1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/exec.h> 45 #include <sys/kernel.h> 46 #include <sys/limits.h> 47 #include <sys/lock.h> 48 #include <sys/loginclass.h> 49 #include <sys/malloc.h> 50 #include <sys/mman.h> 51 #include <sys/mount.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/ptrace.h> 55 #include <sys/refcount.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_extern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/uma.h> 87 88 #ifdef COMPAT_FREEBSD32 89 #include <compat/freebsd32/freebsd32.h> 90 #include <compat/freebsd32/freebsd32_util.h> 91 #endif 92 93 SDT_PROVIDER_DEFINE(proc); 94 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int", 95 "void *", "int"); 96 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int", 97 "void *", "int"); 98 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int", 99 "void *", "struct thread *"); 100 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int", 101 "void *"); 102 SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int", 103 "int"); 104 SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int", 105 "int"); 106 107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 108 MALLOC_DEFINE(M_SESSION, "session", "session header"); 109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 111 112 static void doenterpgrp(struct proc *, struct pgrp *); 113 static void orphanpg(struct pgrp *pg); 114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 117 int preferthread); 118 static void pgadjustjobc(struct pgrp *pgrp, int entering); 119 static void pgdelete(struct pgrp *); 120 static int proc_ctor(void *mem, int size, void *arg, int flags); 121 static void proc_dtor(void *mem, int size, void *arg); 122 static int proc_init(void *mem, int size, int flags); 123 static void proc_fini(void *mem, int size); 124 static void pargs_free(struct pargs *pa); 125 static struct proc *zpfind_locked(pid_t pid); 126 127 /* 128 * Other process lists 129 */ 130 struct pidhashhead *pidhashtbl; 131 u_long pidhash; 132 struct pgrphashhead *pgrphashtbl; 133 u_long pgrphash; 134 struct proclist allproc; 135 struct proclist zombproc; 136 struct sx allproc_lock; 137 struct sx proctree_lock; 138 struct mtx ppeers_lock; 139 uma_zone_t proc_zone; 140 141 int kstack_pages = KSTACK_PAGES; 142 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 143 "Kernel stack size in pages"); 144 static int vmmap_skip_res_cnt = 0; 145 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 146 &vmmap_skip_res_cnt, 0, 147 "Skip calculation of the pages resident count in kern.proc.vmmap"); 148 149 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 150 #ifdef COMPAT_FREEBSD32 151 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 152 #endif 153 154 /* 155 * Initialize global process hashing structures. 156 */ 157 void 158 procinit() 159 { 160 161 sx_init(&allproc_lock, "allproc"); 162 sx_init(&proctree_lock, "proctree"); 163 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 164 LIST_INIT(&allproc); 165 LIST_INIT(&zombproc); 166 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 167 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 168 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 169 proc_ctor, proc_dtor, proc_init, proc_fini, 170 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 171 uihashinit(); 172 } 173 174 /* 175 * Prepare a proc for use. 176 */ 177 static int 178 proc_ctor(void *mem, int size, void *arg, int flags) 179 { 180 struct proc *p; 181 182 p = (struct proc *)mem; 183 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 184 EVENTHANDLER_INVOKE(process_ctor, p); 185 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 186 return (0); 187 } 188 189 /* 190 * Reclaim a proc after use. 191 */ 192 static void 193 proc_dtor(void *mem, int size, void *arg) 194 { 195 struct proc *p; 196 struct thread *td; 197 198 /* INVARIANTS checks go here */ 199 p = (struct proc *)mem; 200 td = FIRST_THREAD_IN_PROC(p); 201 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 202 if (td != NULL) { 203 #ifdef INVARIANTS 204 KASSERT((p->p_numthreads == 1), 205 ("bad number of threads in exiting process")); 206 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 207 #endif 208 /* Free all OSD associated to this thread. */ 209 osd_thread_exit(td); 210 } 211 EVENTHANDLER_INVOKE(process_dtor, p); 212 if (p->p_ksi != NULL) 213 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 214 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 215 } 216 217 /* 218 * Initialize type-stable parts of a proc (when newly created). 219 */ 220 static int 221 proc_init(void *mem, int size, int flags) 222 { 223 struct proc *p; 224 225 p = (struct proc *)mem; 226 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 227 p->p_sched = (struct p_sched *)&p[1]; 228 bzero(&p->p_mtx, sizeof(struct mtx)); 229 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 230 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 231 cv_init(&p->p_pwait, "ppwait"); 232 cv_init(&p->p_dbgwait, "dbgwait"); 233 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 234 EVENTHANDLER_INVOKE(process_init, p); 235 p->p_stats = pstats_alloc(); 236 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 237 return (0); 238 } 239 240 /* 241 * UMA should ensure that this function is never called. 242 * Freeing a proc structure would violate type stability. 243 */ 244 static void 245 proc_fini(void *mem, int size) 246 { 247 #ifdef notnow 248 struct proc *p; 249 250 p = (struct proc *)mem; 251 EVENTHANDLER_INVOKE(process_fini, p); 252 pstats_free(p->p_stats); 253 thread_free(FIRST_THREAD_IN_PROC(p)); 254 mtx_destroy(&p->p_mtx); 255 if (p->p_ksi != NULL) 256 ksiginfo_free(p->p_ksi); 257 #else 258 panic("proc reclaimed"); 259 #endif 260 } 261 262 /* 263 * Is p an inferior of the current process? 264 */ 265 int 266 inferior(struct proc *p) 267 { 268 269 sx_assert(&proctree_lock, SX_LOCKED); 270 PROC_LOCK_ASSERT(p, MA_OWNED); 271 for (; p != curproc; p = proc_realparent(p)) { 272 if (p->p_pid == 0) 273 return (0); 274 } 275 return (1); 276 } 277 278 struct proc * 279 pfind_locked(pid_t pid) 280 { 281 struct proc *p; 282 283 sx_assert(&allproc_lock, SX_LOCKED); 284 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 285 if (p->p_pid == pid) { 286 PROC_LOCK(p); 287 if (p->p_state == PRS_NEW) { 288 PROC_UNLOCK(p); 289 p = NULL; 290 } 291 break; 292 } 293 } 294 return (p); 295 } 296 297 /* 298 * Locate a process by number; return only "live" processes -- i.e., neither 299 * zombies nor newly born but incompletely initialized processes. By not 300 * returning processes in the PRS_NEW state, we allow callers to avoid 301 * testing for that condition to avoid dereferencing p_ucred, et al. 302 */ 303 struct proc * 304 pfind(pid_t pid) 305 { 306 struct proc *p; 307 308 sx_slock(&allproc_lock); 309 p = pfind_locked(pid); 310 sx_sunlock(&allproc_lock); 311 return (p); 312 } 313 314 static struct proc * 315 pfind_tid_locked(pid_t tid) 316 { 317 struct proc *p; 318 struct thread *td; 319 320 sx_assert(&allproc_lock, SX_LOCKED); 321 FOREACH_PROC_IN_SYSTEM(p) { 322 PROC_LOCK(p); 323 if (p->p_state == PRS_NEW) { 324 PROC_UNLOCK(p); 325 continue; 326 } 327 FOREACH_THREAD_IN_PROC(p, td) { 328 if (td->td_tid == tid) 329 goto found; 330 } 331 PROC_UNLOCK(p); 332 } 333 found: 334 return (p); 335 } 336 337 /* 338 * Locate a process group by number. 339 * The caller must hold proctree_lock. 340 */ 341 struct pgrp * 342 pgfind(pgid) 343 register pid_t pgid; 344 { 345 register struct pgrp *pgrp; 346 347 sx_assert(&proctree_lock, SX_LOCKED); 348 349 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 350 if (pgrp->pg_id == pgid) { 351 PGRP_LOCK(pgrp); 352 return (pgrp); 353 } 354 } 355 return (NULL); 356 } 357 358 /* 359 * Locate process and do additional manipulations, depending on flags. 360 */ 361 int 362 pget(pid_t pid, int flags, struct proc **pp) 363 { 364 struct proc *p; 365 int error; 366 367 sx_slock(&allproc_lock); 368 if (pid <= PID_MAX) { 369 p = pfind_locked(pid); 370 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 371 p = zpfind_locked(pid); 372 } else if ((flags & PGET_NOTID) == 0) { 373 p = pfind_tid_locked(pid); 374 } else { 375 p = NULL; 376 } 377 sx_sunlock(&allproc_lock); 378 if (p == NULL) 379 return (ESRCH); 380 if ((flags & PGET_CANSEE) != 0) { 381 error = p_cansee(curthread, p); 382 if (error != 0) 383 goto errout; 384 } 385 if ((flags & PGET_CANDEBUG) != 0) { 386 error = p_candebug(curthread, p); 387 if (error != 0) 388 goto errout; 389 } 390 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 391 error = EPERM; 392 goto errout; 393 } 394 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 395 error = ESRCH; 396 goto errout; 397 } 398 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 399 /* 400 * XXXRW: Not clear ESRCH is the right error during proc 401 * execve(). 402 */ 403 error = ESRCH; 404 goto errout; 405 } 406 if ((flags & PGET_HOLD) != 0) { 407 _PHOLD(p); 408 PROC_UNLOCK(p); 409 } 410 *pp = p; 411 return (0); 412 errout: 413 PROC_UNLOCK(p); 414 return (error); 415 } 416 417 /* 418 * Create a new process group. 419 * pgid must be equal to the pid of p. 420 * Begin a new session if required. 421 */ 422 int 423 enterpgrp(p, pgid, pgrp, sess) 424 register struct proc *p; 425 pid_t pgid; 426 struct pgrp *pgrp; 427 struct session *sess; 428 { 429 430 sx_assert(&proctree_lock, SX_XLOCKED); 431 432 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 433 KASSERT(p->p_pid == pgid, 434 ("enterpgrp: new pgrp and pid != pgid")); 435 KASSERT(pgfind(pgid) == NULL, 436 ("enterpgrp: pgrp with pgid exists")); 437 KASSERT(!SESS_LEADER(p), 438 ("enterpgrp: session leader attempted setpgrp")); 439 440 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 441 442 if (sess != NULL) { 443 /* 444 * new session 445 */ 446 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 447 PROC_LOCK(p); 448 p->p_flag &= ~P_CONTROLT; 449 PROC_UNLOCK(p); 450 PGRP_LOCK(pgrp); 451 sess->s_leader = p; 452 sess->s_sid = p->p_pid; 453 refcount_init(&sess->s_count, 1); 454 sess->s_ttyvp = NULL; 455 sess->s_ttydp = NULL; 456 sess->s_ttyp = NULL; 457 bcopy(p->p_session->s_login, sess->s_login, 458 sizeof(sess->s_login)); 459 pgrp->pg_session = sess; 460 KASSERT(p == curproc, 461 ("enterpgrp: mksession and p != curproc")); 462 } else { 463 pgrp->pg_session = p->p_session; 464 sess_hold(pgrp->pg_session); 465 PGRP_LOCK(pgrp); 466 } 467 pgrp->pg_id = pgid; 468 LIST_INIT(&pgrp->pg_members); 469 470 /* 471 * As we have an exclusive lock of proctree_lock, 472 * this should not deadlock. 473 */ 474 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 475 pgrp->pg_jobc = 0; 476 SLIST_INIT(&pgrp->pg_sigiolst); 477 PGRP_UNLOCK(pgrp); 478 479 doenterpgrp(p, pgrp); 480 481 return (0); 482 } 483 484 /* 485 * Move p to an existing process group 486 */ 487 int 488 enterthispgrp(p, pgrp) 489 register struct proc *p; 490 struct pgrp *pgrp; 491 { 492 493 sx_assert(&proctree_lock, SX_XLOCKED); 494 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 495 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 496 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 497 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 498 KASSERT(pgrp->pg_session == p->p_session, 499 ("%s: pgrp's session %p, p->p_session %p.\n", 500 __func__, 501 pgrp->pg_session, 502 p->p_session)); 503 KASSERT(pgrp != p->p_pgrp, 504 ("%s: p belongs to pgrp.", __func__)); 505 506 doenterpgrp(p, pgrp); 507 508 return (0); 509 } 510 511 /* 512 * Move p to a process group 513 */ 514 static void 515 doenterpgrp(p, pgrp) 516 struct proc *p; 517 struct pgrp *pgrp; 518 { 519 struct pgrp *savepgrp; 520 521 sx_assert(&proctree_lock, SX_XLOCKED); 522 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 523 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 524 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 525 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 526 527 savepgrp = p->p_pgrp; 528 529 /* 530 * Adjust eligibility of affected pgrps to participate in job control. 531 * Increment eligibility counts before decrementing, otherwise we 532 * could reach 0 spuriously during the first call. 533 */ 534 fixjobc(p, pgrp, 1); 535 fixjobc(p, p->p_pgrp, 0); 536 537 PGRP_LOCK(pgrp); 538 PGRP_LOCK(savepgrp); 539 PROC_LOCK(p); 540 LIST_REMOVE(p, p_pglist); 541 p->p_pgrp = pgrp; 542 PROC_UNLOCK(p); 543 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 544 PGRP_UNLOCK(savepgrp); 545 PGRP_UNLOCK(pgrp); 546 if (LIST_EMPTY(&savepgrp->pg_members)) 547 pgdelete(savepgrp); 548 } 549 550 /* 551 * remove process from process group 552 */ 553 int 554 leavepgrp(p) 555 register struct proc *p; 556 { 557 struct pgrp *savepgrp; 558 559 sx_assert(&proctree_lock, SX_XLOCKED); 560 savepgrp = p->p_pgrp; 561 PGRP_LOCK(savepgrp); 562 PROC_LOCK(p); 563 LIST_REMOVE(p, p_pglist); 564 p->p_pgrp = NULL; 565 PROC_UNLOCK(p); 566 PGRP_UNLOCK(savepgrp); 567 if (LIST_EMPTY(&savepgrp->pg_members)) 568 pgdelete(savepgrp); 569 return (0); 570 } 571 572 /* 573 * delete a process group 574 */ 575 static void 576 pgdelete(pgrp) 577 register struct pgrp *pgrp; 578 { 579 struct session *savesess; 580 struct tty *tp; 581 582 sx_assert(&proctree_lock, SX_XLOCKED); 583 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 584 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 585 586 /* 587 * Reset any sigio structures pointing to us as a result of 588 * F_SETOWN with our pgid. 589 */ 590 funsetownlst(&pgrp->pg_sigiolst); 591 592 PGRP_LOCK(pgrp); 593 tp = pgrp->pg_session->s_ttyp; 594 LIST_REMOVE(pgrp, pg_hash); 595 savesess = pgrp->pg_session; 596 PGRP_UNLOCK(pgrp); 597 598 /* Remove the reference to the pgrp before deallocating it. */ 599 if (tp != NULL) { 600 tty_lock(tp); 601 tty_rel_pgrp(tp, pgrp); 602 } 603 604 mtx_destroy(&pgrp->pg_mtx); 605 free(pgrp, M_PGRP); 606 sess_release(savesess); 607 } 608 609 static void 610 pgadjustjobc(pgrp, entering) 611 struct pgrp *pgrp; 612 int entering; 613 { 614 615 PGRP_LOCK(pgrp); 616 if (entering) 617 pgrp->pg_jobc++; 618 else { 619 --pgrp->pg_jobc; 620 if (pgrp->pg_jobc == 0) 621 orphanpg(pgrp); 622 } 623 PGRP_UNLOCK(pgrp); 624 } 625 626 /* 627 * Adjust pgrp jobc counters when specified process changes process group. 628 * We count the number of processes in each process group that "qualify" 629 * the group for terminal job control (those with a parent in a different 630 * process group of the same session). If that count reaches zero, the 631 * process group becomes orphaned. Check both the specified process' 632 * process group and that of its children. 633 * entering == 0 => p is leaving specified group. 634 * entering == 1 => p is entering specified group. 635 */ 636 void 637 fixjobc(p, pgrp, entering) 638 register struct proc *p; 639 register struct pgrp *pgrp; 640 int entering; 641 { 642 register struct pgrp *hispgrp; 643 register struct session *mysession; 644 645 sx_assert(&proctree_lock, SX_LOCKED); 646 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 647 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 648 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 649 650 /* 651 * Check p's parent to see whether p qualifies its own process 652 * group; if so, adjust count for p's process group. 653 */ 654 mysession = pgrp->pg_session; 655 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 656 hispgrp->pg_session == mysession) 657 pgadjustjobc(pgrp, entering); 658 659 /* 660 * Check this process' children to see whether they qualify 661 * their process groups; if so, adjust counts for children's 662 * process groups. 663 */ 664 LIST_FOREACH(p, &p->p_children, p_sibling) { 665 hispgrp = p->p_pgrp; 666 if (hispgrp == pgrp || 667 hispgrp->pg_session != mysession) 668 continue; 669 PROC_LOCK(p); 670 if (p->p_state == PRS_ZOMBIE) { 671 PROC_UNLOCK(p); 672 continue; 673 } 674 PROC_UNLOCK(p); 675 pgadjustjobc(hispgrp, entering); 676 } 677 } 678 679 /* 680 * A process group has become orphaned; 681 * if there are any stopped processes in the group, 682 * hang-up all process in that group. 683 */ 684 static void 685 orphanpg(pg) 686 struct pgrp *pg; 687 { 688 register struct proc *p; 689 690 PGRP_LOCK_ASSERT(pg, MA_OWNED); 691 692 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 693 PROC_LOCK(p); 694 if (P_SHOULDSTOP(p)) { 695 PROC_UNLOCK(p); 696 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 697 PROC_LOCK(p); 698 kern_psignal(p, SIGHUP); 699 kern_psignal(p, SIGCONT); 700 PROC_UNLOCK(p); 701 } 702 return; 703 } 704 PROC_UNLOCK(p); 705 } 706 } 707 708 void 709 sess_hold(struct session *s) 710 { 711 712 refcount_acquire(&s->s_count); 713 } 714 715 void 716 sess_release(struct session *s) 717 { 718 719 if (refcount_release(&s->s_count)) { 720 if (s->s_ttyp != NULL) { 721 tty_lock(s->s_ttyp); 722 tty_rel_sess(s->s_ttyp, s); 723 } 724 mtx_destroy(&s->s_mtx); 725 free(s, M_SESSION); 726 } 727 } 728 729 #ifdef DDB 730 731 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 732 { 733 register struct pgrp *pgrp; 734 register struct proc *p; 735 register int i; 736 737 for (i = 0; i <= pgrphash; i++) { 738 if (!LIST_EMPTY(&pgrphashtbl[i])) { 739 printf("\tindx %d\n", i); 740 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 741 printf( 742 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 743 (void *)pgrp, (long)pgrp->pg_id, 744 (void *)pgrp->pg_session, 745 pgrp->pg_session->s_count, 746 (void *)LIST_FIRST(&pgrp->pg_members)); 747 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 748 printf("\t\tpid %ld addr %p pgrp %p\n", 749 (long)p->p_pid, (void *)p, 750 (void *)p->p_pgrp); 751 } 752 } 753 } 754 } 755 } 756 #endif /* DDB */ 757 758 /* 759 * Calculate the kinfo_proc members which contain process-wide 760 * informations. 761 * Must be called with the target process locked. 762 */ 763 static void 764 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 765 { 766 struct thread *td; 767 768 PROC_LOCK_ASSERT(p, MA_OWNED); 769 770 kp->ki_estcpu = 0; 771 kp->ki_pctcpu = 0; 772 FOREACH_THREAD_IN_PROC(p, td) { 773 thread_lock(td); 774 kp->ki_pctcpu += sched_pctcpu(td); 775 kp->ki_estcpu += td->td_estcpu; 776 thread_unlock(td); 777 } 778 } 779 780 /* 781 * Clear kinfo_proc and fill in any information that is common 782 * to all threads in the process. 783 * Must be called with the target process locked. 784 */ 785 static void 786 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 787 { 788 struct thread *td0; 789 struct tty *tp; 790 struct session *sp; 791 struct ucred *cred; 792 struct sigacts *ps; 793 794 /* For proc_realparent. */ 795 sx_assert(&proctree_lock, SX_LOCKED); 796 PROC_LOCK_ASSERT(p, MA_OWNED); 797 bzero(kp, sizeof(*kp)); 798 799 kp->ki_structsize = sizeof(*kp); 800 kp->ki_paddr = p; 801 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 802 kp->ki_args = p->p_args; 803 kp->ki_textvp = p->p_textvp; 804 #ifdef KTRACE 805 kp->ki_tracep = p->p_tracevp; 806 kp->ki_traceflag = p->p_traceflag; 807 #endif 808 kp->ki_fd = p->p_fd; 809 kp->ki_vmspace = p->p_vmspace; 810 kp->ki_flag = p->p_flag; 811 kp->ki_flag2 = p->p_flag2; 812 cred = p->p_ucred; 813 if (cred) { 814 kp->ki_uid = cred->cr_uid; 815 kp->ki_ruid = cred->cr_ruid; 816 kp->ki_svuid = cred->cr_svuid; 817 kp->ki_cr_flags = 0; 818 if (cred->cr_flags & CRED_FLAG_CAPMODE) 819 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 820 /* XXX bde doesn't like KI_NGROUPS */ 821 if (cred->cr_ngroups > KI_NGROUPS) { 822 kp->ki_ngroups = KI_NGROUPS; 823 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 824 } else 825 kp->ki_ngroups = cred->cr_ngroups; 826 bcopy(cred->cr_groups, kp->ki_groups, 827 kp->ki_ngroups * sizeof(gid_t)); 828 kp->ki_rgid = cred->cr_rgid; 829 kp->ki_svgid = cred->cr_svgid; 830 /* If jailed(cred), emulate the old P_JAILED flag. */ 831 if (jailed(cred)) { 832 kp->ki_flag |= P_JAILED; 833 /* If inside the jail, use 0 as a jail ID. */ 834 if (cred->cr_prison != curthread->td_ucred->cr_prison) 835 kp->ki_jid = cred->cr_prison->pr_id; 836 } 837 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 838 sizeof(kp->ki_loginclass)); 839 } 840 ps = p->p_sigacts; 841 if (ps) { 842 mtx_lock(&ps->ps_mtx); 843 kp->ki_sigignore = ps->ps_sigignore; 844 kp->ki_sigcatch = ps->ps_sigcatch; 845 mtx_unlock(&ps->ps_mtx); 846 } 847 if (p->p_state != PRS_NEW && 848 p->p_state != PRS_ZOMBIE && 849 p->p_vmspace != NULL) { 850 struct vmspace *vm = p->p_vmspace; 851 852 kp->ki_size = vm->vm_map.size; 853 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 854 FOREACH_THREAD_IN_PROC(p, td0) { 855 if (!TD_IS_SWAPPED(td0)) 856 kp->ki_rssize += td0->td_kstack_pages; 857 } 858 kp->ki_swrss = vm->vm_swrss; 859 kp->ki_tsize = vm->vm_tsize; 860 kp->ki_dsize = vm->vm_dsize; 861 kp->ki_ssize = vm->vm_ssize; 862 } else if (p->p_state == PRS_ZOMBIE) 863 kp->ki_stat = SZOMB; 864 if (kp->ki_flag & P_INMEM) 865 kp->ki_sflag = PS_INMEM; 866 else 867 kp->ki_sflag = 0; 868 /* Calculate legacy swtime as seconds since 'swtick'. */ 869 kp->ki_swtime = (ticks - p->p_swtick) / hz; 870 kp->ki_pid = p->p_pid; 871 kp->ki_nice = p->p_nice; 872 kp->ki_fibnum = p->p_fibnum; 873 kp->ki_start = p->p_stats->p_start; 874 timevaladd(&kp->ki_start, &boottime); 875 PROC_SLOCK(p); 876 rufetch(p, &kp->ki_rusage); 877 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 878 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 879 PROC_SUNLOCK(p); 880 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 881 /* Some callers want child times in a single value. */ 882 kp->ki_childtime = kp->ki_childstime; 883 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 884 885 FOREACH_THREAD_IN_PROC(p, td0) 886 kp->ki_cow += td0->td_cow; 887 888 tp = NULL; 889 if (p->p_pgrp) { 890 kp->ki_pgid = p->p_pgrp->pg_id; 891 kp->ki_jobc = p->p_pgrp->pg_jobc; 892 sp = p->p_pgrp->pg_session; 893 894 if (sp != NULL) { 895 kp->ki_sid = sp->s_sid; 896 SESS_LOCK(sp); 897 strlcpy(kp->ki_login, sp->s_login, 898 sizeof(kp->ki_login)); 899 if (sp->s_ttyvp) 900 kp->ki_kiflag |= KI_CTTY; 901 if (SESS_LEADER(p)) 902 kp->ki_kiflag |= KI_SLEADER; 903 /* XXX proctree_lock */ 904 tp = sp->s_ttyp; 905 SESS_UNLOCK(sp); 906 } 907 } 908 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 909 kp->ki_tdev = tty_udev(tp); 910 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 911 if (tp->t_session) 912 kp->ki_tsid = tp->t_session->s_sid; 913 } else 914 kp->ki_tdev = NODEV; 915 if (p->p_comm[0] != '\0') 916 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 917 if (p->p_sysent && p->p_sysent->sv_name != NULL && 918 p->p_sysent->sv_name[0] != '\0') 919 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 920 kp->ki_siglist = p->p_siglist; 921 kp->ki_xstat = p->p_xstat; 922 kp->ki_acflag = p->p_acflag; 923 kp->ki_lock = p->p_lock; 924 if (p->p_pptr) 925 kp->ki_ppid = proc_realparent(p)->p_pid; 926 if (p->p_flag & P_TRACED) 927 kp->ki_tracer = p->p_pptr->p_pid; 928 } 929 930 /* 931 * Fill in information that is thread specific. Must be called with 932 * target process locked. If 'preferthread' is set, overwrite certain 933 * process-related fields that are maintained for both threads and 934 * processes. 935 */ 936 static void 937 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 938 { 939 struct proc *p; 940 941 p = td->td_proc; 942 kp->ki_tdaddr = td; 943 PROC_LOCK_ASSERT(p, MA_OWNED); 944 945 if (preferthread) 946 PROC_SLOCK(p); 947 thread_lock(td); 948 if (td->td_wmesg != NULL) 949 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 950 else 951 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 952 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 953 if (TD_ON_LOCK(td)) { 954 kp->ki_kiflag |= KI_LOCKBLOCK; 955 strlcpy(kp->ki_lockname, td->td_lockname, 956 sizeof(kp->ki_lockname)); 957 } else { 958 kp->ki_kiflag &= ~KI_LOCKBLOCK; 959 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 960 } 961 962 if (p->p_state == PRS_NORMAL) { /* approximate. */ 963 if (TD_ON_RUNQ(td) || 964 TD_CAN_RUN(td) || 965 TD_IS_RUNNING(td)) { 966 kp->ki_stat = SRUN; 967 } else if (P_SHOULDSTOP(p)) { 968 kp->ki_stat = SSTOP; 969 } else if (TD_IS_SLEEPING(td)) { 970 kp->ki_stat = SSLEEP; 971 } else if (TD_ON_LOCK(td)) { 972 kp->ki_stat = SLOCK; 973 } else { 974 kp->ki_stat = SWAIT; 975 } 976 } else if (p->p_state == PRS_ZOMBIE) { 977 kp->ki_stat = SZOMB; 978 } else { 979 kp->ki_stat = SIDL; 980 } 981 982 /* Things in the thread */ 983 kp->ki_wchan = td->td_wchan; 984 kp->ki_pri.pri_level = td->td_priority; 985 kp->ki_pri.pri_native = td->td_base_pri; 986 kp->ki_lastcpu = td->td_lastcpu; 987 kp->ki_oncpu = td->td_oncpu; 988 kp->ki_tdflags = td->td_flags; 989 kp->ki_tid = td->td_tid; 990 kp->ki_numthreads = p->p_numthreads; 991 kp->ki_pcb = td->td_pcb; 992 kp->ki_kstack = (void *)td->td_kstack; 993 kp->ki_slptime = (ticks - td->td_slptick) / hz; 994 kp->ki_pri.pri_class = td->td_pri_class; 995 kp->ki_pri.pri_user = td->td_user_pri; 996 997 if (preferthread) { 998 rufetchtd(td, &kp->ki_rusage); 999 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1000 kp->ki_pctcpu = sched_pctcpu(td); 1001 kp->ki_estcpu = td->td_estcpu; 1002 kp->ki_cow = td->td_cow; 1003 } 1004 1005 /* We can't get this anymore but ps etc never used it anyway. */ 1006 kp->ki_rqindex = 0; 1007 1008 if (preferthread) 1009 kp->ki_siglist = td->td_siglist; 1010 kp->ki_sigmask = td->td_sigmask; 1011 thread_unlock(td); 1012 if (preferthread) 1013 PROC_SUNLOCK(p); 1014 } 1015 1016 /* 1017 * Fill in a kinfo_proc structure for the specified process. 1018 * Must be called with the target process locked. 1019 */ 1020 void 1021 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1022 { 1023 1024 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1025 1026 fill_kinfo_proc_only(p, kp); 1027 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1028 fill_kinfo_aggregate(p, kp); 1029 } 1030 1031 struct pstats * 1032 pstats_alloc(void) 1033 { 1034 1035 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1036 } 1037 1038 /* 1039 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1040 */ 1041 void 1042 pstats_fork(struct pstats *src, struct pstats *dst) 1043 { 1044 1045 bzero(&dst->pstat_startzero, 1046 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1047 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1048 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1049 } 1050 1051 void 1052 pstats_free(struct pstats *ps) 1053 { 1054 1055 free(ps, M_SUBPROC); 1056 } 1057 1058 static struct proc * 1059 zpfind_locked(pid_t pid) 1060 { 1061 struct proc *p; 1062 1063 sx_assert(&allproc_lock, SX_LOCKED); 1064 LIST_FOREACH(p, &zombproc, p_list) { 1065 if (p->p_pid == pid) { 1066 PROC_LOCK(p); 1067 break; 1068 } 1069 } 1070 return (p); 1071 } 1072 1073 /* 1074 * Locate a zombie process by number 1075 */ 1076 struct proc * 1077 zpfind(pid_t pid) 1078 { 1079 struct proc *p; 1080 1081 sx_slock(&allproc_lock); 1082 p = zpfind_locked(pid); 1083 sx_sunlock(&allproc_lock); 1084 return (p); 1085 } 1086 1087 #ifdef COMPAT_FREEBSD32 1088 1089 /* 1090 * This function is typically used to copy out the kernel address, so 1091 * it can be replaced by assignment of zero. 1092 */ 1093 static inline uint32_t 1094 ptr32_trim(void *ptr) 1095 { 1096 uintptr_t uptr; 1097 1098 uptr = (uintptr_t)ptr; 1099 return ((uptr > UINT_MAX) ? 0 : uptr); 1100 } 1101 1102 #define PTRTRIM_CP(src,dst,fld) \ 1103 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1104 1105 static void 1106 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1107 { 1108 int i; 1109 1110 bzero(ki32, sizeof(struct kinfo_proc32)); 1111 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1112 CP(*ki, *ki32, ki_layout); 1113 PTRTRIM_CP(*ki, *ki32, ki_args); 1114 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1115 PTRTRIM_CP(*ki, *ki32, ki_addr); 1116 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1117 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1118 PTRTRIM_CP(*ki, *ki32, ki_fd); 1119 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1120 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1121 CP(*ki, *ki32, ki_pid); 1122 CP(*ki, *ki32, ki_ppid); 1123 CP(*ki, *ki32, ki_pgid); 1124 CP(*ki, *ki32, ki_tpgid); 1125 CP(*ki, *ki32, ki_sid); 1126 CP(*ki, *ki32, ki_tsid); 1127 CP(*ki, *ki32, ki_jobc); 1128 CP(*ki, *ki32, ki_tdev); 1129 CP(*ki, *ki32, ki_siglist); 1130 CP(*ki, *ki32, ki_sigmask); 1131 CP(*ki, *ki32, ki_sigignore); 1132 CP(*ki, *ki32, ki_sigcatch); 1133 CP(*ki, *ki32, ki_uid); 1134 CP(*ki, *ki32, ki_ruid); 1135 CP(*ki, *ki32, ki_svuid); 1136 CP(*ki, *ki32, ki_rgid); 1137 CP(*ki, *ki32, ki_svgid); 1138 CP(*ki, *ki32, ki_ngroups); 1139 for (i = 0; i < KI_NGROUPS; i++) 1140 CP(*ki, *ki32, ki_groups[i]); 1141 CP(*ki, *ki32, ki_size); 1142 CP(*ki, *ki32, ki_rssize); 1143 CP(*ki, *ki32, ki_swrss); 1144 CP(*ki, *ki32, ki_tsize); 1145 CP(*ki, *ki32, ki_dsize); 1146 CP(*ki, *ki32, ki_ssize); 1147 CP(*ki, *ki32, ki_xstat); 1148 CP(*ki, *ki32, ki_acflag); 1149 CP(*ki, *ki32, ki_pctcpu); 1150 CP(*ki, *ki32, ki_estcpu); 1151 CP(*ki, *ki32, ki_slptime); 1152 CP(*ki, *ki32, ki_swtime); 1153 CP(*ki, *ki32, ki_cow); 1154 CP(*ki, *ki32, ki_runtime); 1155 TV_CP(*ki, *ki32, ki_start); 1156 TV_CP(*ki, *ki32, ki_childtime); 1157 CP(*ki, *ki32, ki_flag); 1158 CP(*ki, *ki32, ki_kiflag); 1159 CP(*ki, *ki32, ki_traceflag); 1160 CP(*ki, *ki32, ki_stat); 1161 CP(*ki, *ki32, ki_nice); 1162 CP(*ki, *ki32, ki_lock); 1163 CP(*ki, *ki32, ki_rqindex); 1164 CP(*ki, *ki32, ki_oncpu); 1165 CP(*ki, *ki32, ki_lastcpu); 1166 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1167 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1168 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1169 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1170 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1171 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1172 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1173 CP(*ki, *ki32, ki_tracer); 1174 CP(*ki, *ki32, ki_flag2); 1175 CP(*ki, *ki32, ki_fibnum); 1176 CP(*ki, *ki32, ki_cr_flags); 1177 CP(*ki, *ki32, ki_jid); 1178 CP(*ki, *ki32, ki_numthreads); 1179 CP(*ki, *ki32, ki_tid); 1180 CP(*ki, *ki32, ki_pri); 1181 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1182 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1183 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1184 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1185 PTRTRIM_CP(*ki, *ki32, ki_udata); 1186 CP(*ki, *ki32, ki_sflag); 1187 CP(*ki, *ki32, ki_tdflags); 1188 } 1189 #endif 1190 1191 int 1192 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1193 { 1194 struct thread *td; 1195 struct kinfo_proc ki; 1196 #ifdef COMPAT_FREEBSD32 1197 struct kinfo_proc32 ki32; 1198 #endif 1199 int error; 1200 1201 PROC_LOCK_ASSERT(p, MA_OWNED); 1202 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1203 1204 error = 0; 1205 fill_kinfo_proc(p, &ki); 1206 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1207 #ifdef COMPAT_FREEBSD32 1208 if ((flags & KERN_PROC_MASK32) != 0) { 1209 freebsd32_kinfo_proc_out(&ki, &ki32); 1210 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1211 } else 1212 #endif 1213 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1214 } else { 1215 FOREACH_THREAD_IN_PROC(p, td) { 1216 fill_kinfo_thread(td, &ki, 1); 1217 #ifdef COMPAT_FREEBSD32 1218 if ((flags & KERN_PROC_MASK32) != 0) { 1219 freebsd32_kinfo_proc_out(&ki, &ki32); 1220 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1221 } else 1222 #endif 1223 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1224 if (error) 1225 break; 1226 } 1227 } 1228 PROC_UNLOCK(p); 1229 return (error); 1230 } 1231 1232 static int 1233 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1234 int doingzomb) 1235 { 1236 struct sbuf sb; 1237 struct kinfo_proc ki; 1238 struct proc *np; 1239 int error, error2; 1240 pid_t pid; 1241 1242 pid = p->p_pid; 1243 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1244 error = kern_proc_out(p, &sb, flags); 1245 error2 = sbuf_finish(&sb); 1246 sbuf_delete(&sb); 1247 if (error != 0) 1248 return (error); 1249 else if (error2 != 0) 1250 return (error2); 1251 if (doingzomb) 1252 np = zpfind(pid); 1253 else { 1254 if (pid == 0) 1255 return (0); 1256 np = pfind(pid); 1257 } 1258 if (np == NULL) 1259 return (ESRCH); 1260 if (np != p) { 1261 PROC_UNLOCK(np); 1262 return (ESRCH); 1263 } 1264 PROC_UNLOCK(np); 1265 return (0); 1266 } 1267 1268 static int 1269 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1270 { 1271 int *name = (int *)arg1; 1272 u_int namelen = arg2; 1273 struct proc *p; 1274 int flags, doingzomb, oid_number; 1275 int error = 0; 1276 1277 oid_number = oidp->oid_number; 1278 if (oid_number != KERN_PROC_ALL && 1279 (oid_number & KERN_PROC_INC_THREAD) == 0) 1280 flags = KERN_PROC_NOTHREADS; 1281 else { 1282 flags = 0; 1283 oid_number &= ~KERN_PROC_INC_THREAD; 1284 } 1285 #ifdef COMPAT_FREEBSD32 1286 if (req->flags & SCTL_MASK32) 1287 flags |= KERN_PROC_MASK32; 1288 #endif 1289 if (oid_number == KERN_PROC_PID) { 1290 if (namelen != 1) 1291 return (EINVAL); 1292 error = sysctl_wire_old_buffer(req, 0); 1293 if (error) 1294 return (error); 1295 sx_slock(&proctree_lock); 1296 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1297 if (error == 0) 1298 error = sysctl_out_proc(p, req, flags, 0); 1299 sx_sunlock(&proctree_lock); 1300 return (error); 1301 } 1302 1303 switch (oid_number) { 1304 case KERN_PROC_ALL: 1305 if (namelen != 0) 1306 return (EINVAL); 1307 break; 1308 case KERN_PROC_PROC: 1309 if (namelen != 0 && namelen != 1) 1310 return (EINVAL); 1311 break; 1312 default: 1313 if (namelen != 1) 1314 return (EINVAL); 1315 break; 1316 } 1317 1318 if (!req->oldptr) { 1319 /* overestimate by 5 procs */ 1320 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1321 if (error) 1322 return (error); 1323 } 1324 error = sysctl_wire_old_buffer(req, 0); 1325 if (error != 0) 1326 return (error); 1327 sx_slock(&proctree_lock); 1328 sx_slock(&allproc_lock); 1329 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1330 if (!doingzomb) 1331 p = LIST_FIRST(&allproc); 1332 else 1333 p = LIST_FIRST(&zombproc); 1334 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1335 /* 1336 * Skip embryonic processes. 1337 */ 1338 PROC_LOCK(p); 1339 if (p->p_state == PRS_NEW) { 1340 PROC_UNLOCK(p); 1341 continue; 1342 } 1343 KASSERT(p->p_ucred != NULL, 1344 ("process credential is NULL for non-NEW proc")); 1345 /* 1346 * Show a user only appropriate processes. 1347 */ 1348 if (p_cansee(curthread, p)) { 1349 PROC_UNLOCK(p); 1350 continue; 1351 } 1352 /* 1353 * TODO - make more efficient (see notes below). 1354 * do by session. 1355 */ 1356 switch (oid_number) { 1357 1358 case KERN_PROC_GID: 1359 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1360 PROC_UNLOCK(p); 1361 continue; 1362 } 1363 break; 1364 1365 case KERN_PROC_PGRP: 1366 /* could do this by traversing pgrp */ 1367 if (p->p_pgrp == NULL || 1368 p->p_pgrp->pg_id != (pid_t)name[0]) { 1369 PROC_UNLOCK(p); 1370 continue; 1371 } 1372 break; 1373 1374 case KERN_PROC_RGID: 1375 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1376 PROC_UNLOCK(p); 1377 continue; 1378 } 1379 break; 1380 1381 case KERN_PROC_SESSION: 1382 if (p->p_session == NULL || 1383 p->p_session->s_sid != (pid_t)name[0]) { 1384 PROC_UNLOCK(p); 1385 continue; 1386 } 1387 break; 1388 1389 case KERN_PROC_TTY: 1390 if ((p->p_flag & P_CONTROLT) == 0 || 1391 p->p_session == NULL) { 1392 PROC_UNLOCK(p); 1393 continue; 1394 } 1395 /* XXX proctree_lock */ 1396 SESS_LOCK(p->p_session); 1397 if (p->p_session->s_ttyp == NULL || 1398 tty_udev(p->p_session->s_ttyp) != 1399 (dev_t)name[0]) { 1400 SESS_UNLOCK(p->p_session); 1401 PROC_UNLOCK(p); 1402 continue; 1403 } 1404 SESS_UNLOCK(p->p_session); 1405 break; 1406 1407 case KERN_PROC_UID: 1408 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1409 PROC_UNLOCK(p); 1410 continue; 1411 } 1412 break; 1413 1414 case KERN_PROC_RUID: 1415 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1416 PROC_UNLOCK(p); 1417 continue; 1418 } 1419 break; 1420 1421 case KERN_PROC_PROC: 1422 break; 1423 1424 default: 1425 break; 1426 1427 } 1428 1429 error = sysctl_out_proc(p, req, flags, doingzomb); 1430 if (error) { 1431 sx_sunlock(&allproc_lock); 1432 sx_sunlock(&proctree_lock); 1433 return (error); 1434 } 1435 } 1436 } 1437 sx_sunlock(&allproc_lock); 1438 sx_sunlock(&proctree_lock); 1439 return (0); 1440 } 1441 1442 struct pargs * 1443 pargs_alloc(int len) 1444 { 1445 struct pargs *pa; 1446 1447 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1448 M_WAITOK); 1449 refcount_init(&pa->ar_ref, 1); 1450 pa->ar_length = len; 1451 return (pa); 1452 } 1453 1454 static void 1455 pargs_free(struct pargs *pa) 1456 { 1457 1458 free(pa, M_PARGS); 1459 } 1460 1461 void 1462 pargs_hold(struct pargs *pa) 1463 { 1464 1465 if (pa == NULL) 1466 return; 1467 refcount_acquire(&pa->ar_ref); 1468 } 1469 1470 void 1471 pargs_drop(struct pargs *pa) 1472 { 1473 1474 if (pa == NULL) 1475 return; 1476 if (refcount_release(&pa->ar_ref)) 1477 pargs_free(pa); 1478 } 1479 1480 static int 1481 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1482 size_t len) 1483 { 1484 struct iovec iov; 1485 struct uio uio; 1486 1487 iov.iov_base = (caddr_t)buf; 1488 iov.iov_len = len; 1489 uio.uio_iov = &iov; 1490 uio.uio_iovcnt = 1; 1491 uio.uio_offset = offset; 1492 uio.uio_resid = (ssize_t)len; 1493 uio.uio_segflg = UIO_SYSSPACE; 1494 uio.uio_rw = UIO_READ; 1495 uio.uio_td = td; 1496 1497 return (proc_rwmem(p, &uio)); 1498 } 1499 1500 static int 1501 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1502 size_t len) 1503 { 1504 size_t i; 1505 int error; 1506 1507 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1508 /* 1509 * Reading the chunk may validly return EFAULT if the string is shorter 1510 * than the chunk and is aligned at the end of the page, assuming the 1511 * next page is not mapped. So if EFAULT is returned do a fallback to 1512 * one byte read loop. 1513 */ 1514 if (error == EFAULT) { 1515 for (i = 0; i < len; i++, buf++, sptr++) { 1516 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1517 if (error != 0) 1518 return (error); 1519 if (*buf == '\0') 1520 break; 1521 } 1522 error = 0; 1523 } 1524 return (error); 1525 } 1526 1527 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1528 1529 enum proc_vector_type { 1530 PROC_ARG, 1531 PROC_ENV, 1532 PROC_AUX, 1533 }; 1534 1535 #ifdef COMPAT_FREEBSD32 1536 static int 1537 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1538 size_t *vsizep, enum proc_vector_type type) 1539 { 1540 struct freebsd32_ps_strings pss; 1541 Elf32_Auxinfo aux; 1542 vm_offset_t vptr, ptr; 1543 uint32_t *proc_vector32; 1544 char **proc_vector; 1545 size_t vsize, size; 1546 int i, error; 1547 1548 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1549 &pss, sizeof(pss)); 1550 if (error != 0) 1551 return (error); 1552 switch (type) { 1553 case PROC_ARG: 1554 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1555 vsize = pss.ps_nargvstr; 1556 if (vsize > ARG_MAX) 1557 return (ENOEXEC); 1558 size = vsize * sizeof(int32_t); 1559 break; 1560 case PROC_ENV: 1561 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1562 vsize = pss.ps_nenvstr; 1563 if (vsize > ARG_MAX) 1564 return (ENOEXEC); 1565 size = vsize * sizeof(int32_t); 1566 break; 1567 case PROC_AUX: 1568 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1569 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1570 if (vptr % 4 != 0) 1571 return (ENOEXEC); 1572 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1573 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1574 if (error != 0) 1575 return (error); 1576 if (aux.a_type == AT_NULL) 1577 break; 1578 ptr += sizeof(aux); 1579 } 1580 if (aux.a_type != AT_NULL) 1581 return (ENOEXEC); 1582 vsize = i + 1; 1583 size = vsize * sizeof(aux); 1584 break; 1585 default: 1586 KASSERT(0, ("Wrong proc vector type: %d", type)); 1587 return (EINVAL); 1588 } 1589 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1590 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1591 if (error != 0) 1592 goto done; 1593 if (type == PROC_AUX) { 1594 *proc_vectorp = (char **)proc_vector32; 1595 *vsizep = vsize; 1596 return (0); 1597 } 1598 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1599 for (i = 0; i < (int)vsize; i++) 1600 proc_vector[i] = PTRIN(proc_vector32[i]); 1601 *proc_vectorp = proc_vector; 1602 *vsizep = vsize; 1603 done: 1604 free(proc_vector32, M_TEMP); 1605 return (error); 1606 } 1607 #endif 1608 1609 static int 1610 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1611 size_t *vsizep, enum proc_vector_type type) 1612 { 1613 struct ps_strings pss; 1614 Elf_Auxinfo aux; 1615 vm_offset_t vptr, ptr; 1616 char **proc_vector; 1617 size_t vsize, size; 1618 int error, i; 1619 1620 #ifdef COMPAT_FREEBSD32 1621 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1622 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1623 #endif 1624 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1625 &pss, sizeof(pss)); 1626 if (error != 0) 1627 return (error); 1628 switch (type) { 1629 case PROC_ARG: 1630 vptr = (vm_offset_t)pss.ps_argvstr; 1631 vsize = pss.ps_nargvstr; 1632 if (vsize > ARG_MAX) 1633 return (ENOEXEC); 1634 size = vsize * sizeof(char *); 1635 break; 1636 case PROC_ENV: 1637 vptr = (vm_offset_t)pss.ps_envstr; 1638 vsize = pss.ps_nenvstr; 1639 if (vsize > ARG_MAX) 1640 return (ENOEXEC); 1641 size = vsize * sizeof(char *); 1642 break; 1643 case PROC_AUX: 1644 /* 1645 * The aux array is just above env array on the stack. Check 1646 * that the address is naturally aligned. 1647 */ 1648 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1649 * sizeof(char *); 1650 #if __ELF_WORD_SIZE == 64 1651 if (vptr % sizeof(uint64_t) != 0) 1652 #else 1653 if (vptr % sizeof(uint32_t) != 0) 1654 #endif 1655 return (ENOEXEC); 1656 /* 1657 * We count the array size reading the aux vectors from the 1658 * stack until AT_NULL vector is returned. So (to keep the code 1659 * simple) we read the process stack twice: the first time here 1660 * to find the size and the second time when copying the vectors 1661 * to the allocated proc_vector. 1662 */ 1663 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1664 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1665 if (error != 0) 1666 return (error); 1667 if (aux.a_type == AT_NULL) 1668 break; 1669 ptr += sizeof(aux); 1670 } 1671 /* 1672 * If the PROC_AUXV_MAX entries are iterated over, and we have 1673 * not reached AT_NULL, it is most likely we are reading wrong 1674 * data: either the process doesn't have auxv array or data has 1675 * been modified. Return the error in this case. 1676 */ 1677 if (aux.a_type != AT_NULL) 1678 return (ENOEXEC); 1679 vsize = i + 1; 1680 size = vsize * sizeof(aux); 1681 break; 1682 default: 1683 KASSERT(0, ("Wrong proc vector type: %d", type)); 1684 return (EINVAL); /* In case we are built without INVARIANTS. */ 1685 } 1686 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1687 if (proc_vector == NULL) 1688 return (ENOMEM); 1689 error = proc_read_mem(td, p, vptr, proc_vector, size); 1690 if (error != 0) { 1691 free(proc_vector, M_TEMP); 1692 return (error); 1693 } 1694 *proc_vectorp = proc_vector; 1695 *vsizep = vsize; 1696 1697 return (0); 1698 } 1699 1700 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1701 1702 static int 1703 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1704 enum proc_vector_type type) 1705 { 1706 size_t done, len, nchr, vsize; 1707 int error, i; 1708 char **proc_vector, *sptr; 1709 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1710 1711 PROC_ASSERT_HELD(p); 1712 1713 /* 1714 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1715 */ 1716 nchr = 2 * (PATH_MAX + ARG_MAX); 1717 1718 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1719 if (error != 0) 1720 return (error); 1721 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1722 /* 1723 * The program may have scribbled into its argv array, e.g. to 1724 * remove some arguments. If that has happened, break out 1725 * before trying to read from NULL. 1726 */ 1727 if (proc_vector[i] == NULL) 1728 break; 1729 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1730 error = proc_read_string(td, p, sptr, pss_string, 1731 sizeof(pss_string)); 1732 if (error != 0) 1733 goto done; 1734 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1735 if (done + len >= nchr) 1736 len = nchr - done - 1; 1737 sbuf_bcat(sb, pss_string, len); 1738 if (len != GET_PS_STRINGS_CHUNK_SZ) 1739 break; 1740 done += GET_PS_STRINGS_CHUNK_SZ; 1741 } 1742 sbuf_bcat(sb, "", 1); 1743 done += len + 1; 1744 } 1745 done: 1746 free(proc_vector, M_TEMP); 1747 return (error); 1748 } 1749 1750 int 1751 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1752 { 1753 1754 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1755 } 1756 1757 int 1758 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1759 { 1760 1761 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1762 } 1763 1764 int 1765 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1766 { 1767 size_t vsize, size; 1768 char **auxv; 1769 int error; 1770 1771 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1772 if (error == 0) { 1773 #ifdef COMPAT_FREEBSD32 1774 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1775 size = vsize * sizeof(Elf32_Auxinfo); 1776 else 1777 #endif 1778 size = vsize * sizeof(Elf_Auxinfo); 1779 error = sbuf_bcat(sb, auxv, size); 1780 free(auxv, M_TEMP); 1781 } 1782 return (error); 1783 } 1784 1785 /* 1786 * This sysctl allows a process to retrieve the argument list or process 1787 * title for another process without groping around in the address space 1788 * of the other process. It also allow a process to set its own "process 1789 * title to a string of its own choice. 1790 */ 1791 static int 1792 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1793 { 1794 int *name = (int *)arg1; 1795 u_int namelen = arg2; 1796 struct pargs *newpa, *pa; 1797 struct proc *p; 1798 struct sbuf sb; 1799 int flags, error = 0, error2; 1800 1801 if (namelen != 1) 1802 return (EINVAL); 1803 1804 flags = PGET_CANSEE; 1805 if (req->newptr != NULL) 1806 flags |= PGET_ISCURRENT; 1807 error = pget((pid_t)name[0], flags, &p); 1808 if (error) 1809 return (error); 1810 1811 pa = p->p_args; 1812 if (pa != NULL) { 1813 pargs_hold(pa); 1814 PROC_UNLOCK(p); 1815 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1816 pargs_drop(pa); 1817 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1818 _PHOLD(p); 1819 PROC_UNLOCK(p); 1820 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1821 error = proc_getargv(curthread, p, &sb); 1822 error2 = sbuf_finish(&sb); 1823 PRELE(p); 1824 sbuf_delete(&sb); 1825 if (error == 0 && error2 != 0) 1826 error = error2; 1827 } else { 1828 PROC_UNLOCK(p); 1829 } 1830 if (error != 0 || req->newptr == NULL) 1831 return (error); 1832 1833 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1834 return (ENOMEM); 1835 newpa = pargs_alloc(req->newlen); 1836 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1837 if (error != 0) { 1838 pargs_free(newpa); 1839 return (error); 1840 } 1841 PROC_LOCK(p); 1842 pa = p->p_args; 1843 p->p_args = newpa; 1844 PROC_UNLOCK(p); 1845 pargs_drop(pa); 1846 return (0); 1847 } 1848 1849 /* 1850 * This sysctl allows a process to retrieve environment of another process. 1851 */ 1852 static int 1853 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1854 { 1855 int *name = (int *)arg1; 1856 u_int namelen = arg2; 1857 struct proc *p; 1858 struct sbuf sb; 1859 int error, error2; 1860 1861 if (namelen != 1) 1862 return (EINVAL); 1863 1864 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1865 if (error != 0) 1866 return (error); 1867 if ((p->p_flag & P_SYSTEM) != 0) { 1868 PRELE(p); 1869 return (0); 1870 } 1871 1872 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1873 error = proc_getenvv(curthread, p, &sb); 1874 error2 = sbuf_finish(&sb); 1875 PRELE(p); 1876 sbuf_delete(&sb); 1877 return (error != 0 ? error : error2); 1878 } 1879 1880 /* 1881 * This sysctl allows a process to retrieve ELF auxiliary vector of 1882 * another process. 1883 */ 1884 static int 1885 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1886 { 1887 int *name = (int *)arg1; 1888 u_int namelen = arg2; 1889 struct proc *p; 1890 struct sbuf sb; 1891 int error, error2; 1892 1893 if (namelen != 1) 1894 return (EINVAL); 1895 1896 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1897 if (error != 0) 1898 return (error); 1899 if ((p->p_flag & P_SYSTEM) != 0) { 1900 PRELE(p); 1901 return (0); 1902 } 1903 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1904 error = proc_getauxv(curthread, p, &sb); 1905 error2 = sbuf_finish(&sb); 1906 PRELE(p); 1907 sbuf_delete(&sb); 1908 return (error != 0 ? error : error2); 1909 } 1910 1911 /* 1912 * This sysctl allows a process to retrieve the path of the executable for 1913 * itself or another process. 1914 */ 1915 static int 1916 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1917 { 1918 pid_t *pidp = (pid_t *)arg1; 1919 unsigned int arglen = arg2; 1920 struct proc *p; 1921 struct vnode *vp; 1922 char *retbuf, *freebuf; 1923 int error; 1924 1925 if (arglen != 1) 1926 return (EINVAL); 1927 if (*pidp == -1) { /* -1 means this process */ 1928 p = req->td->td_proc; 1929 } else { 1930 error = pget(*pidp, PGET_CANSEE, &p); 1931 if (error != 0) 1932 return (error); 1933 } 1934 1935 vp = p->p_textvp; 1936 if (vp == NULL) { 1937 if (*pidp != -1) 1938 PROC_UNLOCK(p); 1939 return (0); 1940 } 1941 vref(vp); 1942 if (*pidp != -1) 1943 PROC_UNLOCK(p); 1944 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1945 vrele(vp); 1946 if (error) 1947 return (error); 1948 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1949 free(freebuf, M_TEMP); 1950 return (error); 1951 } 1952 1953 static int 1954 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1955 { 1956 struct proc *p; 1957 char *sv_name; 1958 int *name; 1959 int namelen; 1960 int error; 1961 1962 namelen = arg2; 1963 if (namelen != 1) 1964 return (EINVAL); 1965 1966 name = (int *)arg1; 1967 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1968 if (error != 0) 1969 return (error); 1970 sv_name = p->p_sysent->sv_name; 1971 PROC_UNLOCK(p); 1972 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1973 } 1974 1975 #ifdef KINFO_OVMENTRY_SIZE 1976 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1977 #endif 1978 1979 #ifdef COMPAT_FREEBSD7 1980 static int 1981 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1982 { 1983 vm_map_entry_t entry, tmp_entry; 1984 unsigned int last_timestamp; 1985 char *fullpath, *freepath; 1986 struct kinfo_ovmentry *kve; 1987 struct vattr va; 1988 struct ucred *cred; 1989 int error, *name; 1990 struct vnode *vp; 1991 struct proc *p; 1992 vm_map_t map; 1993 struct vmspace *vm; 1994 1995 name = (int *)arg1; 1996 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1997 if (error != 0) 1998 return (error); 1999 vm = vmspace_acquire_ref(p); 2000 if (vm == NULL) { 2001 PRELE(p); 2002 return (ESRCH); 2003 } 2004 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2005 2006 map = &vm->vm_map; 2007 vm_map_lock_read(map); 2008 for (entry = map->header.next; entry != &map->header; 2009 entry = entry->next) { 2010 vm_object_t obj, tobj, lobj; 2011 vm_offset_t addr; 2012 2013 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2014 continue; 2015 2016 bzero(kve, sizeof(*kve)); 2017 kve->kve_structsize = sizeof(*kve); 2018 2019 kve->kve_private_resident = 0; 2020 obj = entry->object.vm_object; 2021 if (obj != NULL) { 2022 VM_OBJECT_RLOCK(obj); 2023 if (obj->shadow_count == 1) 2024 kve->kve_private_resident = 2025 obj->resident_page_count; 2026 } 2027 kve->kve_resident = 0; 2028 addr = entry->start; 2029 while (addr < entry->end) { 2030 if (pmap_extract(map->pmap, addr)) 2031 kve->kve_resident++; 2032 addr += PAGE_SIZE; 2033 } 2034 2035 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2036 if (tobj != obj) 2037 VM_OBJECT_RLOCK(tobj); 2038 if (lobj != obj) 2039 VM_OBJECT_RUNLOCK(lobj); 2040 lobj = tobj; 2041 } 2042 2043 kve->kve_start = (void*)entry->start; 2044 kve->kve_end = (void*)entry->end; 2045 kve->kve_offset = (off_t)entry->offset; 2046 2047 if (entry->protection & VM_PROT_READ) 2048 kve->kve_protection |= KVME_PROT_READ; 2049 if (entry->protection & VM_PROT_WRITE) 2050 kve->kve_protection |= KVME_PROT_WRITE; 2051 if (entry->protection & VM_PROT_EXECUTE) 2052 kve->kve_protection |= KVME_PROT_EXEC; 2053 2054 if (entry->eflags & MAP_ENTRY_COW) 2055 kve->kve_flags |= KVME_FLAG_COW; 2056 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2057 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2058 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2059 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2060 2061 last_timestamp = map->timestamp; 2062 vm_map_unlock_read(map); 2063 2064 kve->kve_fileid = 0; 2065 kve->kve_fsid = 0; 2066 freepath = NULL; 2067 fullpath = ""; 2068 if (lobj) { 2069 vp = NULL; 2070 switch (lobj->type) { 2071 case OBJT_DEFAULT: 2072 kve->kve_type = KVME_TYPE_DEFAULT; 2073 break; 2074 case OBJT_VNODE: 2075 kve->kve_type = KVME_TYPE_VNODE; 2076 vp = lobj->handle; 2077 vref(vp); 2078 break; 2079 case OBJT_SWAP: 2080 kve->kve_type = KVME_TYPE_SWAP; 2081 break; 2082 case OBJT_DEVICE: 2083 kve->kve_type = KVME_TYPE_DEVICE; 2084 break; 2085 case OBJT_PHYS: 2086 kve->kve_type = KVME_TYPE_PHYS; 2087 break; 2088 case OBJT_DEAD: 2089 kve->kve_type = KVME_TYPE_DEAD; 2090 break; 2091 case OBJT_SG: 2092 kve->kve_type = KVME_TYPE_SG; 2093 break; 2094 default: 2095 kve->kve_type = KVME_TYPE_UNKNOWN; 2096 break; 2097 } 2098 if (lobj != obj) 2099 VM_OBJECT_RUNLOCK(lobj); 2100 2101 kve->kve_ref_count = obj->ref_count; 2102 kve->kve_shadow_count = obj->shadow_count; 2103 VM_OBJECT_RUNLOCK(obj); 2104 if (vp != NULL) { 2105 vn_fullpath(curthread, vp, &fullpath, 2106 &freepath); 2107 cred = curthread->td_ucred; 2108 vn_lock(vp, LK_SHARED | LK_RETRY); 2109 if (VOP_GETATTR(vp, &va, cred) == 0) { 2110 kve->kve_fileid = va.va_fileid; 2111 kve->kve_fsid = va.va_fsid; 2112 } 2113 vput(vp); 2114 } 2115 } else { 2116 kve->kve_type = KVME_TYPE_NONE; 2117 kve->kve_ref_count = 0; 2118 kve->kve_shadow_count = 0; 2119 } 2120 2121 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2122 if (freepath != NULL) 2123 free(freepath, M_TEMP); 2124 2125 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2126 vm_map_lock_read(map); 2127 if (error) 2128 break; 2129 if (last_timestamp != map->timestamp) { 2130 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2131 entry = tmp_entry; 2132 } 2133 } 2134 vm_map_unlock_read(map); 2135 vmspace_free(vm); 2136 PRELE(p); 2137 free(kve, M_TEMP); 2138 return (error); 2139 } 2140 #endif /* COMPAT_FREEBSD7 */ 2141 2142 #ifdef KINFO_VMENTRY_SIZE 2143 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2144 #endif 2145 2146 static void 2147 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2148 struct kinfo_vmentry *kve) 2149 { 2150 vm_object_t obj, tobj; 2151 vm_page_t m, m_adv; 2152 vm_offset_t addr; 2153 vm_paddr_t locked_pa; 2154 vm_pindex_t pi, pi_adv, pindex; 2155 2156 locked_pa = 0; 2157 obj = entry->object.vm_object; 2158 addr = entry->start; 2159 m_adv = NULL; 2160 pi = OFF_TO_IDX(entry->offset); 2161 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2162 if (m_adv != NULL) { 2163 m = m_adv; 2164 } else { 2165 pi_adv = OFF_TO_IDX(entry->end - addr); 2166 pindex = pi; 2167 for (tobj = obj;; tobj = tobj->backing_object) { 2168 m = vm_page_find_least(tobj, pindex); 2169 if (m != NULL) { 2170 if (m->pindex == pindex) 2171 break; 2172 if (pi_adv > m->pindex - pindex) { 2173 pi_adv = m->pindex - pindex; 2174 m_adv = m; 2175 } 2176 } 2177 if (tobj->backing_object == NULL) 2178 goto next; 2179 pindex += OFF_TO_IDX(tobj-> 2180 backing_object_offset); 2181 } 2182 } 2183 m_adv = NULL; 2184 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2185 (addr & (pagesizes[1] - 1)) == 0 && 2186 (pmap_mincore(map->pmap, addr, &locked_pa) & 2187 MINCORE_SUPER) != 0) { 2188 kve->kve_flags |= KVME_FLAG_SUPER; 2189 pi_adv = OFF_TO_IDX(pagesizes[1]); 2190 } else { 2191 /* 2192 * We do not test the found page on validity. 2193 * Either the page is busy and being paged in, 2194 * or it was invalidated. The first case 2195 * should be counted as resident, the second 2196 * is not so clear; we do account both. 2197 */ 2198 pi_adv = 1; 2199 } 2200 kve->kve_resident += pi_adv; 2201 next:; 2202 } 2203 PA_UNLOCK_COND(locked_pa); 2204 } 2205 2206 /* 2207 * Must be called with the process locked and will return unlocked. 2208 */ 2209 int 2210 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb) 2211 { 2212 vm_map_entry_t entry, tmp_entry; 2213 struct vattr va; 2214 vm_map_t map; 2215 vm_object_t obj, tobj, lobj; 2216 char *fullpath, *freepath; 2217 struct kinfo_vmentry *kve; 2218 struct ucred *cred; 2219 struct vnode *vp; 2220 struct vmspace *vm; 2221 vm_offset_t addr; 2222 unsigned int last_timestamp; 2223 int error; 2224 2225 PROC_LOCK_ASSERT(p, MA_OWNED); 2226 2227 _PHOLD(p); 2228 PROC_UNLOCK(p); 2229 vm = vmspace_acquire_ref(p); 2230 if (vm == NULL) { 2231 PRELE(p); 2232 return (ESRCH); 2233 } 2234 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2235 2236 error = 0; 2237 map = &vm->vm_map; 2238 vm_map_lock_read(map); 2239 for (entry = map->header.next; entry != &map->header; 2240 entry = entry->next) { 2241 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2242 continue; 2243 2244 addr = entry->end; 2245 bzero(kve, sizeof(*kve)); 2246 obj = entry->object.vm_object; 2247 if (obj != NULL) { 2248 for (tobj = obj; tobj != NULL; 2249 tobj = tobj->backing_object) { 2250 VM_OBJECT_RLOCK(tobj); 2251 lobj = tobj; 2252 } 2253 if (obj->backing_object == NULL) 2254 kve->kve_private_resident = 2255 obj->resident_page_count; 2256 if (!vmmap_skip_res_cnt) 2257 kern_proc_vmmap_resident(map, entry, kve); 2258 for (tobj = obj; tobj != NULL; 2259 tobj = tobj->backing_object) { 2260 if (tobj != obj && tobj != lobj) 2261 VM_OBJECT_RUNLOCK(tobj); 2262 } 2263 } else { 2264 lobj = NULL; 2265 } 2266 2267 kve->kve_start = entry->start; 2268 kve->kve_end = entry->end; 2269 kve->kve_offset = entry->offset; 2270 2271 if (entry->protection & VM_PROT_READ) 2272 kve->kve_protection |= KVME_PROT_READ; 2273 if (entry->protection & VM_PROT_WRITE) 2274 kve->kve_protection |= KVME_PROT_WRITE; 2275 if (entry->protection & VM_PROT_EXECUTE) 2276 kve->kve_protection |= KVME_PROT_EXEC; 2277 2278 if (entry->eflags & MAP_ENTRY_COW) 2279 kve->kve_flags |= KVME_FLAG_COW; 2280 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2281 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2282 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2283 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2284 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2285 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2286 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2287 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2288 2289 last_timestamp = map->timestamp; 2290 vm_map_unlock_read(map); 2291 2292 freepath = NULL; 2293 fullpath = ""; 2294 if (lobj != NULL) { 2295 vp = NULL; 2296 switch (lobj->type) { 2297 case OBJT_DEFAULT: 2298 kve->kve_type = KVME_TYPE_DEFAULT; 2299 break; 2300 case OBJT_VNODE: 2301 kve->kve_type = KVME_TYPE_VNODE; 2302 vp = lobj->handle; 2303 vref(vp); 2304 break; 2305 case OBJT_SWAP: 2306 kve->kve_type = KVME_TYPE_SWAP; 2307 break; 2308 case OBJT_DEVICE: 2309 kve->kve_type = KVME_TYPE_DEVICE; 2310 break; 2311 case OBJT_PHYS: 2312 kve->kve_type = KVME_TYPE_PHYS; 2313 break; 2314 case OBJT_DEAD: 2315 kve->kve_type = KVME_TYPE_DEAD; 2316 break; 2317 case OBJT_SG: 2318 kve->kve_type = KVME_TYPE_SG; 2319 break; 2320 case OBJT_MGTDEVICE: 2321 kve->kve_type = KVME_TYPE_MGTDEVICE; 2322 break; 2323 default: 2324 kve->kve_type = KVME_TYPE_UNKNOWN; 2325 break; 2326 } 2327 if (lobj != obj) 2328 VM_OBJECT_RUNLOCK(lobj); 2329 2330 kve->kve_ref_count = obj->ref_count; 2331 kve->kve_shadow_count = obj->shadow_count; 2332 VM_OBJECT_RUNLOCK(obj); 2333 if (vp != NULL) { 2334 vn_fullpath(curthread, vp, &fullpath, 2335 &freepath); 2336 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2337 cred = curthread->td_ucred; 2338 vn_lock(vp, LK_SHARED | LK_RETRY); 2339 if (VOP_GETATTR(vp, &va, cred) == 0) { 2340 kve->kve_vn_fileid = va.va_fileid; 2341 kve->kve_vn_fsid = va.va_fsid; 2342 kve->kve_vn_mode = 2343 MAKEIMODE(va.va_type, va.va_mode); 2344 kve->kve_vn_size = va.va_size; 2345 kve->kve_vn_rdev = va.va_rdev; 2346 kve->kve_status = KF_ATTR_VALID; 2347 } 2348 vput(vp); 2349 } 2350 } else { 2351 kve->kve_type = KVME_TYPE_NONE; 2352 kve->kve_ref_count = 0; 2353 kve->kve_shadow_count = 0; 2354 } 2355 2356 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2357 if (freepath != NULL) 2358 free(freepath, M_TEMP); 2359 2360 /* Pack record size down */ 2361 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2362 strlen(kve->kve_path) + 1; 2363 kve->kve_structsize = roundup(kve->kve_structsize, 2364 sizeof(uint64_t)); 2365 error = sbuf_bcat(sb, kve, kve->kve_structsize); 2366 vm_map_lock_read(map); 2367 if (error) 2368 break; 2369 if (last_timestamp != map->timestamp) { 2370 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2371 entry = tmp_entry; 2372 } 2373 } 2374 vm_map_unlock_read(map); 2375 vmspace_free(vm); 2376 PRELE(p); 2377 free(kve, M_TEMP); 2378 return (error); 2379 } 2380 2381 static int 2382 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2383 { 2384 struct proc *p; 2385 struct sbuf sb; 2386 int error, error2, *name; 2387 2388 name = (int *)arg1; 2389 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2390 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2391 if (error != 0) { 2392 sbuf_delete(&sb); 2393 return (error); 2394 } 2395 error = kern_proc_vmmap_out(p, &sb); 2396 error2 = sbuf_finish(&sb); 2397 sbuf_delete(&sb); 2398 return (error != 0 ? error : error2); 2399 } 2400 2401 #if defined(STACK) || defined(DDB) 2402 static int 2403 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2404 { 2405 struct kinfo_kstack *kkstp; 2406 int error, i, *name, numthreads; 2407 lwpid_t *lwpidarray; 2408 struct thread *td; 2409 struct stack *st; 2410 struct sbuf sb; 2411 struct proc *p; 2412 2413 name = (int *)arg1; 2414 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2415 if (error != 0) 2416 return (error); 2417 2418 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2419 st = stack_create(); 2420 2421 lwpidarray = NULL; 2422 numthreads = 0; 2423 PROC_LOCK(p); 2424 repeat: 2425 if (numthreads < p->p_numthreads) { 2426 if (lwpidarray != NULL) { 2427 free(lwpidarray, M_TEMP); 2428 lwpidarray = NULL; 2429 } 2430 numthreads = p->p_numthreads; 2431 PROC_UNLOCK(p); 2432 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2433 M_WAITOK | M_ZERO); 2434 PROC_LOCK(p); 2435 goto repeat; 2436 } 2437 i = 0; 2438 2439 /* 2440 * XXXRW: During the below loop, execve(2) and countless other sorts 2441 * of changes could have taken place. Should we check to see if the 2442 * vmspace has been replaced, or the like, in order to prevent 2443 * giving a snapshot that spans, say, execve(2), with some threads 2444 * before and some after? Among other things, the credentials could 2445 * have changed, in which case the right to extract debug info might 2446 * no longer be assured. 2447 */ 2448 FOREACH_THREAD_IN_PROC(p, td) { 2449 KASSERT(i < numthreads, 2450 ("sysctl_kern_proc_kstack: numthreads")); 2451 lwpidarray[i] = td->td_tid; 2452 i++; 2453 } 2454 numthreads = i; 2455 for (i = 0; i < numthreads; i++) { 2456 td = thread_find(p, lwpidarray[i]); 2457 if (td == NULL) { 2458 continue; 2459 } 2460 bzero(kkstp, sizeof(*kkstp)); 2461 (void)sbuf_new(&sb, kkstp->kkst_trace, 2462 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2463 thread_lock(td); 2464 kkstp->kkst_tid = td->td_tid; 2465 if (TD_IS_SWAPPED(td)) 2466 kkstp->kkst_state = KKST_STATE_SWAPPED; 2467 else if (TD_IS_RUNNING(td)) 2468 kkstp->kkst_state = KKST_STATE_RUNNING; 2469 else { 2470 kkstp->kkst_state = KKST_STATE_STACKOK; 2471 stack_save_td(st, td); 2472 } 2473 thread_unlock(td); 2474 PROC_UNLOCK(p); 2475 stack_sbuf_print(&sb, st); 2476 sbuf_finish(&sb); 2477 sbuf_delete(&sb); 2478 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2479 PROC_LOCK(p); 2480 if (error) 2481 break; 2482 } 2483 _PRELE(p); 2484 PROC_UNLOCK(p); 2485 if (lwpidarray != NULL) 2486 free(lwpidarray, M_TEMP); 2487 stack_destroy(st); 2488 free(kkstp, M_TEMP); 2489 return (error); 2490 } 2491 #endif 2492 2493 /* 2494 * This sysctl allows a process to retrieve the full list of groups from 2495 * itself or another process. 2496 */ 2497 static int 2498 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2499 { 2500 pid_t *pidp = (pid_t *)arg1; 2501 unsigned int arglen = arg2; 2502 struct proc *p; 2503 struct ucred *cred; 2504 int error; 2505 2506 if (arglen != 1) 2507 return (EINVAL); 2508 if (*pidp == -1) { /* -1 means this process */ 2509 p = req->td->td_proc; 2510 } else { 2511 error = pget(*pidp, PGET_CANSEE, &p); 2512 if (error != 0) 2513 return (error); 2514 } 2515 2516 cred = crhold(p->p_ucred); 2517 if (*pidp != -1) 2518 PROC_UNLOCK(p); 2519 2520 error = SYSCTL_OUT(req, cred->cr_groups, 2521 cred->cr_ngroups * sizeof(gid_t)); 2522 crfree(cred); 2523 return (error); 2524 } 2525 2526 /* 2527 * This sysctl allows a process to retrieve or/and set the resource limit for 2528 * another process. 2529 */ 2530 static int 2531 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2532 { 2533 int *name = (int *)arg1; 2534 u_int namelen = arg2; 2535 struct rlimit rlim; 2536 struct proc *p; 2537 u_int which; 2538 int flags, error; 2539 2540 if (namelen != 2) 2541 return (EINVAL); 2542 2543 which = (u_int)name[1]; 2544 if (which >= RLIM_NLIMITS) 2545 return (EINVAL); 2546 2547 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2548 return (EINVAL); 2549 2550 flags = PGET_HOLD | PGET_NOTWEXIT; 2551 if (req->newptr != NULL) 2552 flags |= PGET_CANDEBUG; 2553 else 2554 flags |= PGET_CANSEE; 2555 error = pget((pid_t)name[0], flags, &p); 2556 if (error != 0) 2557 return (error); 2558 2559 /* 2560 * Retrieve limit. 2561 */ 2562 if (req->oldptr != NULL) { 2563 PROC_LOCK(p); 2564 lim_rlimit(p, which, &rlim); 2565 PROC_UNLOCK(p); 2566 } 2567 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2568 if (error != 0) 2569 goto errout; 2570 2571 /* 2572 * Set limit. 2573 */ 2574 if (req->newptr != NULL) { 2575 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2576 if (error == 0) 2577 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2578 } 2579 2580 errout: 2581 PRELE(p); 2582 return (error); 2583 } 2584 2585 /* 2586 * This sysctl allows a process to retrieve ps_strings structure location of 2587 * another process. 2588 */ 2589 static int 2590 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2591 { 2592 int *name = (int *)arg1; 2593 u_int namelen = arg2; 2594 struct proc *p; 2595 vm_offset_t ps_strings; 2596 int error; 2597 #ifdef COMPAT_FREEBSD32 2598 uint32_t ps_strings32; 2599 #endif 2600 2601 if (namelen != 1) 2602 return (EINVAL); 2603 2604 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2605 if (error != 0) 2606 return (error); 2607 #ifdef COMPAT_FREEBSD32 2608 if ((req->flags & SCTL_MASK32) != 0) { 2609 /* 2610 * We return 0 if the 32 bit emulation request is for a 64 bit 2611 * process. 2612 */ 2613 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2614 PTROUT(p->p_sysent->sv_psstrings) : 0; 2615 PROC_UNLOCK(p); 2616 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2617 return (error); 2618 } 2619 #endif 2620 ps_strings = p->p_sysent->sv_psstrings; 2621 PROC_UNLOCK(p); 2622 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2623 return (error); 2624 } 2625 2626 /* 2627 * This sysctl allows a process to retrieve umask of another process. 2628 */ 2629 static int 2630 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2631 { 2632 int *name = (int *)arg1; 2633 u_int namelen = arg2; 2634 struct proc *p; 2635 int error; 2636 u_short fd_cmask; 2637 2638 if (namelen != 1) 2639 return (EINVAL); 2640 2641 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2642 if (error != 0) 2643 return (error); 2644 2645 FILEDESC_SLOCK(p->p_fd); 2646 fd_cmask = p->p_fd->fd_cmask; 2647 FILEDESC_SUNLOCK(p->p_fd); 2648 PRELE(p); 2649 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2650 return (error); 2651 } 2652 2653 /* 2654 * This sysctl allows a process to set and retrieve binary osreldate of 2655 * another process. 2656 */ 2657 static int 2658 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2659 { 2660 int *name = (int *)arg1; 2661 u_int namelen = arg2; 2662 struct proc *p; 2663 int flags, error, osrel; 2664 2665 if (namelen != 1) 2666 return (EINVAL); 2667 2668 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2669 return (EINVAL); 2670 2671 flags = PGET_HOLD | PGET_NOTWEXIT; 2672 if (req->newptr != NULL) 2673 flags |= PGET_CANDEBUG; 2674 else 2675 flags |= PGET_CANSEE; 2676 error = pget((pid_t)name[0], flags, &p); 2677 if (error != 0) 2678 return (error); 2679 2680 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2681 if (error != 0) 2682 goto errout; 2683 2684 if (req->newptr != NULL) { 2685 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2686 if (error != 0) 2687 goto errout; 2688 if (osrel < 0) { 2689 error = EINVAL; 2690 goto errout; 2691 } 2692 p->p_osrel = osrel; 2693 } 2694 errout: 2695 PRELE(p); 2696 return (error); 2697 } 2698 2699 static int 2700 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2701 { 2702 int *name = (int *)arg1; 2703 u_int namelen = arg2; 2704 struct proc *p; 2705 struct kinfo_sigtramp kst; 2706 const struct sysentvec *sv; 2707 int error; 2708 #ifdef COMPAT_FREEBSD32 2709 struct kinfo_sigtramp32 kst32; 2710 #endif 2711 2712 if (namelen != 1) 2713 return (EINVAL); 2714 2715 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2716 if (error != 0) 2717 return (error); 2718 sv = p->p_sysent; 2719 #ifdef COMPAT_FREEBSD32 2720 if ((req->flags & SCTL_MASK32) != 0) { 2721 bzero(&kst32, sizeof(kst32)); 2722 if (SV_PROC_FLAG(p, SV_ILP32)) { 2723 if (sv->sv_sigcode_base != 0) { 2724 kst32.ksigtramp_start = sv->sv_sigcode_base; 2725 kst32.ksigtramp_end = sv->sv_sigcode_base + 2726 *sv->sv_szsigcode; 2727 } else { 2728 kst32.ksigtramp_start = sv->sv_psstrings - 2729 *sv->sv_szsigcode; 2730 kst32.ksigtramp_end = sv->sv_psstrings; 2731 } 2732 } 2733 PROC_UNLOCK(p); 2734 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2735 return (error); 2736 } 2737 #endif 2738 bzero(&kst, sizeof(kst)); 2739 if (sv->sv_sigcode_base != 0) { 2740 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2741 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2742 *sv->sv_szsigcode; 2743 } else { 2744 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2745 *sv->sv_szsigcode; 2746 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2747 } 2748 PROC_UNLOCK(p); 2749 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2750 return (error); 2751 } 2752 2753 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2754 2755 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2756 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2757 "Return entire process table"); 2758 2759 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2760 sysctl_kern_proc, "Process table"); 2761 2762 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2763 sysctl_kern_proc, "Process table"); 2764 2765 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2766 sysctl_kern_proc, "Process table"); 2767 2768 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2769 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2770 2771 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2772 sysctl_kern_proc, "Process table"); 2773 2774 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2775 sysctl_kern_proc, "Process table"); 2776 2777 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2778 sysctl_kern_proc, "Process table"); 2779 2780 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2781 sysctl_kern_proc, "Process table"); 2782 2783 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2784 sysctl_kern_proc, "Return process table, no threads"); 2785 2786 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2787 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2788 sysctl_kern_proc_args, "Process argument list"); 2789 2790 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2791 sysctl_kern_proc_env, "Process environment"); 2792 2793 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2794 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2795 2796 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2797 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2798 2799 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2800 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2801 "Process syscall vector name (ABI type)"); 2802 2803 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2804 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2805 2806 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2807 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2808 2809 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2810 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2811 2812 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2813 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2814 2815 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2816 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2817 2818 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2819 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2820 2821 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2822 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2823 2824 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2825 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2826 2827 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2828 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2829 "Return process table, no threads"); 2830 2831 #ifdef COMPAT_FREEBSD7 2832 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2833 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2834 #endif 2835 2836 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2837 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2838 2839 #if defined(STACK) || defined(DDB) 2840 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2841 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2842 #endif 2843 2844 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2845 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2846 2847 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2848 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2849 "Process resource limits"); 2850 2851 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2852 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2853 "Process ps_strings location"); 2854 2855 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2856 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2857 2858 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2859 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2860 "Process binary osreldate"); 2861 2862 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2863 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2864 "Process signal trampoline location"); 2865