP(*ki, *ki32, ki_ppid); 1274 CP(*ki, *ki32, ki_pgid); 1275 CP(*ki, *ki32, ki_tpgid); 1276 CP(*ki, *ki32, ki_sid); 1277 CP(*ki, *ki32, ki_tsid); 1278 CP(*ki, *ki32, ki_jobc); 1279 CP(*ki, *ki32, ki_tdev); 1280 CP(*ki, *ki32, ki_tdev_freebsd11); 1281 CP(*ki, *ki32, ki_siglist); 1282 CP(*ki, *ki32, ki_sigmask); 1283 CP(*ki, *ki32, ki_sigignore); 1284 CP(*ki, *ki32, ki_sigcatch); 1285 CP(*ki, *ki32, ki_uid); 1286 CP(*ki, *ki32, ki_ruid); 1287 CP(*ki, *ki32, ki_svuid); 1288 CP(*ki, *ki32, ki_rgid); 1289 CP(*ki, *ki32, ki_svgid); 1290 CP(*ki, *ki32, ki_ngroups); 1291 for (i = 0; i < KI_NGROUPS; i++) 1292 CP(*ki, *ki32, ki_groups[i]); 1293 CP(*ki, *ki32, ki_size); 1294 CP(*ki, *ki32, ki_rssize); 1295 CP(*ki, *ki32, ki_swrss); 1296 CP(*ki, *ki32, ki_tsize); 1297 CP(*ki, *ki32, ki_dsize); 1298 CP(*ki, *ki32, ki_ssize); 1299 CP(*ki, *ki32, ki_xstat); 1300 CP(*ki, *ki32, ki_acflag); 1301 CP(*ki, *ki32, ki_pctcpu); 1302 CP(*ki, *ki32, ki_estcpu); 1303 CP(*ki, *ki32, ki_slptime); 1304 CP(*ki, *ki32, ki_swtime); 1305 CP(*ki, *ki32, ki_cow); 1306 CP(*ki, *ki32, ki_runtime); 1307 TV_CP(*ki, *ki32, ki_start); 1308 TV_CP(*ki, *ki32, ki_childtime); 1309 CP(*ki, *ki32, ki_flag); 1310 CP(*ki, *ki32, ki_kiflag); 1311 CP(*ki, *ki32, ki_traceflag); 1312 CP(*ki, *ki32, ki_stat); 1313 CP(*ki, *ki32, ki_nice); 1314 CP(*ki, *ki32, ki_lock); 1315 CP(*ki, *ki32, ki_rqindex); 1316 CP(*ki, *ki32, ki_oncpu); 1317 CP(*ki, *ki32, ki_lastcpu); 1318 1319 /* XXX TODO: wrap cpu value as appropriate */ 1320 CP(*ki, *ki32, ki_oncpu_old); 1321 CP(*ki, *ki32, ki_lastcpu_old); 1322 1323 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1324 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1325 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1326 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1327 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1328 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1329 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1330 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1331 CP(*ki, *ki32, ki_tracer); 1332 CP(*ki, *ki32, ki_flag2); 1333 CP(*ki, *ki32, ki_fibnum); 1334 CP(*ki, *ki32, ki_cr_flags); 1335 CP(*ki, *ki32, ki_jid); 1336 CP(*ki, *ki32, ki_numthreads); 1337 CP(*ki, *ki32, ki_tid); 1338 CP(*ki, *ki32, ki_pri); 1339 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1340 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1341 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1342 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1343 PTRTRIM_CP(*ki, *ki32, ki_udata); 1344 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1345 CP(*ki, *ki32, ki_sflag); 1346 CP(*ki, *ki32, ki_tdflags); 1347 } 1348 #endif 1349 1350 static ssize_t 1351 kern_proc_out_size(struct proc *p, int flags) 1352 { 1353 ssize_t size = 0; 1354 1355 PROC_LOCK_ASSERT(p, MA_OWNED); 1356 1357 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1358 #ifdef COMPAT_FREEBSD32 1359 if ((flags & KERN_PROC_MASK32) != 0) { 1360 size += sizeof(struct kinfo_proc32); 1361 } else 1362 #endif 1363 size += sizeof(struct kinfo_proc); 1364 } else { 1365 #ifdef COMPAT_FREEBSD32 1366 if ((flags & KERN_PROC_MASK32) != 0) 1367 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1368 else 1369 #endif 1370 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1371 } 1372 PROC_UNLOCK(p); 1373 return (size); 1374 } 1375 1376 int 1377 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1378 { 1379 struct thread *td; 1380 struct kinfo_proc ki; 1381 #ifdef COMPAT_FREEBSD32 1382 struct kinfo_proc32 ki32; 1383 #endif 1384 int error; 1385 1386 PROC_LOCK_ASSERT(p, MA_OWNED); 1387 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1388 1389 error = 0; 1390 fill_kinfo_proc(p, &ki); 1391 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1392 #ifdef COMPAT_FREEBSD32 1393 if ((flags & KERN_PROC_MASK32) != 0) { 1394 freebsd32_kinfo_proc_out(&ki, &ki32); 1395 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1396 error = ENOMEM; 1397 } else 1398 #endif 1399 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1400 error = ENOMEM; 1401 } else { 1402 FOREACH_THREAD_IN_PROC(p, td) { 1403 fill_kinfo_thread(td, &ki, 1); 1404 #ifdef COMPAT_FREEBSD32 1405 if ((flags & KERN_PROC_MASK32) != 0) { 1406 freebsd32_kinfo_proc_out(&ki, &ki32); 1407 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1408 error = ENOMEM; 1409 } else 1410 #endif 1411 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1412 error = ENOMEM; 1413 if (error != 0) 1414 break; 1415 } 1416 } 1417 PROC_UNLOCK(p); 1418 return (error); 1419 } 1420 1421 static int 1422 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1423 { 1424 struct sbuf sb; 1425 struct kinfo_proc ki; 1426 int error, error2; 1427 1428 if (req->oldptr == NULL) 1429 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1430 1431 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1432 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1433 error = kern_proc_out(p, &sb, flags); 1434 error2 = sbuf_finish(&sb); 1435 sbuf_delete(&sb); 1436 if (error != 0) 1437 return (error); 1438 else if (error2 != 0) 1439 return (error2); 1440 return (0); 1441 } 1442 1443 static int 1444 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1445 { 1446 int *name = (int *)arg1; 1447 u_int namelen = arg2; 1448 struct proc *p; 1449 int flags, doingzomb, oid_number; 1450 int error = 0; 1451 1452 oid_number = oidp->oid_number; 1453 if (oid_number != KERN_PROC_ALL && 1454 (oid_number & KERN_PROC_INC_THREAD) == 0) 1455 flags = KERN_PROC_NOTHREADS; 1456 else { 1457 flags = 0; 1458 oid_number &= ~KERN_PROC_INC_THREAD; 1459 } 1460 #ifdef COMPAT_FREEBSD32 1461 if (req->flags & SCTL_MASK32) 1462 flags |= KERN_PROC_MASK32; 1463 #endif 1464 if (oid_number == KERN_PROC_PID) { 1465 if (namelen != 1) 1466 return (EINVAL); 1467 error = sysctl_wire_old_buffer(req, 0); 1468 if (error) 1469 return (error); 1470 sx_slock(&proctree_lock); 1471 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1472 if (error == 0) 1473 error = sysctl_out_proc(p, req, flags); 1474 sx_sunlock(&proctree_lock); 1475 return (error); 1476 } 1477 1478 switch (oid_number) { 1479 case KERN_PROC_ALL: 1480 if (namelen != 0) 1481 return (EINVAL); 1482 break; 1483 case KERN_PROC_PROC: 1484 if (namelen != 0 && namelen != 1) 1485 return (EINVAL); 1486 break; 1487 default: 1488 if (namelen != 1) 1489 return (EINVAL); 1490 break; 1491 } 1492 1493 if (req->oldptr == NULL) { 1494 /* overestimate by 5 procs */ 1495 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1496 if (error) 1497 return (error); 1498 } else { 1499 error = sysctl_wire_old_buffer(req, 0); 1500 if (error != 0) 1501 return (error); 1502 /* 1503 * This lock is only needed to safely grab the parent of a 1504 * traced process. Only grab it if we are producing any 1505 * data to begin with. 1506 */ 1507 sx_slock(&proctree_lock); 1508 } 1509 sx_slock(&allproc_lock); 1510 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1511 if (!doingzomb) 1512 p = LIST_FIRST(&allproc); 1513 else 1514 p = LIST_FIRST(&zombproc); 1515 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1516 /* 1517 * Skip embryonic processes. 1518 */ 1519 if (p->p_state == PRS_NEW) 1520 continue; 1521 PROC_LOCK(p); 1522 KASSERT(p->p_ucred != NULL, 1523 ("process credential is NULL for non-NEW proc")); 1524 /* 1525 * Show a user only appropriate processes. 1526 */ 1527 if (p_cansee(curthread, p)) { 1528 PROC_UNLOCK(p); 1529 continue; 1530 } 1531 /* 1532 * TODO - make more efficient (see notes below). 1533 * do by session. 1534 */ 1535 switch (oid_number) { 1536 1537 case KERN_PROC_GID: 1538 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1539 PROC_UNLOCK(p); 1540 continue; 1541 } 1542 break; 1543 1544 case KERN_PROC_PGRP: 1545 /* could do this by traversing pgrp */ 1546 if (p->p_pgrp == NULL || 1547 p->p_pgrp->pg_id != (pid_t)name[0]) { 1548 PROC_UNLOCK(p); 1549 continue; 1550 } 1551 break; 1552 1553 case KERN_PROC_RGID: 1554 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1555 PROC_UNLOCK(p); 1556 continue; 1557 } 1558 break; 1559 1560 case KERN_PROC_SESSION: 1561 if (p->p_session == NULL || 1562 p->p_session->s_sid != (pid_t)name[0]) { 1563 PROC_UNLOCK(p); 1564 continue; 1565 } 1566 break; 1567 1568 case KERN_PROC_TTY: 1569 if ((p->p_flag & P_CONTROLT) == 0 || 1570 p->p_session == NULL) { 1571 PROC_UNLOCK(p); 1572 continue; 1573 } 1574 /* XXX proctree_lock */ 1575 SESS_LOCK(p->p_session); 1576 if (p->p_session->s_ttyp == NULL || 1577 tty_udev(p->p_session->s_ttyp) != 1578 (dev_t)name[0]) { 1579 SESS_UNLOCK(p->p_session); 1580 PROC_UNLOCK(p); 1581 continue; 1582 } 1583 SESS_UNLOCK(p->p_session); 1584 break; 1585 1586 case KERN_PROC_UID: 1587 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1588 PROC_UNLOCK(p); 1589 continue; 1590 } 1591 break; 1592 1593 case KERN_PROC_RUID: 1594 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1595 PROC_UNLOCK(p); 1596 continue; 1597 } 1598 break; 1599 1600 case KERN_PROC_PROC: 1601 break; 1602 1603 default: 1604 break; 1605 1606 } 1607 1608 error = sysctl_out_proc(p, req, flags); 1609 if (error) 1610 goto out; 1611 } 1612 } 1613 out: 1614 sx_sunlock(&allproc_lock); 1615 if (req->oldptr != NULL) 1616 sx_sunlock(&proctree_lock); 1617 return (error); 1618 } 1619 1620 struct pargs * 1621 pargs_alloc(int len) 1622 { 1623 struct pargs *pa; 1624 1625 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1626 M_WAITOK); 1627 refcount_init(&pa->ar_ref, 1); 1628 pa->ar_length = len; 1629 return (pa); 1630 } 1631 1632 static void 1633 pargs_free(struct pargs *pa) 1634 { 1635 1636 free(pa, M_PARGS); 1637 } 1638 1639 void 1640 pargs_hold(struct pargs *pa) 1641 { 1642 1643 if (pa == NULL) 1644 return; 1645 refcount_acquire(&pa->ar_ref); 1646 } 1647 1648 void 1649 pargs_drop(struct pargs *pa) 1650 { 1651 1652 if (pa == NULL) 1653 return; 1654 if (refcount_release(&pa->ar_ref)) 1655 pargs_free(pa); 1656 } 1657 1658 static int 1659 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1660 size_t len) 1661 { 1662 ssize_t n; 1663 1664 /* 1665 * This may return a short read if the string is shorter than the chunk 1666 * and is aligned at the end of the page, and the following page is not 1667 * mapped. 1668 */ 1669 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1670 if (n <= 0) 1671 return (ENOMEM); 1672 return (0); 1673 } 1674 1675 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1676 1677 enum proc_vector_type { 1678 PROC_ARG, 1679 PROC_ENV, 1680 PROC_AUX, 1681 }; 1682 1683 #ifdef COMPAT_FREEBSD32 1684 static int 1685 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1686 size_t *vsizep, enum proc_vector_type type) 1687 { 1688 struct freebsd32_ps_strings pss; 1689 Elf32_Auxinfo aux; 1690 vm_offset_t vptr, ptr; 1691 uint32_t *proc_vector32; 1692 char **proc_vector; 1693 size_t vsize, size; 1694 int i, error; 1695 1696 error = 0; 1697 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1698 sizeof(pss)) != sizeof(pss)) 1699 return (ENOMEM); 1700 switch (type) { 1701 case PROC_ARG: 1702 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1703 vsize = pss.ps_nargvstr; 1704 if (vsize > ARG_MAX) 1705 return (ENOEXEC); 1706 size = vsize * sizeof(int32_t); 1707 break; 1708 case PROC_ENV: 1709 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1710 vsize = pss.ps_nenvstr; 1711 if (vsize > ARG_MAX) 1712 return (ENOEXEC); 1713 size = vsize * sizeof(int32_t); 1714 break; 1715 case PROC_AUX: 1716 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1717 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1718 if (vptr % 4 != 0) 1719 return (ENOEXEC); 1720 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1721 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1722 sizeof(aux)) 1723 return (ENOMEM); 1724 if (aux.a_type == AT_NULL) 1725 break; 1726 ptr += sizeof(aux); 1727 } 1728 if (aux.a_type != AT_NULL) 1729 return (ENOEXEC); 1730 vsize = i + 1; 1731 size = vsize * sizeof(aux); 1732 break; 1733 default: 1734 KASSERT(0, ("Wrong proc vector type: %d", type)); 1735 return (EINVAL); 1736 } 1737 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1738 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1739 error = ENOMEM; 1740 goto done; 1741 } 1742 if (type == PROC_AUX) { 1743 *proc_vectorp = (char **)proc_vector32; 1744 *vsizep = vsize; 1745 return (0); 1746 } 1747 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1748 for (i = 0; i < (int)vsize; i++) 1749 proc_vector[i] = PTRIN(proc_vector32[i]); 1750 *proc_vectorp = proc_vector; 1751 *vsizep = vsize; 1752 done: 1753 free(proc_vector32, M_TEMP); 1754 return (error); 1755 } 1756 #endif 1757 1758 static int 1759 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1760 size_t *vsizep, enum proc_vector_type type) 1761 { 1762 struct ps_strings pss; 1763 Elf_Auxinfo aux; 1764 vm_offset_t vptr, ptr; 1765 char **proc_vector; 1766 size_t vsize, size; 1767 int i; 1768 1769 #ifdef COMPAT_FREEBSD32 1770 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1771 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1772 #endif 1773 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1774 sizeof(pss)) != sizeof(pss)) 1775 return (ENOMEM); 1776 switch (type) { 1777 case PROC_ARG: 1778 vptr = (vm_offset_t)pss.ps_argvstr; 1779 vsize = pss.ps_nargvstr; 1780 if (vsize > ARG_MAX) 1781 return (ENOEXEC); 1782 size = vsize * sizeof(char *); 1783 break; 1784 case PROC_ENV: 1785 vptr = (vm_offset_t)pss.ps_envstr; 1786 vsize = pss.ps_nenvstr; 1787 if (vsize > ARG_MAX) 1788 return (ENOEXEC); 1789 size = vsize * sizeof(char *); 1790 break; 1791 case PROC_AUX: 1792 /* 1793 * The aux array is just above env array on the stack. Check 1794 * that the address is naturally aligned. 1795 */ 1796 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1797 * sizeof(char *); 1798 #if __ELF_WORD_SIZE == 64 1799 if (vptr % sizeof(uint64_t) != 0) 1800 #else 1801 if (vptr % sizeof(uint32_t) != 0) 1802 #endif 1803 return (ENOEXEC); 1804 /* 1805 * We count the array size reading the aux vectors from the 1806 * stack until AT_NULL vector is returned. So (to keep the code 1807 * simple) we read the process stack twice: the first time here 1808 * to find the size and the second time when copying the vectors 1809 * to the allocated proc_vector. 1810 */ 1811 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1812 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1813 sizeof(aux)) 1814 return (ENOMEM); 1815 if (aux.a_type == AT_NULL) 1816 break; 1817 ptr += sizeof(aux); 1818 } 1819 /* 1820 * If the PROC_AUXV_MAX entries are iterated over, and we have 1821 * not reached AT_NULL, it is most likely we are reading wrong 1822 * data: either the process doesn't have auxv array or data has 1823 * been modified. Return the error in this case. 1824 */ 1825 if (aux.a_type != AT_NULL) 1826 return (ENOEXEC); 1827 vsize = i + 1; 1828 size = vsize * sizeof(aux); 1829 break; 1830 default: 1831 KASSERT(0, ("Wrong proc vector type: %d", type)); 1832 return (EINVAL); /* In case we are built without INVARIANTS. */ 1833 } 1834 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1835 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1836 free(proc_vector, M_TEMP); 1837 return (ENOMEM); 1838 } 1839 *proc_vectorp = proc_vector; 1840 *vsizep = vsize; 1841 1842 return (0); 1843 } 1844 1845 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1846 1847 static int 1848 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1849 enum proc_vector_type type) 1850 { 1851 size_t done, len, nchr, vsize; 1852 int error, i; 1853 char **proc_vector, *sptr; 1854 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1855 1856 PROC_ASSERT_HELD(p); 1857 1858 /* 1859 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1860 */ 1861 nchr = 2 * (PATH_MAX + ARG_MAX); 1862 1863 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1864 if (error != 0) 1865 return (error); 1866 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1867 /* 1868 * The program may have scribbled into its argv array, e.g. to 1869 * remove some arguments. If that has happened, break out 1870 * before trying to read from NULL. 1871 */ 1872 if (proc_vector[i] == NULL) 1873 break; 1874 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1875 error = proc_read_string(td, p, sptr, pss_string, 1876 sizeof(pss_string)); 1877 if (error != 0) 1878 goto done; 1879 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1880 if (done + len >= nchr) 1881 len = nchr - done - 1; 1882 sbuf_bcat(sb, pss_string, len); 1883 if (len != GET_PS_STRINGS_CHUNK_SZ) 1884 break; 1885 done += GET_PS_STRINGS_CHUNK_SZ; 1886 } 1887 sbuf_bcat(sb, "", 1); 1888 done += len + 1; 1889 } 1890 done: 1891 free(proc_vector, M_TEMP); 1892 return (error); 1893 } 1894 1895 int 1896 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1897 { 1898 1899 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1900 } 1901 1902 int 1903 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1904 { 1905 1906 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1907 } 1908 1909 int 1910 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1911 { 1912 size_t vsize, size; 1913 char **auxv; 1914 int error; 1915 1916 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1917 if (error == 0) { 1918 #ifdef COMPAT_FREEBSD32 1919 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1920 size = vsize * sizeof(Elf32_Auxinfo); 1921 else 1922 #endif 1923 size = vsize * sizeof(Elf_Auxinfo); 1924 if (sbuf_bcat(sb, auxv, size) != 0) 1925 error = ENOMEM; 1926 free(auxv, M_TEMP); 1927 } 1928 return (error); 1929 } 1930 1931 /* 1932 * This sysctl allows a process to retrieve the argument list or process 1933 * title for another process without groping around in the address space 1934 * of the other process. It also allow a process to set its own "process 1935 * title to a string of its own choice. 1936 */ 1937 static int 1938 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1939 { 1940 int *name = (int *)arg1; 1941 u_int namelen = arg2; 1942 struct pargs *newpa, *pa; 1943 struct proc *p; 1944 struct sbuf sb; 1945 int flags, error = 0, error2; 1946 pid_t pid; 1947 1948 if (namelen != 1) 1949 return (EINVAL); 1950 1951 pid = (pid_t)name[0]; 1952 /* 1953 * If the query is for this process and it is single-threaded, there 1954 * is nobody to modify pargs, thus we can just read. 1955 */ 1956 p = curproc; 1957 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 1958 (pa = p->p_args) != NULL) 1959 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 1960 1961 flags = PGET_CANSEE; 1962 if (req->newptr != NULL) 1963 flags |= PGET_ISCURRENT; 1964 error = pget(pid, flags, &p); 1965 if (error) 1966 return (error); 1967 1968 pa = p->p_args; 1969 if (pa != NULL) { 1970 pargs_hold(pa); 1971 PROC_UNLOCK(p); 1972 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1973 pargs_drop(pa); 1974 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1975 _PHOLD(p); 1976 PROC_UNLOCK(p); 1977 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1978 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1979 error = proc_getargv(curthread, p, &sb); 1980 error2 = sbuf_finish(&sb); 1981 PRELE(p); 1982 sbuf_delete(&sb); 1983 if (error == 0 && error2 != 0) 1984 error = error2; 1985 } else { 1986 PROC_UNLOCK(p); 1987 } 1988 if (error != 0 || req->newptr == NULL) 1989 return (error); 1990 1991 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 1992 return (ENOMEM); 1993 newpa = pargs_alloc(req->newlen); 1994 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1995 if (error != 0) { 1996 pargs_free(newpa); 1997 return (error); 1998 } 1999 PROC_LOCK(p); 2000 pa = p->p_args; 2001 p->p_args = newpa; 2002 PROC_UNLOCK(p); 2003 pargs_drop(pa); 2004 return (0); 2005 } 2006 2007 /* 2008 * This sysctl allows a process to retrieve environment of another process. 2009 */ 2010 static int 2011 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2012 { 2013 int *name = (int *)arg1; 2014 u_int namelen = arg2; 2015 struct proc *p; 2016 struct sbuf sb; 2017 int error, error2; 2018 2019 if (namelen != 1) 2020 return (EINVAL); 2021 2022 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2023 if (error != 0) 2024 return (error); 2025 if ((p->p_flag & P_SYSTEM) != 0) { 2026 PRELE(p); 2027 return (0); 2028 } 2029 2030 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2031 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2032 error = proc_getenvv(curthread, p, &sb); 2033 error2 = sbuf_finish(&sb); 2034 PRELE(p); 2035 sbuf_delete(&sb); 2036 return (error != 0 ? error : error2); 2037 } 2038 2039 /* 2040 * This sysctl allows a process to retrieve ELF auxiliary vector of 2041 * another process. 2042 */ 2043 static int 2044 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2045 { 2046 int *name = (int *)arg1; 2047 u_int namelen = arg2; 2048 struct proc *p; 2049 struct sbuf sb; 2050 int error, error2; 2051 2052 if (namelen != 1) 2053 return (EINVAL); 2054 2055 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2056 if (error != 0) 2057 return (error); 2058 if ((p->p_flag & P_SYSTEM) != 0) { 2059 PRELE(p); 2060 return (0); 2061 } 2062 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2063 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2064 error = proc_getauxv(curthread, p, &sb); 2065 error2 = sbuf_finish(&sb); 2066 PRELE(p); 2067 sbuf_delete(&sb); 2068 return (error != 0 ? error : error2); 2069 } 2070 2071 /* 2072 * This sysctl allows a process to retrieve the path of the executable for 2073 * itself or another process. 2074 */ 2075 static int 2076 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2077 { 2078 pid_t *pidp = (pid_t *)arg1; 2079 unsigned int arglen = arg2; 2080 struct proc *p; 2081 struct vnode *vp; 2082 char *retbuf, *freebuf; 2083 int error; 2084 2085 if (arglen != 1) 2086 return (EINVAL); 2087 if (*pidp == -1) { /* -1 means this process */ 2088 p = req->td->td_proc; 2089 } else { 2090 error = pget(*pidp, PGET_CANSEE, &p); 2091 if (error != 0) 2092 return (error); 2093 } 2094 2095 vp = p->p_textvp; 2096 if (vp == NULL) { 2097 if (*pidp != -1) 2098 PROC_UNLOCK(p); 2099 return (0); 2100 } 2101 vref(vp); 2102 if (*pidp != -1) 2103 PROC_UNLOCK(p); 2104 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2105 vrele(vp); 2106 if (error) 2107 return (error); 2108 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2109 free(freebuf, M_TEMP); 2110 return (error); 2111 } 2112 2113 static int 2114 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2115 { 2116 struct proc *p; 2117 char *sv_name; 2118 int *name; 2119 int namelen; 2120 int error; 2121 2122 namelen = arg2; 2123 if (namelen != 1) 2124 return (EINVAL); 2125 2126 name = (int *)arg1; 2127 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2128 if (error != 0) 2129 return (error); 2130 sv_name = p->p_sysent->sv_name; 2131 PROC_UNLOCK(p); 2132 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2133 } 2134 2135 #ifdef KINFO_OVMENTRY_SIZE 2136 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2137 #endif 2138 2139 #ifdef COMPAT_FREEBSD7 2140 static int 2141 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2142 { 2143 vm_map_entry_t entry, tmp_entry; 2144 unsigned int last_timestamp; 2145 char *fullpath, *freepath; 2146 struct kinfo_ovmentry *kve; 2147 struct vattr va; 2148 struct ucred *cred; 2149 int error, *name; 2150 struct vnode *vp; 2151 struct proc *p; 2152 vm_map_t map; 2153 struct vmspace *vm; 2154 2155 name = (int *)arg1; 2156 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2157 if (error != 0) 2158 return (error); 2159 vm = vmspace_acquire_ref(p); 2160 if (vm == NULL) { 2161 PRELE(p); 2162 return (ESRCH); 2163 } 2164 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2165 2166 map = &vm->vm_map; 2167 vm_map_lock_read(map); 2168 for (entry = map->header.next; entry != &map->header; 2169 entry = entry->next) { 2170 vm_object_t obj, tobj, lobj; 2171 vm_offset_t addr; 2172 2173 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2174 continue; 2175 2176 bzero(kve, sizeof(*kve)); 2177 kve->kve_structsize = sizeof(*kve); 2178 2179 kve->kve_private_resident = 0; 2180 obj = entry->object.vm_object; 2181 if (obj != NULL) { 2182 VM_OBJECT_RLOCK(obj); 2183 if (obj->shadow_count == 1) 2184 kve->kve_private_resident = 2185 obj->resident_page_count; 2186 } 2187 kve->kve_resident = 0; 2188 addr = entry->start; 2189 while (addr < entry->end) { 2190 if (pmap_extract(map->pmap, addr)) 2191 kve->kve_resident++; 2192 addr += PAGE_SIZE; 2193 } 2194 2195 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2196 if (tobj != obj) { 2197 VM_OBJECT_RLOCK(tobj); 2198 kve->kve_offset += tobj->backing_object_offset; 2199 } 2200 if (lobj != obj) 2201 VM_OBJECT_RUNLOCK(lobj); 2202 lobj = tobj; 2203 } 2204 2205 kve->kve_start = (void*)entry->start; 2206 kve->kve_end = (void*)entry->end; 2207 kve->kve_offset += (off_t)entry->offset; 2208 2209 if (entry->protection & VM_PROT_READ) 2210 kve->kve_protection |= KVME_PROT_READ; 2211 if (entry->protection & VM_PROT_WRITE) 2212 kve->kve_protection |= KVME_PROT_WRITE; 2213 if (entry->protection & VM_PROT_EXECUTE) 2214 kve->kve_protection |= KVME_PROT_EXEC; 2215 2216 if (entry->eflags & MAP_ENTRY_COW) 2217 kve->kve_flags |= KVME_FLAG_COW; 2218 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2219 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2220 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2221 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2222 2223 last_timestamp = map->timestamp; 2224 vm_map_unlock_read(map); 2225 2226 kve->kve_fileid = 0; 2227 kve->kve_fsid = 0; 2228 freepath = NULL; 2229 fullpath = ""; 2230 if (lobj) { 2231 vp = NULL; 2232 switch (lobj->type) { 2233 case OBJT_DEFAULT: 2234 kve->kve_type = KVME_TYPE_DEFAULT; 2235 break; 2236 case OBJT_VNODE: 2237 kve->kve_type = KVME_TYPE_VNODE; 2238 vp = lobj->handle; 2239 vref(vp); 2240 break; 2241 case OBJT_SWAP: 2242 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2243 kve->kve_type = KVME_TYPE_VNODE; 2244 if ((lobj->flags & OBJ_TMPFS) != 0) { 2245 vp = lobj->un_pager.swp.swp_tmpfs; 2246 vref(vp); 2247 } 2248 } else { 2249 kve->kve_type = KVME_TYPE_SWAP; 2250 } 2251 break; 2252 case OBJT_DEVICE: 2253 kve->kve_type = KVME_TYPE_DEVICE; 2254 break; 2255 case OBJT_PHYS: 2256 kve->kve_type = KVME_TYPE_PHYS; 2257 break; 2258 case OBJT_DEAD: 2259 kve->kve_type = KVME_TYPE_DEAD; 2260 break; 2261 case OBJT_SG: 2262 kve->kve_type = KVME_TYPE_SG; 2263 break; 2264 default: 2265 kve->kve_type = KVME_TYPE_UNKNOWN; 2266 break; 2267 } 2268 if (lobj != obj) 2269 VM_OBJECT_RUNLOCK(lobj); 2270 2271 kve->kve_ref_count = obj->ref_count; 2272 kve->kve_shadow_count = obj->shadow_count; 2273 VM_OBJECT_RUNLOCK(obj); 2274 if (vp != NULL) { 2275 vn_fullpath(curthread, vp, &fullpath, 2276 &freepath); 2277 cred = curthread->td_ucred; 2278 vn_lock(vp, LK_SHARED | LK_RETRY); 2279 if (VOP_GETATTR(vp, &va, cred) == 0) { 2280 kve->kve_fileid = va.va_fileid; 2281 /* truncate */ 2282 kve->kve_fsid = va.va_fsid; 2283 } 2284 vput(vp); 2285 } 2286 } else { 2287 kve->kve_type = KVME_TYPE_NONE; 2288 kve->kve_ref_count = 0; 2289 kve->kve_shadow_count = 0; 2290 } 2291 2292 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2293 if (freepath != NULL) 2294 free(freepath, M_TEMP); 2295 2296 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2297 vm_map_lock_read(map); 2298 if (error) 2299 break; 2300 if (last_timestamp != map->timestamp) { 2301 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2302 entry = tmp_entry; 2303 } 2304 } 2305 vm_map_unlock_read(map); 2306 vmspace_free(vm); 2307 PRELE(p); 2308 free(kve, M_TEMP); 2309 return (error); 2310 } 2311 #endif /* COMPAT_FREEBSD7 */ 2312 2313 #ifdef KINFO_VMENTRY_SIZE 2314 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2315 #endif 2316 2317 void 2318 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2319 int *resident_count, bool *super) 2320 { 2321 vm_object_t obj, tobj; 2322 vm_page_t m, m_adv; 2323 vm_offset_t addr; 2324 vm_paddr_t locked_pa; 2325 vm_pindex_t pi, pi_adv, pindex; 2326 2327 *super = false; 2328 *resident_count = 0; 2329 if (vmmap_skip_res_cnt) 2330 return; 2331 2332 locked_pa = 0; 2333 obj = entry->object.vm_object; 2334 addr = entry->start; 2335 m_adv = NULL; 2336 pi = OFF_TO_IDX(entry->offset); 2337 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2338 if (m_adv != NULL) { 2339 m = m_adv; 2340 } else { 2341 pi_adv = atop(entry->end - addr); 2342 pindex = pi; 2343 for (tobj = obj;; tobj = tobj->backing_object) { 2344 m = vm_page_find_least(tobj, pindex); 2345 if (m != NULL) { 2346 if (m->pindex == pindex) 2347 break; 2348 if (pi_adv > m->pindex - pindex) { 2349 pi_adv = m->pindex - pindex; 2350 m_adv = m; 2351 } 2352 } 2353 if (tobj->backing_object == NULL) 2354 goto next; 2355 pindex += OFF_TO_IDX(tobj-> 2356 backing_object_offset); 2357 } 2358 } 2359 m_adv = NULL; 2360 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2361 (addr & (pagesizes[1] - 1)) == 0 && 2362 (pmap_mincore(map->pmap, addr, &locked_pa) & 2363 MINCORE_SUPER) != 0) { 2364 *super = true; 2365 pi_adv = atop(pagesizes[1]); 2366 } else { 2367 /* 2368 * We do not test the found page on validity. 2369 * Either the page is busy and being paged in, 2370 * or it was invalidated. The first case 2371 * should be counted as resident, the second 2372 * is not so clear; we do account both. 2373 */ 2374 pi_adv = 1; 2375 } 2376 *resident_count += pi_adv; 2377 next:; 2378 } 2379 PA_UNLOCK_COND(locked_pa); 2380 } 2381 2382 /* 2383 * Must be called with the process locked and will return unlocked. 2384 */ 2385 int 2386 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2387 { 2388 vm_map_entry_t entry, tmp_entry; 2389 struct vattr va; 2390 vm_map_t map; 2391 vm_object_t obj, tobj, lobj; 2392 char *fullpath, *freepath; 2393 struct kinfo_vmentry *kve; 2394 struct ucred *cred; 2395 struct vnode *vp; 2396 struct vmspace *vm; 2397 vm_offset_t addr; 2398 unsigned int last_timestamp; 2399 int error; 2400 bool super; 2401 2402 PROC_LOCK_ASSERT(p, MA_OWNED); 2403 2404 _PHOLD(p); 2405 PROC_UNLOCK(p); 2406 vm = vmspace_acquire_ref(p); 2407 if (vm == NULL) { 2408 PRELE(p); 2409 return (ESRCH); 2410 } 2411 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2412 2413 error = 0; 2414 map = &vm->vm_map; 2415 vm_map_lock_read(map); 2416 for (entry = map->header.next; entry != &map->header; 2417 entry = entry->next) { 2418 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2419 continue; 2420 2421 addr = entry->end; 2422 bzero(kve, sizeof(*kve)); 2423 obj = entry->object.vm_object; 2424 if (obj != NULL) { 2425 for (tobj = obj; tobj != NULL; 2426 tobj = tobj->backing_object) { 2427 VM_OBJECT_RLOCK(tobj); 2428 kve->kve_offset += tobj->backing_object_offset; 2429 lobj = tobj; 2430 } 2431 if (obj->backing_object == NULL) 2432 kve->kve_private_resident = 2433 obj->resident_page_count; 2434 kern_proc_vmmap_resident(map, entry, 2435 &kve->kve_resident, &super); 2436 if (super) 2437 kve->kve_flags |= KVME_FLAG_SUPER; 2438 for (tobj = obj; tobj != NULL; 2439 tobj = tobj->backing_object) { 2440 if (tobj != obj && tobj != lobj) 2441 VM_OBJECT_RUNLOCK(tobj); 2442 } 2443 } else { 2444 lobj = NULL; 2445 } 2446 2447 kve->kve_start = entry->start; 2448 kve->kve_end = entry->end; 2449 kve->kve_offset += entry->offset; 2450 2451 if (entry->protection & VM_PROT_READ) 2452 kve->kve_protection |= KVME_PROT_READ; 2453 if (entry->protection & VM_PROT_WRITE) 2454 kve->kve_protection |= KVME_PROT_WRITE; 2455 if (entry->protection & VM_PROT_EXECUTE) 2456 kve->kve_protection |= KVME_PROT_EXEC; 2457 2458 if (entry->eflags & MAP_ENTRY_COW) 2459 kve->kve_flags |= KVME_FLAG_COW; 2460 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2461 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2462 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2463 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2464 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2465 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2466 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2467 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2468 2469 last_timestamp = map->timestamp; 2470 vm_map_unlock_read(map); 2471 2472 freepath = NULL; 2473 fullpath = ""; 2474 if (lobj != NULL) { 2475 vp = NULL; 2476 switch (lobj->type) { 2477 case OBJT_DEFAULT: 2478 kve->kve_type = KVME_TYPE_DEFAULT; 2479 break; 2480 case OBJT_VNODE: 2481 kve->kve_type = KVME_TYPE_VNODE; 2482 vp = lobj->handle; 2483 vref(vp); 2484 break; 2485 case OBJT_SWAP: 2486 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2487 kve->kve_type = KVME_TYPE_VNODE; 2488 if ((lobj->flags & OBJ_TMPFS) != 0) { 2489 vp = lobj->un_pager.swp.swp_tmpfs; 2490 vref(vp); 2491 } 2492 } else { 2493 kve->kve_type = KVME_TYPE_SWAP; 2494 } 2495 break; 2496 case OBJT_DEVICE: 2497 kve->kve_type = KVME_TYPE_DEVICE; 2498 break; 2499 case OBJT_PHYS: 2500 kve->kve_type = KVME_TYPE_PHYS; 2501 break; 2502 case OBJT_DEAD: 2503 kve->kve_type = KVME_TYPE_DEAD; 2504 break; 2505 case OBJT_SG: 2506 kve->kve_type = KVME_TYPE_SG; 2507 break; 2508 case OBJT_MGTDEVICE: 2509 kve->kve_type = KVME_TYPE_MGTDEVICE; 2510 break; 2511 default: 2512 kve->kve_type = KVME_TYPE_UNKNOWN; 2513 break; 2514 } 2515 if (lobj != obj) 2516 VM_OBJECT_RUNLOCK(lobj); 2517 2518 kve->kve_ref_count = obj->ref_count; 2519 kve->kve_shadow_count = obj->shadow_count; 2520 VM_OBJECT_RUNLOCK(obj); 2521 if (vp != NULL) { 2522 vn_fullpath(curthread, vp, &fullpath, 2523 &freepath); 2524 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2525 cred = curthread->td_ucred; 2526 vn_lock(vp, LK_SHARED | LK_RETRY); 2527 if (VOP_GETATTR(vp, &va, cred) == 0) { 2528 kve->kve_vn_fileid = va.va_fileid; 2529 kve->kve_vn_fsid = va.va_fsid; 2530 kve->kve_vn_fsid_freebsd11 = 2531 kve->kve_vn_fsid; /* truncate */ 2532 kve->kve_vn_mode = 2533 MAKEIMODE(va.va_type, va.va_mode); 2534 kve->kve_vn_size = va.va_size; 2535 kve->kve_vn_rdev = va.va_rdev; 2536 kve->kve_vn_rdev_freebsd11 = 2537 kve->kve_vn_rdev; /* truncate */ 2538 kve->kve_status = KF_ATTR_VALID; 2539 } 2540 vput(vp); 2541 } 2542 } else { 2543 kve->kve_type = KVME_TYPE_NONE; 2544 kve->kve_ref_count = 0; 2545 kve->kve_shadow_count = 0; 2546 } 2547 2548 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2549 if (freepath != NULL) 2550 free(freepath, M_TEMP); 2551 2552 /* Pack record size down */ 2553 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2554 kve->kve_structsize = 2555 offsetof(struct kinfo_vmentry, kve_path) + 2556 strlen(kve->kve_path) + 1; 2557 else 2558 kve->kve_structsize = sizeof(*kve); 2559 kve->kve_structsize = roundup(kve->kve_structsize, 2560 sizeof(uint64_t)); 2561 2562 /* Halt filling and truncate rather than exceeding maxlen */ 2563 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2564 error = 0; 2565 vm_map_lock_read(map); 2566 break; 2567 } else if (maxlen != -1) 2568 maxlen -= kve->kve_structsize; 2569 2570 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2571 error = ENOMEM; 2572 vm_map_lock_read(map); 2573 if (error != 0) 2574 break; 2575 if (last_timestamp != map->timestamp) { 2576 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2577 entry = tmp_entry; 2578 } 2579 } 2580 vm_map_unlock_read(map); 2581 vmspace_free(vm); 2582 PRELE(p); 2583 free(kve, M_TEMP); 2584 return (error); 2585 } 2586 2587 static int 2588 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2589 { 2590 struct proc *p; 2591 struct sbuf sb; 2592 int error, error2, *name; 2593 2594 name = (int *)arg1; 2595 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2596 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2597 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2598 if (error != 0) { 2599 sbuf_delete(&sb); 2600 return (error); 2601 } 2602 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2603 error2 = sbuf_finish(&sb); 2604 sbuf_delete(&sb); 2605 return (error != 0 ? error : error2); 2606 } 2607 2608 #if defined(STACK) || defined(DDB) 2609 static int 2610 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2611 { 2612 struct kinfo_kstack *kkstp; 2613 int error, i, *name, numthreads; 2614 lwpid_t *lwpidarray; 2615 struct thread *td; 2616 struct stack *st; 2617 struct sbuf sb; 2618 struct proc *p; 2619 2620 name = (int *)arg1; 2621 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2622 if (error != 0) 2623 return (error); 2624 2625 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2626 st = stack_create(M_WAITOK); 2627 2628 lwpidarray = NULL; 2629 PROC_LOCK(p); 2630 do { 2631 if (lwpidarray != NULL) { 2632 free(lwpidarray, M_TEMP); 2633 lwpidarray = NULL; 2634 } 2635 numthreads = p->p_numthreads; 2636 PROC_UNLOCK(p); 2637 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2638 M_WAITOK | M_ZERO); 2639 PROC_LOCK(p); 2640 } while (numthreads < p->p_numthreads); 2641 2642 /* 2643 * XXXRW: During the below loop, execve(2) and countless other sorts 2644 * of changes could have taken place. Should we check to see if the 2645 * vmspace has been replaced, or the like, in order to prevent 2646 * giving a snapshot that spans, say, execve(2), with some threads 2647 * before and some after? Among other things, the credentials could 2648 * have changed, in which case the right to extract debug info might 2649 * no longer be assured. 2650 */ 2651 i = 0; 2652 FOREACH_THREAD_IN_PROC(p, td) { 2653 KASSERT(i < numthreads, 2654 ("sysctl_kern_proc_kstack: numthreads")); 2655 lwpidarray[i] = td->td_tid; 2656 i++; 2657 } 2658 numthreads = i; 2659 for (i = 0; i < numthreads; i++) { 2660 td = thread_find(p, lwpidarray[i]); 2661 if (td == NULL) { 2662 continue; 2663 } 2664 bzero(kkstp, sizeof(*kkstp)); 2665 (void)sbuf_new(&sb, kkstp->kkst_trace, 2666 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2667 thread_lock(td); 2668 kkstp->kkst_tid = td->td_tid; 2669 if (TD_IS_SWAPPED(td)) { 2670 kkstp->kkst_state = KKST_STATE_SWAPPED; 2671 } else if (TD_IS_RUNNING(td)) { 2672 if (stack_save_td_running(st, td) == 0) 2673 kkstp->kkst_state = KKST_STATE_STACKOK; 2674 else 2675 kkstp->kkst_state = KKST_STATE_RUNNING; 2676 } else { 2677 kkstp->kkst_state = KKST_STATE_STACKOK; 2678 stack_save_td(st, td); 2679 } 2680 thread_unlock(td); 2681 PROC_UNLOCK(p); 2682 stack_sbuf_print(&sb, st); 2683 sbuf_finish(&sb); 2684 sbuf_delete(&sb); 2685 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2686 PROC_LOCK(p); 2687 if (error) 2688 break; 2689 } 2690 _PRELE(p); 2691 PROC_UNLOCK(p); 2692 if (lwpidarray != NULL) 2693 free(lwpidarray, M_TEMP); 2694 stack_destroy(st); 2695 free(kkstp, M_TEMP); 2696 return (error); 2697 } 2698 #endif 2699 2700 /* 2701 * This sysctl allows a process to retrieve the full list of groups from 2702 * itself or another process. 2703 */ 2704 static int 2705 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2706 { 2707 pid_t *pidp = (pid_t *)arg1; 2708 unsigned int arglen = arg2; 2709 struct proc *p; 2710 struct ucred *cred; 2711 int error; 2712 2713 if (arglen != 1) 2714 return (EINVAL); 2715 if (*pidp == -1) { /* -1 means this process */ 2716 p = req->td->td_proc; 2717 PROC_LOCK(p); 2718 } else { 2719 error = pget(*pidp, PGET_CANSEE, &p); 2720 if (error != 0) 2721 return (error); 2722 } 2723 2724 cred = crhold(p->p_ucred); 2725 PROC_UNLOCK(p); 2726 2727 error = SYSCTL_OUT(req, cred->cr_groups, 2728 cred->cr_ngroups * sizeof(gid_t)); 2729 crfree(cred); 2730 return (error); 2731 } 2732 2733 /* 2734 * This sysctl allows a process to retrieve or/and set the resource limit for 2735 * another process. 2736 */ 2737 static int 2738 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2739 { 2740 int *name = (int *)arg1; 2741 u_int namelen = arg2; 2742 struct rlimit rlim; 2743 struct proc *p; 2744 u_int which; 2745 int flags, error; 2746 2747 if (namelen != 2) 2748 return (EINVAL); 2749 2750 which = (u_int)name[1]; 2751 if (which >= RLIM_NLIMITS) 2752 return (EINVAL); 2753 2754 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2755 return (EINVAL); 2756 2757 flags = PGET_HOLD | PGET_NOTWEXIT; 2758 if (req->newptr != NULL) 2759 flags |= PGET_CANDEBUG; 2760 else 2761 flags |= PGET_CANSEE; 2762 error = pget((pid_t)name[0], flags, &p); 2763 if (error != 0) 2764 return (error); 2765 2766 /* 2767 * Retrieve limit. 2768 */ 2769 if (req->oldptr != NULL) { 2770 PROC_LOCK(p); 2771 lim_rlimit_proc(p, which, &rlim); 2772 PROC_UNLOCK(p); 2773 } 2774 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2775 if (error != 0) 2776 goto errout; 2777 2778 /* 2779 * Set limit. 2780 */ 2781 if (req->newptr != NULL) { 2782 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2783 if (error == 0) 2784 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2785 } 2786 2787 errout: 2788 PRELE(p); 2789 return (error); 2790 } 2791 2792 /* 2793 * This sysctl allows a process to retrieve ps_strings structure location of 2794 * another process. 2795 */ 2796 static int 2797 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2798 { 2799 int *name = (int *)arg1; 2800 u_int namelen = arg2; 2801 struct proc *p; 2802 vm_offset_t ps_strings; 2803 int error; 2804 #ifdef COMPAT_FREEBSD32 2805 uint32_t ps_strings32; 2806 #endif 2807 2808 if (namelen != 1) 2809 return (EINVAL); 2810 2811 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2812 if (error != 0) 2813 return (error); 2814 #ifdef COMPAT_FREEBSD32 2815 if ((req->flags & SCTL_MASK32) != 0) { 2816 /* 2817 * We return 0 if the 32 bit emulation request is for a 64 bit 2818 * process. 2819 */ 2820 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2821 PTROUT(p->p_sysent->sv_psstrings) : 0; 2822 PROC_UNLOCK(p); 2823 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2824 return (error); 2825 } 2826 #endif 2827 ps_strings = p->p_sysent->sv_psstrings; 2828 PROC_UNLOCK(p); 2829 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2830 return (error); 2831 } 2832 2833 /* 2834 * This sysctl allows a process to retrieve umask of another process. 2835 */ 2836 static int 2837 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2838 { 2839 int *name = (int *)arg1; 2840 u_int namelen = arg2; 2841 struct proc *p; 2842 int error; 2843 u_short fd_cmask; 2844 pid_t pid; 2845 2846 if (namelen != 1) 2847 return (EINVAL); 2848 2849 pid = (pid_t)name[0]; 2850 p = curproc; 2851 if (pid == p->p_pid || pid == 0) { 2852 fd_cmask = p->p_fd->fd_cmask; 2853 goto out; 2854 } 2855 2856 error = pget(pid, PGET_WANTREAD, &p); 2857 if (error != 0) 2858 return (error); 2859 2860 fd_cmask = p->p_fd->fd_cmask; 2861 PRELE(p); 2862 out: 2863 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2864 return (error); 2865 } 2866 2867 /* 2868 * This sysctl allows a process to set and retrieve binary osreldate of 2869 * another process. 2870 */ 2871 static int 2872 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2873 { 2874 int *name = (int *)arg1; 2875 u_int namelen = arg2; 2876 struct proc *p; 2877 int flags, error, osrel; 2878 2879 if (namelen != 1) 2880 return (EINVAL); 2881 2882 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2883 return (EINVAL); 2884 2885 flags = PGET_HOLD | PGET_NOTWEXIT; 2886 if (req->newptr != NULL) 2887 flags |= PGET_CANDEBUG; 2888 else 2889 flags |= PGET_CANSEE; 2890 error = pget((pid_t)name[0], flags, &p); 2891 if (error != 0) 2892 return (error); 2893 2894 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2895 if (error != 0) 2896 goto errout; 2897 2898 if (req->newptr != NULL) { 2899 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2900 if (error != 0) 2901 goto errout; 2902 if (osrel < 0) { 2903 error = EINVAL; 2904 goto errout; 2905 } 2906 p->p_osrel = osrel; 2907 } 2908 errout: 2909 PRELE(p); 2910 return (error); 2911 } 2912 2913 static int 2914 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2915 { 2916 int *name = (int *)arg1; 2917 u_int namelen = arg2; 2918 struct proc *p; 2919 struct kinfo_sigtramp kst; 2920 const struct sysentvec *sv; 2921 int error; 2922 #ifdef COMPAT_FREEBSD32 2923 struct kinfo_sigtramp32 kst32; 2924 #endif 2925 2926 if (namelen != 1) 2927 return (EINVAL); 2928 2929 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2930 if (error != 0) 2931 return (error); 2932 sv = p->p_sysent; 2933 #ifdef COMPAT_FREEBSD32 2934 if ((req->flags & SCTL_MASK32) != 0) { 2935 bzero(&kst32, sizeof(kst32)); 2936 if (SV_PROC_FLAG(p, SV_ILP32)) { 2937 if (sv->sv_sigcode_base != 0) { 2938 kst32.ksigtramp_start = sv->sv_sigcode_base; 2939 kst32.ksigtramp_end = sv->sv_sigcode_base + 2940 *sv->sv_szsigcode; 2941 } else { 2942 kst32.ksigtramp_start = sv->sv_psstrings - 2943 *sv->sv_szsigcode; 2944 kst32.ksigtramp_end = sv->sv_psstrings; 2945 } 2946 } 2947 PROC_UNLOCK(p); 2948 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2949 return (error); 2950 } 2951 #endif 2952 bzero(&kst, sizeof(kst)); 2953 if (sv->sv_sigcode_base != 0) { 2954 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2955 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2956 *sv->sv_szsigcode; 2957 } else { 2958 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2959 *sv->sv_szsigcode; 2960 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2961 } 2962 PROC_UNLOCK(p); 2963 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2964 return (error); 2965 } 2966 2967 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2968 2969 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2970 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2971 "Return entire process table"); 2972 2973 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2974 sysctl_kern_proc, "Process table"); 2975 2976 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2977 sysctl_kern_proc, "Process table"); 2978 2979 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2980 sysctl_kern_proc, "Process table"); 2981 2982 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2983 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2984 2985 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2986 sysctl_kern_proc, "Process table"); 2987 2988 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2989 sysctl_kern_proc, "Process table"); 2990 2991 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2992 sysctl_kern_proc, "Process table"); 2993 2994 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2995 sysctl_kern_proc, "Process table"); 2996 2997 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2998 sysctl_kern_proc, "Return process table, no threads"); 2999 3000 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3001 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3002 sysctl_kern_proc_args, "Process argument list"); 3003 3004 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3005 sysctl_kern_proc_env, "Process environment"); 3006 3007 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3008 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3009 3010 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3011 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3012 3013 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3014 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3015 "Process syscall vector name (ABI type)"); 3016 3017 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3018 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3019 3020 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3021 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3022 3023 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3024 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3025 3026 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3027 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3028 3029 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3030 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3031 3032 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3033 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3034 3035 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3036 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3037 3038 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3039 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3040 3041 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3042 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3043 "Return process table, no threads"); 3044 3045 #ifdef COMPAT_FREEBSD7 3046 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3047 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3048 #endif 3049 3050 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3051 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3052 3053 #if defined(STACK) || defined(DDB) 3054 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3055 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3056 #endif 3057 3058 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3059 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3060 3061 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3062 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3063 "Process resource limits"); 3064 3065 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3066 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3067 "Process ps_strings location"); 3068 3069 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3070 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3071 3072 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3073 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3074 "Process binary osreldate"); 3075 3076 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3077 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3078 "Process signal trampoline location"); 3079 3080 int allproc_gen; 3081 3082 /* 3083 * stop_all_proc() purpose is to stop all process which have usermode, 3084 * except current process for obvious reasons. This makes it somewhat 3085 * unreliable when invoked from multithreaded process. The service 3086 * must not be user-callable anyway. 3087 */ 3088 void 3089 stop_all_proc(void) 3090 { 3091 struct proc *cp, *p; 3092 int r, gen; 3093 bool restart, seen_stopped, seen_exiting, stopped_some; 3094 3095 cp = curproc; 3096 allproc_loop: 3097 sx_xlock(&allproc_lock); 3098 gen = allproc_gen; 3099 seen_exiting = seen_stopped = stopped_some = restart = false; 3100 LIST_REMOVE(cp, p_list); 3101 LIST_INSERT_HEAD(&allproc, cp, p_list); 3102 for (;;) { 3103 p = LIST_NEXT(cp, p_list); 3104 if (p == NULL) 3105 break; 3106 LIST_REMOVE(cp, p_list); 3107 LIST_INSERT_AFTER(p, cp, p_list); 3108 PROC_LOCK(p); 3109 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3110 PROC_UNLOCK(p); 3111 continue; 3112 } 3113 if ((p->p_flag & P_WEXIT) != 0) { 3114 seen_exiting = true; 3115 PROC_UNLOCK(p); 3116 continue; 3117 } 3118 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3119 /* 3120 * Stopped processes are tolerated when there 3121 * are no other processes which might continue 3122 * them. P_STOPPED_SINGLE but not 3123 * P_TOTAL_STOP process still has at least one 3124 * thread running. 3125 */ 3126 seen_stopped = true; 3127 PROC_UNLOCK(p); 3128 continue; 3129 } 3130 _PHOLD(p); 3131 sx_xunlock(&allproc_lock); 3132 r = thread_single(p, SINGLE_ALLPROC); 3133 if (r != 0) 3134 restart = true; 3135 else 3136 stopped_some = true; 3137 _PRELE(p); 3138 PROC_UNLOCK(p); 3139 sx_xlock(&allproc_lock); 3140 } 3141 /* Catch forked children we did not see in iteration. */ 3142 if (gen != allproc_gen) 3143 restart = true; 3144 sx_xunlock(&allproc_lock); 3145 if (restart || stopped_some || seen_exiting || seen_stopped) { 3146 kern_yield(PRI_USER); 3147 goto allproc_loop; 3148 } 3149 } 3150 3151 void 3152 resume_all_proc(void) 3153 { 3154 struct proc *cp, *p; 3155 3156 cp = curproc; 3157 sx_xlock(&allproc_lock); 3158 again: 3159 LIST_REMOVE(cp, p_list); 3160 LIST_INSERT_HEAD(&allproc, cp, p_list); 3161 for (;;) { 3162 p = LIST_NEXT(cp, p_list); 3163 if (p == NULL) 3164 break; 3165 LIST_REMOVE(cp, p_list); 3166 LIST_INSERT_AFTER(p, cp, p_list); 3167 PROC_LOCK(p); 3168 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3169 sx_xunlock(&allproc_lock); 3170 _PHOLD(p); 3171 thread_single_end(p, SINGLE_ALLPROC); 3172 _PRELE(p); 3173 PROC_UNLOCK(p); 3174 sx_xlock(&allproc_lock); 3175 } else { 3176 PROC_UNLOCK(p); 3177 } 3178 } 3179 /* Did the loop above missed any stopped process ? */ 3180 LIST_FOREACH(p, &allproc, p_list) { 3181 /* No need for proc lock. */ 3182 if ((p->p_flag & P_TOTAL_STOP) != 0) 3183 goto again; 3184 } 3185 sx_xunlock(&allproc_lock); 3186 } 3187 3188 /* #define TOTAL_STOP_DEBUG 1 */ 3189 #ifdef TOTAL_STOP_DEBUG 3190 volatile static int ap_resume; 3191 #include <sys/mount.h> 3192 3193 static int 3194 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3195 { 3196 int error, val; 3197 3198 val = 0; 3199 ap_resume = 0; 3200 error = sysctl_handle_int(oidp, &val, 0, req); 3201 if (error != 0 || req->newptr == NULL) 3202 return (error); 3203 if (val != 0) { 3204 stop_all_proc(); 3205 syncer_suspend(); 3206 while (ap_resume == 0) 3207 ; 3208 syncer_resume(); 3209 resume_all_proc(); 3210 } 3211 return (0); 3212 } 3213 3214 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3215 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3216 sysctl_debug_stop_all_proc, "I", 3217 ""); 3218 #endif 3219