1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/exec.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/loginclass.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/filedesc.h> 68 #include <sys/tty.h> 69 #include <sys/signalvar.h> 70 #include <sys/sdt.h> 71 #include <sys/sx.h> 72 #include <sys/user.h> 73 #include <sys/vnode.h> 74 #include <sys/wait.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 96 "int"); 97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 100 "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 104 105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 106 MALLOC_DEFINE(M_SESSION, "session", "session header"); 107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 109 110 static void doenterpgrp(struct proc *, struct pgrp *); 111 static void orphanpg(struct pgrp *pg); 112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 115 int preferthread); 116 static void pgadjustjobc(struct pgrp *pgrp, int entering); 117 static void pgdelete(struct pgrp *); 118 static int proc_ctor(void *mem, int size, void *arg, int flags); 119 static void proc_dtor(void *mem, int size, void *arg); 120 static int proc_init(void *mem, int size, int flags); 121 static void proc_fini(void *mem, int size); 122 static void pargs_free(struct pargs *pa); 123 static struct proc *zpfind_locked(pid_t pid); 124 125 /* 126 * Other process lists 127 */ 128 struct pidhashhead *pidhashtbl; 129 u_long pidhash; 130 struct pgrphashhead *pgrphashtbl; 131 u_long pgrphash; 132 struct proclist allproc; 133 struct proclist zombproc; 134 struct sx allproc_lock; 135 struct sx proctree_lock; 136 struct mtx ppeers_lock; 137 uma_zone_t proc_zone; 138 139 /* 140 * The offset of various fields in struct proc and struct thread. 141 * These are used by kernel debuggers to enumerate kernel threads and 142 * processes. 143 */ 144 const int proc_off_p_pid = offsetof(struct proc, p_pid); 145 const int proc_off_p_comm = offsetof(struct proc, p_comm); 146 const int proc_off_p_list = offsetof(struct proc, p_list); 147 const int proc_off_p_threads = offsetof(struct proc, p_threads); 148 const int thread_off_td_tid = offsetof(struct thread, td_tid); 149 const int thread_off_td_name = offsetof(struct thread, td_name); 150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 152 const int thread_off_td_plist = offsetof(struct thread, td_plist); 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 static int vmmap_skip_res_cnt = 0; 158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 159 &vmmap_skip_res_cnt, 0, 160 "Skip calculation of the pages resident count in kern.proc.vmmap"); 161 162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 163 #ifdef COMPAT_FREEBSD32 164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 165 #endif 166 167 /* 168 * Initialize global process hashing structures. 169 */ 170 void 171 procinit() 172 { 173 174 sx_init(&allproc_lock, "allproc"); 175 sx_init(&proctree_lock, "proctree"); 176 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 177 LIST_INIT(&allproc); 178 LIST_INIT(&zombproc); 179 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 180 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 181 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 182 proc_ctor, proc_dtor, proc_init, proc_fini, 183 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 184 uihashinit(); 185 } 186 187 /* 188 * Prepare a proc for use. 189 */ 190 static int 191 proc_ctor(void *mem, int size, void *arg, int flags) 192 { 193 struct proc *p; 194 195 p = (struct proc *)mem; 196 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 197 EVENTHANDLER_INVOKE(process_ctor, p); 198 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 199 return (0); 200 } 201 202 /* 203 * Reclaim a proc after use. 204 */ 205 static void 206 proc_dtor(void *mem, int size, void *arg) 207 { 208 struct proc *p; 209 struct thread *td; 210 211 /* INVARIANTS checks go here */ 212 p = (struct proc *)mem; 213 td = FIRST_THREAD_IN_PROC(p); 214 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 215 if (td != NULL) { 216 #ifdef INVARIANTS 217 KASSERT((p->p_numthreads == 1), 218 ("bad number of threads in exiting process")); 219 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 220 #endif 221 /* Free all OSD associated to this thread. */ 222 osd_thread_exit(td); 223 } 224 EVENTHANDLER_INVOKE(process_dtor, p); 225 if (p->p_ksi != NULL) 226 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 227 SDT_PROBE3(proc, , dtor, return, p, size, arg); 228 } 229 230 /* 231 * Initialize type-stable parts of a proc (when newly created). 232 */ 233 static int 234 proc_init(void *mem, int size, int flags) 235 { 236 struct proc *p; 237 238 p = (struct proc *)mem; 239 SDT_PROBE3(proc, , init, entry, p, size, flags); 240 p->p_sched = (struct p_sched *)&p[1]; 241 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 242 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 243 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 244 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 245 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 246 cv_init(&p->p_pwait, "ppwait"); 247 cv_init(&p->p_dbgwait, "dbgwait"); 248 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 249 EVENTHANDLER_INVOKE(process_init, p); 250 p->p_stats = pstats_alloc(); 251 p->p_pgrp = NULL; 252 SDT_PROBE3(proc, , init, return, p, size, flags); 253 return (0); 254 } 255 256 /* 257 * UMA should ensure that this function is never called. 258 * Freeing a proc structure would violate type stability. 259 */ 260 static void 261 proc_fini(void *mem, int size) 262 { 263 #ifdef notnow 264 struct proc *p; 265 266 p = (struct proc *)mem; 267 EVENTHANDLER_INVOKE(process_fini, p); 268 pstats_free(p->p_stats); 269 thread_free(FIRST_THREAD_IN_PROC(p)); 270 mtx_destroy(&p->p_mtx); 271 if (p->p_ksi != NULL) 272 ksiginfo_free(p->p_ksi); 273 #else 274 panic("proc reclaimed"); 275 #endif 276 } 277 278 /* 279 * Is p an inferior of the current process? 280 */ 281 int 282 inferior(struct proc *p) 283 { 284 285 sx_assert(&proctree_lock, SX_LOCKED); 286 PROC_LOCK_ASSERT(p, MA_OWNED); 287 for (; p != curproc; p = proc_realparent(p)) { 288 if (p->p_pid == 0) 289 return (0); 290 } 291 return (1); 292 } 293 294 struct proc * 295 pfind_locked(pid_t pid) 296 { 297 struct proc *p; 298 299 sx_assert(&allproc_lock, SX_LOCKED); 300 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 301 if (p->p_pid == pid) { 302 PROC_LOCK(p); 303 if (p->p_state == PRS_NEW) { 304 PROC_UNLOCK(p); 305 p = NULL; 306 } 307 break; 308 } 309 } 310 return (p); 311 } 312 313 /* 314 * Locate a process by number; return only "live" processes -- i.e., neither 315 * zombies nor newly born but incompletely initialized processes. By not 316 * returning processes in the PRS_NEW state, we allow callers to avoid 317 * testing for that condition to avoid dereferencing p_ucred, et al. 318 */ 319 struct proc * 320 pfind(pid_t pid) 321 { 322 struct proc *p; 323 324 sx_slock(&allproc_lock); 325 p = pfind_locked(pid); 326 sx_sunlock(&allproc_lock); 327 return (p); 328 } 329 330 static struct proc * 331 pfind_tid_locked(pid_t tid) 332 { 333 struct proc *p; 334 struct thread *td; 335 336 sx_assert(&allproc_lock, SX_LOCKED); 337 FOREACH_PROC_IN_SYSTEM(p) { 338 PROC_LOCK(p); 339 if (p->p_state == PRS_NEW) { 340 PROC_UNLOCK(p); 341 continue; 342 } 343 FOREACH_THREAD_IN_PROC(p, td) { 344 if (td->td_tid == tid) 345 goto found; 346 } 347 PROC_UNLOCK(p); 348 } 349 found: 350 return (p); 351 } 352 353 /* 354 * Locate a process group by number. 355 * The caller must hold proctree_lock. 356 */ 357 struct pgrp * 358 pgfind(pgid) 359 register pid_t pgid; 360 { 361 register struct pgrp *pgrp; 362 363 sx_assert(&proctree_lock, SX_LOCKED); 364 365 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 366 if (pgrp->pg_id == pgid) { 367 PGRP_LOCK(pgrp); 368 return (pgrp); 369 } 370 } 371 return (NULL); 372 } 373 374 /* 375 * Locate process and do additional manipulations, depending on flags. 376 */ 377 int 378 pget(pid_t pid, int flags, struct proc **pp) 379 { 380 struct proc *p; 381 int error; 382 383 sx_slock(&allproc_lock); 384 if (pid <= PID_MAX) { 385 p = pfind_locked(pid); 386 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 387 p = zpfind_locked(pid); 388 } else if ((flags & PGET_NOTID) == 0) { 389 p = pfind_tid_locked(pid); 390 } else { 391 p = NULL; 392 } 393 sx_sunlock(&allproc_lock); 394 if (p == NULL) 395 return (ESRCH); 396 if ((flags & PGET_CANSEE) != 0) { 397 error = p_cansee(curthread, p); 398 if (error != 0) 399 goto errout; 400 } 401 if ((flags & PGET_CANDEBUG) != 0) { 402 error = p_candebug(curthread, p); 403 if (error != 0) 404 goto errout; 405 } 406 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 407 error = EPERM; 408 goto errout; 409 } 410 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 411 error = ESRCH; 412 goto errout; 413 } 414 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 415 /* 416 * XXXRW: Not clear ESRCH is the right error during proc 417 * execve(). 418 */ 419 error = ESRCH; 420 goto errout; 421 } 422 if ((flags & PGET_HOLD) != 0) { 423 _PHOLD(p); 424 PROC_UNLOCK(p); 425 } 426 *pp = p; 427 return (0); 428 errout: 429 PROC_UNLOCK(p); 430 return (error); 431 } 432 433 /* 434 * Create a new process group. 435 * pgid must be equal to the pid of p. 436 * Begin a new session if required. 437 */ 438 int 439 enterpgrp(p, pgid, pgrp, sess) 440 register struct proc *p; 441 pid_t pgid; 442 struct pgrp *pgrp; 443 struct session *sess; 444 { 445 446 sx_assert(&proctree_lock, SX_XLOCKED); 447 448 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 449 KASSERT(p->p_pid == pgid, 450 ("enterpgrp: new pgrp and pid != pgid")); 451 KASSERT(pgfind(pgid) == NULL, 452 ("enterpgrp: pgrp with pgid exists")); 453 KASSERT(!SESS_LEADER(p), 454 ("enterpgrp: session leader attempted setpgrp")); 455 456 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 457 458 if (sess != NULL) { 459 /* 460 * new session 461 */ 462 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 463 PROC_LOCK(p); 464 p->p_flag &= ~P_CONTROLT; 465 PROC_UNLOCK(p); 466 PGRP_LOCK(pgrp); 467 sess->s_leader = p; 468 sess->s_sid = p->p_pid; 469 refcount_init(&sess->s_count, 1); 470 sess->s_ttyvp = NULL; 471 sess->s_ttydp = NULL; 472 sess->s_ttyp = NULL; 473 bcopy(p->p_session->s_login, sess->s_login, 474 sizeof(sess->s_login)); 475 pgrp->pg_session = sess; 476 KASSERT(p == curproc, 477 ("enterpgrp: mksession and p != curproc")); 478 } else { 479 pgrp->pg_session = p->p_session; 480 sess_hold(pgrp->pg_session); 481 PGRP_LOCK(pgrp); 482 } 483 pgrp->pg_id = pgid; 484 LIST_INIT(&pgrp->pg_members); 485 486 /* 487 * As we have an exclusive lock of proctree_lock, 488 * this should not deadlock. 489 */ 490 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 491 pgrp->pg_jobc = 0; 492 SLIST_INIT(&pgrp->pg_sigiolst); 493 PGRP_UNLOCK(pgrp); 494 495 doenterpgrp(p, pgrp); 496 497 return (0); 498 } 499 500 /* 501 * Move p to an existing process group 502 */ 503 int 504 enterthispgrp(p, pgrp) 505 register struct proc *p; 506 struct pgrp *pgrp; 507 { 508 509 sx_assert(&proctree_lock, SX_XLOCKED); 510 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 511 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 512 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 513 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 514 KASSERT(pgrp->pg_session == p->p_session, 515 ("%s: pgrp's session %p, p->p_session %p.\n", 516 __func__, 517 pgrp->pg_session, 518 p->p_session)); 519 KASSERT(pgrp != p->p_pgrp, 520 ("%s: p belongs to pgrp.", __func__)); 521 522 doenterpgrp(p, pgrp); 523 524 return (0); 525 } 526 527 /* 528 * Move p to a process group 529 */ 530 static void 531 doenterpgrp(p, pgrp) 532 struct proc *p; 533 struct pgrp *pgrp; 534 { 535 struct pgrp *savepgrp; 536 537 sx_assert(&proctree_lock, SX_XLOCKED); 538 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 539 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 540 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 541 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 542 543 savepgrp = p->p_pgrp; 544 545 /* 546 * Adjust eligibility of affected pgrps to participate in job control. 547 * Increment eligibility counts before decrementing, otherwise we 548 * could reach 0 spuriously during the first call. 549 */ 550 fixjobc(p, pgrp, 1); 551 fixjobc(p, p->p_pgrp, 0); 552 553 PGRP_LOCK(pgrp); 554 PGRP_LOCK(savepgrp); 555 PROC_LOCK(p); 556 LIST_REMOVE(p, p_pglist); 557 p->p_pgrp = pgrp; 558 PROC_UNLOCK(p); 559 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 560 PGRP_UNLOCK(savepgrp); 561 PGRP_UNLOCK(pgrp); 562 if (LIST_EMPTY(&savepgrp->pg_members)) 563 pgdelete(savepgrp); 564 } 565 566 /* 567 * remove process from process group 568 */ 569 int 570 leavepgrp(p) 571 register struct proc *p; 572 { 573 struct pgrp *savepgrp; 574 575 sx_assert(&proctree_lock, SX_XLOCKED); 576 savepgrp = p->p_pgrp; 577 PGRP_LOCK(savepgrp); 578 PROC_LOCK(p); 579 LIST_REMOVE(p, p_pglist); 580 p->p_pgrp = NULL; 581 PROC_UNLOCK(p); 582 PGRP_UNLOCK(savepgrp); 583 if (LIST_EMPTY(&savepgrp->pg_members)) 584 pgdelete(savepgrp); 585 return (0); 586 } 587 588 /* 589 * delete a process group 590 */ 591 static void 592 pgdelete(pgrp) 593 register struct pgrp *pgrp; 594 { 595 struct session *savesess; 596 struct tty *tp; 597 598 sx_assert(&proctree_lock, SX_XLOCKED); 599 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 600 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 601 602 /* 603 * Reset any sigio structures pointing to us as a result of 604 * F_SETOWN with our pgid. 605 */ 606 funsetownlst(&pgrp->pg_sigiolst); 607 608 PGRP_LOCK(pgrp); 609 tp = pgrp->pg_session->s_ttyp; 610 LIST_REMOVE(pgrp, pg_hash); 611 savesess = pgrp->pg_session; 612 PGRP_UNLOCK(pgrp); 613 614 /* Remove the reference to the pgrp before deallocating it. */ 615 if (tp != NULL) { 616 tty_lock(tp); 617 tty_rel_pgrp(tp, pgrp); 618 } 619 620 mtx_destroy(&pgrp->pg_mtx); 621 free(pgrp, M_PGRP); 622 sess_release(savesess); 623 } 624 625 static void 626 pgadjustjobc(pgrp, entering) 627 struct pgrp *pgrp; 628 int entering; 629 { 630 631 PGRP_LOCK(pgrp); 632 if (entering) 633 pgrp->pg_jobc++; 634 else { 635 --pgrp->pg_jobc; 636 if (pgrp->pg_jobc == 0) 637 orphanpg(pgrp); 638 } 639 PGRP_UNLOCK(pgrp); 640 } 641 642 /* 643 * Adjust pgrp jobc counters when specified process changes process group. 644 * We count the number of processes in each process group that "qualify" 645 * the group for terminal job control (those with a parent in a different 646 * process group of the same session). If that count reaches zero, the 647 * process group becomes orphaned. Check both the specified process' 648 * process group and that of its children. 649 * entering == 0 => p is leaving specified group. 650 * entering == 1 => p is entering specified group. 651 */ 652 void 653 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 654 { 655 struct pgrp *hispgrp; 656 struct session *mysession; 657 struct proc *q; 658 659 sx_assert(&proctree_lock, SX_LOCKED); 660 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 661 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 662 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 663 664 /* 665 * Check p's parent to see whether p qualifies its own process 666 * group; if so, adjust count for p's process group. 667 */ 668 mysession = pgrp->pg_session; 669 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 670 hispgrp->pg_session == mysession) 671 pgadjustjobc(pgrp, entering); 672 673 /* 674 * Check this process' children to see whether they qualify 675 * their process groups; if so, adjust counts for children's 676 * process groups. 677 */ 678 LIST_FOREACH(q, &p->p_children, p_sibling) { 679 hispgrp = q->p_pgrp; 680 if (hispgrp == pgrp || 681 hispgrp->pg_session != mysession) 682 continue; 683 if (q->p_state == PRS_ZOMBIE) 684 continue; 685 pgadjustjobc(hispgrp, entering); 686 } 687 } 688 689 void 690 killjobc(void) 691 { 692 struct session *sp; 693 struct tty *tp; 694 struct proc *p; 695 struct vnode *ttyvp; 696 697 p = curproc; 698 MPASS(p->p_flag & P_WEXIT); 699 /* 700 * Do a quick check to see if there is anything to do with the 701 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 702 */ 703 PROC_LOCK(p); 704 if (!SESS_LEADER(p) && 705 (p->p_pgrp == p->p_pptr->p_pgrp) && 706 LIST_EMPTY(&p->p_children)) { 707 PROC_UNLOCK(p); 708 return; 709 } 710 PROC_UNLOCK(p); 711 712 sx_xlock(&proctree_lock); 713 if (SESS_LEADER(p)) { 714 sp = p->p_session; 715 716 /* 717 * s_ttyp is not zero'd; we use this to indicate that 718 * the session once had a controlling terminal. (for 719 * logging and informational purposes) 720 */ 721 SESS_LOCK(sp); 722 ttyvp = sp->s_ttyvp; 723 tp = sp->s_ttyp; 724 sp->s_ttyvp = NULL; 725 sp->s_ttydp = NULL; 726 sp->s_leader = NULL; 727 SESS_UNLOCK(sp); 728 729 /* 730 * Signal foreground pgrp and revoke access to 731 * controlling terminal if it has not been revoked 732 * already. 733 * 734 * Because the TTY may have been revoked in the mean 735 * time and could already have a new session associated 736 * with it, make sure we don't send a SIGHUP to a 737 * foreground process group that does not belong to this 738 * session. 739 */ 740 741 if (tp != NULL) { 742 tty_lock(tp); 743 if (tp->t_session == sp) 744 tty_signal_pgrp(tp, SIGHUP); 745 tty_unlock(tp); 746 } 747 748 if (ttyvp != NULL) { 749 sx_xunlock(&proctree_lock); 750 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 751 VOP_REVOKE(ttyvp, REVOKEALL); 752 VOP_UNLOCK(ttyvp, 0); 753 } 754 vrele(ttyvp); 755 sx_xlock(&proctree_lock); 756 } 757 } 758 fixjobc(p, p->p_pgrp, 0); 759 sx_xunlock(&proctree_lock); 760 } 761 762 /* 763 * A process group has become orphaned; 764 * if there are any stopped processes in the group, 765 * hang-up all process in that group. 766 */ 767 static void 768 orphanpg(pg) 769 struct pgrp *pg; 770 { 771 register struct proc *p; 772 773 PGRP_LOCK_ASSERT(pg, MA_OWNED); 774 775 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 776 PROC_LOCK(p); 777 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 778 PROC_UNLOCK(p); 779 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 780 PROC_LOCK(p); 781 kern_psignal(p, SIGHUP); 782 kern_psignal(p, SIGCONT); 783 PROC_UNLOCK(p); 784 } 785 return; 786 } 787 PROC_UNLOCK(p); 788 } 789 } 790 791 void 792 sess_hold(struct session *s) 793 { 794 795 refcount_acquire(&s->s_count); 796 } 797 798 void 799 sess_release(struct session *s) 800 { 801 802 if (refcount_release(&s->s_count)) { 803 if (s->s_ttyp != NULL) { 804 tty_lock(s->s_ttyp); 805 tty_rel_sess(s->s_ttyp, s); 806 } 807 mtx_destroy(&s->s_mtx); 808 free(s, M_SESSION); 809 } 810 } 811 812 #ifdef DDB 813 814 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 815 { 816 register struct pgrp *pgrp; 817 register struct proc *p; 818 register int i; 819 820 for (i = 0; i <= pgrphash; i++) { 821 if (!LIST_EMPTY(&pgrphashtbl[i])) { 822 printf("\tindx %d\n", i); 823 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 824 printf( 825 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 826 (void *)pgrp, (long)pgrp->pg_id, 827 (void *)pgrp->pg_session, 828 pgrp->pg_session->s_count, 829 (void *)LIST_FIRST(&pgrp->pg_members)); 830 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 831 printf("\t\tpid %ld addr %p pgrp %p\n", 832 (long)p->p_pid, (void *)p, 833 (void *)p->p_pgrp); 834 } 835 } 836 } 837 } 838 } 839 #endif /* DDB */ 840 841 /* 842 * Calculate the kinfo_proc members which contain process-wide 843 * informations. 844 * Must be called with the target process locked. 845 */ 846 static void 847 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 848 { 849 struct thread *td; 850 851 PROC_LOCK_ASSERT(p, MA_OWNED); 852 853 kp->ki_estcpu = 0; 854 kp->ki_pctcpu = 0; 855 FOREACH_THREAD_IN_PROC(p, td) { 856 thread_lock(td); 857 kp->ki_pctcpu += sched_pctcpu(td); 858 kp->ki_estcpu += sched_estcpu(td); 859 thread_unlock(td); 860 } 861 } 862 863 /* 864 * Clear kinfo_proc and fill in any information that is common 865 * to all threads in the process. 866 * Must be called with the target process locked. 867 */ 868 static void 869 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 870 { 871 struct thread *td0; 872 struct tty *tp; 873 struct session *sp; 874 struct ucred *cred; 875 struct sigacts *ps; 876 877 /* For proc_realparent. */ 878 sx_assert(&proctree_lock, SX_LOCKED); 879 PROC_LOCK_ASSERT(p, MA_OWNED); 880 bzero(kp, sizeof(*kp)); 881 882 kp->ki_structsize = sizeof(*kp); 883 kp->ki_paddr = p; 884 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 885 kp->ki_args = p->p_args; 886 kp->ki_textvp = p->p_textvp; 887 #ifdef KTRACE 888 kp->ki_tracep = p->p_tracevp; 889 kp->ki_traceflag = p->p_traceflag; 890 #endif 891 kp->ki_fd = p->p_fd; 892 kp->ki_vmspace = p->p_vmspace; 893 kp->ki_flag = p->p_flag; 894 kp->ki_flag2 = p->p_flag2; 895 cred = p->p_ucred; 896 if (cred) { 897 kp->ki_uid = cred->cr_uid; 898 kp->ki_ruid = cred->cr_ruid; 899 kp->ki_svuid = cred->cr_svuid; 900 kp->ki_cr_flags = 0; 901 if (cred->cr_flags & CRED_FLAG_CAPMODE) 902 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 903 /* XXX bde doesn't like KI_NGROUPS */ 904 if (cred->cr_ngroups > KI_NGROUPS) { 905 kp->ki_ngroups = KI_NGROUPS; 906 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 907 } else 908 kp->ki_ngroups = cred->cr_ngroups; 909 bcopy(cred->cr_groups, kp->ki_groups, 910 kp->ki_ngroups * sizeof(gid_t)); 911 kp->ki_rgid = cred->cr_rgid; 912 kp->ki_svgid = cred->cr_svgid; 913 /* If jailed(cred), emulate the old P_JAILED flag. */ 914 if (jailed(cred)) { 915 kp->ki_flag |= P_JAILED; 916 /* If inside the jail, use 0 as a jail ID. */ 917 if (cred->cr_prison != curthread->td_ucred->cr_prison) 918 kp->ki_jid = cred->cr_prison->pr_id; 919 } 920 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 921 sizeof(kp->ki_loginclass)); 922 } 923 ps = p->p_sigacts; 924 if (ps) { 925 mtx_lock(&ps->ps_mtx); 926 kp->ki_sigignore = ps->ps_sigignore; 927 kp->ki_sigcatch = ps->ps_sigcatch; 928 mtx_unlock(&ps->ps_mtx); 929 } 930 if (p->p_state != PRS_NEW && 931 p->p_state != PRS_ZOMBIE && 932 p->p_vmspace != NULL) { 933 struct vmspace *vm = p->p_vmspace; 934 935 kp->ki_size = vm->vm_map.size; 936 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 937 FOREACH_THREAD_IN_PROC(p, td0) { 938 if (!TD_IS_SWAPPED(td0)) 939 kp->ki_rssize += td0->td_kstack_pages; 940 } 941 kp->ki_swrss = vm->vm_swrss; 942 kp->ki_tsize = vm->vm_tsize; 943 kp->ki_dsize = vm->vm_dsize; 944 kp->ki_ssize = vm->vm_ssize; 945 } else if (p->p_state == PRS_ZOMBIE) 946 kp->ki_stat = SZOMB; 947 if (kp->ki_flag & P_INMEM) 948 kp->ki_sflag = PS_INMEM; 949 else 950 kp->ki_sflag = 0; 951 /* Calculate legacy swtime as seconds since 'swtick'. */ 952 kp->ki_swtime = (ticks - p->p_swtick) / hz; 953 kp->ki_pid = p->p_pid; 954 kp->ki_nice = p->p_nice; 955 kp->ki_fibnum = p->p_fibnum; 956 kp->ki_start = p->p_stats->p_start; 957 timevaladd(&kp->ki_start, &boottime); 958 PROC_STATLOCK(p); 959 rufetch(p, &kp->ki_rusage); 960 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 961 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 962 PROC_STATUNLOCK(p); 963 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 964 /* Some callers want child times in a single value. */ 965 kp->ki_childtime = kp->ki_childstime; 966 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 967 968 FOREACH_THREAD_IN_PROC(p, td0) 969 kp->ki_cow += td0->td_cow; 970 971 tp = NULL; 972 if (p->p_pgrp) { 973 kp->ki_pgid = p->p_pgrp->pg_id; 974 kp->ki_jobc = p->p_pgrp->pg_jobc; 975 sp = p->p_pgrp->pg_session; 976 977 if (sp != NULL) { 978 kp->ki_sid = sp->s_sid; 979 SESS_LOCK(sp); 980 strlcpy(kp->ki_login, sp->s_login, 981 sizeof(kp->ki_login)); 982 if (sp->s_ttyvp) 983 kp->ki_kiflag |= KI_CTTY; 984 if (SESS_LEADER(p)) 985 kp->ki_kiflag |= KI_SLEADER; 986 /* XXX proctree_lock */ 987 tp = sp->s_ttyp; 988 SESS_UNLOCK(sp); 989 } 990 } 991 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 992 kp->ki_tdev = tty_udev(tp); 993 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 994 if (tp->t_session) 995 kp->ki_tsid = tp->t_session->s_sid; 996 } else 997 kp->ki_tdev = NODEV; 998 if (p->p_comm[0] != '\0') 999 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1000 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1001 p->p_sysent->sv_name[0] != '\0') 1002 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1003 kp->ki_siglist = p->p_siglist; 1004 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1005 kp->ki_acflag = p->p_acflag; 1006 kp->ki_lock = p->p_lock; 1007 if (p->p_pptr) { 1008 kp->ki_ppid = proc_realparent(p)->p_pid; 1009 if (p->p_flag & P_TRACED) 1010 kp->ki_tracer = p->p_pptr->p_pid; 1011 } 1012 } 1013 1014 /* 1015 * Fill in information that is thread specific. Must be called with 1016 * target process locked. If 'preferthread' is set, overwrite certain 1017 * process-related fields that are maintained for both threads and 1018 * processes. 1019 */ 1020 static void 1021 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1022 { 1023 struct proc *p; 1024 1025 p = td->td_proc; 1026 kp->ki_tdaddr = td; 1027 PROC_LOCK_ASSERT(p, MA_OWNED); 1028 1029 if (preferthread) 1030 PROC_STATLOCK(p); 1031 thread_lock(td); 1032 if (td->td_wmesg != NULL) 1033 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1034 else 1035 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1036 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 1037 if (TD_ON_LOCK(td)) { 1038 kp->ki_kiflag |= KI_LOCKBLOCK; 1039 strlcpy(kp->ki_lockname, td->td_lockname, 1040 sizeof(kp->ki_lockname)); 1041 } else { 1042 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1043 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1044 } 1045 1046 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1047 if (TD_ON_RUNQ(td) || 1048 TD_CAN_RUN(td) || 1049 TD_IS_RUNNING(td)) { 1050 kp->ki_stat = SRUN; 1051 } else if (P_SHOULDSTOP(p)) { 1052 kp->ki_stat = SSTOP; 1053 } else if (TD_IS_SLEEPING(td)) { 1054 kp->ki_stat = SSLEEP; 1055 } else if (TD_ON_LOCK(td)) { 1056 kp->ki_stat = SLOCK; 1057 } else { 1058 kp->ki_stat = SWAIT; 1059 } 1060 } else if (p->p_state == PRS_ZOMBIE) { 1061 kp->ki_stat = SZOMB; 1062 } else { 1063 kp->ki_stat = SIDL; 1064 } 1065 1066 /* Things in the thread */ 1067 kp->ki_wchan = td->td_wchan; 1068 kp->ki_pri.pri_level = td->td_priority; 1069 kp->ki_pri.pri_native = td->td_base_pri; 1070 1071 /* 1072 * Note: legacy fields; clamp at the old NOCPU value and/or 1073 * the maximum u_char CPU value. 1074 */ 1075 if (td->td_lastcpu == NOCPU) 1076 kp->ki_lastcpu_old = NOCPU_OLD; 1077 else if (td->td_lastcpu > MAXCPU_OLD) 1078 kp->ki_lastcpu_old = MAXCPU_OLD; 1079 else 1080 kp->ki_lastcpu_old = td->td_lastcpu; 1081 1082 if (td->td_oncpu == NOCPU) 1083 kp->ki_oncpu_old = NOCPU_OLD; 1084 else if (td->td_oncpu > MAXCPU_OLD) 1085 kp->ki_oncpu_old = MAXCPU_OLD; 1086 else 1087 kp->ki_oncpu_old = td->td_oncpu; 1088 1089 kp->ki_lastcpu = td->td_lastcpu; 1090 kp->ki_oncpu = td->td_oncpu; 1091 kp->ki_tdflags = td->td_flags; 1092 kp->ki_tid = td->td_tid; 1093 kp->ki_numthreads = p->p_numthreads; 1094 kp->ki_pcb = td->td_pcb; 1095 kp->ki_kstack = (void *)td->td_kstack; 1096 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1097 kp->ki_pri.pri_class = td->td_pri_class; 1098 kp->ki_pri.pri_user = td->td_user_pri; 1099 1100 if (preferthread) { 1101 rufetchtd(td, &kp->ki_rusage); 1102 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1103 kp->ki_pctcpu = sched_pctcpu(td); 1104 kp->ki_estcpu = sched_estcpu(td); 1105 kp->ki_cow = td->td_cow; 1106 } 1107 1108 /* We can't get this anymore but ps etc never used it anyway. */ 1109 kp->ki_rqindex = 0; 1110 1111 if (preferthread) 1112 kp->ki_siglist = td->td_siglist; 1113 kp->ki_sigmask = td->td_sigmask; 1114 thread_unlock(td); 1115 if (preferthread) 1116 PROC_STATUNLOCK(p); 1117 } 1118 1119 /* 1120 * Fill in a kinfo_proc structure for the specified process. 1121 * Must be called with the target process locked. 1122 */ 1123 void 1124 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1125 { 1126 1127 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1128 1129 fill_kinfo_proc_only(p, kp); 1130 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1131 fill_kinfo_aggregate(p, kp); 1132 } 1133 1134 struct pstats * 1135 pstats_alloc(void) 1136 { 1137 1138 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1139 } 1140 1141 /* 1142 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1143 */ 1144 void 1145 pstats_fork(struct pstats *src, struct pstats *dst) 1146 { 1147 1148 bzero(&dst->pstat_startzero, 1149 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1150 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1151 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1152 } 1153 1154 void 1155 pstats_free(struct pstats *ps) 1156 { 1157 1158 free(ps, M_SUBPROC); 1159 } 1160 1161 static struct proc * 1162 zpfind_locked(pid_t pid) 1163 { 1164 struct proc *p; 1165 1166 sx_assert(&allproc_lock, SX_LOCKED); 1167 LIST_FOREACH(p, &zombproc, p_list) { 1168 if (p->p_pid == pid) { 1169 PROC_LOCK(p); 1170 break; 1171 } 1172 } 1173 return (p); 1174 } 1175 1176 /* 1177 * Locate a zombie process by number 1178 */ 1179 struct proc * 1180 zpfind(pid_t pid) 1181 { 1182 struct proc *p; 1183 1184 sx_slock(&allproc_lock); 1185 p = zpfind_locked(pid); 1186 sx_sunlock(&allproc_lock); 1187 return (p); 1188 } 1189 1190 #ifdef COMPAT_FREEBSD32 1191 1192 /* 1193 * This function is typically used to copy out the kernel address, so 1194 * it can be replaced by assignment of zero. 1195 */ 1196 static inline uint32_t 1197 ptr32_trim(void *ptr) 1198 { 1199 uintptr_t uptr; 1200 1201 uptr = (uintptr_t)ptr; 1202 return ((uptr > UINT_MAX) ? 0 : uptr); 1203 } 1204 1205 #define PTRTRIM_CP(src,dst,fld) \ 1206 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1207 1208 static void 1209 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1210 { 1211 int i; 1212 1213 bzero(ki32, sizeof(struct kinfo_proc32)); 1214 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1215 CP(*ki, *ki32, ki_layout); 1216 PTRTRIM_CP(*ki, *ki32, ki_args); 1217 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1218 PTRTRIM_CP(*ki, *ki32, ki_addr); 1219 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1220 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1221 PTRTRIM_CP(*ki, *ki32, ki_fd); 1222 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1223 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1224 CP(*ki, *ki32, ki_pid); 1225 CP(*ki, *ki32, ki_ppid); 1226 CP(*ki, *ki32, ki_pgid); 1227 CP(*ki, *ki32, ki_tpgid); 1228 CP(*ki, *ki32, ki_sid); 1229 CP(*ki, *ki32, ki_tsid); 1230 CP(*ki, *ki32, ki_jobc); 1231 CP(*ki, *ki32, ki_tdev); 1232 CP(*ki, *ki32, ki_siglist); 1233 CP(*ki, *ki32, ki_sigmask); 1234 CP(*ki, *ki32, ki_sigignore); 1235 CP(*ki, *ki32, ki_sigcatch); 1236 CP(*ki, *ki32, ki_uid); 1237 CP(*ki, *ki32, ki_ruid); 1238 CP(*ki, *ki32, ki_svuid); 1239 CP(*ki, *ki32, ki_rgid); 1240 CP(*ki, *ki32, ki_svgid); 1241 CP(*ki, *ki32, ki_ngroups); 1242 for (i = 0; i < KI_NGROUPS; i++) 1243 CP(*ki, *ki32, ki_groups[i]); 1244 CP(*ki, *ki32, ki_size); 1245 CP(*ki, *ki32, ki_rssize); 1246 CP(*ki, *ki32, ki_swrss); 1247 CP(*ki, *ki32, ki_tsize); 1248 CP(*ki, *ki32, ki_dsize); 1249 CP(*ki, *ki32, ki_ssize); 1250 CP(*ki, *ki32, ki_xstat); 1251 CP(*ki, *ki32, ki_acflag); 1252 CP(*ki, *ki32, ki_pctcpu); 1253 CP(*ki, *ki32, ki_estcpu); 1254 CP(*ki, *ki32, ki_slptime); 1255 CP(*ki, *ki32, ki_swtime); 1256 CP(*ki, *ki32, ki_cow); 1257 CP(*ki, *ki32, ki_runtime); 1258 TV_CP(*ki, *ki32, ki_start); 1259 TV_CP(*ki, *ki32, ki_childtime); 1260 CP(*ki, *ki32, ki_flag); 1261 CP(*ki, *ki32, ki_kiflag); 1262 CP(*ki, *ki32, ki_traceflag); 1263 CP(*ki, *ki32, ki_stat); 1264 CP(*ki, *ki32, ki_nice); 1265 CP(*ki, *ki32, ki_lock); 1266 CP(*ki, *ki32, ki_rqindex); 1267 CP(*ki, *ki32, ki_oncpu); 1268 CP(*ki, *ki32, ki_lastcpu); 1269 1270 /* XXX TODO: wrap cpu value as appropriate */ 1271 CP(*ki, *ki32, ki_oncpu_old); 1272 CP(*ki, *ki32, ki_lastcpu_old); 1273 1274 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1275 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1276 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1277 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1278 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1279 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1280 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1281 CP(*ki, *ki32, ki_tracer); 1282 CP(*ki, *ki32, ki_flag2); 1283 CP(*ki, *ki32, ki_fibnum); 1284 CP(*ki, *ki32, ki_cr_flags); 1285 CP(*ki, *ki32, ki_jid); 1286 CP(*ki, *ki32, ki_numthreads); 1287 CP(*ki, *ki32, ki_tid); 1288 CP(*ki, *ki32, ki_pri); 1289 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1290 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1291 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1292 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1293 PTRTRIM_CP(*ki, *ki32, ki_udata); 1294 CP(*ki, *ki32, ki_sflag); 1295 CP(*ki, *ki32, ki_tdflags); 1296 } 1297 #endif 1298 1299 int 1300 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1301 { 1302 struct thread *td; 1303 struct kinfo_proc ki; 1304 #ifdef COMPAT_FREEBSD32 1305 struct kinfo_proc32 ki32; 1306 #endif 1307 int error; 1308 1309 PROC_LOCK_ASSERT(p, MA_OWNED); 1310 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1311 1312 error = 0; 1313 fill_kinfo_proc(p, &ki); 1314 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1315 #ifdef COMPAT_FREEBSD32 1316 if ((flags & KERN_PROC_MASK32) != 0) { 1317 freebsd32_kinfo_proc_out(&ki, &ki32); 1318 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1319 error = ENOMEM; 1320 } else 1321 #endif 1322 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1323 error = ENOMEM; 1324 } else { 1325 FOREACH_THREAD_IN_PROC(p, td) { 1326 fill_kinfo_thread(td, &ki, 1); 1327 #ifdef COMPAT_FREEBSD32 1328 if ((flags & KERN_PROC_MASK32) != 0) { 1329 freebsd32_kinfo_proc_out(&ki, &ki32); 1330 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1331 error = ENOMEM; 1332 } else 1333 #endif 1334 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1335 error = ENOMEM; 1336 if (error != 0) 1337 break; 1338 } 1339 } 1340 PROC_UNLOCK(p); 1341 return (error); 1342 } 1343 1344 static int 1345 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1346 int doingzomb) 1347 { 1348 struct sbuf sb; 1349 struct kinfo_proc ki; 1350 struct proc *np; 1351 int error, error2; 1352 pid_t pid; 1353 1354 pid = p->p_pid; 1355 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1356 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1357 error = kern_proc_out(p, &sb, flags); 1358 error2 = sbuf_finish(&sb); 1359 sbuf_delete(&sb); 1360 if (error != 0) 1361 return (error); 1362 else if (error2 != 0) 1363 return (error2); 1364 if (doingzomb) 1365 np = zpfind(pid); 1366 else { 1367 if (pid == 0) 1368 return (0); 1369 np = pfind(pid); 1370 } 1371 if (np == NULL) 1372 return (ESRCH); 1373 if (np != p) { 1374 PROC_UNLOCK(np); 1375 return (ESRCH); 1376 } 1377 PROC_UNLOCK(np); 1378 return (0); 1379 } 1380 1381 static int 1382 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1383 { 1384 int *name = (int *)arg1; 1385 u_int namelen = arg2; 1386 struct proc *p; 1387 int flags, doingzomb, oid_number; 1388 int error = 0; 1389 1390 oid_number = oidp->oid_number; 1391 if (oid_number != KERN_PROC_ALL && 1392 (oid_number & KERN_PROC_INC_THREAD) == 0) 1393 flags = KERN_PROC_NOTHREADS; 1394 else { 1395 flags = 0; 1396 oid_number &= ~KERN_PROC_INC_THREAD; 1397 } 1398 #ifdef COMPAT_FREEBSD32 1399 if (req->flags & SCTL_MASK32) 1400 flags |= KERN_PROC_MASK32; 1401 #endif 1402 if (oid_number == KERN_PROC_PID) { 1403 if (namelen != 1) 1404 return (EINVAL); 1405 error = sysctl_wire_old_buffer(req, 0); 1406 if (error) 1407 return (error); 1408 sx_slock(&proctree_lock); 1409 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1410 if (error == 0) 1411 error = sysctl_out_proc(p, req, flags, 0); 1412 sx_sunlock(&proctree_lock); 1413 return (error); 1414 } 1415 1416 switch (oid_number) { 1417 case KERN_PROC_ALL: 1418 if (namelen != 0) 1419 return (EINVAL); 1420 break; 1421 case KERN_PROC_PROC: 1422 if (namelen != 0 && namelen != 1) 1423 return (EINVAL); 1424 break; 1425 default: 1426 if (namelen != 1) 1427 return (EINVAL); 1428 break; 1429 } 1430 1431 if (!req->oldptr) { 1432 /* overestimate by 5 procs */ 1433 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1434 if (error) 1435 return (error); 1436 } 1437 error = sysctl_wire_old_buffer(req, 0); 1438 if (error != 0) 1439 return (error); 1440 sx_slock(&proctree_lock); 1441 sx_slock(&allproc_lock); 1442 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1443 if (!doingzomb) 1444 p = LIST_FIRST(&allproc); 1445 else 1446 p = LIST_FIRST(&zombproc); 1447 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1448 /* 1449 * Skip embryonic processes. 1450 */ 1451 PROC_LOCK(p); 1452 if (p->p_state == PRS_NEW) { 1453 PROC_UNLOCK(p); 1454 continue; 1455 } 1456 KASSERT(p->p_ucred != NULL, 1457 ("process credential is NULL for non-NEW proc")); 1458 /* 1459 * Show a user only appropriate processes. 1460 */ 1461 if (p_cansee(curthread, p)) { 1462 PROC_UNLOCK(p); 1463 continue; 1464 } 1465 /* 1466 * TODO - make more efficient (see notes below). 1467 * do by session. 1468 */ 1469 switch (oid_number) { 1470 1471 case KERN_PROC_GID: 1472 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1473 PROC_UNLOCK(p); 1474 continue; 1475 } 1476 break; 1477 1478 case KERN_PROC_PGRP: 1479 /* could do this by traversing pgrp */ 1480 if (p->p_pgrp == NULL || 1481 p->p_pgrp->pg_id != (pid_t)name[0]) { 1482 PROC_UNLOCK(p); 1483 continue; 1484 } 1485 break; 1486 1487 case KERN_PROC_RGID: 1488 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1489 PROC_UNLOCK(p); 1490 continue; 1491 } 1492 break; 1493 1494 case KERN_PROC_SESSION: 1495 if (p->p_session == NULL || 1496 p->p_session->s_sid != (pid_t)name[0]) { 1497 PROC_UNLOCK(p); 1498 continue; 1499 } 1500 break; 1501 1502 case KERN_PROC_TTY: 1503 if ((p->p_flag & P_CONTROLT) == 0 || 1504 p->p_session == NULL) { 1505 PROC_UNLOCK(p); 1506 continue; 1507 } 1508 /* XXX proctree_lock */ 1509 SESS_LOCK(p->p_session); 1510 if (p->p_session->s_ttyp == NULL || 1511 tty_udev(p->p_session->s_ttyp) != 1512 (dev_t)name[0]) { 1513 SESS_UNLOCK(p->p_session); 1514 PROC_UNLOCK(p); 1515 continue; 1516 } 1517 SESS_UNLOCK(p->p_session); 1518 break; 1519 1520 case KERN_PROC_UID: 1521 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1522 PROC_UNLOCK(p); 1523 continue; 1524 } 1525 break; 1526 1527 case KERN_PROC_RUID: 1528 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1529 PROC_UNLOCK(p); 1530 continue; 1531 } 1532 break; 1533 1534 case KERN_PROC_PROC: 1535 break; 1536 1537 default: 1538 break; 1539 1540 } 1541 1542 error = sysctl_out_proc(p, req, flags, doingzomb); 1543 if (error) { 1544 sx_sunlock(&allproc_lock); 1545 sx_sunlock(&proctree_lock); 1546 return (error); 1547 } 1548 } 1549 } 1550 sx_sunlock(&allproc_lock); 1551 sx_sunlock(&proctree_lock); 1552 return (0); 1553 } 1554 1555 struct pargs * 1556 pargs_alloc(int len) 1557 { 1558 struct pargs *pa; 1559 1560 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1561 M_WAITOK); 1562 refcount_init(&pa->ar_ref, 1); 1563 pa->ar_length = len; 1564 return (pa); 1565 } 1566 1567 static void 1568 pargs_free(struct pargs *pa) 1569 { 1570 1571 free(pa, M_PARGS); 1572 } 1573 1574 void 1575 pargs_hold(struct pargs *pa) 1576 { 1577 1578 if (pa == NULL) 1579 return; 1580 refcount_acquire(&pa->ar_ref); 1581 } 1582 1583 void 1584 pargs_drop(struct pargs *pa) 1585 { 1586 1587 if (pa == NULL) 1588 return; 1589 if (refcount_release(&pa->ar_ref)) 1590 pargs_free(pa); 1591 } 1592 1593 static int 1594 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1595 size_t len) 1596 { 1597 ssize_t n; 1598 1599 /* 1600 * This may return a short read if the string is shorter than the chunk 1601 * and is aligned at the end of the page, and the following page is not 1602 * mapped. 1603 */ 1604 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1605 if (n <= 0) 1606 return (ENOMEM); 1607 return (0); 1608 } 1609 1610 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1611 1612 enum proc_vector_type { 1613 PROC_ARG, 1614 PROC_ENV, 1615 PROC_AUX, 1616 }; 1617 1618 #ifdef COMPAT_FREEBSD32 1619 static int 1620 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1621 size_t *vsizep, enum proc_vector_type type) 1622 { 1623 struct freebsd32_ps_strings pss; 1624 Elf32_Auxinfo aux; 1625 vm_offset_t vptr, ptr; 1626 uint32_t *proc_vector32; 1627 char **proc_vector; 1628 size_t vsize, size; 1629 int i, error; 1630 1631 error = 0; 1632 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1633 sizeof(pss)) != sizeof(pss)) 1634 return (ENOMEM); 1635 switch (type) { 1636 case PROC_ARG: 1637 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1638 vsize = pss.ps_nargvstr; 1639 if (vsize > ARG_MAX) 1640 return (ENOEXEC); 1641 size = vsize * sizeof(int32_t); 1642 break; 1643 case PROC_ENV: 1644 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1645 vsize = pss.ps_nenvstr; 1646 if (vsize > ARG_MAX) 1647 return (ENOEXEC); 1648 size = vsize * sizeof(int32_t); 1649 break; 1650 case PROC_AUX: 1651 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1652 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1653 if (vptr % 4 != 0) 1654 return (ENOEXEC); 1655 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1656 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1657 sizeof(aux)) 1658 return (ENOMEM); 1659 if (aux.a_type == AT_NULL) 1660 break; 1661 ptr += sizeof(aux); 1662 } 1663 if (aux.a_type != AT_NULL) 1664 return (ENOEXEC); 1665 vsize = i + 1; 1666 size = vsize * sizeof(aux); 1667 break; 1668 default: 1669 KASSERT(0, ("Wrong proc vector type: %d", type)); 1670 return (EINVAL); 1671 } 1672 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1673 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1674 error = ENOMEM; 1675 goto done; 1676 } 1677 if (type == PROC_AUX) { 1678 *proc_vectorp = (char **)proc_vector32; 1679 *vsizep = vsize; 1680 return (0); 1681 } 1682 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1683 for (i = 0; i < (int)vsize; i++) 1684 proc_vector[i] = PTRIN(proc_vector32[i]); 1685 *proc_vectorp = proc_vector; 1686 *vsizep = vsize; 1687 done: 1688 free(proc_vector32, M_TEMP); 1689 return (error); 1690 } 1691 #endif 1692 1693 static int 1694 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1695 size_t *vsizep, enum proc_vector_type type) 1696 { 1697 struct ps_strings pss; 1698 Elf_Auxinfo aux; 1699 vm_offset_t vptr, ptr; 1700 char **proc_vector; 1701 size_t vsize, size; 1702 int i; 1703 1704 #ifdef COMPAT_FREEBSD32 1705 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1706 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1707 #endif 1708 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1709 sizeof(pss)) != sizeof(pss)) 1710 return (ENOMEM); 1711 switch (type) { 1712 case PROC_ARG: 1713 vptr = (vm_offset_t)pss.ps_argvstr; 1714 vsize = pss.ps_nargvstr; 1715 if (vsize > ARG_MAX) 1716 return (ENOEXEC); 1717 size = vsize * sizeof(char *); 1718 break; 1719 case PROC_ENV: 1720 vptr = (vm_offset_t)pss.ps_envstr; 1721 vsize = pss.ps_nenvstr; 1722 if (vsize > ARG_MAX) 1723 return (ENOEXEC); 1724 size = vsize * sizeof(char *); 1725 break; 1726 case PROC_AUX: 1727 /* 1728 * The aux array is just above env array on the stack. Check 1729 * that the address is naturally aligned. 1730 */ 1731 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1732 * sizeof(char *); 1733 #if __ELF_WORD_SIZE == 64 1734 if (vptr % sizeof(uint64_t) != 0) 1735 #else 1736 if (vptr % sizeof(uint32_t) != 0) 1737 #endif 1738 return (ENOEXEC); 1739 /* 1740 * We count the array size reading the aux vectors from the 1741 * stack until AT_NULL vector is returned. So (to keep the code 1742 * simple) we read the process stack twice: the first time here 1743 * to find the size and the second time when copying the vectors 1744 * to the allocated proc_vector. 1745 */ 1746 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1747 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1748 sizeof(aux)) 1749 return (ENOMEM); 1750 if (aux.a_type == AT_NULL) 1751 break; 1752 ptr += sizeof(aux); 1753 } 1754 /* 1755 * If the PROC_AUXV_MAX entries are iterated over, and we have 1756 * not reached AT_NULL, it is most likely we are reading wrong 1757 * data: either the process doesn't have auxv array or data has 1758 * been modified. Return the error in this case. 1759 */ 1760 if (aux.a_type != AT_NULL) 1761 return (ENOEXEC); 1762 vsize = i + 1; 1763 size = vsize * sizeof(aux); 1764 break; 1765 default: 1766 KASSERT(0, ("Wrong proc vector type: %d", type)); 1767 return (EINVAL); /* In case we are built without INVARIANTS. */ 1768 } 1769 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1770 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1771 free(proc_vector, M_TEMP); 1772 return (ENOMEM); 1773 } 1774 *proc_vectorp = proc_vector; 1775 *vsizep = vsize; 1776 1777 return (0); 1778 } 1779 1780 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1781 1782 static int 1783 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1784 enum proc_vector_type type) 1785 { 1786 size_t done, len, nchr, vsize; 1787 int error, i; 1788 char **proc_vector, *sptr; 1789 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1790 1791 PROC_ASSERT_HELD(p); 1792 1793 /* 1794 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1795 */ 1796 nchr = 2 * (PATH_MAX + ARG_MAX); 1797 1798 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1799 if (error != 0) 1800 return (error); 1801 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1802 /* 1803 * The program may have scribbled into its argv array, e.g. to 1804 * remove some arguments. If that has happened, break out 1805 * before trying to read from NULL. 1806 */ 1807 if (proc_vector[i] == NULL) 1808 break; 1809 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1810 error = proc_read_string(td, p, sptr, pss_string, 1811 sizeof(pss_string)); 1812 if (error != 0) 1813 goto done; 1814 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1815 if (done + len >= nchr) 1816 len = nchr - done - 1; 1817 sbuf_bcat(sb, pss_string, len); 1818 if (len != GET_PS_STRINGS_CHUNK_SZ) 1819 break; 1820 done += GET_PS_STRINGS_CHUNK_SZ; 1821 } 1822 sbuf_bcat(sb, "", 1); 1823 done += len + 1; 1824 } 1825 done: 1826 free(proc_vector, M_TEMP); 1827 return (error); 1828 } 1829 1830 int 1831 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1832 { 1833 1834 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1835 } 1836 1837 int 1838 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1839 { 1840 1841 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1842 } 1843 1844 int 1845 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1846 { 1847 size_t vsize, size; 1848 char **auxv; 1849 int error; 1850 1851 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1852 if (error == 0) { 1853 #ifdef COMPAT_FREEBSD32 1854 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1855 size = vsize * sizeof(Elf32_Auxinfo); 1856 else 1857 #endif 1858 size = vsize * sizeof(Elf_Auxinfo); 1859 if (sbuf_bcat(sb, auxv, size) != 0) 1860 error = ENOMEM; 1861 free(auxv, M_TEMP); 1862 } 1863 return (error); 1864 } 1865 1866 /* 1867 * This sysctl allows a process to retrieve the argument list or process 1868 * title for another process without groping around in the address space 1869 * of the other process. It also allow a process to set its own "process 1870 * title to a string of its own choice. 1871 */ 1872 static int 1873 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1874 { 1875 int *name = (int *)arg1; 1876 u_int namelen = arg2; 1877 struct pargs *newpa, *pa; 1878 struct proc *p; 1879 struct sbuf sb; 1880 int flags, error = 0, error2; 1881 1882 if (namelen != 1) 1883 return (EINVAL); 1884 1885 flags = PGET_CANSEE; 1886 if (req->newptr != NULL) 1887 flags |= PGET_ISCURRENT; 1888 error = pget((pid_t)name[0], flags, &p); 1889 if (error) 1890 return (error); 1891 1892 pa = p->p_args; 1893 if (pa != NULL) { 1894 pargs_hold(pa); 1895 PROC_UNLOCK(p); 1896 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1897 pargs_drop(pa); 1898 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1899 _PHOLD(p); 1900 PROC_UNLOCK(p); 1901 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1902 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1903 error = proc_getargv(curthread, p, &sb); 1904 error2 = sbuf_finish(&sb); 1905 PRELE(p); 1906 sbuf_delete(&sb); 1907 if (error == 0 && error2 != 0) 1908 error = error2; 1909 } else { 1910 PROC_UNLOCK(p); 1911 } 1912 if (error != 0 || req->newptr == NULL) 1913 return (error); 1914 1915 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1916 return (ENOMEM); 1917 newpa = pargs_alloc(req->newlen); 1918 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1919 if (error != 0) { 1920 pargs_free(newpa); 1921 return (error); 1922 } 1923 PROC_LOCK(p); 1924 pa = p->p_args; 1925 p->p_args = newpa; 1926 PROC_UNLOCK(p); 1927 pargs_drop(pa); 1928 return (0); 1929 } 1930 1931 /* 1932 * This sysctl allows a process to retrieve environment of another process. 1933 */ 1934 static int 1935 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1936 { 1937 int *name = (int *)arg1; 1938 u_int namelen = arg2; 1939 struct proc *p; 1940 struct sbuf sb; 1941 int error, error2; 1942 1943 if (namelen != 1) 1944 return (EINVAL); 1945 1946 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1947 if (error != 0) 1948 return (error); 1949 if ((p->p_flag & P_SYSTEM) != 0) { 1950 PRELE(p); 1951 return (0); 1952 } 1953 1954 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1955 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1956 error = proc_getenvv(curthread, p, &sb); 1957 error2 = sbuf_finish(&sb); 1958 PRELE(p); 1959 sbuf_delete(&sb); 1960 return (error != 0 ? error : error2); 1961 } 1962 1963 /* 1964 * This sysctl allows a process to retrieve ELF auxiliary vector of 1965 * another process. 1966 */ 1967 static int 1968 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1969 { 1970 int *name = (int *)arg1; 1971 u_int namelen = arg2; 1972 struct proc *p; 1973 struct sbuf sb; 1974 int error, error2; 1975 1976 if (namelen != 1) 1977 return (EINVAL); 1978 1979 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1980 if (error != 0) 1981 return (error); 1982 if ((p->p_flag & P_SYSTEM) != 0) { 1983 PRELE(p); 1984 return (0); 1985 } 1986 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1987 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1988 error = proc_getauxv(curthread, p, &sb); 1989 error2 = sbuf_finish(&sb); 1990 PRELE(p); 1991 sbuf_delete(&sb); 1992 return (error != 0 ? error : error2); 1993 } 1994 1995 /* 1996 * This sysctl allows a process to retrieve the path of the executable for 1997 * itself or another process. 1998 */ 1999 static int 2000 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2001 { 2002 pid_t *pidp = (pid_t *)arg1; 2003 unsigned int arglen = arg2; 2004 struct proc *p; 2005 struct vnode *vp; 2006 char *retbuf, *freebuf; 2007 int error; 2008 2009 if (arglen != 1) 2010 return (EINVAL); 2011 if (*pidp == -1) { /* -1 means this process */ 2012 p = req->td->td_proc; 2013 } else { 2014 error = pget(*pidp, PGET_CANSEE, &p); 2015 if (error != 0) 2016 return (error); 2017 } 2018 2019 vp = p->p_textvp; 2020 if (vp == NULL) { 2021 if (*pidp != -1) 2022 PROC_UNLOCK(p); 2023 return (0); 2024 } 2025 vref(vp); 2026 if (*pidp != -1) 2027 PROC_UNLOCK(p); 2028 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2029 vrele(vp); 2030 if (error) 2031 return (error); 2032 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2033 free(freebuf, M_TEMP); 2034 return (error); 2035 } 2036 2037 static int 2038 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2039 { 2040 struct proc *p; 2041 char *sv_name; 2042 int *name; 2043 int namelen; 2044 int error; 2045 2046 namelen = arg2; 2047 if (namelen != 1) 2048 return (EINVAL); 2049 2050 name = (int *)arg1; 2051 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2052 if (error != 0) 2053 return (error); 2054 sv_name = p->p_sysent->sv_name; 2055 PROC_UNLOCK(p); 2056 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2057 } 2058 2059 #ifdef KINFO_OVMENTRY_SIZE 2060 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2061 #endif 2062 2063 #ifdef COMPAT_FREEBSD7 2064 static int 2065 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2066 { 2067 vm_map_entry_t entry, tmp_entry; 2068 unsigned int last_timestamp; 2069 char *fullpath, *freepath; 2070 struct kinfo_ovmentry *kve; 2071 struct vattr va; 2072 struct ucred *cred; 2073 int error, *name; 2074 struct vnode *vp; 2075 struct proc *p; 2076 vm_map_t map; 2077 struct vmspace *vm; 2078 2079 name = (int *)arg1; 2080 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2081 if (error != 0) 2082 return (error); 2083 vm = vmspace_acquire_ref(p); 2084 if (vm == NULL) { 2085 PRELE(p); 2086 return (ESRCH); 2087 } 2088 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2089 2090 map = &vm->vm_map; 2091 vm_map_lock_read(map); 2092 for (entry = map->header.next; entry != &map->header; 2093 entry = entry->next) { 2094 vm_object_t obj, tobj, lobj; 2095 vm_offset_t addr; 2096 2097 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2098 continue; 2099 2100 bzero(kve, sizeof(*kve)); 2101 kve->kve_structsize = sizeof(*kve); 2102 2103 kve->kve_private_resident = 0; 2104 obj = entry->object.vm_object; 2105 if (obj != NULL) { 2106 VM_OBJECT_RLOCK(obj); 2107 if (obj->shadow_count == 1) 2108 kve->kve_private_resident = 2109 obj->resident_page_count; 2110 } 2111 kve->kve_resident = 0; 2112 addr = entry->start; 2113 while (addr < entry->end) { 2114 if (pmap_extract(map->pmap, addr)) 2115 kve->kve_resident++; 2116 addr += PAGE_SIZE; 2117 } 2118 2119 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2120 if (tobj != obj) 2121 VM_OBJECT_RLOCK(tobj); 2122 if (lobj != obj) 2123 VM_OBJECT_RUNLOCK(lobj); 2124 lobj = tobj; 2125 } 2126 2127 kve->kve_start = (void*)entry->start; 2128 kve->kve_end = (void*)entry->end; 2129 kve->kve_offset = (off_t)entry->offset; 2130 2131 if (entry->protection & VM_PROT_READ) 2132 kve->kve_protection |= KVME_PROT_READ; 2133 if (entry->protection & VM_PROT_WRITE) 2134 kve->kve_protection |= KVME_PROT_WRITE; 2135 if (entry->protection & VM_PROT_EXECUTE) 2136 kve->kve_protection |= KVME_PROT_EXEC; 2137 2138 if (entry->eflags & MAP_ENTRY_COW) 2139 kve->kve_flags |= KVME_FLAG_COW; 2140 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2141 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2142 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2143 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2144 2145 last_timestamp = map->timestamp; 2146 vm_map_unlock_read(map); 2147 2148 kve->kve_fileid = 0; 2149 kve->kve_fsid = 0; 2150 freepath = NULL; 2151 fullpath = ""; 2152 if (lobj) { 2153 vp = NULL; 2154 switch (lobj->type) { 2155 case OBJT_DEFAULT: 2156 kve->kve_type = KVME_TYPE_DEFAULT; 2157 break; 2158 case OBJT_VNODE: 2159 kve->kve_type = KVME_TYPE_VNODE; 2160 vp = lobj->handle; 2161 vref(vp); 2162 break; 2163 case OBJT_SWAP: 2164 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2165 kve->kve_type = KVME_TYPE_VNODE; 2166 if ((lobj->flags & OBJ_TMPFS) != 0) { 2167 vp = lobj->un_pager.swp.swp_tmpfs; 2168 vref(vp); 2169 } 2170 } else { 2171 kve->kve_type = KVME_TYPE_SWAP; 2172 } 2173 break; 2174 case OBJT_DEVICE: 2175 kve->kve_type = KVME_TYPE_DEVICE; 2176 break; 2177 case OBJT_PHYS: 2178 kve->kve_type = KVME_TYPE_PHYS; 2179 break; 2180 case OBJT_DEAD: 2181 kve->kve_type = KVME_TYPE_DEAD; 2182 break; 2183 case OBJT_SG: 2184 kve->kve_type = KVME_TYPE_SG; 2185 break; 2186 default: 2187 kve->kve_type = KVME_TYPE_UNKNOWN; 2188 break; 2189 } 2190 if (lobj != obj) 2191 VM_OBJECT_RUNLOCK(lobj); 2192 2193 kve->kve_ref_count = obj->ref_count; 2194 kve->kve_shadow_count = obj->shadow_count; 2195 VM_OBJECT_RUNLOCK(obj); 2196 if (vp != NULL) { 2197 vn_fullpath(curthread, vp, &fullpath, 2198 &freepath); 2199 cred = curthread->td_ucred; 2200 vn_lock(vp, LK_SHARED | LK_RETRY); 2201 if (VOP_GETATTR(vp, &va, cred) == 0) { 2202 kve->kve_fileid = va.va_fileid; 2203 kve->kve_fsid = va.va_fsid; 2204 } 2205 vput(vp); 2206 } 2207 } else { 2208 kve->kve_type = KVME_TYPE_NONE; 2209 kve->kve_ref_count = 0; 2210 kve->kve_shadow_count = 0; 2211 } 2212 2213 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2214 if (freepath != NULL) 2215 free(freepath, M_TEMP); 2216 2217 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2218 vm_map_lock_read(map); 2219 if (error) 2220 break; 2221 if (last_timestamp != map->timestamp) { 2222 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2223 entry = tmp_entry; 2224 } 2225 } 2226 vm_map_unlock_read(map); 2227 vmspace_free(vm); 2228 PRELE(p); 2229 free(kve, M_TEMP); 2230 return (error); 2231 } 2232 #endif /* COMPAT_FREEBSD7 */ 2233 2234 #ifdef KINFO_VMENTRY_SIZE 2235 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2236 #endif 2237 2238 static void 2239 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2240 struct kinfo_vmentry *kve) 2241 { 2242 vm_object_t obj, tobj; 2243 vm_page_t m, m_adv; 2244 vm_offset_t addr; 2245 vm_paddr_t locked_pa; 2246 vm_pindex_t pi, pi_adv, pindex; 2247 2248 locked_pa = 0; 2249 obj = entry->object.vm_object; 2250 addr = entry->start; 2251 m_adv = NULL; 2252 pi = OFF_TO_IDX(entry->offset); 2253 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2254 if (m_adv != NULL) { 2255 m = m_adv; 2256 } else { 2257 pi_adv = OFF_TO_IDX(entry->end - addr); 2258 pindex = pi; 2259 for (tobj = obj;; tobj = tobj->backing_object) { 2260 m = vm_page_find_least(tobj, pindex); 2261 if (m != NULL) { 2262 if (m->pindex == pindex) 2263 break; 2264 if (pi_adv > m->pindex - pindex) { 2265 pi_adv = m->pindex - pindex; 2266 m_adv = m; 2267 } 2268 } 2269 if (tobj->backing_object == NULL) 2270 goto next; 2271 pindex += OFF_TO_IDX(tobj-> 2272 backing_object_offset); 2273 } 2274 } 2275 m_adv = NULL; 2276 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2277 (addr & (pagesizes[1] - 1)) == 0 && 2278 (pmap_mincore(map->pmap, addr, &locked_pa) & 2279 MINCORE_SUPER) != 0) { 2280 kve->kve_flags |= KVME_FLAG_SUPER; 2281 pi_adv = OFF_TO_IDX(pagesizes[1]); 2282 } else { 2283 /* 2284 * We do not test the found page on validity. 2285 * Either the page is busy and being paged in, 2286 * or it was invalidated. The first case 2287 * should be counted as resident, the second 2288 * is not so clear; we do account both. 2289 */ 2290 pi_adv = 1; 2291 } 2292 kve->kve_resident += pi_adv; 2293 next:; 2294 } 2295 PA_UNLOCK_COND(locked_pa); 2296 } 2297 2298 /* 2299 * Must be called with the process locked and will return unlocked. 2300 */ 2301 int 2302 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2303 { 2304 vm_map_entry_t entry, tmp_entry; 2305 struct vattr va; 2306 vm_map_t map; 2307 vm_object_t obj, tobj, lobj; 2308 char *fullpath, *freepath; 2309 struct kinfo_vmentry *kve; 2310 struct ucred *cred; 2311 struct vnode *vp; 2312 struct vmspace *vm; 2313 vm_offset_t addr; 2314 unsigned int last_timestamp; 2315 int error; 2316 2317 PROC_LOCK_ASSERT(p, MA_OWNED); 2318 2319 _PHOLD(p); 2320 PROC_UNLOCK(p); 2321 vm = vmspace_acquire_ref(p); 2322 if (vm == NULL) { 2323 PRELE(p); 2324 return (ESRCH); 2325 } 2326 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2327 2328 error = 0; 2329 map = &vm->vm_map; 2330 vm_map_lock_read(map); 2331 for (entry = map->header.next; entry != &map->header; 2332 entry = entry->next) { 2333 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2334 continue; 2335 2336 addr = entry->end; 2337 bzero(kve, sizeof(*kve)); 2338 obj = entry->object.vm_object; 2339 if (obj != NULL) { 2340 for (tobj = obj; tobj != NULL; 2341 tobj = tobj->backing_object) { 2342 VM_OBJECT_RLOCK(tobj); 2343 lobj = tobj; 2344 } 2345 if (obj->backing_object == NULL) 2346 kve->kve_private_resident = 2347 obj->resident_page_count; 2348 if (!vmmap_skip_res_cnt) 2349 kern_proc_vmmap_resident(map, entry, kve); 2350 for (tobj = obj; tobj != NULL; 2351 tobj = tobj->backing_object) { 2352 if (tobj != obj && tobj != lobj) 2353 VM_OBJECT_RUNLOCK(tobj); 2354 } 2355 } else { 2356 lobj = NULL; 2357 } 2358 2359 kve->kve_start = entry->start; 2360 kve->kve_end = entry->end; 2361 kve->kve_offset = entry->offset; 2362 2363 if (entry->protection & VM_PROT_READ) 2364 kve->kve_protection |= KVME_PROT_READ; 2365 if (entry->protection & VM_PROT_WRITE) 2366 kve->kve_protection |= KVME_PROT_WRITE; 2367 if (entry->protection & VM_PROT_EXECUTE) 2368 kve->kve_protection |= KVME_PROT_EXEC; 2369 2370 if (entry->eflags & MAP_ENTRY_COW) 2371 kve->kve_flags |= KVME_FLAG_COW; 2372 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2373 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2374 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2375 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2376 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2377 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2378 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2379 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2380 2381 last_timestamp = map->timestamp; 2382 vm_map_unlock_read(map); 2383 2384 freepath = NULL; 2385 fullpath = ""; 2386 if (lobj != NULL) { 2387 vp = NULL; 2388 switch (lobj->type) { 2389 case OBJT_DEFAULT: 2390 kve->kve_type = KVME_TYPE_DEFAULT; 2391 break; 2392 case OBJT_VNODE: 2393 kve->kve_type = KVME_TYPE_VNODE; 2394 vp = lobj->handle; 2395 vref(vp); 2396 break; 2397 case OBJT_SWAP: 2398 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2399 kve->kve_type = KVME_TYPE_VNODE; 2400 if ((lobj->flags & OBJ_TMPFS) != 0) { 2401 vp = lobj->un_pager.swp.swp_tmpfs; 2402 vref(vp); 2403 } 2404 } else { 2405 kve->kve_type = KVME_TYPE_SWAP; 2406 } 2407 break; 2408 case OBJT_DEVICE: 2409 kve->kve_type = KVME_TYPE_DEVICE; 2410 break; 2411 case OBJT_PHYS: 2412 kve->kve_type = KVME_TYPE_PHYS; 2413 break; 2414 case OBJT_DEAD: 2415 kve->kve_type = KVME_TYPE_DEAD; 2416 break; 2417 case OBJT_SG: 2418 kve->kve_type = KVME_TYPE_SG; 2419 break; 2420 case OBJT_MGTDEVICE: 2421 kve->kve_type = KVME_TYPE_MGTDEVICE; 2422 break; 2423 default: 2424 kve->kve_type = KVME_TYPE_UNKNOWN; 2425 break; 2426 } 2427 if (lobj != obj) 2428 VM_OBJECT_RUNLOCK(lobj); 2429 2430 kve->kve_ref_count = obj->ref_count; 2431 kve->kve_shadow_count = obj->shadow_count; 2432 VM_OBJECT_RUNLOCK(obj); 2433 if (vp != NULL) { 2434 vn_fullpath(curthread, vp, &fullpath, 2435 &freepath); 2436 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2437 cred = curthread->td_ucred; 2438 vn_lock(vp, LK_SHARED | LK_RETRY); 2439 if (VOP_GETATTR(vp, &va, cred) == 0) { 2440 kve->kve_vn_fileid = va.va_fileid; 2441 kve->kve_vn_fsid = va.va_fsid; 2442 kve->kve_vn_mode = 2443 MAKEIMODE(va.va_type, va.va_mode); 2444 kve->kve_vn_size = va.va_size; 2445 kve->kve_vn_rdev = va.va_rdev; 2446 kve->kve_status = KF_ATTR_VALID; 2447 } 2448 vput(vp); 2449 } 2450 } else { 2451 kve->kve_type = KVME_TYPE_NONE; 2452 kve->kve_ref_count = 0; 2453 kve->kve_shadow_count = 0; 2454 } 2455 2456 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2457 if (freepath != NULL) 2458 free(freepath, M_TEMP); 2459 2460 /* Pack record size down */ 2461 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2462 kve->kve_structsize = 2463 offsetof(struct kinfo_vmentry, kve_path) + 2464 strlen(kve->kve_path) + 1; 2465 else 2466 kve->kve_structsize = sizeof(*kve); 2467 kve->kve_structsize = roundup(kve->kve_structsize, 2468 sizeof(uint64_t)); 2469 2470 /* Halt filling and truncate rather than exceeding maxlen */ 2471 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2472 error = 0; 2473 vm_map_lock_read(map); 2474 break; 2475 } else if (maxlen != -1) 2476 maxlen -= kve->kve_structsize; 2477 2478 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2479 error = ENOMEM; 2480 vm_map_lock_read(map); 2481 if (error != 0) 2482 break; 2483 if (last_timestamp != map->timestamp) { 2484 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2485 entry = tmp_entry; 2486 } 2487 } 2488 vm_map_unlock_read(map); 2489 vmspace_free(vm); 2490 PRELE(p); 2491 free(kve, M_TEMP); 2492 return (error); 2493 } 2494 2495 static int 2496 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2497 { 2498 struct proc *p; 2499 struct sbuf sb; 2500 int error, error2, *name; 2501 2502 name = (int *)arg1; 2503 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2504 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2505 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2506 if (error != 0) { 2507 sbuf_delete(&sb); 2508 return (error); 2509 } 2510 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2511 error2 = sbuf_finish(&sb); 2512 sbuf_delete(&sb); 2513 return (error != 0 ? error : error2); 2514 } 2515 2516 #if defined(STACK) || defined(DDB) 2517 static int 2518 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2519 { 2520 struct kinfo_kstack *kkstp; 2521 int error, i, *name, numthreads; 2522 lwpid_t *lwpidarray; 2523 struct thread *td; 2524 struct stack *st; 2525 struct sbuf sb; 2526 struct proc *p; 2527 2528 name = (int *)arg1; 2529 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2530 if (error != 0) 2531 return (error); 2532 2533 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2534 st = stack_create(); 2535 2536 lwpidarray = NULL; 2537 PROC_LOCK(p); 2538 do { 2539 if (lwpidarray != NULL) { 2540 free(lwpidarray, M_TEMP); 2541 lwpidarray = NULL; 2542 } 2543 numthreads = p->p_numthreads; 2544 PROC_UNLOCK(p); 2545 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2546 M_WAITOK | M_ZERO); 2547 PROC_LOCK(p); 2548 } while (numthreads < p->p_numthreads); 2549 2550 /* 2551 * XXXRW: During the below loop, execve(2) and countless other sorts 2552 * of changes could have taken place. Should we check to see if the 2553 * vmspace has been replaced, or the like, in order to prevent 2554 * giving a snapshot that spans, say, execve(2), with some threads 2555 * before and some after? Among other things, the credentials could 2556 * have changed, in which case the right to extract debug info might 2557 * no longer be assured. 2558 */ 2559 i = 0; 2560 FOREACH_THREAD_IN_PROC(p, td) { 2561 KASSERT(i < numthreads, 2562 ("sysctl_kern_proc_kstack: numthreads")); 2563 lwpidarray[i] = td->td_tid; 2564 i++; 2565 } 2566 numthreads = i; 2567 for (i = 0; i < numthreads; i++) { 2568 td = thread_find(p, lwpidarray[i]); 2569 if (td == NULL) { 2570 continue; 2571 } 2572 bzero(kkstp, sizeof(*kkstp)); 2573 (void)sbuf_new(&sb, kkstp->kkst_trace, 2574 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2575 thread_lock(td); 2576 kkstp->kkst_tid = td->td_tid; 2577 if (TD_IS_SWAPPED(td)) { 2578 kkstp->kkst_state = KKST_STATE_SWAPPED; 2579 } else if (TD_IS_RUNNING(td)) { 2580 if (stack_save_td_running(st, td) == 0) 2581 kkstp->kkst_state = KKST_STATE_STACKOK; 2582 else 2583 kkstp->kkst_state = KKST_STATE_RUNNING; 2584 } else { 2585 kkstp->kkst_state = KKST_STATE_STACKOK; 2586 stack_save_td(st, td); 2587 } 2588 thread_unlock(td); 2589 PROC_UNLOCK(p); 2590 stack_sbuf_print(&sb, st); 2591 sbuf_finish(&sb); 2592 sbuf_delete(&sb); 2593 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2594 PROC_LOCK(p); 2595 if (error) 2596 break; 2597 } 2598 _PRELE(p); 2599 PROC_UNLOCK(p); 2600 if (lwpidarray != NULL) 2601 free(lwpidarray, M_TEMP); 2602 stack_destroy(st); 2603 free(kkstp, M_TEMP); 2604 return (error); 2605 } 2606 #endif 2607 2608 /* 2609 * This sysctl allows a process to retrieve the full list of groups from 2610 * itself or another process. 2611 */ 2612 static int 2613 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2614 { 2615 pid_t *pidp = (pid_t *)arg1; 2616 unsigned int arglen = arg2; 2617 struct proc *p; 2618 struct ucred *cred; 2619 int error; 2620 2621 if (arglen != 1) 2622 return (EINVAL); 2623 if (*pidp == -1) { /* -1 means this process */ 2624 p = req->td->td_proc; 2625 PROC_LOCK(p); 2626 } else { 2627 error = pget(*pidp, PGET_CANSEE, &p); 2628 if (error != 0) 2629 return (error); 2630 } 2631 2632 cred = crhold(p->p_ucred); 2633 PROC_UNLOCK(p); 2634 2635 error = SYSCTL_OUT(req, cred->cr_groups, 2636 cred->cr_ngroups * sizeof(gid_t)); 2637 crfree(cred); 2638 return (error); 2639 } 2640 2641 /* 2642 * This sysctl allows a process to retrieve or/and set the resource limit for 2643 * another process. 2644 */ 2645 static int 2646 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2647 { 2648 int *name = (int *)arg1; 2649 u_int namelen = arg2; 2650 struct rlimit rlim; 2651 struct proc *p; 2652 u_int which; 2653 int flags, error; 2654 2655 if (namelen != 2) 2656 return (EINVAL); 2657 2658 which = (u_int)name[1]; 2659 if (which >= RLIM_NLIMITS) 2660 return (EINVAL); 2661 2662 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2663 return (EINVAL); 2664 2665 flags = PGET_HOLD | PGET_NOTWEXIT; 2666 if (req->newptr != NULL) 2667 flags |= PGET_CANDEBUG; 2668 else 2669 flags |= PGET_CANSEE; 2670 error = pget((pid_t)name[0], flags, &p); 2671 if (error != 0) 2672 return (error); 2673 2674 /* 2675 * Retrieve limit. 2676 */ 2677 if (req->oldptr != NULL) { 2678 PROC_LOCK(p); 2679 lim_rlimit_proc(p, which, &rlim); 2680 PROC_UNLOCK(p); 2681 } 2682 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2683 if (error != 0) 2684 goto errout; 2685 2686 /* 2687 * Set limit. 2688 */ 2689 if (req->newptr != NULL) { 2690 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2691 if (error == 0) 2692 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2693 } 2694 2695 errout: 2696 PRELE(p); 2697 return (error); 2698 } 2699 2700 /* 2701 * This sysctl allows a process to retrieve ps_strings structure location of 2702 * another process. 2703 */ 2704 static int 2705 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2706 { 2707 int *name = (int *)arg1; 2708 u_int namelen = arg2; 2709 struct proc *p; 2710 vm_offset_t ps_strings; 2711 int error; 2712 #ifdef COMPAT_FREEBSD32 2713 uint32_t ps_strings32; 2714 #endif 2715 2716 if (namelen != 1) 2717 return (EINVAL); 2718 2719 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2720 if (error != 0) 2721 return (error); 2722 #ifdef COMPAT_FREEBSD32 2723 if ((req->flags & SCTL_MASK32) != 0) { 2724 /* 2725 * We return 0 if the 32 bit emulation request is for a 64 bit 2726 * process. 2727 */ 2728 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2729 PTROUT(p->p_sysent->sv_psstrings) : 0; 2730 PROC_UNLOCK(p); 2731 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2732 return (error); 2733 } 2734 #endif 2735 ps_strings = p->p_sysent->sv_psstrings; 2736 PROC_UNLOCK(p); 2737 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2738 return (error); 2739 } 2740 2741 /* 2742 * This sysctl allows a process to retrieve umask of another process. 2743 */ 2744 static int 2745 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2746 { 2747 int *name = (int *)arg1; 2748 u_int namelen = arg2; 2749 struct proc *p; 2750 int error; 2751 u_short fd_cmask; 2752 2753 if (namelen != 1) 2754 return (EINVAL); 2755 2756 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2757 if (error != 0) 2758 return (error); 2759 2760 FILEDESC_SLOCK(p->p_fd); 2761 fd_cmask = p->p_fd->fd_cmask; 2762 FILEDESC_SUNLOCK(p->p_fd); 2763 PRELE(p); 2764 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2765 return (error); 2766 } 2767 2768 /* 2769 * This sysctl allows a process to set and retrieve binary osreldate of 2770 * another process. 2771 */ 2772 static int 2773 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2774 { 2775 int *name = (int *)arg1; 2776 u_int namelen = arg2; 2777 struct proc *p; 2778 int flags, error, osrel; 2779 2780 if (namelen != 1) 2781 return (EINVAL); 2782 2783 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2784 return (EINVAL); 2785 2786 flags = PGET_HOLD | PGET_NOTWEXIT; 2787 if (req->newptr != NULL) 2788 flags |= PGET_CANDEBUG; 2789 else 2790 flags |= PGET_CANSEE; 2791 error = pget((pid_t)name[0], flags, &p); 2792 if (error != 0) 2793 return (error); 2794 2795 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2796 if (error != 0) 2797 goto errout; 2798 2799 if (req->newptr != NULL) { 2800 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2801 if (error != 0) 2802 goto errout; 2803 if (osrel < 0) { 2804 error = EINVAL; 2805 goto errout; 2806 } 2807 p->p_osrel = osrel; 2808 } 2809 errout: 2810 PRELE(p); 2811 return (error); 2812 } 2813 2814 static int 2815 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2816 { 2817 int *name = (int *)arg1; 2818 u_int namelen = arg2; 2819 struct proc *p; 2820 struct kinfo_sigtramp kst; 2821 const struct sysentvec *sv; 2822 int error; 2823 #ifdef COMPAT_FREEBSD32 2824 struct kinfo_sigtramp32 kst32; 2825 #endif 2826 2827 if (namelen != 1) 2828 return (EINVAL); 2829 2830 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2831 if (error != 0) 2832 return (error); 2833 sv = p->p_sysent; 2834 #ifdef COMPAT_FREEBSD32 2835 if ((req->flags & SCTL_MASK32) != 0) { 2836 bzero(&kst32, sizeof(kst32)); 2837 if (SV_PROC_FLAG(p, SV_ILP32)) { 2838 if (sv->sv_sigcode_base != 0) { 2839 kst32.ksigtramp_start = sv->sv_sigcode_base; 2840 kst32.ksigtramp_end = sv->sv_sigcode_base + 2841 *sv->sv_szsigcode; 2842 } else { 2843 kst32.ksigtramp_start = sv->sv_psstrings - 2844 *sv->sv_szsigcode; 2845 kst32.ksigtramp_end = sv->sv_psstrings; 2846 } 2847 } 2848 PROC_UNLOCK(p); 2849 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2850 return (error); 2851 } 2852 #endif 2853 bzero(&kst, sizeof(kst)); 2854 if (sv->sv_sigcode_base != 0) { 2855 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2856 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2857 *sv->sv_szsigcode; 2858 } else { 2859 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2860 *sv->sv_szsigcode; 2861 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2862 } 2863 PROC_UNLOCK(p); 2864 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2865 return (error); 2866 } 2867 2868 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2869 2870 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2871 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2872 "Return entire process table"); 2873 2874 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2875 sysctl_kern_proc, "Process table"); 2876 2877 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2878 sysctl_kern_proc, "Process table"); 2879 2880 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2881 sysctl_kern_proc, "Process table"); 2882 2883 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2884 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2885 2886 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2887 sysctl_kern_proc, "Process table"); 2888 2889 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2890 sysctl_kern_proc, "Process table"); 2891 2892 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2893 sysctl_kern_proc, "Process table"); 2894 2895 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2896 sysctl_kern_proc, "Process table"); 2897 2898 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2899 sysctl_kern_proc, "Return process table, no threads"); 2900 2901 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2902 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2903 sysctl_kern_proc_args, "Process argument list"); 2904 2905 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2906 sysctl_kern_proc_env, "Process environment"); 2907 2908 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2909 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2910 2911 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2912 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2913 2914 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2915 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2916 "Process syscall vector name (ABI type)"); 2917 2918 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2919 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2920 2921 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2922 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2923 2924 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2925 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2926 2927 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2928 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2929 2930 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2931 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2932 2933 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2934 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2935 2936 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2937 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2938 2939 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2940 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2941 2942 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2943 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2944 "Return process table, no threads"); 2945 2946 #ifdef COMPAT_FREEBSD7 2947 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2948 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2949 #endif 2950 2951 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2952 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2953 2954 #if defined(STACK) || defined(DDB) 2955 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2956 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2957 #endif 2958 2959 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2960 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2961 2962 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2963 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2964 "Process resource limits"); 2965 2966 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2967 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2968 "Process ps_strings location"); 2969 2970 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2971 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2972 2973 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2974 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2975 "Process binary osreldate"); 2976 2977 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2978 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2979 "Process signal trampoline location"); 2980 2981 int allproc_gen; 2982 2983 /* 2984 * stop_all_proc() purpose is to stop all process which have usermode, 2985 * except current process for obvious reasons. This makes it somewhat 2986 * unreliable when invoked from multithreaded process. The service 2987 * must not be user-callable anyway. 2988 */ 2989 void 2990 stop_all_proc(void) 2991 { 2992 struct proc *cp, *p; 2993 int r, gen; 2994 bool restart, seen_stopped, seen_exiting, stopped_some; 2995 2996 cp = curproc; 2997 allproc_loop: 2998 sx_xlock(&allproc_lock); 2999 gen = allproc_gen; 3000 seen_exiting = seen_stopped = stopped_some = restart = false; 3001 LIST_REMOVE(cp, p_list); 3002 LIST_INSERT_HEAD(&allproc, cp, p_list); 3003 for (;;) { 3004 p = LIST_NEXT(cp, p_list); 3005 if (p == NULL) 3006 break; 3007 LIST_REMOVE(cp, p_list); 3008 LIST_INSERT_AFTER(p, cp, p_list); 3009 PROC_LOCK(p); 3010 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3011 PROC_UNLOCK(p); 3012 continue; 3013 } 3014 if ((p->p_flag & P_WEXIT) != 0) { 3015 seen_exiting = true; 3016 PROC_UNLOCK(p); 3017 continue; 3018 } 3019 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3020 /* 3021 * Stopped processes are tolerated when there 3022 * are no other processes which might continue 3023 * them. P_STOPPED_SINGLE but not 3024 * P_TOTAL_STOP process still has at least one 3025 * thread running. 3026 */ 3027 seen_stopped = true; 3028 PROC_UNLOCK(p); 3029 continue; 3030 } 3031 _PHOLD(p); 3032 sx_xunlock(&allproc_lock); 3033 r = thread_single(p, SINGLE_ALLPROC); 3034 if (r != 0) 3035 restart = true; 3036 else 3037 stopped_some = true; 3038 _PRELE(p); 3039 PROC_UNLOCK(p); 3040 sx_xlock(&allproc_lock); 3041 } 3042 /* Catch forked children we did not see in iteration. */ 3043 if (gen != allproc_gen) 3044 restart = true; 3045 sx_xunlock(&allproc_lock); 3046 if (restart || stopped_some || seen_exiting || seen_stopped) { 3047 kern_yield(PRI_USER); 3048 goto allproc_loop; 3049 } 3050 } 3051 3052 void 3053 resume_all_proc(void) 3054 { 3055 struct proc *cp, *p; 3056 3057 cp = curproc; 3058 sx_xlock(&allproc_lock); 3059 LIST_REMOVE(cp, p_list); 3060 LIST_INSERT_HEAD(&allproc, cp, p_list); 3061 for (;;) { 3062 p = LIST_NEXT(cp, p_list); 3063 if (p == NULL) 3064 break; 3065 LIST_REMOVE(cp, p_list); 3066 LIST_INSERT_AFTER(p, cp, p_list); 3067 PROC_LOCK(p); 3068 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3069 sx_xunlock(&allproc_lock); 3070 _PHOLD(p); 3071 thread_single_end(p, SINGLE_ALLPROC); 3072 _PRELE(p); 3073 PROC_UNLOCK(p); 3074 sx_xlock(&allproc_lock); 3075 } else { 3076 PROC_UNLOCK(p); 3077 } 3078 } 3079 sx_xunlock(&allproc_lock); 3080 } 3081 3082 /* #define TOTAL_STOP_DEBUG 1 */ 3083 #ifdef TOTAL_STOP_DEBUG 3084 volatile static int ap_resume; 3085 #include <sys/mount.h> 3086 3087 static int 3088 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3089 { 3090 int error, val; 3091 3092 val = 0; 3093 ap_resume = 0; 3094 error = sysctl_handle_int(oidp, &val, 0, req); 3095 if (error != 0 || req->newptr == NULL) 3096 return (error); 3097 if (val != 0) { 3098 stop_all_proc(); 3099 syncer_suspend(); 3100 while (ap_resume == 0) 3101 ; 3102 syncer_resume(); 3103 resume_all_proc(); 3104 } 3105 return (0); 3106 } 3107 3108 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3109 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3110 sysctl_debug_stop_all_proc, "I", 3111 ""); 3112 #endif 3113