1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ddb.h" 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 #include "opt_stack.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mount.h> 46 #include <sys/mutex.h> 47 #include <sys/proc.h> 48 #include <sys/refcount.h> 49 #include <sys/sbuf.h> 50 #include <sys/sysent.h> 51 #include <sys/sched.h> 52 #include <sys/smp.h> 53 #include <sys/stack.h> 54 #include <sys/sysctl.h> 55 #include <sys/filedesc.h> 56 #include <sys/tty.h> 57 #include <sys/signalvar.h> 58 #include <sys/sx.h> 59 #include <sys/user.h> 60 #include <sys/jail.h> 61 #include <sys/vnode.h> 62 #include <sys/eventhandler.h> 63 #ifdef KTRACE 64 #include <sys/uio.h> 65 #include <sys/ktrace.h> 66 #endif 67 68 #ifdef DDB 69 #include <ddb/ddb.h> 70 #endif 71 72 #include <vm/vm.h> 73 #include <vm/vm_extern.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_map.h> 76 #include <vm/vm_object.h> 77 #include <vm/uma.h> 78 79 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 80 MALLOC_DEFINE(M_SESSION, "session", "session header"); 81 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 82 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 83 84 static void doenterpgrp(struct proc *, struct pgrp *); 85 static void orphanpg(struct pgrp *pg); 86 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 87 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 88 int preferthread); 89 static void pgadjustjobc(struct pgrp *pgrp, int entering); 90 static void pgdelete(struct pgrp *); 91 static int proc_ctor(void *mem, int size, void *arg, int flags); 92 static void proc_dtor(void *mem, int size, void *arg); 93 static int proc_init(void *mem, int size, int flags); 94 static void proc_fini(void *mem, int size); 95 96 /* 97 * Other process lists 98 */ 99 struct pidhashhead *pidhashtbl; 100 u_long pidhash; 101 struct pgrphashhead *pgrphashtbl; 102 u_long pgrphash; 103 struct proclist allproc; 104 struct proclist zombproc; 105 struct sx allproc_lock; 106 struct sx proctree_lock; 107 struct mtx ppeers_lock; 108 uma_zone_t proc_zone; 109 uma_zone_t ithread_zone; 110 111 int kstack_pages = KSTACK_PAGES; 112 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 113 114 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 115 116 /* 117 * Initialize global process hashing structures. 118 */ 119 void 120 procinit() 121 { 122 123 sx_init(&allproc_lock, "allproc"); 124 sx_init(&proctree_lock, "proctree"); 125 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 126 LIST_INIT(&allproc); 127 LIST_INIT(&zombproc); 128 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 129 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 130 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 131 proc_ctor, proc_dtor, proc_init, proc_fini, 132 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 133 uihashinit(); 134 } 135 136 /* 137 * Prepare a proc for use. 138 */ 139 static int 140 proc_ctor(void *mem, int size, void *arg, int flags) 141 { 142 struct proc *p; 143 144 p = (struct proc *)mem; 145 EVENTHANDLER_INVOKE(process_ctor, p); 146 return (0); 147 } 148 149 /* 150 * Reclaim a proc after use. 151 */ 152 static void 153 proc_dtor(void *mem, int size, void *arg) 154 { 155 struct proc *p; 156 struct thread *td; 157 158 /* INVARIANTS checks go here */ 159 p = (struct proc *)mem; 160 td = FIRST_THREAD_IN_PROC(p); 161 if (td != NULL) { 162 #ifdef INVARIANTS 163 KASSERT((p->p_numthreads == 1), 164 ("bad number of threads in exiting process")); 165 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 166 #endif 167 /* Dispose of an alternate kstack, if it exists. 168 * XXX What if there are more than one thread in the proc? 169 * The first thread in the proc is special and not 170 * freed, so you gotta do this here. 171 */ 172 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 173 vm_thread_dispose_altkstack(td); 174 } 175 EVENTHANDLER_INVOKE(process_dtor, p); 176 if (p->p_ksi != NULL) 177 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 178 } 179 180 /* 181 * Initialize type-stable parts of a proc (when newly created). 182 */ 183 static int 184 proc_init(void *mem, int size, int flags) 185 { 186 struct proc *p; 187 188 p = (struct proc *)mem; 189 p->p_sched = (struct p_sched *)&p[1]; 190 bzero(&p->p_mtx, sizeof(struct mtx)); 191 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 192 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 193 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 194 EVENTHANDLER_INVOKE(process_init, p); 195 p->p_stats = pstats_alloc(); 196 return (0); 197 } 198 199 /* 200 * UMA should ensure that this function is never called. 201 * Freeing a proc structure would violate type stability. 202 */ 203 static void 204 proc_fini(void *mem, int size) 205 { 206 #ifdef notnow 207 struct proc *p; 208 209 p = (struct proc *)mem; 210 EVENTHANDLER_INVOKE(process_fini, p); 211 pstats_free(p->p_stats); 212 thread_free(FIRST_THREAD_IN_PROC(p)); 213 mtx_destroy(&p->p_mtx); 214 if (p->p_ksi != NULL) 215 ksiginfo_free(p->p_ksi); 216 #else 217 panic("proc reclaimed"); 218 #endif 219 } 220 221 /* 222 * Is p an inferior of the current process? 223 */ 224 int 225 inferior(p) 226 register struct proc *p; 227 { 228 229 sx_assert(&proctree_lock, SX_LOCKED); 230 for (; p != curproc; p = p->p_pptr) 231 if (p->p_pid == 0) 232 return (0); 233 return (1); 234 } 235 236 /* 237 * Locate a process by number; return only "live" processes -- i.e., neither 238 * zombies nor newly born but incompletely initialized processes. By not 239 * returning processes in the PRS_NEW state, we allow callers to avoid 240 * testing for that condition to avoid dereferencing p_ucred, et al. 241 */ 242 struct proc * 243 pfind(pid) 244 register pid_t pid; 245 { 246 register struct proc *p; 247 248 sx_slock(&allproc_lock); 249 LIST_FOREACH(p, PIDHASH(pid), p_hash) 250 if (p->p_pid == pid) { 251 if (p->p_state == PRS_NEW) { 252 p = NULL; 253 break; 254 } 255 PROC_LOCK(p); 256 break; 257 } 258 sx_sunlock(&allproc_lock); 259 return (p); 260 } 261 262 /* 263 * Locate a process group by number. 264 * The caller must hold proctree_lock. 265 */ 266 struct pgrp * 267 pgfind(pgid) 268 register pid_t pgid; 269 { 270 register struct pgrp *pgrp; 271 272 sx_assert(&proctree_lock, SX_LOCKED); 273 274 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 275 if (pgrp->pg_id == pgid) { 276 PGRP_LOCK(pgrp); 277 return (pgrp); 278 } 279 } 280 return (NULL); 281 } 282 283 /* 284 * Create a new process group. 285 * pgid must be equal to the pid of p. 286 * Begin a new session if required. 287 */ 288 int 289 enterpgrp(p, pgid, pgrp, sess) 290 register struct proc *p; 291 pid_t pgid; 292 struct pgrp *pgrp; 293 struct session *sess; 294 { 295 struct pgrp *pgrp2; 296 297 sx_assert(&proctree_lock, SX_XLOCKED); 298 299 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 300 KASSERT(p->p_pid == pgid, 301 ("enterpgrp: new pgrp and pid != pgid")); 302 303 pgrp2 = pgfind(pgid); 304 305 KASSERT(pgrp2 == NULL, 306 ("enterpgrp: pgrp with pgid exists")); 307 KASSERT(!SESS_LEADER(p), 308 ("enterpgrp: session leader attempted setpgrp")); 309 310 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 311 312 if (sess != NULL) { 313 /* 314 * new session 315 */ 316 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 317 mtx_lock(&Giant); /* XXX TTY */ 318 PROC_LOCK(p); 319 p->p_flag &= ~P_CONTROLT; 320 PROC_UNLOCK(p); 321 PGRP_LOCK(pgrp); 322 sess->s_leader = p; 323 sess->s_sid = p->p_pid; 324 sess->s_count = 1; 325 sess->s_ttyvp = NULL; 326 sess->s_ttyp = NULL; 327 bcopy(p->p_session->s_login, sess->s_login, 328 sizeof(sess->s_login)); 329 pgrp->pg_session = sess; 330 KASSERT(p == curproc, 331 ("enterpgrp: mksession and p != curproc")); 332 } else { 333 mtx_lock(&Giant); /* XXX TTY */ 334 pgrp->pg_session = p->p_session; 335 SESS_LOCK(pgrp->pg_session); 336 pgrp->pg_session->s_count++; 337 SESS_UNLOCK(pgrp->pg_session); 338 PGRP_LOCK(pgrp); 339 } 340 pgrp->pg_id = pgid; 341 LIST_INIT(&pgrp->pg_members); 342 343 /* 344 * As we have an exclusive lock of proctree_lock, 345 * this should not deadlock. 346 */ 347 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 348 pgrp->pg_jobc = 0; 349 SLIST_INIT(&pgrp->pg_sigiolst); 350 PGRP_UNLOCK(pgrp); 351 mtx_unlock(&Giant); /* XXX TTY */ 352 353 doenterpgrp(p, pgrp); 354 355 return (0); 356 } 357 358 /* 359 * Move p to an existing process group 360 */ 361 int 362 enterthispgrp(p, pgrp) 363 register struct proc *p; 364 struct pgrp *pgrp; 365 { 366 367 sx_assert(&proctree_lock, SX_XLOCKED); 368 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 369 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 370 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 371 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 372 KASSERT(pgrp->pg_session == p->p_session, 373 ("%s: pgrp's session %p, p->p_session %p.\n", 374 __func__, 375 pgrp->pg_session, 376 p->p_session)); 377 KASSERT(pgrp != p->p_pgrp, 378 ("%s: p belongs to pgrp.", __func__)); 379 380 doenterpgrp(p, pgrp); 381 382 return (0); 383 } 384 385 /* 386 * Move p to a process group 387 */ 388 static void 389 doenterpgrp(p, pgrp) 390 struct proc *p; 391 struct pgrp *pgrp; 392 { 393 struct pgrp *savepgrp; 394 395 sx_assert(&proctree_lock, SX_XLOCKED); 396 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 397 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 398 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 399 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 400 401 savepgrp = p->p_pgrp; 402 403 /* 404 * Adjust eligibility of affected pgrps to participate in job control. 405 * Increment eligibility counts before decrementing, otherwise we 406 * could reach 0 spuriously during the first call. 407 */ 408 fixjobc(p, pgrp, 1); 409 fixjobc(p, p->p_pgrp, 0); 410 411 mtx_lock(&Giant); /* XXX TTY */ 412 PGRP_LOCK(pgrp); 413 PGRP_LOCK(savepgrp); 414 PROC_LOCK(p); 415 LIST_REMOVE(p, p_pglist); 416 p->p_pgrp = pgrp; 417 PROC_UNLOCK(p); 418 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 419 PGRP_UNLOCK(savepgrp); 420 PGRP_UNLOCK(pgrp); 421 mtx_unlock(&Giant); /* XXX TTY */ 422 if (LIST_EMPTY(&savepgrp->pg_members)) 423 pgdelete(savepgrp); 424 } 425 426 /* 427 * remove process from process group 428 */ 429 int 430 leavepgrp(p) 431 register struct proc *p; 432 { 433 struct pgrp *savepgrp; 434 435 sx_assert(&proctree_lock, SX_XLOCKED); 436 savepgrp = p->p_pgrp; 437 mtx_lock(&Giant); /* XXX TTY */ 438 PGRP_LOCK(savepgrp); 439 PROC_LOCK(p); 440 LIST_REMOVE(p, p_pglist); 441 p->p_pgrp = NULL; 442 PROC_UNLOCK(p); 443 PGRP_UNLOCK(savepgrp); 444 mtx_unlock(&Giant); /* XXX TTY */ 445 if (LIST_EMPTY(&savepgrp->pg_members)) 446 pgdelete(savepgrp); 447 return (0); 448 } 449 450 /* 451 * delete a process group 452 */ 453 static void 454 pgdelete(pgrp) 455 register struct pgrp *pgrp; 456 { 457 struct session *savesess; 458 459 sx_assert(&proctree_lock, SX_XLOCKED); 460 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 461 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 462 463 /* 464 * Reset any sigio structures pointing to us as a result of 465 * F_SETOWN with our pgid. 466 */ 467 funsetownlst(&pgrp->pg_sigiolst); 468 469 mtx_lock(&Giant); /* XXX TTY */ 470 PGRP_LOCK(pgrp); 471 if (pgrp->pg_session->s_ttyp != NULL && 472 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 473 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 474 LIST_REMOVE(pgrp, pg_hash); 475 savesess = pgrp->pg_session; 476 SESSRELE(savesess); 477 PGRP_UNLOCK(pgrp); 478 mtx_destroy(&pgrp->pg_mtx); 479 FREE(pgrp, M_PGRP); 480 mtx_unlock(&Giant); /* XXX TTY */ 481 } 482 483 static void 484 pgadjustjobc(pgrp, entering) 485 struct pgrp *pgrp; 486 int entering; 487 { 488 489 PGRP_LOCK(pgrp); 490 if (entering) 491 pgrp->pg_jobc++; 492 else { 493 --pgrp->pg_jobc; 494 if (pgrp->pg_jobc == 0) 495 orphanpg(pgrp); 496 } 497 PGRP_UNLOCK(pgrp); 498 } 499 500 /* 501 * Adjust pgrp jobc counters when specified process changes process group. 502 * We count the number of processes in each process group that "qualify" 503 * the group for terminal job control (those with a parent in a different 504 * process group of the same session). If that count reaches zero, the 505 * process group becomes orphaned. Check both the specified process' 506 * process group and that of its children. 507 * entering == 0 => p is leaving specified group. 508 * entering == 1 => p is entering specified group. 509 */ 510 void 511 fixjobc(p, pgrp, entering) 512 register struct proc *p; 513 register struct pgrp *pgrp; 514 int entering; 515 { 516 register struct pgrp *hispgrp; 517 register struct session *mysession; 518 519 sx_assert(&proctree_lock, SX_LOCKED); 520 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 521 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 522 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 523 524 /* 525 * Check p's parent to see whether p qualifies its own process 526 * group; if so, adjust count for p's process group. 527 */ 528 mysession = pgrp->pg_session; 529 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 530 hispgrp->pg_session == mysession) 531 pgadjustjobc(pgrp, entering); 532 533 /* 534 * Check this process' children to see whether they qualify 535 * their process groups; if so, adjust counts for children's 536 * process groups. 537 */ 538 LIST_FOREACH(p, &p->p_children, p_sibling) { 539 hispgrp = p->p_pgrp; 540 if (hispgrp == pgrp || 541 hispgrp->pg_session != mysession) 542 continue; 543 PROC_LOCK(p); 544 if (p->p_state == PRS_ZOMBIE) { 545 PROC_UNLOCK(p); 546 continue; 547 } 548 PROC_UNLOCK(p); 549 pgadjustjobc(hispgrp, entering); 550 } 551 } 552 553 /* 554 * A process group has become orphaned; 555 * if there are any stopped processes in the group, 556 * hang-up all process in that group. 557 */ 558 static void 559 orphanpg(pg) 560 struct pgrp *pg; 561 { 562 register struct proc *p; 563 564 PGRP_LOCK_ASSERT(pg, MA_OWNED); 565 566 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 567 PROC_LOCK(p); 568 if (P_SHOULDSTOP(p)) { 569 PROC_UNLOCK(p); 570 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 571 PROC_LOCK(p); 572 psignal(p, SIGHUP); 573 psignal(p, SIGCONT); 574 PROC_UNLOCK(p); 575 } 576 return; 577 } 578 PROC_UNLOCK(p); 579 } 580 } 581 582 void 583 sessrele(struct session *s) 584 { 585 int i; 586 587 SESS_LOCK(s); 588 i = --s->s_count; 589 SESS_UNLOCK(s); 590 if (i == 0) { 591 if (s->s_ttyp != NULL) 592 ttyrel(s->s_ttyp); 593 mtx_destroy(&s->s_mtx); 594 FREE(s, M_SESSION); 595 } 596 } 597 598 #include "opt_ddb.h" 599 #ifdef DDB 600 #include <ddb/ddb.h> 601 602 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 603 { 604 register struct pgrp *pgrp; 605 register struct proc *p; 606 register int i; 607 608 for (i = 0; i <= pgrphash; i++) { 609 if (!LIST_EMPTY(&pgrphashtbl[i])) { 610 printf("\tindx %d\n", i); 611 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 612 printf( 613 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 614 (void *)pgrp, (long)pgrp->pg_id, 615 (void *)pgrp->pg_session, 616 pgrp->pg_session->s_count, 617 (void *)LIST_FIRST(&pgrp->pg_members)); 618 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 619 printf("\t\tpid %ld addr %p pgrp %p\n", 620 (long)p->p_pid, (void *)p, 621 (void *)p->p_pgrp); 622 } 623 } 624 } 625 } 626 } 627 #endif /* DDB */ 628 629 /* 630 * Clear kinfo_proc and fill in any information that is common 631 * to all threads in the process. 632 * Must be called with the target process locked. 633 */ 634 static void 635 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 636 { 637 struct thread *td0; 638 struct tty *tp; 639 struct session *sp; 640 struct ucred *cred; 641 struct sigacts *ps; 642 643 PROC_LOCK_ASSERT(p, MA_OWNED); 644 bzero(kp, sizeof(*kp)); 645 646 kp->ki_structsize = sizeof(*kp); 647 kp->ki_paddr = p; 648 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 649 kp->ki_args = p->p_args; 650 kp->ki_textvp = p->p_textvp; 651 #ifdef KTRACE 652 kp->ki_tracep = p->p_tracevp; 653 mtx_lock(&ktrace_mtx); 654 kp->ki_traceflag = p->p_traceflag; 655 mtx_unlock(&ktrace_mtx); 656 #endif 657 kp->ki_fd = p->p_fd; 658 kp->ki_vmspace = p->p_vmspace; 659 kp->ki_flag = p->p_flag; 660 cred = p->p_ucred; 661 if (cred) { 662 kp->ki_uid = cred->cr_uid; 663 kp->ki_ruid = cred->cr_ruid; 664 kp->ki_svuid = cred->cr_svuid; 665 /* XXX bde doesn't like KI_NGROUPS */ 666 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 667 bcopy(cred->cr_groups, kp->ki_groups, 668 kp->ki_ngroups * sizeof(gid_t)); 669 kp->ki_rgid = cred->cr_rgid; 670 kp->ki_svgid = cred->cr_svgid; 671 /* If jailed(cred), emulate the old P_JAILED flag. */ 672 if (jailed(cred)) { 673 kp->ki_flag |= P_JAILED; 674 /* If inside a jail, use 0 as a jail ID. */ 675 if (!jailed(curthread->td_ucred)) 676 kp->ki_jid = cred->cr_prison->pr_id; 677 } 678 } 679 ps = p->p_sigacts; 680 if (ps) { 681 mtx_lock(&ps->ps_mtx); 682 kp->ki_sigignore = ps->ps_sigignore; 683 kp->ki_sigcatch = ps->ps_sigcatch; 684 mtx_unlock(&ps->ps_mtx); 685 } 686 PROC_SLOCK(p); 687 if (p->p_state != PRS_NEW && 688 p->p_state != PRS_ZOMBIE && 689 p->p_vmspace != NULL) { 690 struct vmspace *vm = p->p_vmspace; 691 692 kp->ki_size = vm->vm_map.size; 693 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 694 FOREACH_THREAD_IN_PROC(p, td0) { 695 if (!TD_IS_SWAPPED(td0)) 696 kp->ki_rssize += td0->td_kstack_pages; 697 if (td0->td_altkstack_obj != NULL) 698 kp->ki_rssize += td0->td_altkstack_pages; 699 } 700 kp->ki_swrss = vm->vm_swrss; 701 kp->ki_tsize = vm->vm_tsize; 702 kp->ki_dsize = vm->vm_dsize; 703 kp->ki_ssize = vm->vm_ssize; 704 } else if (p->p_state == PRS_ZOMBIE) 705 kp->ki_stat = SZOMB; 706 if (kp->ki_flag & P_INMEM) 707 kp->ki_sflag = PS_INMEM; 708 else 709 kp->ki_sflag = 0; 710 /* Calculate legacy swtime as seconds since 'swtick'. */ 711 kp->ki_swtime = (ticks - p->p_swtick) / hz; 712 kp->ki_pid = p->p_pid; 713 kp->ki_nice = p->p_nice; 714 rufetch(p, &kp->ki_rusage); 715 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 716 PROC_SUNLOCK(p); 717 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 718 kp->ki_start = p->p_stats->p_start; 719 timevaladd(&kp->ki_start, &boottime); 720 PROC_SLOCK(p); 721 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 722 PROC_SUNLOCK(p); 723 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 724 725 /* Some callers want child-times in a single value */ 726 kp->ki_childtime = kp->ki_childstime; 727 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 728 } 729 tp = NULL; 730 if (p->p_pgrp) { 731 kp->ki_pgid = p->p_pgrp->pg_id; 732 kp->ki_jobc = p->p_pgrp->pg_jobc; 733 sp = p->p_pgrp->pg_session; 734 735 if (sp != NULL) { 736 kp->ki_sid = sp->s_sid; 737 SESS_LOCK(sp); 738 strlcpy(kp->ki_login, sp->s_login, 739 sizeof(kp->ki_login)); 740 if (sp->s_ttyvp) 741 kp->ki_kiflag |= KI_CTTY; 742 if (SESS_LEADER(p)) 743 kp->ki_kiflag |= KI_SLEADER; 744 tp = sp->s_ttyp; 745 SESS_UNLOCK(sp); 746 } 747 } 748 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 749 kp->ki_tdev = dev2udev(tp->t_dev); 750 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 751 if (tp->t_session) 752 kp->ki_tsid = tp->t_session->s_sid; 753 } else 754 kp->ki_tdev = NODEV; 755 if (p->p_comm[0] != '\0') 756 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 757 if (p->p_sysent && p->p_sysent->sv_name != NULL && 758 p->p_sysent->sv_name[0] != '\0') 759 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 760 kp->ki_siglist = p->p_siglist; 761 kp->ki_xstat = p->p_xstat; 762 kp->ki_acflag = p->p_acflag; 763 kp->ki_lock = p->p_lock; 764 if (p->p_pptr) 765 kp->ki_ppid = p->p_pptr->p_pid; 766 } 767 768 /* 769 * Fill in information that is thread specific. Must be called with p_slock 770 * locked. If 'preferthread' is set, overwrite certain process-related 771 * fields that are maintained for both threads and processes. 772 */ 773 static void 774 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 775 { 776 struct proc *p; 777 778 p = td->td_proc; 779 PROC_LOCK_ASSERT(p, MA_OWNED); 780 781 thread_lock(td); 782 if (td->td_wmesg != NULL) 783 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 784 else 785 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 786 if (td->td_name[0] != '\0') 787 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 788 if (TD_ON_LOCK(td)) { 789 kp->ki_kiflag |= KI_LOCKBLOCK; 790 strlcpy(kp->ki_lockname, td->td_lockname, 791 sizeof(kp->ki_lockname)); 792 } else { 793 kp->ki_kiflag &= ~KI_LOCKBLOCK; 794 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 795 } 796 797 if (p->p_state == PRS_NORMAL) { /* approximate. */ 798 if (TD_ON_RUNQ(td) || 799 TD_CAN_RUN(td) || 800 TD_IS_RUNNING(td)) { 801 kp->ki_stat = SRUN; 802 } else if (P_SHOULDSTOP(p)) { 803 kp->ki_stat = SSTOP; 804 } else if (TD_IS_SLEEPING(td)) { 805 kp->ki_stat = SSLEEP; 806 } else if (TD_ON_LOCK(td)) { 807 kp->ki_stat = SLOCK; 808 } else { 809 kp->ki_stat = SWAIT; 810 } 811 } else if (p->p_state == PRS_ZOMBIE) { 812 kp->ki_stat = SZOMB; 813 } else { 814 kp->ki_stat = SIDL; 815 } 816 817 /* Things in the thread */ 818 kp->ki_wchan = td->td_wchan; 819 kp->ki_pri.pri_level = td->td_priority; 820 kp->ki_pri.pri_native = td->td_base_pri; 821 kp->ki_lastcpu = td->td_lastcpu; 822 kp->ki_oncpu = td->td_oncpu; 823 kp->ki_tdflags = td->td_flags; 824 kp->ki_tid = td->td_tid; 825 kp->ki_numthreads = p->p_numthreads; 826 kp->ki_pcb = td->td_pcb; 827 kp->ki_kstack = (void *)td->td_kstack; 828 kp->ki_pctcpu = sched_pctcpu(td); 829 kp->ki_estcpu = td->td_estcpu; 830 kp->ki_slptime = (ticks - td->td_slptick) / hz; 831 kp->ki_pri.pri_class = td->td_pri_class; 832 kp->ki_pri.pri_user = td->td_user_pri; 833 834 if (preferthread) 835 kp->ki_runtime = cputick2usec(td->td_runtime); 836 837 /* We can't get this anymore but ps etc never used it anyway. */ 838 kp->ki_rqindex = 0; 839 840 SIGSETOR(kp->ki_siglist, td->td_siglist); 841 kp->ki_sigmask = td->td_sigmask; 842 thread_unlock(td); 843 } 844 845 /* 846 * Fill in a kinfo_proc structure for the specified process. 847 * Must be called with the target process locked. 848 */ 849 void 850 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 851 { 852 853 fill_kinfo_proc_only(p, kp); 854 if (FIRST_THREAD_IN_PROC(p) != NULL) 855 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 856 } 857 858 struct pstats * 859 pstats_alloc(void) 860 { 861 862 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 863 } 864 865 /* 866 * Copy parts of p_stats; zero the rest of p_stats (statistics). 867 */ 868 void 869 pstats_fork(struct pstats *src, struct pstats *dst) 870 { 871 872 bzero(&dst->pstat_startzero, 873 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 874 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 875 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 876 } 877 878 void 879 pstats_free(struct pstats *ps) 880 { 881 882 free(ps, M_SUBPROC); 883 } 884 885 /* 886 * Locate a zombie process by number 887 */ 888 struct proc * 889 zpfind(pid_t pid) 890 { 891 struct proc *p; 892 893 sx_slock(&allproc_lock); 894 LIST_FOREACH(p, &zombproc, p_list) 895 if (p->p_pid == pid) { 896 PROC_LOCK(p); 897 break; 898 } 899 sx_sunlock(&allproc_lock); 900 return (p); 901 } 902 903 #define KERN_PROC_ZOMBMASK 0x3 904 #define KERN_PROC_NOTHREADS 0x4 905 906 /* 907 * Must be called with the process locked and will return with it unlocked. 908 */ 909 static int 910 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 911 { 912 struct thread *td; 913 struct kinfo_proc kinfo_proc; 914 int error = 0; 915 struct proc *np; 916 pid_t pid = p->p_pid; 917 918 PROC_LOCK_ASSERT(p, MA_OWNED); 919 920 fill_kinfo_proc_only(p, &kinfo_proc); 921 if (flags & KERN_PROC_NOTHREADS) { 922 if (FIRST_THREAD_IN_PROC(p) != NULL) 923 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), 924 &kinfo_proc, 0); 925 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 926 sizeof(kinfo_proc)); 927 } else { 928 if (FIRST_THREAD_IN_PROC(p) != NULL) 929 FOREACH_THREAD_IN_PROC(p, td) { 930 fill_kinfo_thread(td, &kinfo_proc, 1); 931 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 932 sizeof(kinfo_proc)); 933 if (error) 934 break; 935 } 936 else 937 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 938 sizeof(kinfo_proc)); 939 } 940 PROC_UNLOCK(p); 941 if (error) 942 return (error); 943 if (flags & KERN_PROC_ZOMBMASK) 944 np = zpfind(pid); 945 else { 946 if (pid == 0) 947 return (0); 948 np = pfind(pid); 949 } 950 if (np == NULL) 951 return EAGAIN; 952 if (np != p) { 953 PROC_UNLOCK(np); 954 return EAGAIN; 955 } 956 PROC_UNLOCK(np); 957 return (0); 958 } 959 960 static int 961 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 962 { 963 int *name = (int*) arg1; 964 u_int namelen = arg2; 965 struct proc *p; 966 int flags, doingzomb, oid_number; 967 int error = 0; 968 969 oid_number = oidp->oid_number; 970 if (oid_number != KERN_PROC_ALL && 971 (oid_number & KERN_PROC_INC_THREAD) == 0) 972 flags = KERN_PROC_NOTHREADS; 973 else { 974 flags = 0; 975 oid_number &= ~KERN_PROC_INC_THREAD; 976 } 977 if (oid_number == KERN_PROC_PID) { 978 if (namelen != 1) 979 return (EINVAL); 980 error = sysctl_wire_old_buffer(req, 0); 981 if (error) 982 return (error); 983 p = pfind((pid_t)name[0]); 984 if (!p) 985 return (ESRCH); 986 if ((error = p_cansee(curthread, p))) { 987 PROC_UNLOCK(p); 988 return (error); 989 } 990 error = sysctl_out_proc(p, req, flags); 991 return (error); 992 } 993 994 switch (oid_number) { 995 case KERN_PROC_ALL: 996 if (namelen != 0) 997 return (EINVAL); 998 break; 999 case KERN_PROC_PROC: 1000 if (namelen != 0 && namelen != 1) 1001 return (EINVAL); 1002 break; 1003 default: 1004 if (namelen != 1) 1005 return (EINVAL); 1006 break; 1007 } 1008 1009 if (!req->oldptr) { 1010 /* overestimate by 5 procs */ 1011 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1012 if (error) 1013 return (error); 1014 } 1015 error = sysctl_wire_old_buffer(req, 0); 1016 if (error != 0) 1017 return (error); 1018 sx_slock(&allproc_lock); 1019 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1020 if (!doingzomb) 1021 p = LIST_FIRST(&allproc); 1022 else 1023 p = LIST_FIRST(&zombproc); 1024 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1025 /* 1026 * Skip embryonic processes. 1027 */ 1028 PROC_SLOCK(p); 1029 if (p->p_state == PRS_NEW) { 1030 PROC_SUNLOCK(p); 1031 continue; 1032 } 1033 PROC_SUNLOCK(p); 1034 PROC_LOCK(p); 1035 KASSERT(p->p_ucred != NULL, 1036 ("process credential is NULL for non-NEW proc")); 1037 /* 1038 * Show a user only appropriate processes. 1039 */ 1040 if (p_cansee(curthread, p)) { 1041 PROC_UNLOCK(p); 1042 continue; 1043 } 1044 /* 1045 * TODO - make more efficient (see notes below). 1046 * do by session. 1047 */ 1048 switch (oid_number) { 1049 1050 case KERN_PROC_GID: 1051 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1052 PROC_UNLOCK(p); 1053 continue; 1054 } 1055 break; 1056 1057 case KERN_PROC_PGRP: 1058 /* could do this by traversing pgrp */ 1059 if (p->p_pgrp == NULL || 1060 p->p_pgrp->pg_id != (pid_t)name[0]) { 1061 PROC_UNLOCK(p); 1062 continue; 1063 } 1064 break; 1065 1066 case KERN_PROC_RGID: 1067 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1068 PROC_UNLOCK(p); 1069 continue; 1070 } 1071 break; 1072 1073 case KERN_PROC_SESSION: 1074 if (p->p_session == NULL || 1075 p->p_session->s_sid != (pid_t)name[0]) { 1076 PROC_UNLOCK(p); 1077 continue; 1078 } 1079 break; 1080 1081 case KERN_PROC_TTY: 1082 if ((p->p_flag & P_CONTROLT) == 0 || 1083 p->p_session == NULL) { 1084 PROC_UNLOCK(p); 1085 continue; 1086 } 1087 SESS_LOCK(p->p_session); 1088 if (p->p_session->s_ttyp == NULL || 1089 dev2udev(p->p_session->s_ttyp->t_dev) != 1090 (dev_t)name[0]) { 1091 SESS_UNLOCK(p->p_session); 1092 PROC_UNLOCK(p); 1093 continue; 1094 } 1095 SESS_UNLOCK(p->p_session); 1096 break; 1097 1098 case KERN_PROC_UID: 1099 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1100 PROC_UNLOCK(p); 1101 continue; 1102 } 1103 break; 1104 1105 case KERN_PROC_RUID: 1106 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1107 PROC_UNLOCK(p); 1108 continue; 1109 } 1110 break; 1111 1112 case KERN_PROC_PROC: 1113 break; 1114 1115 default: 1116 break; 1117 1118 } 1119 1120 error = sysctl_out_proc(p, req, flags | doingzomb); 1121 if (error) { 1122 sx_sunlock(&allproc_lock); 1123 return (error); 1124 } 1125 } 1126 } 1127 sx_sunlock(&allproc_lock); 1128 return (0); 1129 } 1130 1131 struct pargs * 1132 pargs_alloc(int len) 1133 { 1134 struct pargs *pa; 1135 1136 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1137 M_WAITOK); 1138 refcount_init(&pa->ar_ref, 1); 1139 pa->ar_length = len; 1140 return (pa); 1141 } 1142 1143 void 1144 pargs_free(struct pargs *pa) 1145 { 1146 1147 FREE(pa, M_PARGS); 1148 } 1149 1150 void 1151 pargs_hold(struct pargs *pa) 1152 { 1153 1154 if (pa == NULL) 1155 return; 1156 refcount_acquire(&pa->ar_ref); 1157 } 1158 1159 void 1160 pargs_drop(struct pargs *pa) 1161 { 1162 1163 if (pa == NULL) 1164 return; 1165 if (refcount_release(&pa->ar_ref)) 1166 pargs_free(pa); 1167 } 1168 1169 /* 1170 * This sysctl allows a process to retrieve the argument list or process 1171 * title for another process without groping around in the address space 1172 * of the other process. It also allow a process to set its own "process 1173 * title to a string of its own choice. 1174 */ 1175 static int 1176 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1177 { 1178 int *name = (int*) arg1; 1179 u_int namelen = arg2; 1180 struct pargs *newpa, *pa; 1181 struct proc *p; 1182 int error = 0; 1183 1184 if (namelen != 1) 1185 return (EINVAL); 1186 1187 p = pfind((pid_t)name[0]); 1188 if (!p) 1189 return (ESRCH); 1190 1191 if ((error = p_cansee(curthread, p)) != 0) { 1192 PROC_UNLOCK(p); 1193 return (error); 1194 } 1195 1196 if (req->newptr && curproc != p) { 1197 PROC_UNLOCK(p); 1198 return (EPERM); 1199 } 1200 1201 pa = p->p_args; 1202 pargs_hold(pa); 1203 PROC_UNLOCK(p); 1204 if (req->oldptr != NULL && pa != NULL) 1205 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1206 pargs_drop(pa); 1207 if (error != 0 || req->newptr == NULL) 1208 return (error); 1209 1210 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1211 return (ENOMEM); 1212 newpa = pargs_alloc(req->newlen); 1213 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1214 if (error != 0) { 1215 pargs_free(newpa); 1216 return (error); 1217 } 1218 PROC_LOCK(p); 1219 pa = p->p_args; 1220 p->p_args = newpa; 1221 PROC_UNLOCK(p); 1222 pargs_drop(pa); 1223 return (0); 1224 } 1225 1226 /* 1227 * This sysctl allows a process to retrieve the path of the executable for 1228 * itself or another process. 1229 */ 1230 static int 1231 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1232 { 1233 pid_t *pidp = (pid_t *)arg1; 1234 unsigned int arglen = arg2; 1235 struct proc *p; 1236 struct vnode *vp; 1237 char *retbuf, *freebuf; 1238 int error; 1239 1240 if (arglen != 1) 1241 return (EINVAL); 1242 if (*pidp == -1) { /* -1 means this process */ 1243 p = req->td->td_proc; 1244 } else { 1245 p = pfind(*pidp); 1246 if (p == NULL) 1247 return (ESRCH); 1248 if ((error = p_cansee(curthread, p)) != 0) { 1249 PROC_UNLOCK(p); 1250 return (error); 1251 } 1252 } 1253 1254 vp = p->p_textvp; 1255 if (vp == NULL) { 1256 if (*pidp != -1) 1257 PROC_UNLOCK(p); 1258 return (0); 1259 } 1260 vref(vp); 1261 if (*pidp != -1) 1262 PROC_UNLOCK(p); 1263 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1264 vrele(vp); 1265 if (error) 1266 return (error); 1267 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1268 free(freebuf, M_TEMP); 1269 return (error); 1270 } 1271 1272 static int 1273 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1274 { 1275 struct proc *p; 1276 char *sv_name; 1277 int *name; 1278 int namelen; 1279 int error; 1280 1281 namelen = arg2; 1282 if (namelen != 1) 1283 return (EINVAL); 1284 1285 name = (int *)arg1; 1286 if ((p = pfind((pid_t)name[0])) == NULL) 1287 return (ESRCH); 1288 if ((error = p_cansee(curthread, p))) { 1289 PROC_UNLOCK(p); 1290 return (error); 1291 } 1292 sv_name = p->p_sysent->sv_name; 1293 PROC_UNLOCK(p); 1294 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1295 } 1296 1297 static int 1298 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1299 { 1300 vm_map_entry_t entry, tmp_entry; 1301 unsigned int last_timestamp; 1302 char *fullpath, *freepath; 1303 struct kinfo_vmentry *kve; 1304 int error, *name; 1305 struct vnode *vp; 1306 struct proc *p; 1307 vm_map_t map; 1308 1309 name = (int *)arg1; 1310 if ((p = pfind((pid_t)name[0])) == NULL) 1311 return (ESRCH); 1312 if (p->p_flag & P_WEXIT) { 1313 PROC_UNLOCK(p); 1314 return (ESRCH); 1315 } 1316 if ((error = p_candebug(curthread, p))) { 1317 PROC_UNLOCK(p); 1318 return (error); 1319 } 1320 _PHOLD(p); 1321 PROC_UNLOCK(p); 1322 1323 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1324 1325 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1326 vm_map_lock_read(map); 1327 for (entry = map->header.next; entry != &map->header; 1328 entry = entry->next) { 1329 vm_object_t obj, tobj, lobj; 1330 vm_offset_t addr; 1331 int vfslocked; 1332 1333 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1334 continue; 1335 1336 bzero(kve, sizeof(*kve)); 1337 kve->kve_structsize = sizeof(*kve); 1338 1339 kve->kve_private_resident = 0; 1340 obj = entry->object.vm_object; 1341 if (obj != NULL) { 1342 VM_OBJECT_LOCK(obj); 1343 if (obj->shadow_count == 1) 1344 kve->kve_private_resident = 1345 obj->resident_page_count; 1346 } 1347 kve->kve_resident = 0; 1348 addr = entry->start; 1349 while (addr < entry->end) { 1350 if (pmap_extract(map->pmap, addr)) 1351 kve->kve_resident++; 1352 addr += PAGE_SIZE; 1353 } 1354 1355 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1356 if (tobj != obj) 1357 VM_OBJECT_LOCK(tobj); 1358 if (lobj != obj) 1359 VM_OBJECT_UNLOCK(lobj); 1360 lobj = tobj; 1361 } 1362 1363 freepath = NULL; 1364 fullpath = ""; 1365 if (lobj) { 1366 vp = NULL; 1367 switch(lobj->type) { 1368 case OBJT_DEFAULT: 1369 kve->kve_type = KVME_TYPE_DEFAULT; 1370 break; 1371 case OBJT_VNODE: 1372 kve->kve_type = KVME_TYPE_VNODE; 1373 vp = lobj->handle; 1374 vref(vp); 1375 break; 1376 case OBJT_SWAP: 1377 kve->kve_type = KVME_TYPE_SWAP; 1378 break; 1379 case OBJT_DEVICE: 1380 kve->kve_type = KVME_TYPE_DEVICE; 1381 break; 1382 case OBJT_PHYS: 1383 kve->kve_type = KVME_TYPE_PHYS; 1384 break; 1385 case OBJT_DEAD: 1386 kve->kve_type = KVME_TYPE_DEAD; 1387 break; 1388 default: 1389 kve->kve_type = KVME_TYPE_UNKNOWN; 1390 break; 1391 } 1392 if (lobj != obj) 1393 VM_OBJECT_UNLOCK(lobj); 1394 1395 kve->kve_ref_count = obj->ref_count; 1396 kve->kve_shadow_count = obj->shadow_count; 1397 VM_OBJECT_UNLOCK(obj); 1398 if (vp != NULL) { 1399 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1400 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1401 vn_fullpath(curthread, vp, &fullpath, 1402 &freepath); 1403 vput(vp); 1404 VFS_UNLOCK_GIANT(vfslocked); 1405 } 1406 } else { 1407 kve->kve_type = KVME_TYPE_NONE; 1408 kve->kve_ref_count = 0; 1409 kve->kve_shadow_count = 0; 1410 } 1411 1412 kve->kve_start = (void*)entry->start; 1413 kve->kve_end = (void*)entry->end; 1414 1415 if (entry->protection & VM_PROT_READ) 1416 kve->kve_protection |= KVME_PROT_READ; 1417 if (entry->protection & VM_PROT_WRITE) 1418 kve->kve_protection |= KVME_PROT_WRITE; 1419 if (entry->protection & VM_PROT_EXECUTE) 1420 kve->kve_protection |= KVME_PROT_EXEC; 1421 1422 if (entry->eflags & MAP_ENTRY_COW) 1423 kve->kve_flags |= KVME_FLAG_COW; 1424 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1425 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1426 1427 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1428 if (freepath != NULL) 1429 free(freepath, M_TEMP); 1430 1431 last_timestamp = map->timestamp; 1432 vm_map_unlock_read(map); 1433 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1434 vm_map_lock_read(map); 1435 if (error) 1436 break; 1437 if (last_timestamp + 1 != map->timestamp) { 1438 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1439 entry = tmp_entry; 1440 } 1441 } 1442 vm_map_unlock_read(map); 1443 PRELE(p); 1444 free(kve, M_TEMP); 1445 return (error); 1446 } 1447 1448 #if defined(STACK) || defined(DDB) 1449 static int 1450 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1451 { 1452 struct kinfo_kstack *kkstp; 1453 int error, i, *name, numthreads; 1454 lwpid_t *lwpidarray; 1455 struct thread *td; 1456 struct stack *st; 1457 struct sbuf sb; 1458 struct proc *p; 1459 1460 name = (int *)arg1; 1461 if ((p = pfind((pid_t)name[0])) == NULL) 1462 return (ESRCH); 1463 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1464 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1465 PROC_UNLOCK(p); 1466 return (ESRCH); 1467 } 1468 if ((error = p_candebug(curthread, p))) { 1469 PROC_UNLOCK(p); 1470 return (error); 1471 } 1472 _PHOLD(p); 1473 PROC_UNLOCK(p); 1474 1475 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1476 st = stack_create(); 1477 1478 lwpidarray = NULL; 1479 numthreads = 0; 1480 PROC_LOCK(p); 1481 repeat: 1482 if (numthreads < p->p_numthreads) { 1483 if (lwpidarray != NULL) { 1484 free(lwpidarray, M_TEMP); 1485 lwpidarray = NULL; 1486 } 1487 numthreads = p->p_numthreads; 1488 PROC_UNLOCK(p); 1489 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1490 M_WAITOK | M_ZERO); 1491 PROC_LOCK(p); 1492 goto repeat; 1493 } 1494 i = 0; 1495 1496 /* 1497 * XXXRW: During the below loop, execve(2) and countless other sorts 1498 * of changes could have taken place. Should we check to see if the 1499 * vmspace has been replaced, or the like, in order to prevent 1500 * giving a snapshot that spans, say, execve(2), with some threads 1501 * before and some after? Among other things, the credentials could 1502 * have changed, in which case the right to extract debug info might 1503 * no longer be assured. 1504 */ 1505 FOREACH_THREAD_IN_PROC(p, td) { 1506 KASSERT(i < numthreads, 1507 ("sysctl_kern_proc_kstack: numthreads")); 1508 lwpidarray[i] = td->td_tid; 1509 i++; 1510 } 1511 numthreads = i; 1512 for (i = 0; i < numthreads; i++) { 1513 td = thread_find(p, lwpidarray[i]); 1514 if (td == NULL) { 1515 continue; 1516 } 1517 bzero(kkstp, sizeof(*kkstp)); 1518 (void)sbuf_new(&sb, kkstp->kkst_trace, 1519 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1520 thread_lock(td); 1521 kkstp->kkst_tid = td->td_tid; 1522 if (TD_IS_SWAPPED(td)) 1523 kkstp->kkst_state = KKST_STATE_SWAPPED; 1524 else if (TD_IS_RUNNING(td)) 1525 kkstp->kkst_state = KKST_STATE_RUNNING; 1526 else { 1527 kkstp->kkst_state = KKST_STATE_STACKOK; 1528 stack_save_td(st, td); 1529 } 1530 thread_unlock(td); 1531 PROC_UNLOCK(p); 1532 stack_sbuf_print(&sb, st); 1533 sbuf_finish(&sb); 1534 sbuf_delete(&sb); 1535 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1536 PROC_LOCK(p); 1537 if (error) 1538 break; 1539 } 1540 _PRELE(p); 1541 PROC_UNLOCK(p); 1542 if (lwpidarray != NULL) 1543 free(lwpidarray, M_TEMP); 1544 stack_destroy(st); 1545 free(kkstp, M_TEMP); 1546 return (error); 1547 } 1548 #endif 1549 1550 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1551 1552 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1553 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1554 1555 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1556 sysctl_kern_proc, "Process table"); 1557 1558 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1559 sysctl_kern_proc, "Process table"); 1560 1561 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1562 sysctl_kern_proc, "Process table"); 1563 1564 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1565 sysctl_kern_proc, "Process table"); 1566 1567 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1568 sysctl_kern_proc, "Process table"); 1569 1570 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1571 sysctl_kern_proc, "Process table"); 1572 1573 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1574 sysctl_kern_proc, "Process table"); 1575 1576 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1577 sysctl_kern_proc, "Process table"); 1578 1579 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1580 sysctl_kern_proc, "Return process table, no threads"); 1581 1582 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1583 CTLFLAG_RW | CTLFLAG_ANYBODY, 1584 sysctl_kern_proc_args, "Process argument list"); 1585 1586 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1587 sysctl_kern_proc_pathname, "Process executable path"); 1588 1589 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1590 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1591 1592 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1593 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1594 1595 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1596 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1597 1598 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1599 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1600 1601 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1602 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1603 1604 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1605 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1606 1607 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1608 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1609 1610 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1611 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1612 1613 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1614 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1615 1616 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1617 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1618 1619 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD, 1620 sysctl_kern_proc_vmmap, "Process vm map entries"); 1621 1622 #if defined(STACK) || defined(DDB) 1623 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD, 1624 sysctl_kern_proc_kstack, "Process kernel stacks"); 1625 #endif 1626