1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/rwlock.h> 59 #include <sys/sbuf.h> 60 #include <sys/sysent.h> 61 #include <sys/sched.h> 62 #include <sys/smp.h> 63 #include <sys/stack.h> 64 #include <sys/stat.h> 65 #include <sys/sysctl.h> 66 #include <sys/filedesc.h> 67 #include <sys/tty.h> 68 #include <sys/signalvar.h> 69 #include <sys/sdt.h> 70 #include <sys/sx.h> 71 #include <sys/user.h> 72 #include <sys/jail.h> 73 #include <sys/vnode.h> 74 #include <sys/eventhandler.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, entry, "struct proc *", "int", 96 "void *", "int"); 97 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, return, "struct proc *", "int", 98 "void *", "int"); 99 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, entry, "struct proc *", "int", 100 "void *", "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, return, "struct proc *", "int", 102 "void *"); 103 SDT_PROBE_DEFINE3(proc, kernel, init, entry, entry, "struct proc *", "int", 104 "int"); 105 SDT_PROBE_DEFINE3(proc, kernel, init, return, return, "struct proc *", "int", 106 "int"); 107 108 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 109 MALLOC_DEFINE(M_SESSION, "session", "session header"); 110 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 111 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 112 113 static void doenterpgrp(struct proc *, struct pgrp *); 114 static void orphanpg(struct pgrp *pg); 115 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 117 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 118 int preferthread); 119 static void pgadjustjobc(struct pgrp *pgrp, int entering); 120 static void pgdelete(struct pgrp *); 121 static int proc_ctor(void *mem, int size, void *arg, int flags); 122 static void proc_dtor(void *mem, int size, void *arg); 123 static int proc_init(void *mem, int size, int flags); 124 static void proc_fini(void *mem, int size); 125 static void pargs_free(struct pargs *pa); 126 static struct proc *zpfind_locked(pid_t pid); 127 128 /* 129 * Other process lists 130 */ 131 struct pidhashhead *pidhashtbl; 132 u_long pidhash; 133 struct pgrphashhead *pgrphashtbl; 134 u_long pgrphash; 135 struct proclist allproc; 136 struct proclist zombproc; 137 struct sx allproc_lock; 138 struct sx proctree_lock; 139 struct mtx ppeers_lock; 140 uma_zone_t proc_zone; 141 142 int kstack_pages = KSTACK_PAGES; 143 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 144 "Kernel stack size in pages"); 145 146 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 147 #ifdef COMPAT_FREEBSD32 148 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 149 #endif 150 151 /* 152 * Initialize global process hashing structures. 153 */ 154 void 155 procinit() 156 { 157 158 sx_init(&allproc_lock, "allproc"); 159 sx_init(&proctree_lock, "proctree"); 160 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 161 LIST_INIT(&allproc); 162 LIST_INIT(&zombproc); 163 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 164 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 165 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 166 proc_ctor, proc_dtor, proc_init, proc_fini, 167 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 168 uihashinit(); 169 } 170 171 /* 172 * Prepare a proc for use. 173 */ 174 static int 175 proc_ctor(void *mem, int size, void *arg, int flags) 176 { 177 struct proc *p; 178 179 p = (struct proc *)mem; 180 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 181 EVENTHANDLER_INVOKE(process_ctor, p); 182 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 183 return (0); 184 } 185 186 /* 187 * Reclaim a proc after use. 188 */ 189 static void 190 proc_dtor(void *mem, int size, void *arg) 191 { 192 struct proc *p; 193 struct thread *td; 194 195 /* INVARIANTS checks go here */ 196 p = (struct proc *)mem; 197 td = FIRST_THREAD_IN_PROC(p); 198 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 199 if (td != NULL) { 200 #ifdef INVARIANTS 201 KASSERT((p->p_numthreads == 1), 202 ("bad number of threads in exiting process")); 203 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 204 #endif 205 /* Free all OSD associated to this thread. */ 206 osd_thread_exit(td); 207 } 208 EVENTHANDLER_INVOKE(process_dtor, p); 209 if (p->p_ksi != NULL) 210 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 211 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 212 } 213 214 /* 215 * Initialize type-stable parts of a proc (when newly created). 216 */ 217 static int 218 proc_init(void *mem, int size, int flags) 219 { 220 struct proc *p; 221 222 p = (struct proc *)mem; 223 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 224 p->p_sched = (struct p_sched *)&p[1]; 225 bzero(&p->p_mtx, sizeof(struct mtx)); 226 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 227 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 228 cv_init(&p->p_pwait, "ppwait"); 229 cv_init(&p->p_dbgwait, "dbgwait"); 230 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 231 EVENTHANDLER_INVOKE(process_init, p); 232 p->p_stats = pstats_alloc(); 233 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 234 return (0); 235 } 236 237 /* 238 * UMA should ensure that this function is never called. 239 * Freeing a proc structure would violate type stability. 240 */ 241 static void 242 proc_fini(void *mem, int size) 243 { 244 #ifdef notnow 245 struct proc *p; 246 247 p = (struct proc *)mem; 248 EVENTHANDLER_INVOKE(process_fini, p); 249 pstats_free(p->p_stats); 250 thread_free(FIRST_THREAD_IN_PROC(p)); 251 mtx_destroy(&p->p_mtx); 252 if (p->p_ksi != NULL) 253 ksiginfo_free(p->p_ksi); 254 #else 255 panic("proc reclaimed"); 256 #endif 257 } 258 259 /* 260 * Is p an inferior of the current process? 261 */ 262 int 263 inferior(p) 264 register struct proc *p; 265 { 266 267 sx_assert(&proctree_lock, SX_LOCKED); 268 for (; p != curproc; p = p->p_pptr) 269 if (p->p_pid == 0) 270 return (0); 271 return (1); 272 } 273 274 struct proc * 275 pfind_locked(pid_t pid) 276 { 277 struct proc *p; 278 279 sx_assert(&allproc_lock, SX_LOCKED); 280 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 281 if (p->p_pid == pid) { 282 PROC_LOCK(p); 283 if (p->p_state == PRS_NEW) { 284 PROC_UNLOCK(p); 285 p = NULL; 286 } 287 break; 288 } 289 } 290 return (p); 291 } 292 293 /* 294 * Locate a process by number; return only "live" processes -- i.e., neither 295 * zombies nor newly born but incompletely initialized processes. By not 296 * returning processes in the PRS_NEW state, we allow callers to avoid 297 * testing for that condition to avoid dereferencing p_ucred, et al. 298 */ 299 struct proc * 300 pfind(pid_t pid) 301 { 302 struct proc *p; 303 304 sx_slock(&allproc_lock); 305 p = pfind_locked(pid); 306 sx_sunlock(&allproc_lock); 307 return (p); 308 } 309 310 static struct proc * 311 pfind_tid_locked(pid_t tid) 312 { 313 struct proc *p; 314 struct thread *td; 315 316 sx_assert(&allproc_lock, SX_LOCKED); 317 FOREACH_PROC_IN_SYSTEM(p) { 318 PROC_LOCK(p); 319 if (p->p_state == PRS_NEW) { 320 PROC_UNLOCK(p); 321 continue; 322 } 323 FOREACH_THREAD_IN_PROC(p, td) { 324 if (td->td_tid == tid) 325 goto found; 326 } 327 PROC_UNLOCK(p); 328 } 329 found: 330 return (p); 331 } 332 333 /* 334 * Locate a process group by number. 335 * The caller must hold proctree_lock. 336 */ 337 struct pgrp * 338 pgfind(pgid) 339 register pid_t pgid; 340 { 341 register struct pgrp *pgrp; 342 343 sx_assert(&proctree_lock, SX_LOCKED); 344 345 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 346 if (pgrp->pg_id == pgid) { 347 PGRP_LOCK(pgrp); 348 return (pgrp); 349 } 350 } 351 return (NULL); 352 } 353 354 /* 355 * Locate process and do additional manipulations, depending on flags. 356 */ 357 int 358 pget(pid_t pid, int flags, struct proc **pp) 359 { 360 struct proc *p; 361 int error; 362 363 sx_slock(&allproc_lock); 364 if (pid <= PID_MAX) { 365 p = pfind_locked(pid); 366 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 367 p = zpfind_locked(pid); 368 } else if ((flags & PGET_NOTID) == 0) { 369 p = pfind_tid_locked(pid); 370 } else { 371 p = NULL; 372 } 373 sx_sunlock(&allproc_lock); 374 if (p == NULL) 375 return (ESRCH); 376 if ((flags & PGET_CANSEE) != 0) { 377 error = p_cansee(curthread, p); 378 if (error != 0) 379 goto errout; 380 } 381 if ((flags & PGET_CANDEBUG) != 0) { 382 error = p_candebug(curthread, p); 383 if (error != 0) 384 goto errout; 385 } 386 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 387 error = EPERM; 388 goto errout; 389 } 390 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 391 error = ESRCH; 392 goto errout; 393 } 394 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 395 /* 396 * XXXRW: Not clear ESRCH is the right error during proc 397 * execve(). 398 */ 399 error = ESRCH; 400 goto errout; 401 } 402 if ((flags & PGET_HOLD) != 0) { 403 _PHOLD(p); 404 PROC_UNLOCK(p); 405 } 406 *pp = p; 407 return (0); 408 errout: 409 PROC_UNLOCK(p); 410 return (error); 411 } 412 413 /* 414 * Create a new process group. 415 * pgid must be equal to the pid of p. 416 * Begin a new session if required. 417 */ 418 int 419 enterpgrp(p, pgid, pgrp, sess) 420 register struct proc *p; 421 pid_t pgid; 422 struct pgrp *pgrp; 423 struct session *sess; 424 { 425 426 sx_assert(&proctree_lock, SX_XLOCKED); 427 428 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 429 KASSERT(p->p_pid == pgid, 430 ("enterpgrp: new pgrp and pid != pgid")); 431 KASSERT(pgfind(pgid) == NULL, 432 ("enterpgrp: pgrp with pgid exists")); 433 KASSERT(!SESS_LEADER(p), 434 ("enterpgrp: session leader attempted setpgrp")); 435 436 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 437 438 if (sess != NULL) { 439 /* 440 * new session 441 */ 442 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 443 PROC_LOCK(p); 444 p->p_flag &= ~P_CONTROLT; 445 PROC_UNLOCK(p); 446 PGRP_LOCK(pgrp); 447 sess->s_leader = p; 448 sess->s_sid = p->p_pid; 449 refcount_init(&sess->s_count, 1); 450 sess->s_ttyvp = NULL; 451 sess->s_ttydp = NULL; 452 sess->s_ttyp = NULL; 453 bcopy(p->p_session->s_login, sess->s_login, 454 sizeof(sess->s_login)); 455 pgrp->pg_session = sess; 456 KASSERT(p == curproc, 457 ("enterpgrp: mksession and p != curproc")); 458 } else { 459 pgrp->pg_session = p->p_session; 460 sess_hold(pgrp->pg_session); 461 PGRP_LOCK(pgrp); 462 } 463 pgrp->pg_id = pgid; 464 LIST_INIT(&pgrp->pg_members); 465 466 /* 467 * As we have an exclusive lock of proctree_lock, 468 * this should not deadlock. 469 */ 470 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 471 pgrp->pg_jobc = 0; 472 SLIST_INIT(&pgrp->pg_sigiolst); 473 PGRP_UNLOCK(pgrp); 474 475 doenterpgrp(p, pgrp); 476 477 return (0); 478 } 479 480 /* 481 * Move p to an existing process group 482 */ 483 int 484 enterthispgrp(p, pgrp) 485 register struct proc *p; 486 struct pgrp *pgrp; 487 { 488 489 sx_assert(&proctree_lock, SX_XLOCKED); 490 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 491 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 492 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 493 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 494 KASSERT(pgrp->pg_session == p->p_session, 495 ("%s: pgrp's session %p, p->p_session %p.\n", 496 __func__, 497 pgrp->pg_session, 498 p->p_session)); 499 KASSERT(pgrp != p->p_pgrp, 500 ("%s: p belongs to pgrp.", __func__)); 501 502 doenterpgrp(p, pgrp); 503 504 return (0); 505 } 506 507 /* 508 * Move p to a process group 509 */ 510 static void 511 doenterpgrp(p, pgrp) 512 struct proc *p; 513 struct pgrp *pgrp; 514 { 515 struct pgrp *savepgrp; 516 517 sx_assert(&proctree_lock, SX_XLOCKED); 518 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 519 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 520 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 521 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 522 523 savepgrp = p->p_pgrp; 524 525 /* 526 * Adjust eligibility of affected pgrps to participate in job control. 527 * Increment eligibility counts before decrementing, otherwise we 528 * could reach 0 spuriously during the first call. 529 */ 530 fixjobc(p, pgrp, 1); 531 fixjobc(p, p->p_pgrp, 0); 532 533 PGRP_LOCK(pgrp); 534 PGRP_LOCK(savepgrp); 535 PROC_LOCK(p); 536 LIST_REMOVE(p, p_pglist); 537 p->p_pgrp = pgrp; 538 PROC_UNLOCK(p); 539 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 540 PGRP_UNLOCK(savepgrp); 541 PGRP_UNLOCK(pgrp); 542 if (LIST_EMPTY(&savepgrp->pg_members)) 543 pgdelete(savepgrp); 544 } 545 546 /* 547 * remove process from process group 548 */ 549 int 550 leavepgrp(p) 551 register struct proc *p; 552 { 553 struct pgrp *savepgrp; 554 555 sx_assert(&proctree_lock, SX_XLOCKED); 556 savepgrp = p->p_pgrp; 557 PGRP_LOCK(savepgrp); 558 PROC_LOCK(p); 559 LIST_REMOVE(p, p_pglist); 560 p->p_pgrp = NULL; 561 PROC_UNLOCK(p); 562 PGRP_UNLOCK(savepgrp); 563 if (LIST_EMPTY(&savepgrp->pg_members)) 564 pgdelete(savepgrp); 565 return (0); 566 } 567 568 /* 569 * delete a process group 570 */ 571 static void 572 pgdelete(pgrp) 573 register struct pgrp *pgrp; 574 { 575 struct session *savesess; 576 struct tty *tp; 577 578 sx_assert(&proctree_lock, SX_XLOCKED); 579 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 580 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 581 582 /* 583 * Reset any sigio structures pointing to us as a result of 584 * F_SETOWN with our pgid. 585 */ 586 funsetownlst(&pgrp->pg_sigiolst); 587 588 PGRP_LOCK(pgrp); 589 tp = pgrp->pg_session->s_ttyp; 590 LIST_REMOVE(pgrp, pg_hash); 591 savesess = pgrp->pg_session; 592 PGRP_UNLOCK(pgrp); 593 594 /* Remove the reference to the pgrp before deallocating it. */ 595 if (tp != NULL) { 596 tty_lock(tp); 597 tty_rel_pgrp(tp, pgrp); 598 } 599 600 mtx_destroy(&pgrp->pg_mtx); 601 free(pgrp, M_PGRP); 602 sess_release(savesess); 603 } 604 605 static void 606 pgadjustjobc(pgrp, entering) 607 struct pgrp *pgrp; 608 int entering; 609 { 610 611 PGRP_LOCK(pgrp); 612 if (entering) 613 pgrp->pg_jobc++; 614 else { 615 --pgrp->pg_jobc; 616 if (pgrp->pg_jobc == 0) 617 orphanpg(pgrp); 618 } 619 PGRP_UNLOCK(pgrp); 620 } 621 622 /* 623 * Adjust pgrp jobc counters when specified process changes process group. 624 * We count the number of processes in each process group that "qualify" 625 * the group for terminal job control (those with a parent in a different 626 * process group of the same session). If that count reaches zero, the 627 * process group becomes orphaned. Check both the specified process' 628 * process group and that of its children. 629 * entering == 0 => p is leaving specified group. 630 * entering == 1 => p is entering specified group. 631 */ 632 void 633 fixjobc(p, pgrp, entering) 634 register struct proc *p; 635 register struct pgrp *pgrp; 636 int entering; 637 { 638 register struct pgrp *hispgrp; 639 register struct session *mysession; 640 641 sx_assert(&proctree_lock, SX_LOCKED); 642 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 643 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 644 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 645 646 /* 647 * Check p's parent to see whether p qualifies its own process 648 * group; if so, adjust count for p's process group. 649 */ 650 mysession = pgrp->pg_session; 651 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 652 hispgrp->pg_session == mysession) 653 pgadjustjobc(pgrp, entering); 654 655 /* 656 * Check this process' children to see whether they qualify 657 * their process groups; if so, adjust counts for children's 658 * process groups. 659 */ 660 LIST_FOREACH(p, &p->p_children, p_sibling) { 661 hispgrp = p->p_pgrp; 662 if (hispgrp == pgrp || 663 hispgrp->pg_session != mysession) 664 continue; 665 PROC_LOCK(p); 666 if (p->p_state == PRS_ZOMBIE) { 667 PROC_UNLOCK(p); 668 continue; 669 } 670 PROC_UNLOCK(p); 671 pgadjustjobc(hispgrp, entering); 672 } 673 } 674 675 /* 676 * A process group has become orphaned; 677 * if there are any stopped processes in the group, 678 * hang-up all process in that group. 679 */ 680 static void 681 orphanpg(pg) 682 struct pgrp *pg; 683 { 684 register struct proc *p; 685 686 PGRP_LOCK_ASSERT(pg, MA_OWNED); 687 688 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 689 PROC_LOCK(p); 690 if (P_SHOULDSTOP(p)) { 691 PROC_UNLOCK(p); 692 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 693 PROC_LOCK(p); 694 kern_psignal(p, SIGHUP); 695 kern_psignal(p, SIGCONT); 696 PROC_UNLOCK(p); 697 } 698 return; 699 } 700 PROC_UNLOCK(p); 701 } 702 } 703 704 void 705 sess_hold(struct session *s) 706 { 707 708 refcount_acquire(&s->s_count); 709 } 710 711 void 712 sess_release(struct session *s) 713 { 714 715 if (refcount_release(&s->s_count)) { 716 if (s->s_ttyp != NULL) { 717 tty_lock(s->s_ttyp); 718 tty_rel_sess(s->s_ttyp, s); 719 } 720 mtx_destroy(&s->s_mtx); 721 free(s, M_SESSION); 722 } 723 } 724 725 #ifdef DDB 726 727 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 728 { 729 register struct pgrp *pgrp; 730 register struct proc *p; 731 register int i; 732 733 for (i = 0; i <= pgrphash; i++) { 734 if (!LIST_EMPTY(&pgrphashtbl[i])) { 735 printf("\tindx %d\n", i); 736 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 737 printf( 738 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 739 (void *)pgrp, (long)pgrp->pg_id, 740 (void *)pgrp->pg_session, 741 pgrp->pg_session->s_count, 742 (void *)LIST_FIRST(&pgrp->pg_members)); 743 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 744 printf("\t\tpid %ld addr %p pgrp %p\n", 745 (long)p->p_pid, (void *)p, 746 (void *)p->p_pgrp); 747 } 748 } 749 } 750 } 751 } 752 #endif /* DDB */ 753 754 /* 755 * Calculate the kinfo_proc members which contain process-wide 756 * informations. 757 * Must be called with the target process locked. 758 */ 759 static void 760 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 761 { 762 struct thread *td; 763 764 PROC_LOCK_ASSERT(p, MA_OWNED); 765 766 kp->ki_estcpu = 0; 767 kp->ki_pctcpu = 0; 768 FOREACH_THREAD_IN_PROC(p, td) { 769 thread_lock(td); 770 kp->ki_pctcpu += sched_pctcpu(td); 771 kp->ki_estcpu += td->td_estcpu; 772 thread_unlock(td); 773 } 774 } 775 776 /* 777 * Clear kinfo_proc and fill in any information that is common 778 * to all threads in the process. 779 * Must be called with the target process locked. 780 */ 781 static void 782 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 783 { 784 struct thread *td0; 785 struct tty *tp; 786 struct session *sp; 787 struct ucred *cred; 788 struct sigacts *ps; 789 790 PROC_LOCK_ASSERT(p, MA_OWNED); 791 bzero(kp, sizeof(*kp)); 792 793 kp->ki_structsize = sizeof(*kp); 794 kp->ki_paddr = p; 795 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 796 kp->ki_args = p->p_args; 797 kp->ki_textvp = p->p_textvp; 798 #ifdef KTRACE 799 kp->ki_tracep = p->p_tracevp; 800 kp->ki_traceflag = p->p_traceflag; 801 #endif 802 kp->ki_fd = p->p_fd; 803 kp->ki_vmspace = p->p_vmspace; 804 kp->ki_flag = p->p_flag; 805 cred = p->p_ucred; 806 if (cred) { 807 kp->ki_uid = cred->cr_uid; 808 kp->ki_ruid = cred->cr_ruid; 809 kp->ki_svuid = cred->cr_svuid; 810 kp->ki_cr_flags = 0; 811 if (cred->cr_flags & CRED_FLAG_CAPMODE) 812 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 813 /* XXX bde doesn't like KI_NGROUPS */ 814 if (cred->cr_ngroups > KI_NGROUPS) { 815 kp->ki_ngroups = KI_NGROUPS; 816 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 817 } else 818 kp->ki_ngroups = cred->cr_ngroups; 819 bcopy(cred->cr_groups, kp->ki_groups, 820 kp->ki_ngroups * sizeof(gid_t)); 821 kp->ki_rgid = cred->cr_rgid; 822 kp->ki_svgid = cred->cr_svgid; 823 /* If jailed(cred), emulate the old P_JAILED flag. */ 824 if (jailed(cred)) { 825 kp->ki_flag |= P_JAILED; 826 /* If inside the jail, use 0 as a jail ID. */ 827 if (cred->cr_prison != curthread->td_ucred->cr_prison) 828 kp->ki_jid = cred->cr_prison->pr_id; 829 } 830 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 831 sizeof(kp->ki_loginclass)); 832 } 833 ps = p->p_sigacts; 834 if (ps) { 835 mtx_lock(&ps->ps_mtx); 836 kp->ki_sigignore = ps->ps_sigignore; 837 kp->ki_sigcatch = ps->ps_sigcatch; 838 mtx_unlock(&ps->ps_mtx); 839 } 840 if (p->p_state != PRS_NEW && 841 p->p_state != PRS_ZOMBIE && 842 p->p_vmspace != NULL) { 843 struct vmspace *vm = p->p_vmspace; 844 845 kp->ki_size = vm->vm_map.size; 846 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 847 FOREACH_THREAD_IN_PROC(p, td0) { 848 if (!TD_IS_SWAPPED(td0)) 849 kp->ki_rssize += td0->td_kstack_pages; 850 } 851 kp->ki_swrss = vm->vm_swrss; 852 kp->ki_tsize = vm->vm_tsize; 853 kp->ki_dsize = vm->vm_dsize; 854 kp->ki_ssize = vm->vm_ssize; 855 } else if (p->p_state == PRS_ZOMBIE) 856 kp->ki_stat = SZOMB; 857 if (kp->ki_flag & P_INMEM) 858 kp->ki_sflag = PS_INMEM; 859 else 860 kp->ki_sflag = 0; 861 /* Calculate legacy swtime as seconds since 'swtick'. */ 862 kp->ki_swtime = (ticks - p->p_swtick) / hz; 863 kp->ki_pid = p->p_pid; 864 kp->ki_nice = p->p_nice; 865 kp->ki_fibnum = p->p_fibnum; 866 kp->ki_start = p->p_stats->p_start; 867 timevaladd(&kp->ki_start, &boottime); 868 PROC_SLOCK(p); 869 rufetch(p, &kp->ki_rusage); 870 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 871 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 872 PROC_SUNLOCK(p); 873 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 874 /* Some callers want child times in a single value. */ 875 kp->ki_childtime = kp->ki_childstime; 876 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 877 878 FOREACH_THREAD_IN_PROC(p, td0) 879 kp->ki_cow += td0->td_cow; 880 881 tp = NULL; 882 if (p->p_pgrp) { 883 kp->ki_pgid = p->p_pgrp->pg_id; 884 kp->ki_jobc = p->p_pgrp->pg_jobc; 885 sp = p->p_pgrp->pg_session; 886 887 if (sp != NULL) { 888 kp->ki_sid = sp->s_sid; 889 SESS_LOCK(sp); 890 strlcpy(kp->ki_login, sp->s_login, 891 sizeof(kp->ki_login)); 892 if (sp->s_ttyvp) 893 kp->ki_kiflag |= KI_CTTY; 894 if (SESS_LEADER(p)) 895 kp->ki_kiflag |= KI_SLEADER; 896 /* XXX proctree_lock */ 897 tp = sp->s_ttyp; 898 SESS_UNLOCK(sp); 899 } 900 } 901 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 902 kp->ki_tdev = tty_udev(tp); 903 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 904 if (tp->t_session) 905 kp->ki_tsid = tp->t_session->s_sid; 906 } else 907 kp->ki_tdev = NODEV; 908 if (p->p_comm[0] != '\0') 909 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 910 if (p->p_sysent && p->p_sysent->sv_name != NULL && 911 p->p_sysent->sv_name[0] != '\0') 912 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 913 kp->ki_siglist = p->p_siglist; 914 kp->ki_xstat = p->p_xstat; 915 kp->ki_acflag = p->p_acflag; 916 kp->ki_lock = p->p_lock; 917 if (p->p_pptr) 918 kp->ki_ppid = p->p_pptr->p_pid; 919 } 920 921 /* 922 * Fill in information that is thread specific. Must be called with 923 * target process locked. If 'preferthread' is set, overwrite certain 924 * process-related fields that are maintained for both threads and 925 * processes. 926 */ 927 static void 928 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 929 { 930 struct proc *p; 931 932 p = td->td_proc; 933 kp->ki_tdaddr = td; 934 PROC_LOCK_ASSERT(p, MA_OWNED); 935 936 if (preferthread) 937 PROC_SLOCK(p); 938 thread_lock(td); 939 if (td->td_wmesg != NULL) 940 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 941 else 942 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 943 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 944 if (TD_ON_LOCK(td)) { 945 kp->ki_kiflag |= KI_LOCKBLOCK; 946 strlcpy(kp->ki_lockname, td->td_lockname, 947 sizeof(kp->ki_lockname)); 948 } else { 949 kp->ki_kiflag &= ~KI_LOCKBLOCK; 950 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 951 } 952 953 if (p->p_state == PRS_NORMAL) { /* approximate. */ 954 if (TD_ON_RUNQ(td) || 955 TD_CAN_RUN(td) || 956 TD_IS_RUNNING(td)) { 957 kp->ki_stat = SRUN; 958 } else if (P_SHOULDSTOP(p)) { 959 kp->ki_stat = SSTOP; 960 } else if (TD_IS_SLEEPING(td)) { 961 kp->ki_stat = SSLEEP; 962 } else if (TD_ON_LOCK(td)) { 963 kp->ki_stat = SLOCK; 964 } else { 965 kp->ki_stat = SWAIT; 966 } 967 } else if (p->p_state == PRS_ZOMBIE) { 968 kp->ki_stat = SZOMB; 969 } else { 970 kp->ki_stat = SIDL; 971 } 972 973 /* Things in the thread */ 974 kp->ki_wchan = td->td_wchan; 975 kp->ki_pri.pri_level = td->td_priority; 976 kp->ki_pri.pri_native = td->td_base_pri; 977 kp->ki_lastcpu = td->td_lastcpu; 978 kp->ki_oncpu = td->td_oncpu; 979 kp->ki_tdflags = td->td_flags; 980 kp->ki_tid = td->td_tid; 981 kp->ki_numthreads = p->p_numthreads; 982 kp->ki_pcb = td->td_pcb; 983 kp->ki_kstack = (void *)td->td_kstack; 984 kp->ki_slptime = (ticks - td->td_slptick) / hz; 985 kp->ki_pri.pri_class = td->td_pri_class; 986 kp->ki_pri.pri_user = td->td_user_pri; 987 988 if (preferthread) { 989 rufetchtd(td, &kp->ki_rusage); 990 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 991 kp->ki_pctcpu = sched_pctcpu(td); 992 kp->ki_estcpu = td->td_estcpu; 993 kp->ki_cow = td->td_cow; 994 } 995 996 /* We can't get this anymore but ps etc never used it anyway. */ 997 kp->ki_rqindex = 0; 998 999 if (preferthread) 1000 kp->ki_siglist = td->td_siglist; 1001 kp->ki_sigmask = td->td_sigmask; 1002 thread_unlock(td); 1003 if (preferthread) 1004 PROC_SUNLOCK(p); 1005 } 1006 1007 /* 1008 * Fill in a kinfo_proc structure for the specified process. 1009 * Must be called with the target process locked. 1010 */ 1011 void 1012 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1013 { 1014 1015 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1016 1017 fill_kinfo_proc_only(p, kp); 1018 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1019 fill_kinfo_aggregate(p, kp); 1020 } 1021 1022 struct pstats * 1023 pstats_alloc(void) 1024 { 1025 1026 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1027 } 1028 1029 /* 1030 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1031 */ 1032 void 1033 pstats_fork(struct pstats *src, struct pstats *dst) 1034 { 1035 1036 bzero(&dst->pstat_startzero, 1037 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1038 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1039 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1040 } 1041 1042 void 1043 pstats_free(struct pstats *ps) 1044 { 1045 1046 free(ps, M_SUBPROC); 1047 } 1048 1049 static struct proc * 1050 zpfind_locked(pid_t pid) 1051 { 1052 struct proc *p; 1053 1054 sx_assert(&allproc_lock, SX_LOCKED); 1055 LIST_FOREACH(p, &zombproc, p_list) { 1056 if (p->p_pid == pid) { 1057 PROC_LOCK(p); 1058 break; 1059 } 1060 } 1061 return (p); 1062 } 1063 1064 /* 1065 * Locate a zombie process by number 1066 */ 1067 struct proc * 1068 zpfind(pid_t pid) 1069 { 1070 struct proc *p; 1071 1072 sx_slock(&allproc_lock); 1073 p = zpfind_locked(pid); 1074 sx_sunlock(&allproc_lock); 1075 return (p); 1076 } 1077 1078 #ifdef COMPAT_FREEBSD32 1079 1080 /* 1081 * This function is typically used to copy out the kernel address, so 1082 * it can be replaced by assignment of zero. 1083 */ 1084 static inline uint32_t 1085 ptr32_trim(void *ptr) 1086 { 1087 uintptr_t uptr; 1088 1089 uptr = (uintptr_t)ptr; 1090 return ((uptr > UINT_MAX) ? 0 : uptr); 1091 } 1092 1093 #define PTRTRIM_CP(src,dst,fld) \ 1094 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1095 1096 static void 1097 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1098 { 1099 int i; 1100 1101 bzero(ki32, sizeof(struct kinfo_proc32)); 1102 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1103 CP(*ki, *ki32, ki_layout); 1104 PTRTRIM_CP(*ki, *ki32, ki_args); 1105 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1106 PTRTRIM_CP(*ki, *ki32, ki_addr); 1107 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1108 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1109 PTRTRIM_CP(*ki, *ki32, ki_fd); 1110 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1111 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1112 CP(*ki, *ki32, ki_pid); 1113 CP(*ki, *ki32, ki_ppid); 1114 CP(*ki, *ki32, ki_pgid); 1115 CP(*ki, *ki32, ki_tpgid); 1116 CP(*ki, *ki32, ki_sid); 1117 CP(*ki, *ki32, ki_tsid); 1118 CP(*ki, *ki32, ki_jobc); 1119 CP(*ki, *ki32, ki_tdev); 1120 CP(*ki, *ki32, ki_siglist); 1121 CP(*ki, *ki32, ki_sigmask); 1122 CP(*ki, *ki32, ki_sigignore); 1123 CP(*ki, *ki32, ki_sigcatch); 1124 CP(*ki, *ki32, ki_uid); 1125 CP(*ki, *ki32, ki_ruid); 1126 CP(*ki, *ki32, ki_svuid); 1127 CP(*ki, *ki32, ki_rgid); 1128 CP(*ki, *ki32, ki_svgid); 1129 CP(*ki, *ki32, ki_ngroups); 1130 for (i = 0; i < KI_NGROUPS; i++) 1131 CP(*ki, *ki32, ki_groups[i]); 1132 CP(*ki, *ki32, ki_size); 1133 CP(*ki, *ki32, ki_rssize); 1134 CP(*ki, *ki32, ki_swrss); 1135 CP(*ki, *ki32, ki_tsize); 1136 CP(*ki, *ki32, ki_dsize); 1137 CP(*ki, *ki32, ki_ssize); 1138 CP(*ki, *ki32, ki_xstat); 1139 CP(*ki, *ki32, ki_acflag); 1140 CP(*ki, *ki32, ki_pctcpu); 1141 CP(*ki, *ki32, ki_estcpu); 1142 CP(*ki, *ki32, ki_slptime); 1143 CP(*ki, *ki32, ki_swtime); 1144 CP(*ki, *ki32, ki_cow); 1145 CP(*ki, *ki32, ki_runtime); 1146 TV_CP(*ki, *ki32, ki_start); 1147 TV_CP(*ki, *ki32, ki_childtime); 1148 CP(*ki, *ki32, ki_flag); 1149 CP(*ki, *ki32, ki_kiflag); 1150 CP(*ki, *ki32, ki_traceflag); 1151 CP(*ki, *ki32, ki_stat); 1152 CP(*ki, *ki32, ki_nice); 1153 CP(*ki, *ki32, ki_lock); 1154 CP(*ki, *ki32, ki_rqindex); 1155 CP(*ki, *ki32, ki_oncpu); 1156 CP(*ki, *ki32, ki_lastcpu); 1157 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1158 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1159 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1160 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1161 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1162 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1163 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1164 CP(*ki, *ki32, ki_fibnum); 1165 CP(*ki, *ki32, ki_cr_flags); 1166 CP(*ki, *ki32, ki_jid); 1167 CP(*ki, *ki32, ki_numthreads); 1168 CP(*ki, *ki32, ki_tid); 1169 CP(*ki, *ki32, ki_pri); 1170 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1171 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1172 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1173 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1174 PTRTRIM_CP(*ki, *ki32, ki_udata); 1175 CP(*ki, *ki32, ki_sflag); 1176 CP(*ki, *ki32, ki_tdflags); 1177 } 1178 #endif 1179 1180 int 1181 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1182 { 1183 struct thread *td; 1184 struct kinfo_proc ki; 1185 #ifdef COMPAT_FREEBSD32 1186 struct kinfo_proc32 ki32; 1187 #endif 1188 int error; 1189 1190 PROC_LOCK_ASSERT(p, MA_OWNED); 1191 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1192 1193 error = 0; 1194 fill_kinfo_proc(p, &ki); 1195 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1196 #ifdef COMPAT_FREEBSD32 1197 if ((flags & KERN_PROC_MASK32) != 0) { 1198 freebsd32_kinfo_proc_out(&ki, &ki32); 1199 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1200 } else 1201 #endif 1202 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1203 } else { 1204 FOREACH_THREAD_IN_PROC(p, td) { 1205 fill_kinfo_thread(td, &ki, 1); 1206 #ifdef COMPAT_FREEBSD32 1207 if ((flags & KERN_PROC_MASK32) != 0) { 1208 freebsd32_kinfo_proc_out(&ki, &ki32); 1209 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1210 } else 1211 #endif 1212 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1213 if (error) 1214 break; 1215 } 1216 } 1217 PROC_UNLOCK(p); 1218 return (error); 1219 } 1220 1221 static int 1222 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1223 int doingzomb) 1224 { 1225 struct sbuf sb; 1226 struct kinfo_proc ki; 1227 struct proc *np; 1228 int error, error2; 1229 pid_t pid; 1230 1231 pid = p->p_pid; 1232 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1233 error = kern_proc_out(p, &sb, flags); 1234 error2 = sbuf_finish(&sb); 1235 sbuf_delete(&sb); 1236 if (error != 0) 1237 return (error); 1238 else if (error2 != 0) 1239 return (error2); 1240 if (doingzomb) 1241 np = zpfind(pid); 1242 else { 1243 if (pid == 0) 1244 return (0); 1245 np = pfind(pid); 1246 } 1247 if (np == NULL) 1248 return (ESRCH); 1249 if (np != p) { 1250 PROC_UNLOCK(np); 1251 return (ESRCH); 1252 } 1253 PROC_UNLOCK(np); 1254 return (0); 1255 } 1256 1257 static int 1258 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1259 { 1260 int *name = (int *)arg1; 1261 u_int namelen = arg2; 1262 struct proc *p; 1263 int flags, doingzomb, oid_number; 1264 int error = 0; 1265 1266 oid_number = oidp->oid_number; 1267 if (oid_number != KERN_PROC_ALL && 1268 (oid_number & KERN_PROC_INC_THREAD) == 0) 1269 flags = KERN_PROC_NOTHREADS; 1270 else { 1271 flags = 0; 1272 oid_number &= ~KERN_PROC_INC_THREAD; 1273 } 1274 #ifdef COMPAT_FREEBSD32 1275 if (req->flags & SCTL_MASK32) 1276 flags |= KERN_PROC_MASK32; 1277 #endif 1278 if (oid_number == KERN_PROC_PID) { 1279 if (namelen != 1) 1280 return (EINVAL); 1281 error = sysctl_wire_old_buffer(req, 0); 1282 if (error) 1283 return (error); 1284 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1285 if (error != 0) 1286 return (error); 1287 error = sysctl_out_proc(p, req, flags, 0); 1288 return (error); 1289 } 1290 1291 switch (oid_number) { 1292 case KERN_PROC_ALL: 1293 if (namelen != 0) 1294 return (EINVAL); 1295 break; 1296 case KERN_PROC_PROC: 1297 if (namelen != 0 && namelen != 1) 1298 return (EINVAL); 1299 break; 1300 default: 1301 if (namelen != 1) 1302 return (EINVAL); 1303 break; 1304 } 1305 1306 if (!req->oldptr) { 1307 /* overestimate by 5 procs */ 1308 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1309 if (error) 1310 return (error); 1311 } 1312 error = sysctl_wire_old_buffer(req, 0); 1313 if (error != 0) 1314 return (error); 1315 sx_slock(&allproc_lock); 1316 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1317 if (!doingzomb) 1318 p = LIST_FIRST(&allproc); 1319 else 1320 p = LIST_FIRST(&zombproc); 1321 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1322 /* 1323 * Skip embryonic processes. 1324 */ 1325 PROC_LOCK(p); 1326 if (p->p_state == PRS_NEW) { 1327 PROC_UNLOCK(p); 1328 continue; 1329 } 1330 KASSERT(p->p_ucred != NULL, 1331 ("process credential is NULL for non-NEW proc")); 1332 /* 1333 * Show a user only appropriate processes. 1334 */ 1335 if (p_cansee(curthread, p)) { 1336 PROC_UNLOCK(p); 1337 continue; 1338 } 1339 /* 1340 * TODO - make more efficient (see notes below). 1341 * do by session. 1342 */ 1343 switch (oid_number) { 1344 1345 case KERN_PROC_GID: 1346 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1347 PROC_UNLOCK(p); 1348 continue; 1349 } 1350 break; 1351 1352 case KERN_PROC_PGRP: 1353 /* could do this by traversing pgrp */ 1354 if (p->p_pgrp == NULL || 1355 p->p_pgrp->pg_id != (pid_t)name[0]) { 1356 PROC_UNLOCK(p); 1357 continue; 1358 } 1359 break; 1360 1361 case KERN_PROC_RGID: 1362 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1363 PROC_UNLOCK(p); 1364 continue; 1365 } 1366 break; 1367 1368 case KERN_PROC_SESSION: 1369 if (p->p_session == NULL || 1370 p->p_session->s_sid != (pid_t)name[0]) { 1371 PROC_UNLOCK(p); 1372 continue; 1373 } 1374 break; 1375 1376 case KERN_PROC_TTY: 1377 if ((p->p_flag & P_CONTROLT) == 0 || 1378 p->p_session == NULL) { 1379 PROC_UNLOCK(p); 1380 continue; 1381 } 1382 /* XXX proctree_lock */ 1383 SESS_LOCK(p->p_session); 1384 if (p->p_session->s_ttyp == NULL || 1385 tty_udev(p->p_session->s_ttyp) != 1386 (dev_t)name[0]) { 1387 SESS_UNLOCK(p->p_session); 1388 PROC_UNLOCK(p); 1389 continue; 1390 } 1391 SESS_UNLOCK(p->p_session); 1392 break; 1393 1394 case KERN_PROC_UID: 1395 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1396 PROC_UNLOCK(p); 1397 continue; 1398 } 1399 break; 1400 1401 case KERN_PROC_RUID: 1402 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1403 PROC_UNLOCK(p); 1404 continue; 1405 } 1406 break; 1407 1408 case KERN_PROC_PROC: 1409 break; 1410 1411 default: 1412 break; 1413 1414 } 1415 1416 error = sysctl_out_proc(p, req, flags, doingzomb); 1417 if (error) { 1418 sx_sunlock(&allproc_lock); 1419 return (error); 1420 } 1421 } 1422 } 1423 sx_sunlock(&allproc_lock); 1424 return (0); 1425 } 1426 1427 struct pargs * 1428 pargs_alloc(int len) 1429 { 1430 struct pargs *pa; 1431 1432 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1433 M_WAITOK); 1434 refcount_init(&pa->ar_ref, 1); 1435 pa->ar_length = len; 1436 return (pa); 1437 } 1438 1439 static void 1440 pargs_free(struct pargs *pa) 1441 { 1442 1443 free(pa, M_PARGS); 1444 } 1445 1446 void 1447 pargs_hold(struct pargs *pa) 1448 { 1449 1450 if (pa == NULL) 1451 return; 1452 refcount_acquire(&pa->ar_ref); 1453 } 1454 1455 void 1456 pargs_drop(struct pargs *pa) 1457 { 1458 1459 if (pa == NULL) 1460 return; 1461 if (refcount_release(&pa->ar_ref)) 1462 pargs_free(pa); 1463 } 1464 1465 static int 1466 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1467 size_t len) 1468 { 1469 struct iovec iov; 1470 struct uio uio; 1471 1472 iov.iov_base = (caddr_t)buf; 1473 iov.iov_len = len; 1474 uio.uio_iov = &iov; 1475 uio.uio_iovcnt = 1; 1476 uio.uio_offset = offset; 1477 uio.uio_resid = (ssize_t)len; 1478 uio.uio_segflg = UIO_SYSSPACE; 1479 uio.uio_rw = UIO_READ; 1480 uio.uio_td = td; 1481 1482 return (proc_rwmem(p, &uio)); 1483 } 1484 1485 static int 1486 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1487 size_t len) 1488 { 1489 size_t i; 1490 int error; 1491 1492 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1493 /* 1494 * Reading the chunk may validly return EFAULT if the string is shorter 1495 * than the chunk and is aligned at the end of the page, assuming the 1496 * next page is not mapped. So if EFAULT is returned do a fallback to 1497 * one byte read loop. 1498 */ 1499 if (error == EFAULT) { 1500 for (i = 0; i < len; i++, buf++, sptr++) { 1501 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1502 if (error != 0) 1503 return (error); 1504 if (*buf == '\0') 1505 break; 1506 } 1507 error = 0; 1508 } 1509 return (error); 1510 } 1511 1512 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1513 1514 enum proc_vector_type { 1515 PROC_ARG, 1516 PROC_ENV, 1517 PROC_AUX, 1518 }; 1519 1520 #ifdef COMPAT_FREEBSD32 1521 static int 1522 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1523 size_t *vsizep, enum proc_vector_type type) 1524 { 1525 struct freebsd32_ps_strings pss; 1526 Elf32_Auxinfo aux; 1527 vm_offset_t vptr, ptr; 1528 uint32_t *proc_vector32; 1529 char **proc_vector; 1530 size_t vsize, size; 1531 int i, error; 1532 1533 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1534 &pss, sizeof(pss)); 1535 if (error != 0) 1536 return (error); 1537 switch (type) { 1538 case PROC_ARG: 1539 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1540 vsize = pss.ps_nargvstr; 1541 if (vsize > ARG_MAX) 1542 return (ENOEXEC); 1543 size = vsize * sizeof(int32_t); 1544 break; 1545 case PROC_ENV: 1546 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1547 vsize = pss.ps_nenvstr; 1548 if (vsize > ARG_MAX) 1549 return (ENOEXEC); 1550 size = vsize * sizeof(int32_t); 1551 break; 1552 case PROC_AUX: 1553 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1554 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1555 if (vptr % 4 != 0) 1556 return (ENOEXEC); 1557 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1558 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1559 if (error != 0) 1560 return (error); 1561 if (aux.a_type == AT_NULL) 1562 break; 1563 ptr += sizeof(aux); 1564 } 1565 if (aux.a_type != AT_NULL) 1566 return (ENOEXEC); 1567 vsize = i + 1; 1568 size = vsize * sizeof(aux); 1569 break; 1570 default: 1571 KASSERT(0, ("Wrong proc vector type: %d", type)); 1572 return (EINVAL); 1573 } 1574 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1575 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1576 if (error != 0) 1577 goto done; 1578 if (type == PROC_AUX) { 1579 *proc_vectorp = (char **)proc_vector32; 1580 *vsizep = vsize; 1581 return (0); 1582 } 1583 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1584 for (i = 0; i < (int)vsize; i++) 1585 proc_vector[i] = PTRIN(proc_vector32[i]); 1586 *proc_vectorp = proc_vector; 1587 *vsizep = vsize; 1588 done: 1589 free(proc_vector32, M_TEMP); 1590 return (error); 1591 } 1592 #endif 1593 1594 static int 1595 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1596 size_t *vsizep, enum proc_vector_type type) 1597 { 1598 struct ps_strings pss; 1599 Elf_Auxinfo aux; 1600 vm_offset_t vptr, ptr; 1601 char **proc_vector; 1602 size_t vsize, size; 1603 int error, i; 1604 1605 #ifdef COMPAT_FREEBSD32 1606 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1607 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1608 #endif 1609 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1610 &pss, sizeof(pss)); 1611 if (error != 0) 1612 return (error); 1613 switch (type) { 1614 case PROC_ARG: 1615 vptr = (vm_offset_t)pss.ps_argvstr; 1616 vsize = pss.ps_nargvstr; 1617 if (vsize > ARG_MAX) 1618 return (ENOEXEC); 1619 size = vsize * sizeof(char *); 1620 break; 1621 case PROC_ENV: 1622 vptr = (vm_offset_t)pss.ps_envstr; 1623 vsize = pss.ps_nenvstr; 1624 if (vsize > ARG_MAX) 1625 return (ENOEXEC); 1626 size = vsize * sizeof(char *); 1627 break; 1628 case PROC_AUX: 1629 /* 1630 * The aux array is just above env array on the stack. Check 1631 * that the address is naturally aligned. 1632 */ 1633 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1634 * sizeof(char *); 1635 #if __ELF_WORD_SIZE == 64 1636 if (vptr % sizeof(uint64_t) != 0) 1637 #else 1638 if (vptr % sizeof(uint32_t) != 0) 1639 #endif 1640 return (ENOEXEC); 1641 /* 1642 * We count the array size reading the aux vectors from the 1643 * stack until AT_NULL vector is returned. So (to keep the code 1644 * simple) we read the process stack twice: the first time here 1645 * to find the size and the second time when copying the vectors 1646 * to the allocated proc_vector. 1647 */ 1648 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1649 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1650 if (error != 0) 1651 return (error); 1652 if (aux.a_type == AT_NULL) 1653 break; 1654 ptr += sizeof(aux); 1655 } 1656 /* 1657 * If the PROC_AUXV_MAX entries are iterated over, and we have 1658 * not reached AT_NULL, it is most likely we are reading wrong 1659 * data: either the process doesn't have auxv array or data has 1660 * been modified. Return the error in this case. 1661 */ 1662 if (aux.a_type != AT_NULL) 1663 return (ENOEXEC); 1664 vsize = i + 1; 1665 size = vsize * sizeof(aux); 1666 break; 1667 default: 1668 KASSERT(0, ("Wrong proc vector type: %d", type)); 1669 return (EINVAL); /* In case we are built without INVARIANTS. */ 1670 } 1671 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1672 if (proc_vector == NULL) 1673 return (ENOMEM); 1674 error = proc_read_mem(td, p, vptr, proc_vector, size); 1675 if (error != 0) { 1676 free(proc_vector, M_TEMP); 1677 return (error); 1678 } 1679 *proc_vectorp = proc_vector; 1680 *vsizep = vsize; 1681 1682 return (0); 1683 } 1684 1685 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1686 1687 static int 1688 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1689 enum proc_vector_type type) 1690 { 1691 size_t done, len, nchr, vsize; 1692 int error, i; 1693 char **proc_vector, *sptr; 1694 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1695 1696 PROC_ASSERT_HELD(p); 1697 1698 /* 1699 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1700 */ 1701 nchr = 2 * (PATH_MAX + ARG_MAX); 1702 1703 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1704 if (error != 0) 1705 return (error); 1706 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1707 /* 1708 * The program may have scribbled into its argv array, e.g. to 1709 * remove some arguments. If that has happened, break out 1710 * before trying to read from NULL. 1711 */ 1712 if (proc_vector[i] == NULL) 1713 break; 1714 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1715 error = proc_read_string(td, p, sptr, pss_string, 1716 sizeof(pss_string)); 1717 if (error != 0) 1718 goto done; 1719 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1720 if (done + len >= nchr) 1721 len = nchr - done - 1; 1722 sbuf_bcat(sb, pss_string, len); 1723 if (len != GET_PS_STRINGS_CHUNK_SZ) 1724 break; 1725 done += GET_PS_STRINGS_CHUNK_SZ; 1726 } 1727 sbuf_bcat(sb, "", 1); 1728 done += len + 1; 1729 } 1730 done: 1731 free(proc_vector, M_TEMP); 1732 return (error); 1733 } 1734 1735 int 1736 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1737 { 1738 1739 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1740 } 1741 1742 int 1743 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1744 { 1745 1746 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1747 } 1748 1749 int 1750 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1751 { 1752 size_t vsize, size; 1753 char **auxv; 1754 int error; 1755 1756 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1757 if (error == 0) { 1758 #ifdef COMPAT_FREEBSD32 1759 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1760 size = vsize * sizeof(Elf32_Auxinfo); 1761 else 1762 #endif 1763 size = vsize * sizeof(Elf_Auxinfo); 1764 error = sbuf_bcat(sb, auxv, size); 1765 free(auxv, M_TEMP); 1766 } 1767 return (error); 1768 } 1769 1770 /* 1771 * This sysctl allows a process to retrieve the argument list or process 1772 * title for another process without groping around in the address space 1773 * of the other process. It also allow a process to set its own "process 1774 * title to a string of its own choice. 1775 */ 1776 static int 1777 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1778 { 1779 int *name = (int *)arg1; 1780 u_int namelen = arg2; 1781 struct pargs *newpa, *pa; 1782 struct proc *p; 1783 struct sbuf sb; 1784 int flags, error = 0, error2; 1785 1786 if (namelen != 1) 1787 return (EINVAL); 1788 1789 flags = PGET_CANSEE; 1790 if (req->newptr != NULL) 1791 flags |= PGET_ISCURRENT; 1792 error = pget((pid_t)name[0], flags, &p); 1793 if (error) 1794 return (error); 1795 1796 pa = p->p_args; 1797 if (pa != NULL) { 1798 pargs_hold(pa); 1799 PROC_UNLOCK(p); 1800 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1801 pargs_drop(pa); 1802 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1803 _PHOLD(p); 1804 PROC_UNLOCK(p); 1805 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1806 error = proc_getargv(curthread, p, &sb); 1807 error2 = sbuf_finish(&sb); 1808 PRELE(p); 1809 sbuf_delete(&sb); 1810 if (error == 0 && error2 != 0) 1811 error = error2; 1812 } else { 1813 PROC_UNLOCK(p); 1814 } 1815 if (error != 0 || req->newptr == NULL) 1816 return (error); 1817 1818 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1819 return (ENOMEM); 1820 newpa = pargs_alloc(req->newlen); 1821 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1822 if (error != 0) { 1823 pargs_free(newpa); 1824 return (error); 1825 } 1826 PROC_LOCK(p); 1827 pa = p->p_args; 1828 p->p_args = newpa; 1829 PROC_UNLOCK(p); 1830 pargs_drop(pa); 1831 return (0); 1832 } 1833 1834 /* 1835 * This sysctl allows a process to retrieve environment of another process. 1836 */ 1837 static int 1838 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1839 { 1840 int *name = (int *)arg1; 1841 u_int namelen = arg2; 1842 struct proc *p; 1843 struct sbuf sb; 1844 int error, error2; 1845 1846 if (namelen != 1) 1847 return (EINVAL); 1848 1849 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1850 if (error != 0) 1851 return (error); 1852 if ((p->p_flag & P_SYSTEM) != 0) { 1853 PRELE(p); 1854 return (0); 1855 } 1856 1857 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1858 error = proc_getenvv(curthread, p, &sb); 1859 error2 = sbuf_finish(&sb); 1860 PRELE(p); 1861 sbuf_delete(&sb); 1862 return (error != 0 ? error : error2); 1863 } 1864 1865 /* 1866 * This sysctl allows a process to retrieve ELF auxiliary vector of 1867 * another process. 1868 */ 1869 static int 1870 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1871 { 1872 int *name = (int *)arg1; 1873 u_int namelen = arg2; 1874 struct proc *p; 1875 struct sbuf sb; 1876 int error, error2; 1877 1878 if (namelen != 1) 1879 return (EINVAL); 1880 1881 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1882 if (error != 0) 1883 return (error); 1884 if ((p->p_flag & P_SYSTEM) != 0) { 1885 PRELE(p); 1886 return (0); 1887 } 1888 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1889 error = proc_getauxv(curthread, p, &sb); 1890 error2 = sbuf_finish(&sb); 1891 PRELE(p); 1892 sbuf_delete(&sb); 1893 return (error != 0 ? error : error2); 1894 } 1895 1896 /* 1897 * This sysctl allows a process to retrieve the path of the executable for 1898 * itself or another process. 1899 */ 1900 static int 1901 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1902 { 1903 pid_t *pidp = (pid_t *)arg1; 1904 unsigned int arglen = arg2; 1905 struct proc *p; 1906 struct vnode *vp; 1907 char *retbuf, *freebuf; 1908 int error; 1909 1910 if (arglen != 1) 1911 return (EINVAL); 1912 if (*pidp == -1) { /* -1 means this process */ 1913 p = req->td->td_proc; 1914 } else { 1915 error = pget(*pidp, PGET_CANSEE, &p); 1916 if (error != 0) 1917 return (error); 1918 } 1919 1920 vp = p->p_textvp; 1921 if (vp == NULL) { 1922 if (*pidp != -1) 1923 PROC_UNLOCK(p); 1924 return (0); 1925 } 1926 vref(vp); 1927 if (*pidp != -1) 1928 PROC_UNLOCK(p); 1929 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1930 vrele(vp); 1931 if (error) 1932 return (error); 1933 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1934 free(freebuf, M_TEMP); 1935 return (error); 1936 } 1937 1938 static int 1939 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1940 { 1941 struct proc *p; 1942 char *sv_name; 1943 int *name; 1944 int namelen; 1945 int error; 1946 1947 namelen = arg2; 1948 if (namelen != 1) 1949 return (EINVAL); 1950 1951 name = (int *)arg1; 1952 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1953 if (error != 0) 1954 return (error); 1955 sv_name = p->p_sysent->sv_name; 1956 PROC_UNLOCK(p); 1957 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1958 } 1959 1960 #ifdef KINFO_OVMENTRY_SIZE 1961 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1962 #endif 1963 1964 #ifdef COMPAT_FREEBSD7 1965 static int 1966 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1967 { 1968 vm_map_entry_t entry, tmp_entry; 1969 unsigned int last_timestamp; 1970 char *fullpath, *freepath; 1971 struct kinfo_ovmentry *kve; 1972 struct vattr va; 1973 struct ucred *cred; 1974 int error, *name; 1975 struct vnode *vp; 1976 struct proc *p; 1977 vm_map_t map; 1978 struct vmspace *vm; 1979 1980 name = (int *)arg1; 1981 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1982 if (error != 0) 1983 return (error); 1984 vm = vmspace_acquire_ref(p); 1985 if (vm == NULL) { 1986 PRELE(p); 1987 return (ESRCH); 1988 } 1989 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1990 1991 map = &vm->vm_map; 1992 vm_map_lock_read(map); 1993 for (entry = map->header.next; entry != &map->header; 1994 entry = entry->next) { 1995 vm_object_t obj, tobj, lobj; 1996 vm_offset_t addr; 1997 1998 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1999 continue; 2000 2001 bzero(kve, sizeof(*kve)); 2002 kve->kve_structsize = sizeof(*kve); 2003 2004 kve->kve_private_resident = 0; 2005 obj = entry->object.vm_object; 2006 if (obj != NULL) { 2007 VM_OBJECT_RLOCK(obj); 2008 if (obj->shadow_count == 1) 2009 kve->kve_private_resident = 2010 obj->resident_page_count; 2011 } 2012 kve->kve_resident = 0; 2013 addr = entry->start; 2014 while (addr < entry->end) { 2015 if (pmap_extract(map->pmap, addr)) 2016 kve->kve_resident++; 2017 addr += PAGE_SIZE; 2018 } 2019 2020 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2021 if (tobj != obj) 2022 VM_OBJECT_RLOCK(tobj); 2023 if (lobj != obj) 2024 VM_OBJECT_RUNLOCK(lobj); 2025 lobj = tobj; 2026 } 2027 2028 kve->kve_start = (void*)entry->start; 2029 kve->kve_end = (void*)entry->end; 2030 kve->kve_offset = (off_t)entry->offset; 2031 2032 if (entry->protection & VM_PROT_READ) 2033 kve->kve_protection |= KVME_PROT_READ; 2034 if (entry->protection & VM_PROT_WRITE) 2035 kve->kve_protection |= KVME_PROT_WRITE; 2036 if (entry->protection & VM_PROT_EXECUTE) 2037 kve->kve_protection |= KVME_PROT_EXEC; 2038 2039 if (entry->eflags & MAP_ENTRY_COW) 2040 kve->kve_flags |= KVME_FLAG_COW; 2041 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2042 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2043 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2044 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2045 2046 last_timestamp = map->timestamp; 2047 vm_map_unlock_read(map); 2048 2049 kve->kve_fileid = 0; 2050 kve->kve_fsid = 0; 2051 freepath = NULL; 2052 fullpath = ""; 2053 if (lobj) { 2054 vp = NULL; 2055 switch (lobj->type) { 2056 case OBJT_DEFAULT: 2057 kve->kve_type = KVME_TYPE_DEFAULT; 2058 break; 2059 case OBJT_VNODE: 2060 kve->kve_type = KVME_TYPE_VNODE; 2061 vp = lobj->handle; 2062 vref(vp); 2063 break; 2064 case OBJT_SWAP: 2065 kve->kve_type = KVME_TYPE_SWAP; 2066 break; 2067 case OBJT_DEVICE: 2068 kve->kve_type = KVME_TYPE_DEVICE; 2069 break; 2070 case OBJT_PHYS: 2071 kve->kve_type = KVME_TYPE_PHYS; 2072 break; 2073 case OBJT_DEAD: 2074 kve->kve_type = KVME_TYPE_DEAD; 2075 break; 2076 case OBJT_SG: 2077 kve->kve_type = KVME_TYPE_SG; 2078 break; 2079 default: 2080 kve->kve_type = KVME_TYPE_UNKNOWN; 2081 break; 2082 } 2083 if (lobj != obj) 2084 VM_OBJECT_RUNLOCK(lobj); 2085 2086 kve->kve_ref_count = obj->ref_count; 2087 kve->kve_shadow_count = obj->shadow_count; 2088 VM_OBJECT_RUNLOCK(obj); 2089 if (vp != NULL) { 2090 vn_fullpath(curthread, vp, &fullpath, 2091 &freepath); 2092 cred = curthread->td_ucred; 2093 vn_lock(vp, LK_SHARED | LK_RETRY); 2094 if (VOP_GETATTR(vp, &va, cred) == 0) { 2095 kve->kve_fileid = va.va_fileid; 2096 kve->kve_fsid = va.va_fsid; 2097 } 2098 vput(vp); 2099 } 2100 } else { 2101 kve->kve_type = KVME_TYPE_NONE; 2102 kve->kve_ref_count = 0; 2103 kve->kve_shadow_count = 0; 2104 } 2105 2106 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2107 if (freepath != NULL) 2108 free(freepath, M_TEMP); 2109 2110 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2111 vm_map_lock_read(map); 2112 if (error) 2113 break; 2114 if (last_timestamp != map->timestamp) { 2115 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2116 entry = tmp_entry; 2117 } 2118 } 2119 vm_map_unlock_read(map); 2120 vmspace_free(vm); 2121 PRELE(p); 2122 free(kve, M_TEMP); 2123 return (error); 2124 } 2125 #endif /* COMPAT_FREEBSD7 */ 2126 2127 #ifdef KINFO_VMENTRY_SIZE 2128 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2129 #endif 2130 2131 /* 2132 * Must be called with the process locked and will return unlocked. 2133 */ 2134 int 2135 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb) 2136 { 2137 vm_map_entry_t entry, tmp_entry; 2138 unsigned int last_timestamp; 2139 char *fullpath, *freepath; 2140 struct kinfo_vmentry *kve; 2141 struct vattr va; 2142 struct ucred *cred; 2143 int error; 2144 struct vnode *vp; 2145 struct vmspace *vm; 2146 vm_map_t map; 2147 2148 PROC_LOCK_ASSERT(p, MA_OWNED); 2149 2150 _PHOLD(p); 2151 PROC_UNLOCK(p); 2152 vm = vmspace_acquire_ref(p); 2153 if (vm == NULL) { 2154 PRELE(p); 2155 return (ESRCH); 2156 } 2157 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2158 2159 error = 0; 2160 map = &vm->vm_map; 2161 vm_map_lock_read(map); 2162 for (entry = map->header.next; entry != &map->header; 2163 entry = entry->next) { 2164 vm_object_t obj, tobj, lobj; 2165 vm_offset_t addr; 2166 vm_paddr_t locked_pa; 2167 int mincoreinfo; 2168 2169 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2170 continue; 2171 2172 bzero(kve, sizeof(*kve)); 2173 2174 kve->kve_private_resident = 0; 2175 obj = entry->object.vm_object; 2176 if (obj != NULL) { 2177 VM_OBJECT_RLOCK(obj); 2178 if (obj->shadow_count == 1) 2179 kve->kve_private_resident = 2180 obj->resident_page_count; 2181 } 2182 kve->kve_resident = 0; 2183 addr = entry->start; 2184 while (addr < entry->end) { 2185 locked_pa = 0; 2186 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2187 if (locked_pa != 0) 2188 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2189 if (mincoreinfo & MINCORE_INCORE) 2190 kve->kve_resident++; 2191 if (mincoreinfo & MINCORE_SUPER) 2192 kve->kve_flags |= KVME_FLAG_SUPER; 2193 addr += PAGE_SIZE; 2194 } 2195 2196 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2197 if (tobj != obj) 2198 VM_OBJECT_RLOCK(tobj); 2199 if (lobj != obj) 2200 VM_OBJECT_RUNLOCK(lobj); 2201 lobj = tobj; 2202 } 2203 2204 kve->kve_start = entry->start; 2205 kve->kve_end = entry->end; 2206 kve->kve_offset = entry->offset; 2207 2208 if (entry->protection & VM_PROT_READ) 2209 kve->kve_protection |= KVME_PROT_READ; 2210 if (entry->protection & VM_PROT_WRITE) 2211 kve->kve_protection |= KVME_PROT_WRITE; 2212 if (entry->protection & VM_PROT_EXECUTE) 2213 kve->kve_protection |= KVME_PROT_EXEC; 2214 2215 if (entry->eflags & MAP_ENTRY_COW) 2216 kve->kve_flags |= KVME_FLAG_COW; 2217 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2218 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2219 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2220 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2221 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2222 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2223 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2224 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2225 2226 last_timestamp = map->timestamp; 2227 vm_map_unlock_read(map); 2228 2229 freepath = NULL; 2230 fullpath = ""; 2231 if (lobj) { 2232 vp = NULL; 2233 switch (lobj->type) { 2234 case OBJT_DEFAULT: 2235 kve->kve_type = KVME_TYPE_DEFAULT; 2236 break; 2237 case OBJT_VNODE: 2238 kve->kve_type = KVME_TYPE_VNODE; 2239 vp = lobj->handle; 2240 vref(vp); 2241 break; 2242 case OBJT_SWAP: 2243 kve->kve_type = KVME_TYPE_SWAP; 2244 break; 2245 case OBJT_DEVICE: 2246 kve->kve_type = KVME_TYPE_DEVICE; 2247 break; 2248 case OBJT_PHYS: 2249 kve->kve_type = KVME_TYPE_PHYS; 2250 break; 2251 case OBJT_DEAD: 2252 kve->kve_type = KVME_TYPE_DEAD; 2253 break; 2254 case OBJT_SG: 2255 kve->kve_type = KVME_TYPE_SG; 2256 break; 2257 default: 2258 kve->kve_type = KVME_TYPE_UNKNOWN; 2259 break; 2260 } 2261 if (lobj != obj) 2262 VM_OBJECT_RUNLOCK(lobj); 2263 2264 kve->kve_ref_count = obj->ref_count; 2265 kve->kve_shadow_count = obj->shadow_count; 2266 VM_OBJECT_RUNLOCK(obj); 2267 if (vp != NULL) { 2268 vn_fullpath(curthread, vp, &fullpath, 2269 &freepath); 2270 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2271 cred = curthread->td_ucred; 2272 vn_lock(vp, LK_SHARED | LK_RETRY); 2273 if (VOP_GETATTR(vp, &va, cred) == 0) { 2274 kve->kve_vn_fileid = va.va_fileid; 2275 kve->kve_vn_fsid = va.va_fsid; 2276 kve->kve_vn_mode = 2277 MAKEIMODE(va.va_type, va.va_mode); 2278 kve->kve_vn_size = va.va_size; 2279 kve->kve_vn_rdev = va.va_rdev; 2280 kve->kve_status = KF_ATTR_VALID; 2281 } 2282 vput(vp); 2283 } 2284 } else { 2285 kve->kve_type = KVME_TYPE_NONE; 2286 kve->kve_ref_count = 0; 2287 kve->kve_shadow_count = 0; 2288 } 2289 2290 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2291 if (freepath != NULL) 2292 free(freepath, M_TEMP); 2293 2294 /* Pack record size down */ 2295 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2296 strlen(kve->kve_path) + 1; 2297 kve->kve_structsize = roundup(kve->kve_structsize, 2298 sizeof(uint64_t)); 2299 error = sbuf_bcat(sb, kve, kve->kve_structsize); 2300 vm_map_lock_read(map); 2301 if (error) 2302 break; 2303 if (last_timestamp != map->timestamp) { 2304 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2305 entry = tmp_entry; 2306 } 2307 } 2308 vm_map_unlock_read(map); 2309 vmspace_free(vm); 2310 PRELE(p); 2311 free(kve, M_TEMP); 2312 return (error); 2313 } 2314 2315 static int 2316 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2317 { 2318 struct proc *p; 2319 struct sbuf sb; 2320 int error, error2, *name; 2321 2322 name = (int *)arg1; 2323 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2324 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2325 if (error != 0) { 2326 sbuf_delete(&sb); 2327 return (error); 2328 } 2329 error = kern_proc_vmmap_out(p, &sb); 2330 error2 = sbuf_finish(&sb); 2331 sbuf_delete(&sb); 2332 return (error != 0 ? error : error2); 2333 } 2334 2335 #if defined(STACK) || defined(DDB) 2336 static int 2337 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2338 { 2339 struct kinfo_kstack *kkstp; 2340 int error, i, *name, numthreads; 2341 lwpid_t *lwpidarray; 2342 struct thread *td; 2343 struct stack *st; 2344 struct sbuf sb; 2345 struct proc *p; 2346 2347 name = (int *)arg1; 2348 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2349 if (error != 0) 2350 return (error); 2351 2352 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2353 st = stack_create(); 2354 2355 lwpidarray = NULL; 2356 numthreads = 0; 2357 PROC_LOCK(p); 2358 repeat: 2359 if (numthreads < p->p_numthreads) { 2360 if (lwpidarray != NULL) { 2361 free(lwpidarray, M_TEMP); 2362 lwpidarray = NULL; 2363 } 2364 numthreads = p->p_numthreads; 2365 PROC_UNLOCK(p); 2366 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2367 M_WAITOK | M_ZERO); 2368 PROC_LOCK(p); 2369 goto repeat; 2370 } 2371 i = 0; 2372 2373 /* 2374 * XXXRW: During the below loop, execve(2) and countless other sorts 2375 * of changes could have taken place. Should we check to see if the 2376 * vmspace has been replaced, or the like, in order to prevent 2377 * giving a snapshot that spans, say, execve(2), with some threads 2378 * before and some after? Among other things, the credentials could 2379 * have changed, in which case the right to extract debug info might 2380 * no longer be assured. 2381 */ 2382 FOREACH_THREAD_IN_PROC(p, td) { 2383 KASSERT(i < numthreads, 2384 ("sysctl_kern_proc_kstack: numthreads")); 2385 lwpidarray[i] = td->td_tid; 2386 i++; 2387 } 2388 numthreads = i; 2389 for (i = 0; i < numthreads; i++) { 2390 td = thread_find(p, lwpidarray[i]); 2391 if (td == NULL) { 2392 continue; 2393 } 2394 bzero(kkstp, sizeof(*kkstp)); 2395 (void)sbuf_new(&sb, kkstp->kkst_trace, 2396 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2397 thread_lock(td); 2398 kkstp->kkst_tid = td->td_tid; 2399 if (TD_IS_SWAPPED(td)) 2400 kkstp->kkst_state = KKST_STATE_SWAPPED; 2401 else if (TD_IS_RUNNING(td)) 2402 kkstp->kkst_state = KKST_STATE_RUNNING; 2403 else { 2404 kkstp->kkst_state = KKST_STATE_STACKOK; 2405 stack_save_td(st, td); 2406 } 2407 thread_unlock(td); 2408 PROC_UNLOCK(p); 2409 stack_sbuf_print(&sb, st); 2410 sbuf_finish(&sb); 2411 sbuf_delete(&sb); 2412 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2413 PROC_LOCK(p); 2414 if (error) 2415 break; 2416 } 2417 _PRELE(p); 2418 PROC_UNLOCK(p); 2419 if (lwpidarray != NULL) 2420 free(lwpidarray, M_TEMP); 2421 stack_destroy(st); 2422 free(kkstp, M_TEMP); 2423 return (error); 2424 } 2425 #endif 2426 2427 /* 2428 * This sysctl allows a process to retrieve the full list of groups from 2429 * itself or another process. 2430 */ 2431 static int 2432 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2433 { 2434 pid_t *pidp = (pid_t *)arg1; 2435 unsigned int arglen = arg2; 2436 struct proc *p; 2437 struct ucred *cred; 2438 int error; 2439 2440 if (arglen != 1) 2441 return (EINVAL); 2442 if (*pidp == -1) { /* -1 means this process */ 2443 p = req->td->td_proc; 2444 } else { 2445 error = pget(*pidp, PGET_CANSEE, &p); 2446 if (error != 0) 2447 return (error); 2448 } 2449 2450 cred = crhold(p->p_ucred); 2451 if (*pidp != -1) 2452 PROC_UNLOCK(p); 2453 2454 error = SYSCTL_OUT(req, cred->cr_groups, 2455 cred->cr_ngroups * sizeof(gid_t)); 2456 crfree(cred); 2457 return (error); 2458 } 2459 2460 /* 2461 * This sysctl allows a process to retrieve or/and set the resource limit for 2462 * another process. 2463 */ 2464 static int 2465 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2466 { 2467 int *name = (int *)arg1; 2468 u_int namelen = arg2; 2469 struct rlimit rlim; 2470 struct proc *p; 2471 u_int which; 2472 int flags, error; 2473 2474 if (namelen != 2) 2475 return (EINVAL); 2476 2477 which = (u_int)name[1]; 2478 if (which >= RLIM_NLIMITS) 2479 return (EINVAL); 2480 2481 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2482 return (EINVAL); 2483 2484 flags = PGET_HOLD | PGET_NOTWEXIT; 2485 if (req->newptr != NULL) 2486 flags |= PGET_CANDEBUG; 2487 else 2488 flags |= PGET_CANSEE; 2489 error = pget((pid_t)name[0], flags, &p); 2490 if (error != 0) 2491 return (error); 2492 2493 /* 2494 * Retrieve limit. 2495 */ 2496 if (req->oldptr != NULL) { 2497 PROC_LOCK(p); 2498 lim_rlimit(p, which, &rlim); 2499 PROC_UNLOCK(p); 2500 } 2501 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2502 if (error != 0) 2503 goto errout; 2504 2505 /* 2506 * Set limit. 2507 */ 2508 if (req->newptr != NULL) { 2509 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2510 if (error == 0) 2511 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2512 } 2513 2514 errout: 2515 PRELE(p); 2516 return (error); 2517 } 2518 2519 /* 2520 * This sysctl allows a process to retrieve ps_strings structure location of 2521 * another process. 2522 */ 2523 static int 2524 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2525 { 2526 int *name = (int *)arg1; 2527 u_int namelen = arg2; 2528 struct proc *p; 2529 vm_offset_t ps_strings; 2530 int error; 2531 #ifdef COMPAT_FREEBSD32 2532 uint32_t ps_strings32; 2533 #endif 2534 2535 if (namelen != 1) 2536 return (EINVAL); 2537 2538 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2539 if (error != 0) 2540 return (error); 2541 #ifdef COMPAT_FREEBSD32 2542 if ((req->flags & SCTL_MASK32) != 0) { 2543 /* 2544 * We return 0 if the 32 bit emulation request is for a 64 bit 2545 * process. 2546 */ 2547 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2548 PTROUT(p->p_sysent->sv_psstrings) : 0; 2549 PROC_UNLOCK(p); 2550 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2551 return (error); 2552 } 2553 #endif 2554 ps_strings = p->p_sysent->sv_psstrings; 2555 PROC_UNLOCK(p); 2556 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2557 return (error); 2558 } 2559 2560 /* 2561 * This sysctl allows a process to retrieve umask of another process. 2562 */ 2563 static int 2564 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2565 { 2566 int *name = (int *)arg1; 2567 u_int namelen = arg2; 2568 struct proc *p; 2569 int error; 2570 u_short fd_cmask; 2571 2572 if (namelen != 1) 2573 return (EINVAL); 2574 2575 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2576 if (error != 0) 2577 return (error); 2578 2579 FILEDESC_SLOCK(p->p_fd); 2580 fd_cmask = p->p_fd->fd_cmask; 2581 FILEDESC_SUNLOCK(p->p_fd); 2582 PRELE(p); 2583 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2584 return (error); 2585 } 2586 2587 /* 2588 * This sysctl allows a process to set and retrieve binary osreldate of 2589 * another process. 2590 */ 2591 static int 2592 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2593 { 2594 int *name = (int *)arg1; 2595 u_int namelen = arg2; 2596 struct proc *p; 2597 int flags, error, osrel; 2598 2599 if (namelen != 1) 2600 return (EINVAL); 2601 2602 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2603 return (EINVAL); 2604 2605 flags = PGET_HOLD | PGET_NOTWEXIT; 2606 if (req->newptr != NULL) 2607 flags |= PGET_CANDEBUG; 2608 else 2609 flags |= PGET_CANSEE; 2610 error = pget((pid_t)name[0], flags, &p); 2611 if (error != 0) 2612 return (error); 2613 2614 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2615 if (error != 0) 2616 goto errout; 2617 2618 if (req->newptr != NULL) { 2619 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2620 if (error != 0) 2621 goto errout; 2622 if (osrel < 0) { 2623 error = EINVAL; 2624 goto errout; 2625 } 2626 p->p_osrel = osrel; 2627 } 2628 errout: 2629 PRELE(p); 2630 return (error); 2631 } 2632 2633 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2634 2635 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2636 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2637 "Return entire process table"); 2638 2639 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2640 sysctl_kern_proc, "Process table"); 2641 2642 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2643 sysctl_kern_proc, "Process table"); 2644 2645 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2646 sysctl_kern_proc, "Process table"); 2647 2648 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2649 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2650 2651 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2652 sysctl_kern_proc, "Process table"); 2653 2654 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2655 sysctl_kern_proc, "Process table"); 2656 2657 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2658 sysctl_kern_proc, "Process table"); 2659 2660 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2661 sysctl_kern_proc, "Process table"); 2662 2663 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2664 sysctl_kern_proc, "Return process table, no threads"); 2665 2666 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2667 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2668 sysctl_kern_proc_args, "Process argument list"); 2669 2670 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2671 sysctl_kern_proc_env, "Process environment"); 2672 2673 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2674 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2675 2676 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2677 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2678 2679 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2680 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2681 "Process syscall vector name (ABI type)"); 2682 2683 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2684 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2685 2686 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2687 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2688 2689 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2690 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2691 2692 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2693 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2694 2695 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2696 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2697 2698 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2699 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2700 2701 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2702 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2703 2704 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2705 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2706 2707 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2708 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2709 "Return process table, no threads"); 2710 2711 #ifdef COMPAT_FREEBSD7 2712 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2713 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2714 #endif 2715 2716 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2717 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2718 2719 #if defined(STACK) || defined(DDB) 2720 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2721 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2722 #endif 2723 2724 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2725 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2726 2727 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2728 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2729 "Process resource limits"); 2730 2731 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2732 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2733 "Process ps_strings location"); 2734 2735 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2736 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2737 2738 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2739 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2740 "Process binary osreldate"); 2741