1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_extern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/uma.h> 87 88 #ifdef COMPAT_FREEBSD32 89 #include <compat/freebsd32/freebsd32.h> 90 #include <compat/freebsd32/freebsd32_util.h> 91 #endif 92 93 SDT_PROVIDER_DEFINE(proc); 94 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 98 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 99 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 100 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 102 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 103 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 104 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 108 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 109 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 110 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 111 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 112 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 113 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 114 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 115 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 116 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 117 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 118 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 119 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 120 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 121 122 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 123 MALLOC_DEFINE(M_SESSION, "session", "session header"); 124 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 125 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 126 127 static void doenterpgrp(struct proc *, struct pgrp *); 128 static void orphanpg(struct pgrp *pg); 129 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 130 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 131 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 132 int preferthread); 133 static void pgadjustjobc(struct pgrp *pgrp, int entering); 134 static void pgdelete(struct pgrp *); 135 static int proc_ctor(void *mem, int size, void *arg, int flags); 136 static void proc_dtor(void *mem, int size, void *arg); 137 static int proc_init(void *mem, int size, int flags); 138 static void proc_fini(void *mem, int size); 139 static void pargs_free(struct pargs *pa); 140 static struct proc *zpfind_locked(pid_t pid); 141 142 /* 143 * Other process lists 144 */ 145 struct pidhashhead *pidhashtbl; 146 u_long pidhash; 147 struct pgrphashhead *pgrphashtbl; 148 u_long pgrphash; 149 struct proclist allproc; 150 struct proclist zombproc; 151 struct sx allproc_lock; 152 struct sx proctree_lock; 153 struct mtx ppeers_lock; 154 uma_zone_t proc_zone; 155 156 int kstack_pages = KSTACK_PAGES; 157 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 158 "Kernel stack size in pages"); 159 160 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 161 #ifdef COMPAT_FREEBSD32 162 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 163 #endif 164 165 /* 166 * Initialize global process hashing structures. 167 */ 168 void 169 procinit() 170 { 171 172 sx_init(&allproc_lock, "allproc"); 173 sx_init(&proctree_lock, "proctree"); 174 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 175 LIST_INIT(&allproc); 176 LIST_INIT(&zombproc); 177 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 178 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 179 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 180 proc_ctor, proc_dtor, proc_init, proc_fini, 181 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 182 uihashinit(); 183 } 184 185 /* 186 * Prepare a proc for use. 187 */ 188 static int 189 proc_ctor(void *mem, int size, void *arg, int flags) 190 { 191 struct proc *p; 192 193 p = (struct proc *)mem; 194 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 195 EVENTHANDLER_INVOKE(process_ctor, p); 196 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 197 return (0); 198 } 199 200 /* 201 * Reclaim a proc after use. 202 */ 203 static void 204 proc_dtor(void *mem, int size, void *arg) 205 { 206 struct proc *p; 207 struct thread *td; 208 209 /* INVARIANTS checks go here */ 210 p = (struct proc *)mem; 211 td = FIRST_THREAD_IN_PROC(p); 212 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 213 if (td != NULL) { 214 #ifdef INVARIANTS 215 KASSERT((p->p_numthreads == 1), 216 ("bad number of threads in exiting process")); 217 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 218 #endif 219 /* Free all OSD associated to this thread. */ 220 osd_thread_exit(td); 221 } 222 EVENTHANDLER_INVOKE(process_dtor, p); 223 if (p->p_ksi != NULL) 224 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 225 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 226 } 227 228 /* 229 * Initialize type-stable parts of a proc (when newly created). 230 */ 231 static int 232 proc_init(void *mem, int size, int flags) 233 { 234 struct proc *p; 235 236 p = (struct proc *)mem; 237 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 238 p->p_sched = (struct p_sched *)&p[1]; 239 bzero(&p->p_mtx, sizeof(struct mtx)); 240 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 241 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 242 cv_init(&p->p_pwait, "ppwait"); 243 cv_init(&p->p_dbgwait, "dbgwait"); 244 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 245 EVENTHANDLER_INVOKE(process_init, p); 246 p->p_stats = pstats_alloc(); 247 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 248 return (0); 249 } 250 251 /* 252 * UMA should ensure that this function is never called. 253 * Freeing a proc structure would violate type stability. 254 */ 255 static void 256 proc_fini(void *mem, int size) 257 { 258 #ifdef notnow 259 struct proc *p; 260 261 p = (struct proc *)mem; 262 EVENTHANDLER_INVOKE(process_fini, p); 263 pstats_free(p->p_stats); 264 thread_free(FIRST_THREAD_IN_PROC(p)); 265 mtx_destroy(&p->p_mtx); 266 if (p->p_ksi != NULL) 267 ksiginfo_free(p->p_ksi); 268 #else 269 panic("proc reclaimed"); 270 #endif 271 } 272 273 /* 274 * Is p an inferior of the current process? 275 */ 276 int 277 inferior(p) 278 register struct proc *p; 279 { 280 281 sx_assert(&proctree_lock, SX_LOCKED); 282 for (; p != curproc; p = p->p_pptr) 283 if (p->p_pid == 0) 284 return (0); 285 return (1); 286 } 287 288 struct proc * 289 pfind_locked(pid_t pid) 290 { 291 struct proc *p; 292 293 sx_assert(&allproc_lock, SX_LOCKED); 294 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 295 if (p->p_pid == pid) { 296 PROC_LOCK(p); 297 if (p->p_state == PRS_NEW) { 298 PROC_UNLOCK(p); 299 p = NULL; 300 } 301 break; 302 } 303 } 304 return (p); 305 } 306 307 /* 308 * Locate a process by number; return only "live" processes -- i.e., neither 309 * zombies nor newly born but incompletely initialized processes. By not 310 * returning processes in the PRS_NEW state, we allow callers to avoid 311 * testing for that condition to avoid dereferencing p_ucred, et al. 312 */ 313 struct proc * 314 pfind(pid_t pid) 315 { 316 struct proc *p; 317 318 sx_slock(&allproc_lock); 319 p = pfind_locked(pid); 320 sx_sunlock(&allproc_lock); 321 return (p); 322 } 323 324 static struct proc * 325 pfind_tid_locked(pid_t tid) 326 { 327 struct proc *p; 328 struct thread *td; 329 330 sx_assert(&allproc_lock, SX_LOCKED); 331 FOREACH_PROC_IN_SYSTEM(p) { 332 PROC_LOCK(p); 333 if (p->p_state == PRS_NEW) { 334 PROC_UNLOCK(p); 335 continue; 336 } 337 FOREACH_THREAD_IN_PROC(p, td) { 338 if (td->td_tid == tid) 339 goto found; 340 } 341 PROC_UNLOCK(p); 342 } 343 found: 344 return (p); 345 } 346 347 /* 348 * Locate a process group by number. 349 * The caller must hold proctree_lock. 350 */ 351 struct pgrp * 352 pgfind(pgid) 353 register pid_t pgid; 354 { 355 register struct pgrp *pgrp; 356 357 sx_assert(&proctree_lock, SX_LOCKED); 358 359 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 360 if (pgrp->pg_id == pgid) { 361 PGRP_LOCK(pgrp); 362 return (pgrp); 363 } 364 } 365 return (NULL); 366 } 367 368 /* 369 * Locate process and do additional manipulations, depending on flags. 370 */ 371 int 372 pget(pid_t pid, int flags, struct proc **pp) 373 { 374 struct proc *p; 375 int error; 376 377 sx_slock(&allproc_lock); 378 if (pid <= PID_MAX) { 379 p = pfind_locked(pid); 380 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 381 p = zpfind_locked(pid); 382 } else if ((flags & PGET_NOTID) == 0) { 383 p = pfind_tid_locked(pid); 384 } else { 385 p = NULL; 386 } 387 sx_sunlock(&allproc_lock); 388 if (p == NULL) 389 return (ESRCH); 390 if ((flags & PGET_CANSEE) != 0) { 391 error = p_cansee(curthread, p); 392 if (error != 0) 393 goto errout; 394 } 395 if ((flags & PGET_CANDEBUG) != 0) { 396 error = p_candebug(curthread, p); 397 if (error != 0) 398 goto errout; 399 } 400 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 401 error = EPERM; 402 goto errout; 403 } 404 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 405 error = ESRCH; 406 goto errout; 407 } 408 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 409 /* 410 * XXXRW: Not clear ESRCH is the right error during proc 411 * execve(). 412 */ 413 error = ESRCH; 414 goto errout; 415 } 416 if ((flags & PGET_HOLD) != 0) { 417 _PHOLD(p); 418 PROC_UNLOCK(p); 419 } 420 *pp = p; 421 return (0); 422 errout: 423 PROC_UNLOCK(p); 424 return (error); 425 } 426 427 /* 428 * Create a new process group. 429 * pgid must be equal to the pid of p. 430 * Begin a new session if required. 431 */ 432 int 433 enterpgrp(p, pgid, pgrp, sess) 434 register struct proc *p; 435 pid_t pgid; 436 struct pgrp *pgrp; 437 struct session *sess; 438 { 439 440 sx_assert(&proctree_lock, SX_XLOCKED); 441 442 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 443 KASSERT(p->p_pid == pgid, 444 ("enterpgrp: new pgrp and pid != pgid")); 445 KASSERT(pgfind(pgid) == NULL, 446 ("enterpgrp: pgrp with pgid exists")); 447 KASSERT(!SESS_LEADER(p), 448 ("enterpgrp: session leader attempted setpgrp")); 449 450 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 451 452 if (sess != NULL) { 453 /* 454 * new session 455 */ 456 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 457 PROC_LOCK(p); 458 p->p_flag &= ~P_CONTROLT; 459 PROC_UNLOCK(p); 460 PGRP_LOCK(pgrp); 461 sess->s_leader = p; 462 sess->s_sid = p->p_pid; 463 refcount_init(&sess->s_count, 1); 464 sess->s_ttyvp = NULL; 465 sess->s_ttydp = NULL; 466 sess->s_ttyp = NULL; 467 bcopy(p->p_session->s_login, sess->s_login, 468 sizeof(sess->s_login)); 469 pgrp->pg_session = sess; 470 KASSERT(p == curproc, 471 ("enterpgrp: mksession and p != curproc")); 472 } else { 473 pgrp->pg_session = p->p_session; 474 sess_hold(pgrp->pg_session); 475 PGRP_LOCK(pgrp); 476 } 477 pgrp->pg_id = pgid; 478 LIST_INIT(&pgrp->pg_members); 479 480 /* 481 * As we have an exclusive lock of proctree_lock, 482 * this should not deadlock. 483 */ 484 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 485 pgrp->pg_jobc = 0; 486 SLIST_INIT(&pgrp->pg_sigiolst); 487 PGRP_UNLOCK(pgrp); 488 489 doenterpgrp(p, pgrp); 490 491 return (0); 492 } 493 494 /* 495 * Move p to an existing process group 496 */ 497 int 498 enterthispgrp(p, pgrp) 499 register struct proc *p; 500 struct pgrp *pgrp; 501 { 502 503 sx_assert(&proctree_lock, SX_XLOCKED); 504 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 505 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 506 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 507 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 508 KASSERT(pgrp->pg_session == p->p_session, 509 ("%s: pgrp's session %p, p->p_session %p.\n", 510 __func__, 511 pgrp->pg_session, 512 p->p_session)); 513 KASSERT(pgrp != p->p_pgrp, 514 ("%s: p belongs to pgrp.", __func__)); 515 516 doenterpgrp(p, pgrp); 517 518 return (0); 519 } 520 521 /* 522 * Move p to a process group 523 */ 524 static void 525 doenterpgrp(p, pgrp) 526 struct proc *p; 527 struct pgrp *pgrp; 528 { 529 struct pgrp *savepgrp; 530 531 sx_assert(&proctree_lock, SX_XLOCKED); 532 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 533 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 534 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 535 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 536 537 savepgrp = p->p_pgrp; 538 539 /* 540 * Adjust eligibility of affected pgrps to participate in job control. 541 * Increment eligibility counts before decrementing, otherwise we 542 * could reach 0 spuriously during the first call. 543 */ 544 fixjobc(p, pgrp, 1); 545 fixjobc(p, p->p_pgrp, 0); 546 547 PGRP_LOCK(pgrp); 548 PGRP_LOCK(savepgrp); 549 PROC_LOCK(p); 550 LIST_REMOVE(p, p_pglist); 551 p->p_pgrp = pgrp; 552 PROC_UNLOCK(p); 553 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 554 PGRP_UNLOCK(savepgrp); 555 PGRP_UNLOCK(pgrp); 556 if (LIST_EMPTY(&savepgrp->pg_members)) 557 pgdelete(savepgrp); 558 } 559 560 /* 561 * remove process from process group 562 */ 563 int 564 leavepgrp(p) 565 register struct proc *p; 566 { 567 struct pgrp *savepgrp; 568 569 sx_assert(&proctree_lock, SX_XLOCKED); 570 savepgrp = p->p_pgrp; 571 PGRP_LOCK(savepgrp); 572 PROC_LOCK(p); 573 LIST_REMOVE(p, p_pglist); 574 p->p_pgrp = NULL; 575 PROC_UNLOCK(p); 576 PGRP_UNLOCK(savepgrp); 577 if (LIST_EMPTY(&savepgrp->pg_members)) 578 pgdelete(savepgrp); 579 return (0); 580 } 581 582 /* 583 * delete a process group 584 */ 585 static void 586 pgdelete(pgrp) 587 register struct pgrp *pgrp; 588 { 589 struct session *savesess; 590 struct tty *tp; 591 592 sx_assert(&proctree_lock, SX_XLOCKED); 593 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 594 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 595 596 /* 597 * Reset any sigio structures pointing to us as a result of 598 * F_SETOWN with our pgid. 599 */ 600 funsetownlst(&pgrp->pg_sigiolst); 601 602 PGRP_LOCK(pgrp); 603 tp = pgrp->pg_session->s_ttyp; 604 LIST_REMOVE(pgrp, pg_hash); 605 savesess = pgrp->pg_session; 606 PGRP_UNLOCK(pgrp); 607 608 /* Remove the reference to the pgrp before deallocating it. */ 609 if (tp != NULL) { 610 tty_lock(tp); 611 tty_rel_pgrp(tp, pgrp); 612 } 613 614 mtx_destroy(&pgrp->pg_mtx); 615 free(pgrp, M_PGRP); 616 sess_release(savesess); 617 } 618 619 static void 620 pgadjustjobc(pgrp, entering) 621 struct pgrp *pgrp; 622 int entering; 623 { 624 625 PGRP_LOCK(pgrp); 626 if (entering) 627 pgrp->pg_jobc++; 628 else { 629 --pgrp->pg_jobc; 630 if (pgrp->pg_jobc == 0) 631 orphanpg(pgrp); 632 } 633 PGRP_UNLOCK(pgrp); 634 } 635 636 /* 637 * Adjust pgrp jobc counters when specified process changes process group. 638 * We count the number of processes in each process group that "qualify" 639 * the group for terminal job control (those with a parent in a different 640 * process group of the same session). If that count reaches zero, the 641 * process group becomes orphaned. Check both the specified process' 642 * process group and that of its children. 643 * entering == 0 => p is leaving specified group. 644 * entering == 1 => p is entering specified group. 645 */ 646 void 647 fixjobc(p, pgrp, entering) 648 register struct proc *p; 649 register struct pgrp *pgrp; 650 int entering; 651 { 652 register struct pgrp *hispgrp; 653 register struct session *mysession; 654 655 sx_assert(&proctree_lock, SX_LOCKED); 656 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 657 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 658 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 659 660 /* 661 * Check p's parent to see whether p qualifies its own process 662 * group; if so, adjust count for p's process group. 663 */ 664 mysession = pgrp->pg_session; 665 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 666 hispgrp->pg_session == mysession) 667 pgadjustjobc(pgrp, entering); 668 669 /* 670 * Check this process' children to see whether they qualify 671 * their process groups; if so, adjust counts for children's 672 * process groups. 673 */ 674 LIST_FOREACH(p, &p->p_children, p_sibling) { 675 hispgrp = p->p_pgrp; 676 if (hispgrp == pgrp || 677 hispgrp->pg_session != mysession) 678 continue; 679 PROC_LOCK(p); 680 if (p->p_state == PRS_ZOMBIE) { 681 PROC_UNLOCK(p); 682 continue; 683 } 684 PROC_UNLOCK(p); 685 pgadjustjobc(hispgrp, entering); 686 } 687 } 688 689 /* 690 * A process group has become orphaned; 691 * if there are any stopped processes in the group, 692 * hang-up all process in that group. 693 */ 694 static void 695 orphanpg(pg) 696 struct pgrp *pg; 697 { 698 register struct proc *p; 699 700 PGRP_LOCK_ASSERT(pg, MA_OWNED); 701 702 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 703 PROC_LOCK(p); 704 if (P_SHOULDSTOP(p)) { 705 PROC_UNLOCK(p); 706 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 707 PROC_LOCK(p); 708 kern_psignal(p, SIGHUP); 709 kern_psignal(p, SIGCONT); 710 PROC_UNLOCK(p); 711 } 712 return; 713 } 714 PROC_UNLOCK(p); 715 } 716 } 717 718 void 719 sess_hold(struct session *s) 720 { 721 722 refcount_acquire(&s->s_count); 723 } 724 725 void 726 sess_release(struct session *s) 727 { 728 729 if (refcount_release(&s->s_count)) { 730 if (s->s_ttyp != NULL) { 731 tty_lock(s->s_ttyp); 732 tty_rel_sess(s->s_ttyp, s); 733 } 734 mtx_destroy(&s->s_mtx); 735 free(s, M_SESSION); 736 } 737 } 738 739 #ifdef DDB 740 741 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 742 { 743 register struct pgrp *pgrp; 744 register struct proc *p; 745 register int i; 746 747 for (i = 0; i <= pgrphash; i++) { 748 if (!LIST_EMPTY(&pgrphashtbl[i])) { 749 printf("\tindx %d\n", i); 750 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 751 printf( 752 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 753 (void *)pgrp, (long)pgrp->pg_id, 754 (void *)pgrp->pg_session, 755 pgrp->pg_session->s_count, 756 (void *)LIST_FIRST(&pgrp->pg_members)); 757 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 758 printf("\t\tpid %ld addr %p pgrp %p\n", 759 (long)p->p_pid, (void *)p, 760 (void *)p->p_pgrp); 761 } 762 } 763 } 764 } 765 } 766 #endif /* DDB */ 767 768 /* 769 * Calculate the kinfo_proc members which contain process-wide 770 * informations. 771 * Must be called with the target process locked. 772 */ 773 static void 774 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 775 { 776 struct thread *td; 777 778 PROC_LOCK_ASSERT(p, MA_OWNED); 779 780 kp->ki_estcpu = 0; 781 kp->ki_pctcpu = 0; 782 FOREACH_THREAD_IN_PROC(p, td) { 783 thread_lock(td); 784 kp->ki_pctcpu += sched_pctcpu(td); 785 kp->ki_estcpu += td->td_estcpu; 786 thread_unlock(td); 787 } 788 } 789 790 /* 791 * Clear kinfo_proc and fill in any information that is common 792 * to all threads in the process. 793 * Must be called with the target process locked. 794 */ 795 static void 796 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 797 { 798 struct thread *td0; 799 struct tty *tp; 800 struct session *sp; 801 struct ucred *cred; 802 struct sigacts *ps; 803 804 PROC_LOCK_ASSERT(p, MA_OWNED); 805 bzero(kp, sizeof(*kp)); 806 807 kp->ki_structsize = sizeof(*kp); 808 kp->ki_paddr = p; 809 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 810 kp->ki_args = p->p_args; 811 kp->ki_textvp = p->p_textvp; 812 #ifdef KTRACE 813 kp->ki_tracep = p->p_tracevp; 814 kp->ki_traceflag = p->p_traceflag; 815 #endif 816 kp->ki_fd = p->p_fd; 817 kp->ki_vmspace = p->p_vmspace; 818 kp->ki_flag = p->p_flag; 819 cred = p->p_ucred; 820 if (cred) { 821 kp->ki_uid = cred->cr_uid; 822 kp->ki_ruid = cred->cr_ruid; 823 kp->ki_svuid = cred->cr_svuid; 824 kp->ki_cr_flags = 0; 825 if (cred->cr_flags & CRED_FLAG_CAPMODE) 826 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 827 /* XXX bde doesn't like KI_NGROUPS */ 828 if (cred->cr_ngroups > KI_NGROUPS) { 829 kp->ki_ngroups = KI_NGROUPS; 830 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 831 } else 832 kp->ki_ngroups = cred->cr_ngroups; 833 bcopy(cred->cr_groups, kp->ki_groups, 834 kp->ki_ngroups * sizeof(gid_t)); 835 kp->ki_rgid = cred->cr_rgid; 836 kp->ki_svgid = cred->cr_svgid; 837 /* If jailed(cred), emulate the old P_JAILED flag. */ 838 if (jailed(cred)) { 839 kp->ki_flag |= P_JAILED; 840 /* If inside the jail, use 0 as a jail ID. */ 841 if (cred->cr_prison != curthread->td_ucred->cr_prison) 842 kp->ki_jid = cred->cr_prison->pr_id; 843 } 844 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 845 sizeof(kp->ki_loginclass)); 846 } 847 ps = p->p_sigacts; 848 if (ps) { 849 mtx_lock(&ps->ps_mtx); 850 kp->ki_sigignore = ps->ps_sigignore; 851 kp->ki_sigcatch = ps->ps_sigcatch; 852 mtx_unlock(&ps->ps_mtx); 853 } 854 if (p->p_state != PRS_NEW && 855 p->p_state != PRS_ZOMBIE && 856 p->p_vmspace != NULL) { 857 struct vmspace *vm = p->p_vmspace; 858 859 kp->ki_size = vm->vm_map.size; 860 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 861 FOREACH_THREAD_IN_PROC(p, td0) { 862 if (!TD_IS_SWAPPED(td0)) 863 kp->ki_rssize += td0->td_kstack_pages; 864 } 865 kp->ki_swrss = vm->vm_swrss; 866 kp->ki_tsize = vm->vm_tsize; 867 kp->ki_dsize = vm->vm_dsize; 868 kp->ki_ssize = vm->vm_ssize; 869 } else if (p->p_state == PRS_ZOMBIE) 870 kp->ki_stat = SZOMB; 871 if (kp->ki_flag & P_INMEM) 872 kp->ki_sflag = PS_INMEM; 873 else 874 kp->ki_sflag = 0; 875 /* Calculate legacy swtime as seconds since 'swtick'. */ 876 kp->ki_swtime = (ticks - p->p_swtick) / hz; 877 kp->ki_pid = p->p_pid; 878 kp->ki_nice = p->p_nice; 879 kp->ki_start = p->p_stats->p_start; 880 timevaladd(&kp->ki_start, &boottime); 881 PROC_SLOCK(p); 882 rufetch(p, &kp->ki_rusage); 883 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 884 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 885 PROC_SUNLOCK(p); 886 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 887 /* Some callers want child times in a single value. */ 888 kp->ki_childtime = kp->ki_childstime; 889 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 890 891 FOREACH_THREAD_IN_PROC(p, td0) 892 kp->ki_cow += td0->td_cow; 893 894 tp = NULL; 895 if (p->p_pgrp) { 896 kp->ki_pgid = p->p_pgrp->pg_id; 897 kp->ki_jobc = p->p_pgrp->pg_jobc; 898 sp = p->p_pgrp->pg_session; 899 900 if (sp != NULL) { 901 kp->ki_sid = sp->s_sid; 902 SESS_LOCK(sp); 903 strlcpy(kp->ki_login, sp->s_login, 904 sizeof(kp->ki_login)); 905 if (sp->s_ttyvp) 906 kp->ki_kiflag |= KI_CTTY; 907 if (SESS_LEADER(p)) 908 kp->ki_kiflag |= KI_SLEADER; 909 /* XXX proctree_lock */ 910 tp = sp->s_ttyp; 911 SESS_UNLOCK(sp); 912 } 913 } 914 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 915 kp->ki_tdev = tty_udev(tp); 916 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 917 if (tp->t_session) 918 kp->ki_tsid = tp->t_session->s_sid; 919 } else 920 kp->ki_tdev = NODEV; 921 if (p->p_comm[0] != '\0') 922 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 923 if (p->p_sysent && p->p_sysent->sv_name != NULL && 924 p->p_sysent->sv_name[0] != '\0') 925 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 926 kp->ki_siglist = p->p_siglist; 927 kp->ki_xstat = p->p_xstat; 928 kp->ki_acflag = p->p_acflag; 929 kp->ki_lock = p->p_lock; 930 if (p->p_pptr) 931 kp->ki_ppid = p->p_pptr->p_pid; 932 } 933 934 /* 935 * Fill in information that is thread specific. Must be called with 936 * target process locked. If 'preferthread' is set, overwrite certain 937 * process-related fields that are maintained for both threads and 938 * processes. 939 */ 940 static void 941 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 942 { 943 struct proc *p; 944 945 p = td->td_proc; 946 kp->ki_tdaddr = td; 947 PROC_LOCK_ASSERT(p, MA_OWNED); 948 949 if (preferthread) 950 PROC_SLOCK(p); 951 thread_lock(td); 952 if (td->td_wmesg != NULL) 953 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 954 else 955 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 956 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 957 if (TD_ON_LOCK(td)) { 958 kp->ki_kiflag |= KI_LOCKBLOCK; 959 strlcpy(kp->ki_lockname, td->td_lockname, 960 sizeof(kp->ki_lockname)); 961 } else { 962 kp->ki_kiflag &= ~KI_LOCKBLOCK; 963 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 964 } 965 966 if (p->p_state == PRS_NORMAL) { /* approximate. */ 967 if (TD_ON_RUNQ(td) || 968 TD_CAN_RUN(td) || 969 TD_IS_RUNNING(td)) { 970 kp->ki_stat = SRUN; 971 } else if (P_SHOULDSTOP(p)) { 972 kp->ki_stat = SSTOP; 973 } else if (TD_IS_SLEEPING(td)) { 974 kp->ki_stat = SSLEEP; 975 } else if (TD_ON_LOCK(td)) { 976 kp->ki_stat = SLOCK; 977 } else { 978 kp->ki_stat = SWAIT; 979 } 980 } else if (p->p_state == PRS_ZOMBIE) { 981 kp->ki_stat = SZOMB; 982 } else { 983 kp->ki_stat = SIDL; 984 } 985 986 /* Things in the thread */ 987 kp->ki_wchan = td->td_wchan; 988 kp->ki_pri.pri_level = td->td_priority; 989 kp->ki_pri.pri_native = td->td_base_pri; 990 kp->ki_lastcpu = td->td_lastcpu; 991 kp->ki_oncpu = td->td_oncpu; 992 kp->ki_tdflags = td->td_flags; 993 kp->ki_tid = td->td_tid; 994 kp->ki_numthreads = p->p_numthreads; 995 kp->ki_pcb = td->td_pcb; 996 kp->ki_kstack = (void *)td->td_kstack; 997 kp->ki_slptime = (ticks - td->td_slptick) / hz; 998 kp->ki_pri.pri_class = td->td_pri_class; 999 kp->ki_pri.pri_user = td->td_user_pri; 1000 1001 if (preferthread) { 1002 rufetchtd(td, &kp->ki_rusage); 1003 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1004 kp->ki_pctcpu = sched_pctcpu(td); 1005 kp->ki_estcpu = td->td_estcpu; 1006 kp->ki_cow = td->td_cow; 1007 } 1008 1009 /* We can't get this anymore but ps etc never used it anyway. */ 1010 kp->ki_rqindex = 0; 1011 1012 if (preferthread) 1013 kp->ki_siglist = td->td_siglist; 1014 kp->ki_sigmask = td->td_sigmask; 1015 thread_unlock(td); 1016 if (preferthread) 1017 PROC_SUNLOCK(p); 1018 } 1019 1020 /* 1021 * Fill in a kinfo_proc structure for the specified process. 1022 * Must be called with the target process locked. 1023 */ 1024 void 1025 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1026 { 1027 1028 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1029 1030 fill_kinfo_proc_only(p, kp); 1031 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1032 fill_kinfo_aggregate(p, kp); 1033 } 1034 1035 struct pstats * 1036 pstats_alloc(void) 1037 { 1038 1039 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1040 } 1041 1042 /* 1043 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1044 */ 1045 void 1046 pstats_fork(struct pstats *src, struct pstats *dst) 1047 { 1048 1049 bzero(&dst->pstat_startzero, 1050 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1051 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1052 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1053 } 1054 1055 void 1056 pstats_free(struct pstats *ps) 1057 { 1058 1059 free(ps, M_SUBPROC); 1060 } 1061 1062 static struct proc * 1063 zpfind_locked(pid_t pid) 1064 { 1065 struct proc *p; 1066 1067 sx_assert(&allproc_lock, SX_LOCKED); 1068 LIST_FOREACH(p, &zombproc, p_list) { 1069 if (p->p_pid == pid) { 1070 PROC_LOCK(p); 1071 break; 1072 } 1073 } 1074 return (p); 1075 } 1076 1077 /* 1078 * Locate a zombie process by number 1079 */ 1080 struct proc * 1081 zpfind(pid_t pid) 1082 { 1083 struct proc *p; 1084 1085 sx_slock(&allproc_lock); 1086 p = zpfind_locked(pid); 1087 sx_sunlock(&allproc_lock); 1088 return (p); 1089 } 1090 1091 #define KERN_PROC_ZOMBMASK 0x3 1092 #define KERN_PROC_NOTHREADS 0x4 1093 1094 #ifdef COMPAT_FREEBSD32 1095 1096 /* 1097 * This function is typically used to copy out the kernel address, so 1098 * it can be replaced by assignment of zero. 1099 */ 1100 static inline uint32_t 1101 ptr32_trim(void *ptr) 1102 { 1103 uintptr_t uptr; 1104 1105 uptr = (uintptr_t)ptr; 1106 return ((uptr > UINT_MAX) ? 0 : uptr); 1107 } 1108 1109 #define PTRTRIM_CP(src,dst,fld) \ 1110 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1111 1112 static void 1113 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1114 { 1115 int i; 1116 1117 bzero(ki32, sizeof(struct kinfo_proc32)); 1118 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1119 CP(*ki, *ki32, ki_layout); 1120 PTRTRIM_CP(*ki, *ki32, ki_args); 1121 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1122 PTRTRIM_CP(*ki, *ki32, ki_addr); 1123 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1124 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1125 PTRTRIM_CP(*ki, *ki32, ki_fd); 1126 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1127 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1128 CP(*ki, *ki32, ki_pid); 1129 CP(*ki, *ki32, ki_ppid); 1130 CP(*ki, *ki32, ki_pgid); 1131 CP(*ki, *ki32, ki_tpgid); 1132 CP(*ki, *ki32, ki_sid); 1133 CP(*ki, *ki32, ki_tsid); 1134 CP(*ki, *ki32, ki_jobc); 1135 CP(*ki, *ki32, ki_tdev); 1136 CP(*ki, *ki32, ki_siglist); 1137 CP(*ki, *ki32, ki_sigmask); 1138 CP(*ki, *ki32, ki_sigignore); 1139 CP(*ki, *ki32, ki_sigcatch); 1140 CP(*ki, *ki32, ki_uid); 1141 CP(*ki, *ki32, ki_ruid); 1142 CP(*ki, *ki32, ki_svuid); 1143 CP(*ki, *ki32, ki_rgid); 1144 CP(*ki, *ki32, ki_svgid); 1145 CP(*ki, *ki32, ki_ngroups); 1146 for (i = 0; i < KI_NGROUPS; i++) 1147 CP(*ki, *ki32, ki_groups[i]); 1148 CP(*ki, *ki32, ki_size); 1149 CP(*ki, *ki32, ki_rssize); 1150 CP(*ki, *ki32, ki_swrss); 1151 CP(*ki, *ki32, ki_tsize); 1152 CP(*ki, *ki32, ki_dsize); 1153 CP(*ki, *ki32, ki_ssize); 1154 CP(*ki, *ki32, ki_xstat); 1155 CP(*ki, *ki32, ki_acflag); 1156 CP(*ki, *ki32, ki_pctcpu); 1157 CP(*ki, *ki32, ki_estcpu); 1158 CP(*ki, *ki32, ki_slptime); 1159 CP(*ki, *ki32, ki_swtime); 1160 CP(*ki, *ki32, ki_cow); 1161 CP(*ki, *ki32, ki_runtime); 1162 TV_CP(*ki, *ki32, ki_start); 1163 TV_CP(*ki, *ki32, ki_childtime); 1164 CP(*ki, *ki32, ki_flag); 1165 CP(*ki, *ki32, ki_kiflag); 1166 CP(*ki, *ki32, ki_traceflag); 1167 CP(*ki, *ki32, ki_stat); 1168 CP(*ki, *ki32, ki_nice); 1169 CP(*ki, *ki32, ki_lock); 1170 CP(*ki, *ki32, ki_rqindex); 1171 CP(*ki, *ki32, ki_oncpu); 1172 CP(*ki, *ki32, ki_lastcpu); 1173 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1174 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1175 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1176 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1177 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1178 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1179 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1180 CP(*ki, *ki32, ki_cr_flags); 1181 CP(*ki, *ki32, ki_jid); 1182 CP(*ki, *ki32, ki_numthreads); 1183 CP(*ki, *ki32, ki_tid); 1184 CP(*ki, *ki32, ki_pri); 1185 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1186 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1187 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1188 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1189 PTRTRIM_CP(*ki, *ki32, ki_udata); 1190 CP(*ki, *ki32, ki_sflag); 1191 CP(*ki, *ki32, ki_tdflags); 1192 } 1193 1194 static int 1195 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1196 { 1197 struct kinfo_proc32 ki32; 1198 int error; 1199 1200 if (req->flags & SCTL_MASK32) { 1201 freebsd32_kinfo_proc_out(ki, &ki32); 1202 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1203 } else 1204 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1205 return (error); 1206 } 1207 #else 1208 static int 1209 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1210 { 1211 1212 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1213 } 1214 #endif 1215 1216 /* 1217 * Must be called with the process locked and will return with it unlocked. 1218 */ 1219 static int 1220 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1221 { 1222 struct thread *td; 1223 struct kinfo_proc kinfo_proc; 1224 int error = 0; 1225 struct proc *np; 1226 pid_t pid = p->p_pid; 1227 1228 PROC_LOCK_ASSERT(p, MA_OWNED); 1229 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1230 1231 fill_kinfo_proc(p, &kinfo_proc); 1232 if (flags & KERN_PROC_NOTHREADS) 1233 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1234 else { 1235 FOREACH_THREAD_IN_PROC(p, td) { 1236 fill_kinfo_thread(td, &kinfo_proc, 1); 1237 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1238 if (error) 1239 break; 1240 } 1241 } 1242 PROC_UNLOCK(p); 1243 if (error) 1244 return (error); 1245 if (flags & KERN_PROC_ZOMBMASK) 1246 np = zpfind(pid); 1247 else { 1248 if (pid == 0) 1249 return (0); 1250 np = pfind(pid); 1251 } 1252 if (np == NULL) 1253 return (ESRCH); 1254 if (np != p) { 1255 PROC_UNLOCK(np); 1256 return (ESRCH); 1257 } 1258 PROC_UNLOCK(np); 1259 return (0); 1260 } 1261 1262 static int 1263 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1264 { 1265 int *name = (int *)arg1; 1266 u_int namelen = arg2; 1267 struct proc *p; 1268 int flags, doingzomb, oid_number; 1269 int error = 0; 1270 1271 oid_number = oidp->oid_number; 1272 if (oid_number != KERN_PROC_ALL && 1273 (oid_number & KERN_PROC_INC_THREAD) == 0) 1274 flags = KERN_PROC_NOTHREADS; 1275 else { 1276 flags = 0; 1277 oid_number &= ~KERN_PROC_INC_THREAD; 1278 } 1279 if (oid_number == KERN_PROC_PID) { 1280 if (namelen != 1) 1281 return (EINVAL); 1282 error = sysctl_wire_old_buffer(req, 0); 1283 if (error) 1284 return (error); 1285 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1286 if (error != 0) 1287 return (error); 1288 error = sysctl_out_proc(p, req, flags); 1289 return (error); 1290 } 1291 1292 switch (oid_number) { 1293 case KERN_PROC_ALL: 1294 if (namelen != 0) 1295 return (EINVAL); 1296 break; 1297 case KERN_PROC_PROC: 1298 if (namelen != 0 && namelen != 1) 1299 return (EINVAL); 1300 break; 1301 default: 1302 if (namelen != 1) 1303 return (EINVAL); 1304 break; 1305 } 1306 1307 if (!req->oldptr) { 1308 /* overestimate by 5 procs */ 1309 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1310 if (error) 1311 return (error); 1312 } 1313 error = sysctl_wire_old_buffer(req, 0); 1314 if (error != 0) 1315 return (error); 1316 sx_slock(&allproc_lock); 1317 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1318 if (!doingzomb) 1319 p = LIST_FIRST(&allproc); 1320 else 1321 p = LIST_FIRST(&zombproc); 1322 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1323 /* 1324 * Skip embryonic processes. 1325 */ 1326 PROC_LOCK(p); 1327 if (p->p_state == PRS_NEW) { 1328 PROC_UNLOCK(p); 1329 continue; 1330 } 1331 KASSERT(p->p_ucred != NULL, 1332 ("process credential is NULL for non-NEW proc")); 1333 /* 1334 * Show a user only appropriate processes. 1335 */ 1336 if (p_cansee(curthread, p)) { 1337 PROC_UNLOCK(p); 1338 continue; 1339 } 1340 /* 1341 * TODO - make more efficient (see notes below). 1342 * do by session. 1343 */ 1344 switch (oid_number) { 1345 1346 case KERN_PROC_GID: 1347 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1348 PROC_UNLOCK(p); 1349 continue; 1350 } 1351 break; 1352 1353 case KERN_PROC_PGRP: 1354 /* could do this by traversing pgrp */ 1355 if (p->p_pgrp == NULL || 1356 p->p_pgrp->pg_id != (pid_t)name[0]) { 1357 PROC_UNLOCK(p); 1358 continue; 1359 } 1360 break; 1361 1362 case KERN_PROC_RGID: 1363 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1364 PROC_UNLOCK(p); 1365 continue; 1366 } 1367 break; 1368 1369 case KERN_PROC_SESSION: 1370 if (p->p_session == NULL || 1371 p->p_session->s_sid != (pid_t)name[0]) { 1372 PROC_UNLOCK(p); 1373 continue; 1374 } 1375 break; 1376 1377 case KERN_PROC_TTY: 1378 if ((p->p_flag & P_CONTROLT) == 0 || 1379 p->p_session == NULL) { 1380 PROC_UNLOCK(p); 1381 continue; 1382 } 1383 /* XXX proctree_lock */ 1384 SESS_LOCK(p->p_session); 1385 if (p->p_session->s_ttyp == NULL || 1386 tty_udev(p->p_session->s_ttyp) != 1387 (dev_t)name[0]) { 1388 SESS_UNLOCK(p->p_session); 1389 PROC_UNLOCK(p); 1390 continue; 1391 } 1392 SESS_UNLOCK(p->p_session); 1393 break; 1394 1395 case KERN_PROC_UID: 1396 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1397 PROC_UNLOCK(p); 1398 continue; 1399 } 1400 break; 1401 1402 case KERN_PROC_RUID: 1403 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1404 PROC_UNLOCK(p); 1405 continue; 1406 } 1407 break; 1408 1409 case KERN_PROC_PROC: 1410 break; 1411 1412 default: 1413 break; 1414 1415 } 1416 1417 error = sysctl_out_proc(p, req, flags | doingzomb); 1418 if (error) { 1419 sx_sunlock(&allproc_lock); 1420 return (error); 1421 } 1422 } 1423 } 1424 sx_sunlock(&allproc_lock); 1425 return (0); 1426 } 1427 1428 struct pargs * 1429 pargs_alloc(int len) 1430 { 1431 struct pargs *pa; 1432 1433 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1434 M_WAITOK); 1435 refcount_init(&pa->ar_ref, 1); 1436 pa->ar_length = len; 1437 return (pa); 1438 } 1439 1440 static void 1441 pargs_free(struct pargs *pa) 1442 { 1443 1444 free(pa, M_PARGS); 1445 } 1446 1447 void 1448 pargs_hold(struct pargs *pa) 1449 { 1450 1451 if (pa == NULL) 1452 return; 1453 refcount_acquire(&pa->ar_ref); 1454 } 1455 1456 void 1457 pargs_drop(struct pargs *pa) 1458 { 1459 1460 if (pa == NULL) 1461 return; 1462 if (refcount_release(&pa->ar_ref)) 1463 pargs_free(pa); 1464 } 1465 1466 static int 1467 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1468 size_t len) 1469 { 1470 struct iovec iov; 1471 struct uio uio; 1472 1473 iov.iov_base = (caddr_t)buf; 1474 iov.iov_len = len; 1475 uio.uio_iov = &iov; 1476 uio.uio_iovcnt = 1; 1477 uio.uio_offset = offset; 1478 uio.uio_resid = (ssize_t)len; 1479 uio.uio_segflg = UIO_SYSSPACE; 1480 uio.uio_rw = UIO_READ; 1481 uio.uio_td = td; 1482 1483 return (proc_rwmem(p, &uio)); 1484 } 1485 1486 static int 1487 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1488 size_t len) 1489 { 1490 size_t i; 1491 int error; 1492 1493 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1494 /* 1495 * Reading the chunk may validly return EFAULT if the string is shorter 1496 * than the chunk and is aligned at the end of the page, assuming the 1497 * next page is not mapped. So if EFAULT is returned do a fallback to 1498 * one byte read loop. 1499 */ 1500 if (error == EFAULT) { 1501 for (i = 0; i < len; i++, buf++, sptr++) { 1502 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1503 if (error != 0) 1504 return (error); 1505 if (*buf == '\0') 1506 break; 1507 } 1508 error = 0; 1509 } 1510 return (error); 1511 } 1512 1513 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1514 1515 enum proc_vector_type { 1516 PROC_ARG, 1517 PROC_ENV, 1518 PROC_AUX, 1519 }; 1520 1521 #ifdef COMPAT_FREEBSD32 1522 static int 1523 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1524 size_t *vsizep, enum proc_vector_type type) 1525 { 1526 struct freebsd32_ps_strings pss; 1527 Elf32_Auxinfo aux; 1528 vm_offset_t vptr, ptr; 1529 uint32_t *proc_vector32; 1530 char **proc_vector; 1531 size_t vsize, size; 1532 int i, error; 1533 1534 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1535 &pss, sizeof(pss)); 1536 if (error != 0) 1537 return (error); 1538 switch (type) { 1539 case PROC_ARG: 1540 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1541 vsize = pss.ps_nargvstr; 1542 if (vsize > ARG_MAX) 1543 return (ENOEXEC); 1544 size = vsize * sizeof(int32_t); 1545 break; 1546 case PROC_ENV: 1547 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1548 vsize = pss.ps_nenvstr; 1549 if (vsize > ARG_MAX) 1550 return (ENOEXEC); 1551 size = vsize * sizeof(int32_t); 1552 break; 1553 case PROC_AUX: 1554 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1555 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1556 if (vptr % 4 != 0) 1557 return (ENOEXEC); 1558 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1559 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1560 if (error != 0) 1561 return (error); 1562 if (aux.a_type == AT_NULL) 1563 break; 1564 ptr += sizeof(aux); 1565 } 1566 if (aux.a_type != AT_NULL) 1567 return (ENOEXEC); 1568 vsize = i + 1; 1569 size = vsize * sizeof(aux); 1570 break; 1571 default: 1572 KASSERT(0, ("Wrong proc vector type: %d", type)); 1573 return (EINVAL); 1574 } 1575 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1576 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1577 if (error != 0) 1578 goto done; 1579 if (type == PROC_AUX) { 1580 *proc_vectorp = (char **)proc_vector32; 1581 *vsizep = vsize; 1582 return (0); 1583 } 1584 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1585 for (i = 0; i < (int)vsize; i++) 1586 proc_vector[i] = PTRIN(proc_vector32[i]); 1587 *proc_vectorp = proc_vector; 1588 *vsizep = vsize; 1589 done: 1590 free(proc_vector32, M_TEMP); 1591 return (error); 1592 } 1593 #endif 1594 1595 static int 1596 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1597 size_t *vsizep, enum proc_vector_type type) 1598 { 1599 struct ps_strings pss; 1600 Elf_Auxinfo aux; 1601 vm_offset_t vptr, ptr; 1602 char **proc_vector; 1603 size_t vsize, size; 1604 int error, i; 1605 1606 #ifdef COMPAT_FREEBSD32 1607 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1608 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1609 #endif 1610 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1611 &pss, sizeof(pss)); 1612 if (error != 0) 1613 return (error); 1614 switch (type) { 1615 case PROC_ARG: 1616 vptr = (vm_offset_t)pss.ps_argvstr; 1617 vsize = pss.ps_nargvstr; 1618 if (vsize > ARG_MAX) 1619 return (ENOEXEC); 1620 size = vsize * sizeof(char *); 1621 break; 1622 case PROC_ENV: 1623 vptr = (vm_offset_t)pss.ps_envstr; 1624 vsize = pss.ps_nenvstr; 1625 if (vsize > ARG_MAX) 1626 return (ENOEXEC); 1627 size = vsize * sizeof(char *); 1628 break; 1629 case PROC_AUX: 1630 /* 1631 * The aux array is just above env array on the stack. Check 1632 * that the address is naturally aligned. 1633 */ 1634 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1635 * sizeof(char *); 1636 #if __ELF_WORD_SIZE == 64 1637 if (vptr % sizeof(uint64_t) != 0) 1638 #else 1639 if (vptr % sizeof(uint32_t) != 0) 1640 #endif 1641 return (ENOEXEC); 1642 /* 1643 * We count the array size reading the aux vectors from the 1644 * stack until AT_NULL vector is returned. So (to keep the code 1645 * simple) we read the process stack twice: the first time here 1646 * to find the size and the second time when copying the vectors 1647 * to the allocated proc_vector. 1648 */ 1649 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1650 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1651 if (error != 0) 1652 return (error); 1653 if (aux.a_type == AT_NULL) 1654 break; 1655 ptr += sizeof(aux); 1656 } 1657 /* 1658 * If the PROC_AUXV_MAX entries are iterated over, and we have 1659 * not reached AT_NULL, it is most likely we are reading wrong 1660 * data: either the process doesn't have auxv array or data has 1661 * been modified. Return the error in this case. 1662 */ 1663 if (aux.a_type != AT_NULL) 1664 return (ENOEXEC); 1665 vsize = i + 1; 1666 size = vsize * sizeof(aux); 1667 break; 1668 default: 1669 KASSERT(0, ("Wrong proc vector type: %d", type)); 1670 return (EINVAL); /* In case we are built without INVARIANTS. */ 1671 } 1672 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1673 if (proc_vector == NULL) 1674 return (ENOMEM); 1675 error = proc_read_mem(td, p, vptr, proc_vector, size); 1676 if (error != 0) { 1677 free(proc_vector, M_TEMP); 1678 return (error); 1679 } 1680 *proc_vectorp = proc_vector; 1681 *vsizep = vsize; 1682 1683 return (0); 1684 } 1685 1686 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1687 1688 static int 1689 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1690 enum proc_vector_type type) 1691 { 1692 size_t done, len, nchr, vsize; 1693 int error, i; 1694 char **proc_vector, *sptr; 1695 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1696 1697 PROC_ASSERT_HELD(p); 1698 1699 /* 1700 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1701 */ 1702 nchr = 2 * (PATH_MAX + ARG_MAX); 1703 1704 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1705 if (error != 0) 1706 return (error); 1707 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1708 /* 1709 * The program may have scribbled into its argv array, e.g. to 1710 * remove some arguments. If that has happened, break out 1711 * before trying to read from NULL. 1712 */ 1713 if (proc_vector[i] == NULL) 1714 break; 1715 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1716 error = proc_read_string(td, p, sptr, pss_string, 1717 sizeof(pss_string)); 1718 if (error != 0) 1719 goto done; 1720 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1721 if (done + len >= nchr) 1722 len = nchr - done - 1; 1723 sbuf_bcat(sb, pss_string, len); 1724 if (len != GET_PS_STRINGS_CHUNK_SZ) 1725 break; 1726 done += GET_PS_STRINGS_CHUNK_SZ; 1727 } 1728 sbuf_bcat(sb, "", 1); 1729 done += len + 1; 1730 } 1731 done: 1732 free(proc_vector, M_TEMP); 1733 return (error); 1734 } 1735 1736 int 1737 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1738 { 1739 1740 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1741 } 1742 1743 int 1744 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1745 { 1746 1747 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1748 } 1749 1750 /* 1751 * This sysctl allows a process to retrieve the argument list or process 1752 * title for another process without groping around in the address space 1753 * of the other process. It also allow a process to set its own "process 1754 * title to a string of its own choice. 1755 */ 1756 static int 1757 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1758 { 1759 int *name = (int *)arg1; 1760 u_int namelen = arg2; 1761 struct pargs *newpa, *pa; 1762 struct proc *p; 1763 struct sbuf sb; 1764 int flags, error = 0, error2; 1765 1766 if (namelen != 1) 1767 return (EINVAL); 1768 1769 flags = PGET_CANSEE; 1770 if (req->newptr != NULL) 1771 flags |= PGET_ISCURRENT; 1772 error = pget((pid_t)name[0], flags, &p); 1773 if (error) 1774 return (error); 1775 1776 pa = p->p_args; 1777 if (pa != NULL) { 1778 pargs_hold(pa); 1779 PROC_UNLOCK(p); 1780 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1781 pargs_drop(pa); 1782 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1783 _PHOLD(p); 1784 PROC_UNLOCK(p); 1785 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1786 error = proc_getargv(curthread, p, &sb); 1787 error2 = sbuf_finish(&sb); 1788 PRELE(p); 1789 sbuf_delete(&sb); 1790 if (error == 0 && error2 != 0) 1791 error = error2; 1792 } else { 1793 PROC_UNLOCK(p); 1794 } 1795 if (error != 0 || req->newptr == NULL) 1796 return (error); 1797 1798 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1799 return (ENOMEM); 1800 newpa = pargs_alloc(req->newlen); 1801 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1802 if (error != 0) { 1803 pargs_free(newpa); 1804 return (error); 1805 } 1806 PROC_LOCK(p); 1807 pa = p->p_args; 1808 p->p_args = newpa; 1809 PROC_UNLOCK(p); 1810 pargs_drop(pa); 1811 return (0); 1812 } 1813 1814 /* 1815 * This sysctl allows a process to retrieve environment of another process. 1816 */ 1817 static int 1818 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1819 { 1820 int *name = (int *)arg1; 1821 u_int namelen = arg2; 1822 struct proc *p; 1823 struct sbuf sb; 1824 int error, error2; 1825 1826 if (namelen != 1) 1827 return (EINVAL); 1828 1829 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1830 if (error != 0) 1831 return (error); 1832 if ((p->p_flag & P_SYSTEM) != 0) { 1833 PRELE(p); 1834 return (0); 1835 } 1836 1837 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1838 error = proc_getenvv(curthread, p, &sb); 1839 error2 = sbuf_finish(&sb); 1840 PRELE(p); 1841 sbuf_delete(&sb); 1842 return (error != 0 ? error : error2); 1843 } 1844 1845 /* 1846 * This sysctl allows a process to retrieve ELF auxiliary vector of 1847 * another process. 1848 */ 1849 static int 1850 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1851 { 1852 int *name = (int *)arg1; 1853 u_int namelen = arg2; 1854 struct proc *p; 1855 size_t vsize, size; 1856 char **auxv; 1857 int error; 1858 1859 if (namelen != 1) 1860 return (EINVAL); 1861 1862 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1863 if (error != 0) 1864 return (error); 1865 if ((p->p_flag & P_SYSTEM) != 0) { 1866 PRELE(p); 1867 return (0); 1868 } 1869 error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX); 1870 if (error == 0) { 1871 #ifdef COMPAT_FREEBSD32 1872 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1873 size = vsize * sizeof(Elf32_Auxinfo); 1874 else 1875 #endif 1876 size = vsize * sizeof(Elf_Auxinfo); 1877 PRELE(p); 1878 error = SYSCTL_OUT(req, auxv, size); 1879 free(auxv, M_TEMP); 1880 } else { 1881 PRELE(p); 1882 } 1883 return (error); 1884 } 1885 1886 /* 1887 * This sysctl allows a process to retrieve the path of the executable for 1888 * itself or another process. 1889 */ 1890 static int 1891 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1892 { 1893 pid_t *pidp = (pid_t *)arg1; 1894 unsigned int arglen = arg2; 1895 struct proc *p; 1896 struct vnode *vp; 1897 char *retbuf, *freebuf; 1898 int error; 1899 1900 if (arglen != 1) 1901 return (EINVAL); 1902 if (*pidp == -1) { /* -1 means this process */ 1903 p = req->td->td_proc; 1904 } else { 1905 error = pget(*pidp, PGET_CANSEE, &p); 1906 if (error != 0) 1907 return (error); 1908 } 1909 1910 vp = p->p_textvp; 1911 if (vp == NULL) { 1912 if (*pidp != -1) 1913 PROC_UNLOCK(p); 1914 return (0); 1915 } 1916 vref(vp); 1917 if (*pidp != -1) 1918 PROC_UNLOCK(p); 1919 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1920 vrele(vp); 1921 if (error) 1922 return (error); 1923 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1924 free(freebuf, M_TEMP); 1925 return (error); 1926 } 1927 1928 static int 1929 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1930 { 1931 struct proc *p; 1932 char *sv_name; 1933 int *name; 1934 int namelen; 1935 int error; 1936 1937 namelen = arg2; 1938 if (namelen != 1) 1939 return (EINVAL); 1940 1941 name = (int *)arg1; 1942 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1943 if (error != 0) 1944 return (error); 1945 sv_name = p->p_sysent->sv_name; 1946 PROC_UNLOCK(p); 1947 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1948 } 1949 1950 #ifdef KINFO_OVMENTRY_SIZE 1951 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1952 #endif 1953 1954 #ifdef COMPAT_FREEBSD7 1955 static int 1956 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1957 { 1958 vm_map_entry_t entry, tmp_entry; 1959 unsigned int last_timestamp; 1960 char *fullpath, *freepath; 1961 struct kinfo_ovmentry *kve; 1962 struct vattr va; 1963 struct ucred *cred; 1964 int error, *name; 1965 struct vnode *vp; 1966 struct proc *p; 1967 vm_map_t map; 1968 struct vmspace *vm; 1969 1970 name = (int *)arg1; 1971 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1972 if (error != 0) 1973 return (error); 1974 vm = vmspace_acquire_ref(p); 1975 if (vm == NULL) { 1976 PRELE(p); 1977 return (ESRCH); 1978 } 1979 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1980 1981 map = &vm->vm_map; 1982 vm_map_lock_read(map); 1983 for (entry = map->header.next; entry != &map->header; 1984 entry = entry->next) { 1985 vm_object_t obj, tobj, lobj; 1986 vm_offset_t addr; 1987 1988 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1989 continue; 1990 1991 bzero(kve, sizeof(*kve)); 1992 kve->kve_structsize = sizeof(*kve); 1993 1994 kve->kve_private_resident = 0; 1995 obj = entry->object.vm_object; 1996 if (obj != NULL) { 1997 VM_OBJECT_LOCK(obj); 1998 if (obj->shadow_count == 1) 1999 kve->kve_private_resident = 2000 obj->resident_page_count; 2001 } 2002 kve->kve_resident = 0; 2003 addr = entry->start; 2004 while (addr < entry->end) { 2005 if (pmap_extract(map->pmap, addr)) 2006 kve->kve_resident++; 2007 addr += PAGE_SIZE; 2008 } 2009 2010 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2011 if (tobj != obj) 2012 VM_OBJECT_LOCK(tobj); 2013 if (lobj != obj) 2014 VM_OBJECT_UNLOCK(lobj); 2015 lobj = tobj; 2016 } 2017 2018 kve->kve_start = (void*)entry->start; 2019 kve->kve_end = (void*)entry->end; 2020 kve->kve_offset = (off_t)entry->offset; 2021 2022 if (entry->protection & VM_PROT_READ) 2023 kve->kve_protection |= KVME_PROT_READ; 2024 if (entry->protection & VM_PROT_WRITE) 2025 kve->kve_protection |= KVME_PROT_WRITE; 2026 if (entry->protection & VM_PROT_EXECUTE) 2027 kve->kve_protection |= KVME_PROT_EXEC; 2028 2029 if (entry->eflags & MAP_ENTRY_COW) 2030 kve->kve_flags |= KVME_FLAG_COW; 2031 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2032 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2033 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2034 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2035 2036 last_timestamp = map->timestamp; 2037 vm_map_unlock_read(map); 2038 2039 kve->kve_fileid = 0; 2040 kve->kve_fsid = 0; 2041 freepath = NULL; 2042 fullpath = ""; 2043 if (lobj) { 2044 vp = NULL; 2045 switch (lobj->type) { 2046 case OBJT_DEFAULT: 2047 kve->kve_type = KVME_TYPE_DEFAULT; 2048 break; 2049 case OBJT_VNODE: 2050 kve->kve_type = KVME_TYPE_VNODE; 2051 vp = lobj->handle; 2052 vref(vp); 2053 break; 2054 case OBJT_SWAP: 2055 kve->kve_type = KVME_TYPE_SWAP; 2056 break; 2057 case OBJT_DEVICE: 2058 kve->kve_type = KVME_TYPE_DEVICE; 2059 break; 2060 case OBJT_PHYS: 2061 kve->kve_type = KVME_TYPE_PHYS; 2062 break; 2063 case OBJT_DEAD: 2064 kve->kve_type = KVME_TYPE_DEAD; 2065 break; 2066 case OBJT_SG: 2067 kve->kve_type = KVME_TYPE_SG; 2068 break; 2069 default: 2070 kve->kve_type = KVME_TYPE_UNKNOWN; 2071 break; 2072 } 2073 if (lobj != obj) 2074 VM_OBJECT_UNLOCK(lobj); 2075 2076 kve->kve_ref_count = obj->ref_count; 2077 kve->kve_shadow_count = obj->shadow_count; 2078 VM_OBJECT_UNLOCK(obj); 2079 if (vp != NULL) { 2080 vn_fullpath(curthread, vp, &fullpath, 2081 &freepath); 2082 cred = curthread->td_ucred; 2083 vn_lock(vp, LK_SHARED | LK_RETRY); 2084 if (VOP_GETATTR(vp, &va, cred) == 0) { 2085 kve->kve_fileid = va.va_fileid; 2086 kve->kve_fsid = va.va_fsid; 2087 } 2088 vput(vp); 2089 } 2090 } else { 2091 kve->kve_type = KVME_TYPE_NONE; 2092 kve->kve_ref_count = 0; 2093 kve->kve_shadow_count = 0; 2094 } 2095 2096 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2097 if (freepath != NULL) 2098 free(freepath, M_TEMP); 2099 2100 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2101 vm_map_lock_read(map); 2102 if (error) 2103 break; 2104 if (last_timestamp != map->timestamp) { 2105 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2106 entry = tmp_entry; 2107 } 2108 } 2109 vm_map_unlock_read(map); 2110 vmspace_free(vm); 2111 PRELE(p); 2112 free(kve, M_TEMP); 2113 return (error); 2114 } 2115 #endif /* COMPAT_FREEBSD7 */ 2116 2117 #ifdef KINFO_VMENTRY_SIZE 2118 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2119 #endif 2120 2121 static int 2122 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2123 { 2124 vm_map_entry_t entry, tmp_entry; 2125 unsigned int last_timestamp; 2126 char *fullpath, *freepath; 2127 struct kinfo_vmentry *kve; 2128 struct vattr va; 2129 struct ucred *cred; 2130 int error, *name; 2131 struct vnode *vp; 2132 struct proc *p; 2133 struct vmspace *vm; 2134 vm_map_t map; 2135 2136 name = (int *)arg1; 2137 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2138 if (error != 0) 2139 return (error); 2140 vm = vmspace_acquire_ref(p); 2141 if (vm == NULL) { 2142 PRELE(p); 2143 return (ESRCH); 2144 } 2145 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2146 2147 map = &vm->vm_map; 2148 vm_map_lock_read(map); 2149 for (entry = map->header.next; entry != &map->header; 2150 entry = entry->next) { 2151 vm_object_t obj, tobj, lobj; 2152 vm_offset_t addr; 2153 vm_paddr_t locked_pa; 2154 int mincoreinfo; 2155 2156 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2157 continue; 2158 2159 bzero(kve, sizeof(*kve)); 2160 2161 kve->kve_private_resident = 0; 2162 obj = entry->object.vm_object; 2163 if (obj != NULL) { 2164 VM_OBJECT_LOCK(obj); 2165 if (obj->shadow_count == 1) 2166 kve->kve_private_resident = 2167 obj->resident_page_count; 2168 } 2169 kve->kve_resident = 0; 2170 addr = entry->start; 2171 while (addr < entry->end) { 2172 locked_pa = 0; 2173 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2174 if (locked_pa != 0) 2175 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2176 if (mincoreinfo & MINCORE_INCORE) 2177 kve->kve_resident++; 2178 if (mincoreinfo & MINCORE_SUPER) 2179 kve->kve_flags |= KVME_FLAG_SUPER; 2180 addr += PAGE_SIZE; 2181 } 2182 2183 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2184 if (tobj != obj) 2185 VM_OBJECT_LOCK(tobj); 2186 if (lobj != obj) 2187 VM_OBJECT_UNLOCK(lobj); 2188 lobj = tobj; 2189 } 2190 2191 kve->kve_start = entry->start; 2192 kve->kve_end = entry->end; 2193 kve->kve_offset = entry->offset; 2194 2195 if (entry->protection & VM_PROT_READ) 2196 kve->kve_protection |= KVME_PROT_READ; 2197 if (entry->protection & VM_PROT_WRITE) 2198 kve->kve_protection |= KVME_PROT_WRITE; 2199 if (entry->protection & VM_PROT_EXECUTE) 2200 kve->kve_protection |= KVME_PROT_EXEC; 2201 2202 if (entry->eflags & MAP_ENTRY_COW) 2203 kve->kve_flags |= KVME_FLAG_COW; 2204 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2205 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2206 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2207 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2208 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2209 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2210 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2211 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2212 2213 last_timestamp = map->timestamp; 2214 vm_map_unlock_read(map); 2215 2216 freepath = NULL; 2217 fullpath = ""; 2218 if (lobj) { 2219 vp = NULL; 2220 switch (lobj->type) { 2221 case OBJT_DEFAULT: 2222 kve->kve_type = KVME_TYPE_DEFAULT; 2223 break; 2224 case OBJT_VNODE: 2225 kve->kve_type = KVME_TYPE_VNODE; 2226 vp = lobj->handle; 2227 vref(vp); 2228 break; 2229 case OBJT_SWAP: 2230 kve->kve_type = KVME_TYPE_SWAP; 2231 break; 2232 case OBJT_DEVICE: 2233 kve->kve_type = KVME_TYPE_DEVICE; 2234 break; 2235 case OBJT_PHYS: 2236 kve->kve_type = KVME_TYPE_PHYS; 2237 break; 2238 case OBJT_DEAD: 2239 kve->kve_type = KVME_TYPE_DEAD; 2240 break; 2241 case OBJT_SG: 2242 kve->kve_type = KVME_TYPE_SG; 2243 break; 2244 default: 2245 kve->kve_type = KVME_TYPE_UNKNOWN; 2246 break; 2247 } 2248 if (lobj != obj) 2249 VM_OBJECT_UNLOCK(lobj); 2250 2251 kve->kve_ref_count = obj->ref_count; 2252 kve->kve_shadow_count = obj->shadow_count; 2253 VM_OBJECT_UNLOCK(obj); 2254 if (vp != NULL) { 2255 vn_fullpath(curthread, vp, &fullpath, 2256 &freepath); 2257 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2258 cred = curthread->td_ucred; 2259 vn_lock(vp, LK_SHARED | LK_RETRY); 2260 if (VOP_GETATTR(vp, &va, cred) == 0) { 2261 kve->kve_vn_fileid = va.va_fileid; 2262 kve->kve_vn_fsid = va.va_fsid; 2263 kve->kve_vn_mode = 2264 MAKEIMODE(va.va_type, va.va_mode); 2265 kve->kve_vn_size = va.va_size; 2266 kve->kve_vn_rdev = va.va_rdev; 2267 kve->kve_status = KF_ATTR_VALID; 2268 } 2269 vput(vp); 2270 } 2271 } else { 2272 kve->kve_type = KVME_TYPE_NONE; 2273 kve->kve_ref_count = 0; 2274 kve->kve_shadow_count = 0; 2275 } 2276 2277 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2278 if (freepath != NULL) 2279 free(freepath, M_TEMP); 2280 2281 /* Pack record size down */ 2282 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2283 strlen(kve->kve_path) + 1; 2284 kve->kve_structsize = roundup(kve->kve_structsize, 2285 sizeof(uint64_t)); 2286 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 2287 vm_map_lock_read(map); 2288 if (error) 2289 break; 2290 if (last_timestamp != map->timestamp) { 2291 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2292 entry = tmp_entry; 2293 } 2294 } 2295 vm_map_unlock_read(map); 2296 vmspace_free(vm); 2297 PRELE(p); 2298 free(kve, M_TEMP); 2299 return (error); 2300 } 2301 2302 #if defined(STACK) || defined(DDB) 2303 static int 2304 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2305 { 2306 struct kinfo_kstack *kkstp; 2307 int error, i, *name, numthreads; 2308 lwpid_t *lwpidarray; 2309 struct thread *td; 2310 struct stack *st; 2311 struct sbuf sb; 2312 struct proc *p; 2313 2314 name = (int *)arg1; 2315 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2316 if (error != 0) 2317 return (error); 2318 2319 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2320 st = stack_create(); 2321 2322 lwpidarray = NULL; 2323 numthreads = 0; 2324 PROC_LOCK(p); 2325 repeat: 2326 if (numthreads < p->p_numthreads) { 2327 if (lwpidarray != NULL) { 2328 free(lwpidarray, M_TEMP); 2329 lwpidarray = NULL; 2330 } 2331 numthreads = p->p_numthreads; 2332 PROC_UNLOCK(p); 2333 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2334 M_WAITOK | M_ZERO); 2335 PROC_LOCK(p); 2336 goto repeat; 2337 } 2338 i = 0; 2339 2340 /* 2341 * XXXRW: During the below loop, execve(2) and countless other sorts 2342 * of changes could have taken place. Should we check to see if the 2343 * vmspace has been replaced, or the like, in order to prevent 2344 * giving a snapshot that spans, say, execve(2), with some threads 2345 * before and some after? Among other things, the credentials could 2346 * have changed, in which case the right to extract debug info might 2347 * no longer be assured. 2348 */ 2349 FOREACH_THREAD_IN_PROC(p, td) { 2350 KASSERT(i < numthreads, 2351 ("sysctl_kern_proc_kstack: numthreads")); 2352 lwpidarray[i] = td->td_tid; 2353 i++; 2354 } 2355 numthreads = i; 2356 for (i = 0; i < numthreads; i++) { 2357 td = thread_find(p, lwpidarray[i]); 2358 if (td == NULL) { 2359 continue; 2360 } 2361 bzero(kkstp, sizeof(*kkstp)); 2362 (void)sbuf_new(&sb, kkstp->kkst_trace, 2363 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2364 thread_lock(td); 2365 kkstp->kkst_tid = td->td_tid; 2366 if (TD_IS_SWAPPED(td)) 2367 kkstp->kkst_state = KKST_STATE_SWAPPED; 2368 else if (TD_IS_RUNNING(td)) 2369 kkstp->kkst_state = KKST_STATE_RUNNING; 2370 else { 2371 kkstp->kkst_state = KKST_STATE_STACKOK; 2372 stack_save_td(st, td); 2373 } 2374 thread_unlock(td); 2375 PROC_UNLOCK(p); 2376 stack_sbuf_print(&sb, st); 2377 sbuf_finish(&sb); 2378 sbuf_delete(&sb); 2379 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2380 PROC_LOCK(p); 2381 if (error) 2382 break; 2383 } 2384 _PRELE(p); 2385 PROC_UNLOCK(p); 2386 if (lwpidarray != NULL) 2387 free(lwpidarray, M_TEMP); 2388 stack_destroy(st); 2389 free(kkstp, M_TEMP); 2390 return (error); 2391 } 2392 #endif 2393 2394 /* 2395 * This sysctl allows a process to retrieve the full list of groups from 2396 * itself or another process. 2397 */ 2398 static int 2399 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2400 { 2401 pid_t *pidp = (pid_t *)arg1; 2402 unsigned int arglen = arg2; 2403 struct proc *p; 2404 struct ucred *cred; 2405 int error; 2406 2407 if (arglen != 1) 2408 return (EINVAL); 2409 if (*pidp == -1) { /* -1 means this process */ 2410 p = req->td->td_proc; 2411 } else { 2412 error = pget(*pidp, PGET_CANSEE, &p); 2413 if (error != 0) 2414 return (error); 2415 } 2416 2417 cred = crhold(p->p_ucred); 2418 if (*pidp != -1) 2419 PROC_UNLOCK(p); 2420 2421 error = SYSCTL_OUT(req, cred->cr_groups, 2422 cred->cr_ngroups * sizeof(gid_t)); 2423 crfree(cred); 2424 return (error); 2425 } 2426 2427 /* 2428 * This sysctl allows a process to retrieve or/and set the resource limit for 2429 * another process. 2430 */ 2431 static int 2432 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2433 { 2434 int *name = (int *)arg1; 2435 u_int namelen = arg2; 2436 struct rlimit rlim; 2437 struct proc *p; 2438 u_int which; 2439 int flags, error; 2440 2441 if (namelen != 2) 2442 return (EINVAL); 2443 2444 which = (u_int)name[1]; 2445 if (which >= RLIM_NLIMITS) 2446 return (EINVAL); 2447 2448 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2449 return (EINVAL); 2450 2451 flags = PGET_HOLD | PGET_NOTWEXIT; 2452 if (req->newptr != NULL) 2453 flags |= PGET_CANDEBUG; 2454 else 2455 flags |= PGET_CANSEE; 2456 error = pget((pid_t)name[0], flags, &p); 2457 if (error != 0) 2458 return (error); 2459 2460 /* 2461 * Retrieve limit. 2462 */ 2463 if (req->oldptr != NULL) { 2464 PROC_LOCK(p); 2465 lim_rlimit(p, which, &rlim); 2466 PROC_UNLOCK(p); 2467 } 2468 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2469 if (error != 0) 2470 goto errout; 2471 2472 /* 2473 * Set limit. 2474 */ 2475 if (req->newptr != NULL) { 2476 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2477 if (error == 0) 2478 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2479 } 2480 2481 errout: 2482 PRELE(p); 2483 return (error); 2484 } 2485 2486 /* 2487 * This sysctl allows a process to retrieve ps_strings structure location of 2488 * another process. 2489 */ 2490 static int 2491 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2492 { 2493 int *name = (int *)arg1; 2494 u_int namelen = arg2; 2495 struct proc *p; 2496 vm_offset_t ps_strings; 2497 int error; 2498 #ifdef COMPAT_FREEBSD32 2499 uint32_t ps_strings32; 2500 #endif 2501 2502 if (namelen != 1) 2503 return (EINVAL); 2504 2505 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2506 if (error != 0) 2507 return (error); 2508 #ifdef COMPAT_FREEBSD32 2509 if ((req->flags & SCTL_MASK32) != 0) { 2510 /* 2511 * We return 0 if the 32 bit emulation request is for a 64 bit 2512 * process. 2513 */ 2514 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2515 PTROUT(p->p_sysent->sv_psstrings) : 0; 2516 PROC_UNLOCK(p); 2517 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2518 return (error); 2519 } 2520 #endif 2521 ps_strings = p->p_sysent->sv_psstrings; 2522 PROC_UNLOCK(p); 2523 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2524 return (error); 2525 } 2526 2527 /* 2528 * This sysctl allows a process to retrieve umask of another process. 2529 */ 2530 static int 2531 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2532 { 2533 int *name = (int *)arg1; 2534 u_int namelen = arg2; 2535 struct proc *p; 2536 int error; 2537 u_short fd_cmask; 2538 2539 if (namelen != 1) 2540 return (EINVAL); 2541 2542 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2543 if (error != 0) 2544 return (error); 2545 2546 FILEDESC_SLOCK(p->p_fd); 2547 fd_cmask = p->p_fd->fd_cmask; 2548 FILEDESC_SUNLOCK(p->p_fd); 2549 PRELE(p); 2550 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2551 return (error); 2552 } 2553 2554 /* 2555 * This sysctl allows a process to set and retrieve binary osreldate of 2556 * another process. 2557 */ 2558 static int 2559 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2560 { 2561 int *name = (int *)arg1; 2562 u_int namelen = arg2; 2563 struct proc *p; 2564 int flags, error, osrel; 2565 2566 if (namelen != 1) 2567 return (EINVAL); 2568 2569 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2570 return (EINVAL); 2571 2572 flags = PGET_HOLD | PGET_NOTWEXIT; 2573 if (req->newptr != NULL) 2574 flags |= PGET_CANDEBUG; 2575 else 2576 flags |= PGET_CANSEE; 2577 error = pget((pid_t)name[0], flags, &p); 2578 if (error != 0) 2579 return (error); 2580 2581 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2582 if (error != 0) 2583 goto errout; 2584 2585 if (req->newptr != NULL) { 2586 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2587 if (error != 0) 2588 goto errout; 2589 if (osrel < 0) { 2590 error = EINVAL; 2591 goto errout; 2592 } 2593 p->p_osrel = osrel; 2594 } 2595 errout: 2596 PRELE(p); 2597 return (error); 2598 } 2599 2600 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2601 2602 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2603 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2604 "Return entire process table"); 2605 2606 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2607 sysctl_kern_proc, "Process table"); 2608 2609 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2610 sysctl_kern_proc, "Process table"); 2611 2612 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2613 sysctl_kern_proc, "Process table"); 2614 2615 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2616 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2617 2618 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2619 sysctl_kern_proc, "Process table"); 2620 2621 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2622 sysctl_kern_proc, "Process table"); 2623 2624 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2625 sysctl_kern_proc, "Process table"); 2626 2627 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2628 sysctl_kern_proc, "Process table"); 2629 2630 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2631 sysctl_kern_proc, "Return process table, no threads"); 2632 2633 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2634 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2635 sysctl_kern_proc_args, "Process argument list"); 2636 2637 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2638 sysctl_kern_proc_env, "Process environment"); 2639 2640 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2641 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2642 2643 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2644 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2645 2646 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2647 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2648 "Process syscall vector name (ABI type)"); 2649 2650 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2651 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2652 2653 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2654 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2655 2656 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2657 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2658 2659 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2660 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2661 2662 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2663 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2664 2665 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2666 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2667 2668 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2669 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2670 2671 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2672 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2673 2674 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2675 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2676 "Return process table, no threads"); 2677 2678 #ifdef COMPAT_FREEBSD7 2679 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2680 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2681 #endif 2682 2683 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2684 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2685 2686 #if defined(STACK) || defined(DDB) 2687 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2688 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2689 #endif 2690 2691 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2692 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2693 2694 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2695 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2696 "Process resource limits"); 2697 2698 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2699 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2700 "Process ps_strings location"); 2701 2702 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2703 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2704 2705 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2706 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2707 "Process binary osreldate"); 2708