xref: /freebsd/sys/kern/kern_proc.c (revision 41ce62251c1ed0003fc13b8735de5f9eff4c5c03)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitstring.h>
45 #include <sys/elf.h>
46 #include <sys/eventhandler.h>
47 #include <sys/exec.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/limits.h>
51 #include <sys/lock.h>
52 #include <sys/loginclass.h>
53 #include <sys/malloc.h>
54 #include <sys/mman.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/smp.h>
66 #include <sys/stack.h>
67 #include <sys/stat.h>
68 #include <sys/sysctl.h>
69 #include <sys/filedesc.h>
70 #include <sys/tty.h>
71 #include <sys/signalvar.h>
72 #include <sys/sdt.h>
73 #include <sys/sx.h>
74 #include <sys/user.h>
75 #include <sys/vnode.h>
76 #include <sys/wait.h>
77 
78 #ifdef DDB
79 #include <ddb/ddb.h>
80 #endif
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_extern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/uma.h>
90 
91 #include <fs/devfs/devfs.h>
92 
93 #ifdef COMPAT_FREEBSD32
94 #include <compat/freebsd32/freebsd32.h>
95 #include <compat/freebsd32/freebsd32_util.h>
96 #endif
97 
98 SDT_PROVIDER_DEFINE(proc);
99 
100 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
101 MALLOC_DEFINE(M_SESSION, "session", "session header");
102 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
103 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
104 
105 static void fixjobc_enterpgrp(struct proc *p, struct pgrp *pgrp);
106 static void doenterpgrp(struct proc *, struct pgrp *);
107 static void orphanpg(struct pgrp *pg);
108 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
109 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
110 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
111     int preferthread);
112 static void pgadjustjobc(struct pgrp *pgrp, bool entering);
113 static void pgdelete(struct pgrp *);
114 static int proc_ctor(void *mem, int size, void *arg, int flags);
115 static void proc_dtor(void *mem, int size, void *arg);
116 static int proc_init(void *mem, int size, int flags);
117 static void proc_fini(void *mem, int size);
118 static void pargs_free(struct pargs *pa);
119 
120 /*
121  * Other process lists
122  */
123 struct pidhashhead *pidhashtbl;
124 struct sx *pidhashtbl_lock;
125 u_long pidhash;
126 u_long pidhashlock;
127 struct pgrphashhead *pgrphashtbl;
128 u_long pgrphash;
129 struct proclist allproc;
130 struct sx __exclusive_cache_line allproc_lock;
131 struct sx __exclusive_cache_line proctree_lock;
132 struct mtx __exclusive_cache_line ppeers_lock;
133 struct mtx __exclusive_cache_line procid_lock;
134 uma_zone_t proc_zone;
135 
136 /*
137  * The offset of various fields in struct proc and struct thread.
138  * These are used by kernel debuggers to enumerate kernel threads and
139  * processes.
140  */
141 const int proc_off_p_pid = offsetof(struct proc, p_pid);
142 const int proc_off_p_comm = offsetof(struct proc, p_comm);
143 const int proc_off_p_list = offsetof(struct proc, p_list);
144 const int proc_off_p_threads = offsetof(struct proc, p_threads);
145 const int thread_off_td_tid = offsetof(struct thread, td_tid);
146 const int thread_off_td_name = offsetof(struct thread, td_name);
147 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
148 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
149 const int thread_off_td_plist = offsetof(struct thread, td_plist);
150 
151 EVENTHANDLER_LIST_DEFINE(process_ctor);
152 EVENTHANDLER_LIST_DEFINE(process_dtor);
153 EVENTHANDLER_LIST_DEFINE(process_init);
154 EVENTHANDLER_LIST_DEFINE(process_fini);
155 EVENTHANDLER_LIST_DEFINE(process_exit);
156 EVENTHANDLER_LIST_DEFINE(process_fork);
157 EVENTHANDLER_LIST_DEFINE(process_exec);
158 
159 int kstack_pages = KSTACK_PAGES;
160 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
161     "Kernel stack size in pages");
162 static int vmmap_skip_res_cnt = 0;
163 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
164     &vmmap_skip_res_cnt, 0,
165     "Skip calculation of the pages resident count in kern.proc.vmmap");
166 
167 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
168 #ifdef COMPAT_FREEBSD32
169 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
170 #endif
171 
172 /*
173  * Initialize global process hashing structures.
174  */
175 void
176 procinit(void)
177 {
178 	u_long i;
179 
180 	sx_init(&allproc_lock, "allproc");
181 	sx_init(&proctree_lock, "proctree");
182 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
183 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
184 	LIST_INIT(&allproc);
185 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
186 	pidhashlock = (pidhash + 1) / 64;
187 	if (pidhashlock > 0)
188 		pidhashlock--;
189 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
190 	    M_PROC, M_WAITOK | M_ZERO);
191 	for (i = 0; i < pidhashlock + 1; i++)
192 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
193 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
194 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
195 	    proc_ctor, proc_dtor, proc_init, proc_fini,
196 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197 	uihashinit();
198 }
199 
200 /*
201  * Prepare a proc for use.
202  */
203 static int
204 proc_ctor(void *mem, int size, void *arg, int flags)
205 {
206 	struct proc *p;
207 	struct thread *td;
208 
209 	p = (struct proc *)mem;
210 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
211 	td = FIRST_THREAD_IN_PROC(p);
212 	if (td != NULL) {
213 		/* Make sure all thread constructors are executed */
214 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
215 	}
216 	return (0);
217 }
218 
219 /*
220  * Reclaim a proc after use.
221  */
222 static void
223 proc_dtor(void *mem, int size, void *arg)
224 {
225 	struct proc *p;
226 	struct thread *td;
227 
228 	/* INVARIANTS checks go here */
229 	p = (struct proc *)mem;
230 	td = FIRST_THREAD_IN_PROC(p);
231 	if (td != NULL) {
232 #ifdef INVARIANTS
233 		KASSERT((p->p_numthreads == 1),
234 		    ("bad number of threads in exiting process"));
235 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
236 #endif
237 		/* Free all OSD associated to this thread. */
238 		osd_thread_exit(td);
239 		td_softdep_cleanup(td);
240 		MPASS(td->td_su == NULL);
241 
242 		/* Make sure all thread destructors are executed */
243 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
244 	}
245 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
246 	if (p->p_ksi != NULL)
247 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
248 }
249 
250 /*
251  * Initialize type-stable parts of a proc (when newly created).
252  */
253 static int
254 proc_init(void *mem, int size, int flags)
255 {
256 	struct proc *p;
257 
258 	p = (struct proc *)mem;
259 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
260 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
261 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
262 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
263 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
264 	cv_init(&p->p_pwait, "ppwait");
265 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
266 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
267 	p->p_stats = pstats_alloc();
268 	p->p_pgrp = NULL;
269 	return (0);
270 }
271 
272 /*
273  * UMA should ensure that this function is never called.
274  * Freeing a proc structure would violate type stability.
275  */
276 static void
277 proc_fini(void *mem, int size)
278 {
279 #ifdef notnow
280 	struct proc *p;
281 
282 	p = (struct proc *)mem;
283 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
284 	pstats_free(p->p_stats);
285 	thread_free(FIRST_THREAD_IN_PROC(p));
286 	mtx_destroy(&p->p_mtx);
287 	if (p->p_ksi != NULL)
288 		ksiginfo_free(p->p_ksi);
289 #else
290 	panic("proc reclaimed");
291 #endif
292 }
293 
294 /*
295  * PID space management.
296  *
297  * These bitmaps are used by fork_findpid.
298  */
299 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
300 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
301 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
302 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
303 
304 static bitstr_t *proc_id_array[] = {
305 	proc_id_pidmap,
306 	proc_id_grpidmap,
307 	proc_id_sessidmap,
308 	proc_id_reapmap,
309 };
310 
311 void
312 proc_id_set(int type, pid_t id)
313 {
314 
315 	KASSERT(type >= 0 && type < nitems(proc_id_array),
316 	    ("invalid type %d\n", type));
317 	mtx_lock(&procid_lock);
318 	KASSERT(bit_test(proc_id_array[type], id) == 0,
319 	    ("bit %d already set in %d\n", id, type));
320 	bit_set(proc_id_array[type], id);
321 	mtx_unlock(&procid_lock);
322 }
323 
324 void
325 proc_id_set_cond(int type, pid_t id)
326 {
327 
328 	KASSERT(type >= 0 && type < nitems(proc_id_array),
329 	    ("invalid type %d\n", type));
330 	if (bit_test(proc_id_array[type], id))
331 		return;
332 	mtx_lock(&procid_lock);
333 	bit_set(proc_id_array[type], id);
334 	mtx_unlock(&procid_lock);
335 }
336 
337 void
338 proc_id_clear(int type, pid_t id)
339 {
340 
341 	KASSERT(type >= 0 && type < nitems(proc_id_array),
342 	    ("invalid type %d\n", type));
343 	mtx_lock(&procid_lock);
344 	KASSERT(bit_test(proc_id_array[type], id) != 0,
345 	    ("bit %d not set in %d\n", id, type));
346 	bit_clear(proc_id_array[type], id);
347 	mtx_unlock(&procid_lock);
348 }
349 
350 /*
351  * Is p an inferior of the current process?
352  */
353 int
354 inferior(struct proc *p)
355 {
356 
357 	sx_assert(&proctree_lock, SX_LOCKED);
358 	PROC_LOCK_ASSERT(p, MA_OWNED);
359 	for (; p != curproc; p = proc_realparent(p)) {
360 		if (p->p_pid == 0)
361 			return (0);
362 	}
363 	return (1);
364 }
365 
366 /*
367  * Shared lock all the pid hash lists.
368  */
369 void
370 pidhash_slockall(void)
371 {
372 	u_long i;
373 
374 	for (i = 0; i < pidhashlock + 1; i++)
375 		sx_slock(&pidhashtbl_lock[i]);
376 }
377 
378 /*
379  * Shared unlock all the pid hash lists.
380  */
381 void
382 pidhash_sunlockall(void)
383 {
384 	u_long i;
385 
386 	for (i = 0; i < pidhashlock + 1; i++)
387 		sx_sunlock(&pidhashtbl_lock[i]);
388 }
389 
390 /*
391  * Similar to pfind_any(), this function finds zombies.
392  */
393 struct proc *
394 pfind_any_locked(pid_t pid)
395 {
396 	struct proc *p;
397 
398 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
399 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
400 		if (p->p_pid == pid) {
401 			PROC_LOCK(p);
402 			if (p->p_state == PRS_NEW) {
403 				PROC_UNLOCK(p);
404 				p = NULL;
405 			}
406 			break;
407 		}
408 	}
409 	return (p);
410 }
411 
412 /*
413  * Locate a process by number.
414  *
415  * By not returning processes in the PRS_NEW state, we allow callers to avoid
416  * testing for that condition to avoid dereferencing p_ucred, et al.
417  */
418 static __always_inline struct proc *
419 _pfind(pid_t pid, bool zombie)
420 {
421 	struct proc *p;
422 
423 	p = curproc;
424 	if (p->p_pid == pid) {
425 		PROC_LOCK(p);
426 		return (p);
427 	}
428 	sx_slock(PIDHASHLOCK(pid));
429 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
430 		if (p->p_pid == pid) {
431 			PROC_LOCK(p);
432 			if (p->p_state == PRS_NEW ||
433 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
434 				PROC_UNLOCK(p);
435 				p = NULL;
436 			}
437 			break;
438 		}
439 	}
440 	sx_sunlock(PIDHASHLOCK(pid));
441 	return (p);
442 }
443 
444 struct proc *
445 pfind(pid_t pid)
446 {
447 
448 	return (_pfind(pid, false));
449 }
450 
451 /*
452  * Same as pfind but allow zombies.
453  */
454 struct proc *
455 pfind_any(pid_t pid)
456 {
457 
458 	return (_pfind(pid, true));
459 }
460 
461 /*
462  * Locate a process group by number.
463  * The caller must hold proctree_lock.
464  */
465 struct pgrp *
466 pgfind(pid_t pgid)
467 {
468 	struct pgrp *pgrp;
469 
470 	sx_assert(&proctree_lock, SX_LOCKED);
471 
472 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
473 		if (pgrp->pg_id == pgid) {
474 			PGRP_LOCK(pgrp);
475 			return (pgrp);
476 		}
477 	}
478 	return (NULL);
479 }
480 
481 /*
482  * Locate process and do additional manipulations, depending on flags.
483  */
484 int
485 pget(pid_t pid, int flags, struct proc **pp)
486 {
487 	struct proc *p;
488 	struct thread *td1;
489 	int error;
490 
491 	p = curproc;
492 	if (p->p_pid == pid) {
493 		PROC_LOCK(p);
494 	} else {
495 		p = NULL;
496 		if (pid <= PID_MAX) {
497 			if ((flags & PGET_NOTWEXIT) == 0)
498 				p = pfind_any(pid);
499 			else
500 				p = pfind(pid);
501 		} else if ((flags & PGET_NOTID) == 0) {
502 			td1 = tdfind(pid, -1);
503 			if (td1 != NULL)
504 				p = td1->td_proc;
505 		}
506 		if (p == NULL)
507 			return (ESRCH);
508 		if ((flags & PGET_CANSEE) != 0) {
509 			error = p_cansee(curthread, p);
510 			if (error != 0)
511 				goto errout;
512 		}
513 	}
514 	if ((flags & PGET_CANDEBUG) != 0) {
515 		error = p_candebug(curthread, p);
516 		if (error != 0)
517 			goto errout;
518 	}
519 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
520 		error = EPERM;
521 		goto errout;
522 	}
523 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
524 		error = ESRCH;
525 		goto errout;
526 	}
527 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
528 		/*
529 		 * XXXRW: Not clear ESRCH is the right error during proc
530 		 * execve().
531 		 */
532 		error = ESRCH;
533 		goto errout;
534 	}
535 	if ((flags & PGET_HOLD) != 0) {
536 		_PHOLD(p);
537 		PROC_UNLOCK(p);
538 	}
539 	*pp = p;
540 	return (0);
541 errout:
542 	PROC_UNLOCK(p);
543 	return (error);
544 }
545 
546 /*
547  * Create a new process group.
548  * pgid must be equal to the pid of p.
549  * Begin a new session if required.
550  */
551 int
552 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
553 {
554 
555 	sx_assert(&proctree_lock, SX_XLOCKED);
556 
557 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
558 	KASSERT(p->p_pid == pgid,
559 	    ("enterpgrp: new pgrp and pid != pgid"));
560 	KASSERT(pgfind(pgid) == NULL,
561 	    ("enterpgrp: pgrp with pgid exists"));
562 	KASSERT(!SESS_LEADER(p),
563 	    ("enterpgrp: session leader attempted setpgrp"));
564 
565 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
566 
567 	if (sess != NULL) {
568 		/*
569 		 * new session
570 		 */
571 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
572 		PROC_LOCK(p);
573 		p->p_flag &= ~P_CONTROLT;
574 		PROC_UNLOCK(p);
575 		PGRP_LOCK(pgrp);
576 		sess->s_leader = p;
577 		sess->s_sid = p->p_pid;
578 		proc_id_set(PROC_ID_SESSION, p->p_pid);
579 		refcount_init(&sess->s_count, 1);
580 		sess->s_ttyvp = NULL;
581 		sess->s_ttydp = NULL;
582 		sess->s_ttyp = NULL;
583 		bcopy(p->p_session->s_login, sess->s_login,
584 			    sizeof(sess->s_login));
585 		pgrp->pg_session = sess;
586 		KASSERT(p == curproc,
587 		    ("enterpgrp: mksession and p != curproc"));
588 	} else {
589 		pgrp->pg_session = p->p_session;
590 		sess_hold(pgrp->pg_session);
591 		PGRP_LOCK(pgrp);
592 	}
593 	pgrp->pg_id = pgid;
594 	proc_id_set(PROC_ID_GROUP, p->p_pid);
595 	LIST_INIT(&pgrp->pg_members);
596 
597 	/*
598 	 * As we have an exclusive lock of proctree_lock,
599 	 * this should not deadlock.
600 	 */
601 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
602 	pgrp->pg_jobc = 0;
603 	SLIST_INIT(&pgrp->pg_sigiolst);
604 	PGRP_UNLOCK(pgrp);
605 
606 	doenterpgrp(p, pgrp);
607 
608 	return (0);
609 }
610 
611 /*
612  * Move p to an existing process group
613  */
614 int
615 enterthispgrp(struct proc *p, struct pgrp *pgrp)
616 {
617 
618 	sx_assert(&proctree_lock, SX_XLOCKED);
619 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
620 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
621 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
622 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
623 	KASSERT(pgrp->pg_session == p->p_session,
624 		("%s: pgrp's session %p, p->p_session %p.\n",
625 		__func__,
626 		pgrp->pg_session,
627 		p->p_session));
628 	KASSERT(pgrp != p->p_pgrp,
629 		("%s: p belongs to pgrp.", __func__));
630 
631 	doenterpgrp(p, pgrp);
632 
633 	return (0);
634 }
635 
636 /*
637  * If true, any child of q which belongs to group pgrp, qualifies the
638  * process group pgrp as not orphaned.
639  */
640 static bool
641 isjobproc(struct proc *q, struct pgrp *pgrp)
642 {
643 	sx_assert(&proctree_lock, SX_LOCKED);
644 	return (q->p_pgrp != pgrp &&
645 	    q->p_pgrp->pg_session == pgrp->pg_session);
646 }
647 
648 static struct proc *
649 jobc_reaper(struct proc *p)
650 {
651 	struct proc *pp;
652 
653 	sx_assert(&proctree_lock, SX_LOCKED);
654 
655 	for (pp = p;;) {
656 		pp = pp->p_reaper;
657 		if (pp->p_reaper == pp ||
658 		    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
659 			return (pp);
660 	}
661 }
662 
663 static struct proc *
664 jobc_parent(struct proc *p)
665 {
666 	struct proc *pp;
667 
668 	sx_assert(&proctree_lock, SX_LOCKED);
669 
670 	pp = proc_realparent(p);
671 	if (pp->p_pptr == NULL ||
672 	    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
673 		return (pp);
674 	return (jobc_reaper(pp));
675 }
676 
677 #ifdef INVARIANTS
678 static void
679 check_pgrp_jobc(struct pgrp *pgrp)
680 {
681 	struct proc *q;
682 	int cnt;
683 
684 	sx_assert(&proctree_lock, SX_LOCKED);
685 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
686 
687 	cnt = 0;
688 	PGRP_LOCK(pgrp);
689 	LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
690 		if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
691 		    q->p_pptr == NULL)
692 			continue;
693 		if (isjobproc(jobc_parent(q), pgrp))
694 			cnt++;
695 	}
696 	KASSERT(pgrp->pg_jobc == cnt, ("pgrp %d %p pg_jobc %d cnt %d",
697 	    pgrp->pg_id, pgrp, pgrp->pg_jobc, cnt));
698 	PGRP_UNLOCK(pgrp);
699 }
700 #endif
701 
702 /*
703  * Move p to a process group
704  */
705 static void
706 doenterpgrp(struct proc *p, struct pgrp *pgrp)
707 {
708 	struct pgrp *savepgrp;
709 
710 	sx_assert(&proctree_lock, SX_XLOCKED);
711 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
712 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
713 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
714 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
715 
716 	savepgrp = p->p_pgrp;
717 
718 #ifdef INVARIANTS
719 	check_pgrp_jobc(pgrp);
720 	check_pgrp_jobc(savepgrp);
721 #endif
722 
723 	/*
724 	 * Adjust eligibility of affected pgrps to participate in job control.
725 	 */
726 	fixjobc_enterpgrp(p, pgrp);
727 
728 	PGRP_LOCK(pgrp);
729 	PGRP_LOCK(savepgrp);
730 	PROC_LOCK(p);
731 	LIST_REMOVE(p, p_pglist);
732 	p->p_pgrp = pgrp;
733 	PROC_UNLOCK(p);
734 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
735 	PGRP_UNLOCK(savepgrp);
736 	PGRP_UNLOCK(pgrp);
737 	if (LIST_EMPTY(&savepgrp->pg_members))
738 		pgdelete(savepgrp);
739 }
740 
741 /*
742  * remove process from process group
743  */
744 int
745 leavepgrp(struct proc *p)
746 {
747 	struct pgrp *savepgrp;
748 
749 	sx_assert(&proctree_lock, SX_XLOCKED);
750 	savepgrp = p->p_pgrp;
751 	PGRP_LOCK(savepgrp);
752 	PROC_LOCK(p);
753 	LIST_REMOVE(p, p_pglist);
754 	p->p_pgrp = NULL;
755 	PROC_UNLOCK(p);
756 	PGRP_UNLOCK(savepgrp);
757 	if (LIST_EMPTY(&savepgrp->pg_members))
758 		pgdelete(savepgrp);
759 	return (0);
760 }
761 
762 /*
763  * delete a process group
764  */
765 static void
766 pgdelete(struct pgrp *pgrp)
767 {
768 	struct session *savesess;
769 	struct tty *tp;
770 
771 	sx_assert(&proctree_lock, SX_XLOCKED);
772 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
773 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
774 
775 	/*
776 	 * Reset any sigio structures pointing to us as a result of
777 	 * F_SETOWN with our pgid.
778 	 */
779 	funsetownlst(&pgrp->pg_sigiolst);
780 
781 	PGRP_LOCK(pgrp);
782 	tp = pgrp->pg_session->s_ttyp;
783 	LIST_REMOVE(pgrp, pg_hash);
784 	savesess = pgrp->pg_session;
785 	PGRP_UNLOCK(pgrp);
786 
787 	/* Remove the reference to the pgrp before deallocating it. */
788 	if (tp != NULL) {
789 		tty_lock(tp);
790 		tty_rel_pgrp(tp, pgrp);
791 	}
792 
793 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
794 	mtx_destroy(&pgrp->pg_mtx);
795 	free(pgrp, M_PGRP);
796 	sess_release(savesess);
797 }
798 
799 static void
800 pgadjustjobc(struct pgrp *pgrp, bool entering)
801 {
802 
803 	PGRP_LOCK(pgrp);
804 	if (entering) {
805 		MPASS(pgrp->pg_jobc >= 0);
806 		pgrp->pg_jobc++;
807 	} else {
808 		MPASS(pgrp->pg_jobc > 0);
809 		--pgrp->pg_jobc;
810 		if (pgrp->pg_jobc == 0)
811 			orphanpg(pgrp);
812 	}
813 	PGRP_UNLOCK(pgrp);
814 }
815 
816 static void
817 fixjobc_enterpgrp_q(struct pgrp *pgrp, struct proc *p, struct proc *q, bool adj)
818 {
819 	struct pgrp *childpgrp;
820 	bool future_jobc;
821 
822 	sx_assert(&proctree_lock, SX_LOCKED);
823 
824 	if ((q->p_treeflag & P_TREE_GRPEXITED) != 0)
825 		return;
826 	childpgrp = q->p_pgrp;
827 	future_jobc = childpgrp != pgrp &&
828 	    childpgrp->pg_session == pgrp->pg_session;
829 
830 	if ((adj && !isjobproc(p, childpgrp) && future_jobc) ||
831 	    (!adj && isjobproc(p, childpgrp) && !future_jobc))
832 		pgadjustjobc(childpgrp, adj);
833 }
834 
835 /*
836  * Adjust pgrp jobc counters when specified process changes process group.
837  * We count the number of processes in each process group that "qualify"
838  * the group for terminal job control (those with a parent in a different
839  * process group of the same session).  If that count reaches zero, the
840  * process group becomes orphaned.  Check both the specified process'
841  * process group and that of its children.
842  * We increment eligibility counts before decrementing, otherwise we
843  * could reach 0 spuriously during the decrement.
844  */
845 static void
846 fixjobc_enterpgrp(struct proc *p, struct pgrp *pgrp)
847 {
848 	struct proc *q;
849 
850 	sx_assert(&proctree_lock, SX_LOCKED);
851 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
852 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
853 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
854 
855 	if (p->p_pgrp == pgrp)
856 		return;
857 
858 	if (isjobproc(jobc_parent(p), pgrp))
859 		pgadjustjobc(pgrp, true);
860 	LIST_FOREACH(q, &p->p_children, p_sibling) {
861 		if ((q->p_treeflag & P_TREE_ORPHANED) != 0)
862 			continue;
863 		fixjobc_enterpgrp_q(pgrp, p, q, true);
864 	}
865 	LIST_FOREACH(q, &p->p_orphans, p_orphan)
866 		fixjobc_enterpgrp_q(pgrp, p, q, true);
867 
868 	if (isjobproc(jobc_parent(p), p->p_pgrp))
869 		pgadjustjobc(p->p_pgrp, false);
870 	LIST_FOREACH(q, &p->p_children, p_sibling) {
871 		if ((q->p_treeflag & P_TREE_ORPHANED) != 0)
872 			continue;
873 		fixjobc_enterpgrp_q(pgrp, p, q, false);
874 	}
875 	LIST_FOREACH(q, &p->p_orphans, p_orphan)
876 		fixjobc_enterpgrp_q(pgrp, p, q, false);
877 }
878 
879 static void
880 fixjobc_kill_q(struct proc *p, struct proc *q, bool adj)
881 {
882 	struct pgrp *childpgrp;
883 
884 	sx_assert(&proctree_lock, SX_LOCKED);
885 
886 	if ((q->p_treeflag & P_TREE_GRPEXITED) != 0)
887 		return;
888 	childpgrp = q->p_pgrp;
889 
890 	if ((adj && isjobproc(jobc_reaper(q), childpgrp) &&
891 	    !isjobproc(p, childpgrp)) || (!adj && !isjobproc(jobc_reaper(q),
892 	    childpgrp) && isjobproc(p, childpgrp)))
893 		pgadjustjobc(childpgrp, adj);
894 }
895 
896 static void
897 fixjobc_kill(struct proc *p)
898 {
899 	struct proc *q;
900 	struct pgrp *pgrp;
901 
902 	sx_assert(&proctree_lock, SX_LOCKED);
903 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
904 	pgrp = p->p_pgrp;
905 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
906 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
907 #ifdef INVARIANTS
908 	check_pgrp_jobc(pgrp);
909 #endif
910 
911 	/*
912 	 * p no longer affects process group orphanage for children.
913 	 * It is marked by the flag because p is only physically
914 	 * removed from its process group on wait(2).
915 	 */
916 	MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
917 	p->p_treeflag |= P_TREE_GRPEXITED;
918 
919 	/*
920 	 * Check p's parent to see whether p qualifies its own process
921 	 * group; if so, adjust count for p's process group.
922 	 */
923 	if (isjobproc(jobc_parent(p), pgrp))
924 		pgadjustjobc(pgrp, false);
925 
926 	/*
927 	 * Check this process' children to see whether they qualify
928 	 * their process groups after reparenting to reaper.  If so,
929 	 * adjust counts for children's process groups.
930 	 */
931 	LIST_FOREACH(q, &p->p_children, p_sibling) {
932 		if ((q->p_treeflag & P_TREE_ORPHANED) != 0)
933 			continue;
934 		fixjobc_kill_q(p, q, true);
935 	}
936 	LIST_FOREACH(q, &p->p_orphans, p_orphan)
937 		fixjobc_kill_q(p, q, true);
938 	LIST_FOREACH(q, &p->p_children, p_sibling) {
939 		if ((q->p_treeflag & P_TREE_ORPHANED) != 0)
940 			continue;
941 		fixjobc_kill_q(p, q, false);
942 	}
943 	LIST_FOREACH(q, &p->p_orphans, p_orphan)
944 		fixjobc_kill_q(p, q, false);
945 
946 #ifdef INVARIANTS
947 	check_pgrp_jobc(pgrp);
948 #endif
949 }
950 
951 void
952 killjobc(void)
953 {
954 	struct session *sp;
955 	struct tty *tp;
956 	struct proc *p;
957 	struct vnode *ttyvp;
958 
959 	p = curproc;
960 	MPASS(p->p_flag & P_WEXIT);
961 	sx_assert(&proctree_lock, SX_LOCKED);
962 
963 	if (SESS_LEADER(p)) {
964 		sp = p->p_session;
965 
966 		/*
967 		 * s_ttyp is not zero'd; we use this to indicate that
968 		 * the session once had a controlling terminal. (for
969 		 * logging and informational purposes)
970 		 */
971 		SESS_LOCK(sp);
972 		ttyvp = sp->s_ttyvp;
973 		tp = sp->s_ttyp;
974 		sp->s_ttyvp = NULL;
975 		sp->s_ttydp = NULL;
976 		sp->s_leader = NULL;
977 		SESS_UNLOCK(sp);
978 
979 		/*
980 		 * Signal foreground pgrp and revoke access to
981 		 * controlling terminal if it has not been revoked
982 		 * already.
983 		 *
984 		 * Because the TTY may have been revoked in the mean
985 		 * time and could already have a new session associated
986 		 * with it, make sure we don't send a SIGHUP to a
987 		 * foreground process group that does not belong to this
988 		 * session.
989 		 */
990 
991 		if (tp != NULL) {
992 			tty_lock(tp);
993 			if (tp->t_session == sp)
994 				tty_signal_pgrp(tp, SIGHUP);
995 			tty_unlock(tp);
996 		}
997 
998 		if (ttyvp != NULL) {
999 			sx_xunlock(&proctree_lock);
1000 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
1001 				VOP_REVOKE(ttyvp, REVOKEALL);
1002 				VOP_UNLOCK(ttyvp);
1003 			}
1004 			devfs_ctty_unref(ttyvp);
1005 			sx_xlock(&proctree_lock);
1006 		}
1007 	}
1008 	fixjobc_kill(p);
1009 }
1010 
1011 /*
1012  * A process group has become orphaned;
1013  * if there are any stopped processes in the group,
1014  * hang-up all process in that group.
1015  */
1016 static void
1017 orphanpg(struct pgrp *pg)
1018 {
1019 	struct proc *p;
1020 
1021 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
1022 
1023 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1024 		PROC_LOCK(p);
1025 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
1026 			PROC_UNLOCK(p);
1027 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1028 				PROC_LOCK(p);
1029 				kern_psignal(p, SIGHUP);
1030 				kern_psignal(p, SIGCONT);
1031 				PROC_UNLOCK(p);
1032 			}
1033 			return;
1034 		}
1035 		PROC_UNLOCK(p);
1036 	}
1037 }
1038 
1039 void
1040 sess_hold(struct session *s)
1041 {
1042 
1043 	refcount_acquire(&s->s_count);
1044 }
1045 
1046 void
1047 sess_release(struct session *s)
1048 {
1049 
1050 	if (refcount_release(&s->s_count)) {
1051 		if (s->s_ttyp != NULL) {
1052 			tty_lock(s->s_ttyp);
1053 			tty_rel_sess(s->s_ttyp, s);
1054 		}
1055 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
1056 		mtx_destroy(&s->s_mtx);
1057 		free(s, M_SESSION);
1058 	}
1059 }
1060 
1061 #ifdef DDB
1062 
1063 static void
1064 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
1065 {
1066 	db_printf(
1067 	    "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
1068 	    p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
1069 	    p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
1070 	    p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
1071 }
1072 
1073 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
1074 {
1075 	struct pgrp *pgrp;
1076 	struct proc *p;
1077 	int i;
1078 
1079 	for (i = 0; i <= pgrphash; i++) {
1080 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
1081 			db_printf("indx %d\n", i);
1082 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1083 				db_printf(
1084 			"  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1085 				    pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1086 				    pgrp->pg_session->s_count,
1087 				    LIST_FIRST(&pgrp->pg_members));
1088 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1089 					db_print_pgrp_one(pgrp, p);
1090 			}
1091 		}
1092 	}
1093 }
1094 #endif /* DDB */
1095 
1096 /*
1097  * Calculate the kinfo_proc members which contain process-wide
1098  * informations.
1099  * Must be called with the target process locked.
1100  */
1101 static void
1102 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1103 {
1104 	struct thread *td;
1105 
1106 	PROC_LOCK_ASSERT(p, MA_OWNED);
1107 
1108 	kp->ki_estcpu = 0;
1109 	kp->ki_pctcpu = 0;
1110 	FOREACH_THREAD_IN_PROC(p, td) {
1111 		thread_lock(td);
1112 		kp->ki_pctcpu += sched_pctcpu(td);
1113 		kp->ki_estcpu += sched_estcpu(td);
1114 		thread_unlock(td);
1115 	}
1116 }
1117 
1118 /*
1119  * Clear kinfo_proc and fill in any information that is common
1120  * to all threads in the process.
1121  * Must be called with the target process locked.
1122  */
1123 static void
1124 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1125 {
1126 	struct thread *td0;
1127 	struct tty *tp;
1128 	struct session *sp;
1129 	struct ucred *cred;
1130 	struct sigacts *ps;
1131 	struct timeval boottime;
1132 
1133 	PROC_LOCK_ASSERT(p, MA_OWNED);
1134 	bzero(kp, sizeof(*kp));
1135 
1136 	kp->ki_structsize = sizeof(*kp);
1137 	kp->ki_paddr = p;
1138 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
1139 	kp->ki_args = p->p_args;
1140 	kp->ki_textvp = p->p_textvp;
1141 #ifdef KTRACE
1142 	kp->ki_tracep = p->p_tracevp;
1143 	kp->ki_traceflag = p->p_traceflag;
1144 #endif
1145 	kp->ki_fd = p->p_fd;
1146 	kp->ki_vmspace = p->p_vmspace;
1147 	kp->ki_flag = p->p_flag;
1148 	kp->ki_flag2 = p->p_flag2;
1149 	cred = p->p_ucred;
1150 	if (cred) {
1151 		kp->ki_uid = cred->cr_uid;
1152 		kp->ki_ruid = cred->cr_ruid;
1153 		kp->ki_svuid = cred->cr_svuid;
1154 		kp->ki_cr_flags = 0;
1155 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
1156 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1157 		/* XXX bde doesn't like KI_NGROUPS */
1158 		if (cred->cr_ngroups > KI_NGROUPS) {
1159 			kp->ki_ngroups = KI_NGROUPS;
1160 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1161 		} else
1162 			kp->ki_ngroups = cred->cr_ngroups;
1163 		bcopy(cred->cr_groups, kp->ki_groups,
1164 		    kp->ki_ngroups * sizeof(gid_t));
1165 		kp->ki_rgid = cred->cr_rgid;
1166 		kp->ki_svgid = cred->cr_svgid;
1167 		/* If jailed(cred), emulate the old P_JAILED flag. */
1168 		if (jailed(cred)) {
1169 			kp->ki_flag |= P_JAILED;
1170 			/* If inside the jail, use 0 as a jail ID. */
1171 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
1172 				kp->ki_jid = cred->cr_prison->pr_id;
1173 		}
1174 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1175 		    sizeof(kp->ki_loginclass));
1176 	}
1177 	ps = p->p_sigacts;
1178 	if (ps) {
1179 		mtx_lock(&ps->ps_mtx);
1180 		kp->ki_sigignore = ps->ps_sigignore;
1181 		kp->ki_sigcatch = ps->ps_sigcatch;
1182 		mtx_unlock(&ps->ps_mtx);
1183 	}
1184 	if (p->p_state != PRS_NEW &&
1185 	    p->p_state != PRS_ZOMBIE &&
1186 	    p->p_vmspace != NULL) {
1187 		struct vmspace *vm = p->p_vmspace;
1188 
1189 		kp->ki_size = vm->vm_map.size;
1190 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1191 		FOREACH_THREAD_IN_PROC(p, td0) {
1192 			if (!TD_IS_SWAPPED(td0))
1193 				kp->ki_rssize += td0->td_kstack_pages;
1194 		}
1195 		kp->ki_swrss = vm->vm_swrss;
1196 		kp->ki_tsize = vm->vm_tsize;
1197 		kp->ki_dsize = vm->vm_dsize;
1198 		kp->ki_ssize = vm->vm_ssize;
1199 	} else if (p->p_state == PRS_ZOMBIE)
1200 		kp->ki_stat = SZOMB;
1201 	if (kp->ki_flag & P_INMEM)
1202 		kp->ki_sflag = PS_INMEM;
1203 	else
1204 		kp->ki_sflag = 0;
1205 	/* Calculate legacy swtime as seconds since 'swtick'. */
1206 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
1207 	kp->ki_pid = p->p_pid;
1208 	kp->ki_nice = p->p_nice;
1209 	kp->ki_fibnum = p->p_fibnum;
1210 	kp->ki_start = p->p_stats->p_start;
1211 	getboottime(&boottime);
1212 	timevaladd(&kp->ki_start, &boottime);
1213 	PROC_STATLOCK(p);
1214 	rufetch(p, &kp->ki_rusage);
1215 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1216 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1217 	PROC_STATUNLOCK(p);
1218 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1219 	/* Some callers want child times in a single value. */
1220 	kp->ki_childtime = kp->ki_childstime;
1221 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1222 
1223 	FOREACH_THREAD_IN_PROC(p, td0)
1224 		kp->ki_cow += td0->td_cow;
1225 
1226 	tp = NULL;
1227 	if (p->p_pgrp) {
1228 		kp->ki_pgid = p->p_pgrp->pg_id;
1229 		kp->ki_jobc = p->p_pgrp->pg_jobc;
1230 		sp = p->p_pgrp->pg_session;
1231 
1232 		if (sp != NULL) {
1233 			kp->ki_sid = sp->s_sid;
1234 			SESS_LOCK(sp);
1235 			strlcpy(kp->ki_login, sp->s_login,
1236 			    sizeof(kp->ki_login));
1237 			if (sp->s_ttyvp)
1238 				kp->ki_kiflag |= KI_CTTY;
1239 			if (SESS_LEADER(p))
1240 				kp->ki_kiflag |= KI_SLEADER;
1241 			/* XXX proctree_lock */
1242 			tp = sp->s_ttyp;
1243 			SESS_UNLOCK(sp);
1244 		}
1245 	}
1246 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1247 		kp->ki_tdev = tty_udev(tp);
1248 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1249 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1250 		if (tp->t_session)
1251 			kp->ki_tsid = tp->t_session->s_sid;
1252 	} else {
1253 		kp->ki_tdev = NODEV;
1254 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1255 	}
1256 	if (p->p_comm[0] != '\0')
1257 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1258 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1259 	    p->p_sysent->sv_name[0] != '\0')
1260 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1261 	kp->ki_siglist = p->p_siglist;
1262 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1263 	kp->ki_acflag = p->p_acflag;
1264 	kp->ki_lock = p->p_lock;
1265 	if (p->p_pptr) {
1266 		kp->ki_ppid = p->p_oppid;
1267 		if (p->p_flag & P_TRACED)
1268 			kp->ki_tracer = p->p_pptr->p_pid;
1269 	}
1270 }
1271 
1272 /*
1273  * Fill in information that is thread specific.  Must be called with
1274  * target process locked.  If 'preferthread' is set, overwrite certain
1275  * process-related fields that are maintained for both threads and
1276  * processes.
1277  */
1278 static void
1279 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1280 {
1281 	struct proc *p;
1282 
1283 	p = td->td_proc;
1284 	kp->ki_tdaddr = td;
1285 	PROC_LOCK_ASSERT(p, MA_OWNED);
1286 
1287 	if (preferthread)
1288 		PROC_STATLOCK(p);
1289 	thread_lock(td);
1290 	if (td->td_wmesg != NULL)
1291 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1292 	else
1293 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1294 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1295 	    sizeof(kp->ki_tdname)) {
1296 		strlcpy(kp->ki_moretdname,
1297 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1298 		    sizeof(kp->ki_moretdname));
1299 	} else {
1300 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1301 	}
1302 	if (TD_ON_LOCK(td)) {
1303 		kp->ki_kiflag |= KI_LOCKBLOCK;
1304 		strlcpy(kp->ki_lockname, td->td_lockname,
1305 		    sizeof(kp->ki_lockname));
1306 	} else {
1307 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1308 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1309 	}
1310 
1311 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1312 		if (TD_ON_RUNQ(td) ||
1313 		    TD_CAN_RUN(td) ||
1314 		    TD_IS_RUNNING(td)) {
1315 			kp->ki_stat = SRUN;
1316 		} else if (P_SHOULDSTOP(p)) {
1317 			kp->ki_stat = SSTOP;
1318 		} else if (TD_IS_SLEEPING(td)) {
1319 			kp->ki_stat = SSLEEP;
1320 		} else if (TD_ON_LOCK(td)) {
1321 			kp->ki_stat = SLOCK;
1322 		} else {
1323 			kp->ki_stat = SWAIT;
1324 		}
1325 	} else if (p->p_state == PRS_ZOMBIE) {
1326 		kp->ki_stat = SZOMB;
1327 	} else {
1328 		kp->ki_stat = SIDL;
1329 	}
1330 
1331 	/* Things in the thread */
1332 	kp->ki_wchan = td->td_wchan;
1333 	kp->ki_pri.pri_level = td->td_priority;
1334 	kp->ki_pri.pri_native = td->td_base_pri;
1335 
1336 	/*
1337 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1338 	 * the maximum u_char CPU value.
1339 	 */
1340 	if (td->td_lastcpu == NOCPU)
1341 		kp->ki_lastcpu_old = NOCPU_OLD;
1342 	else if (td->td_lastcpu > MAXCPU_OLD)
1343 		kp->ki_lastcpu_old = MAXCPU_OLD;
1344 	else
1345 		kp->ki_lastcpu_old = td->td_lastcpu;
1346 
1347 	if (td->td_oncpu == NOCPU)
1348 		kp->ki_oncpu_old = NOCPU_OLD;
1349 	else if (td->td_oncpu > MAXCPU_OLD)
1350 		kp->ki_oncpu_old = MAXCPU_OLD;
1351 	else
1352 		kp->ki_oncpu_old = td->td_oncpu;
1353 
1354 	kp->ki_lastcpu = td->td_lastcpu;
1355 	kp->ki_oncpu = td->td_oncpu;
1356 	kp->ki_tdflags = td->td_flags;
1357 	kp->ki_tid = td->td_tid;
1358 	kp->ki_numthreads = p->p_numthreads;
1359 	kp->ki_pcb = td->td_pcb;
1360 	kp->ki_kstack = (void *)td->td_kstack;
1361 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1362 	kp->ki_pri.pri_class = td->td_pri_class;
1363 	kp->ki_pri.pri_user = td->td_user_pri;
1364 
1365 	if (preferthread) {
1366 		rufetchtd(td, &kp->ki_rusage);
1367 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1368 		kp->ki_pctcpu = sched_pctcpu(td);
1369 		kp->ki_estcpu = sched_estcpu(td);
1370 		kp->ki_cow = td->td_cow;
1371 	}
1372 
1373 	/* We can't get this anymore but ps etc never used it anyway. */
1374 	kp->ki_rqindex = 0;
1375 
1376 	if (preferthread)
1377 		kp->ki_siglist = td->td_siglist;
1378 	kp->ki_sigmask = td->td_sigmask;
1379 	thread_unlock(td);
1380 	if (preferthread)
1381 		PROC_STATUNLOCK(p);
1382 }
1383 
1384 /*
1385  * Fill in a kinfo_proc structure for the specified process.
1386  * Must be called with the target process locked.
1387  */
1388 void
1389 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1390 {
1391 
1392 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1393 
1394 	fill_kinfo_proc_only(p, kp);
1395 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1396 	fill_kinfo_aggregate(p, kp);
1397 }
1398 
1399 struct pstats *
1400 pstats_alloc(void)
1401 {
1402 
1403 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1404 }
1405 
1406 /*
1407  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1408  */
1409 void
1410 pstats_fork(struct pstats *src, struct pstats *dst)
1411 {
1412 
1413 	bzero(&dst->pstat_startzero,
1414 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1415 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1416 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1417 }
1418 
1419 void
1420 pstats_free(struct pstats *ps)
1421 {
1422 
1423 	free(ps, M_SUBPROC);
1424 }
1425 
1426 #ifdef COMPAT_FREEBSD32
1427 
1428 /*
1429  * This function is typically used to copy out the kernel address, so
1430  * it can be replaced by assignment of zero.
1431  */
1432 static inline uint32_t
1433 ptr32_trim(const void *ptr)
1434 {
1435 	uintptr_t uptr;
1436 
1437 	uptr = (uintptr_t)ptr;
1438 	return ((uptr > UINT_MAX) ? 0 : uptr);
1439 }
1440 
1441 #define PTRTRIM_CP(src,dst,fld) \
1442 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1443 
1444 static void
1445 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1446 {
1447 	int i;
1448 
1449 	bzero(ki32, sizeof(struct kinfo_proc32));
1450 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1451 	CP(*ki, *ki32, ki_layout);
1452 	PTRTRIM_CP(*ki, *ki32, ki_args);
1453 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1454 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1455 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1456 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1457 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1458 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1459 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1460 	CP(*ki, *ki32, ki_pid);
1461 	CP(*ki, *ki32, ki_ppid);
1462 	CP(*ki, *ki32, ki_pgid);
1463 	CP(*ki, *ki32, ki_tpgid);
1464 	CP(*ki, *ki32, ki_sid);
1465 	CP(*ki, *ki32, ki_tsid);
1466 	CP(*ki, *ki32, ki_jobc);
1467 	CP(*ki, *ki32, ki_tdev);
1468 	CP(*ki, *ki32, ki_tdev_freebsd11);
1469 	CP(*ki, *ki32, ki_siglist);
1470 	CP(*ki, *ki32, ki_sigmask);
1471 	CP(*ki, *ki32, ki_sigignore);
1472 	CP(*ki, *ki32, ki_sigcatch);
1473 	CP(*ki, *ki32, ki_uid);
1474 	CP(*ki, *ki32, ki_ruid);
1475 	CP(*ki, *ki32, ki_svuid);
1476 	CP(*ki, *ki32, ki_rgid);
1477 	CP(*ki, *ki32, ki_svgid);
1478 	CP(*ki, *ki32, ki_ngroups);
1479 	for (i = 0; i < KI_NGROUPS; i++)
1480 		CP(*ki, *ki32, ki_groups[i]);
1481 	CP(*ki, *ki32, ki_size);
1482 	CP(*ki, *ki32, ki_rssize);
1483 	CP(*ki, *ki32, ki_swrss);
1484 	CP(*ki, *ki32, ki_tsize);
1485 	CP(*ki, *ki32, ki_dsize);
1486 	CP(*ki, *ki32, ki_ssize);
1487 	CP(*ki, *ki32, ki_xstat);
1488 	CP(*ki, *ki32, ki_acflag);
1489 	CP(*ki, *ki32, ki_pctcpu);
1490 	CP(*ki, *ki32, ki_estcpu);
1491 	CP(*ki, *ki32, ki_slptime);
1492 	CP(*ki, *ki32, ki_swtime);
1493 	CP(*ki, *ki32, ki_cow);
1494 	CP(*ki, *ki32, ki_runtime);
1495 	TV_CP(*ki, *ki32, ki_start);
1496 	TV_CP(*ki, *ki32, ki_childtime);
1497 	CP(*ki, *ki32, ki_flag);
1498 	CP(*ki, *ki32, ki_kiflag);
1499 	CP(*ki, *ki32, ki_traceflag);
1500 	CP(*ki, *ki32, ki_stat);
1501 	CP(*ki, *ki32, ki_nice);
1502 	CP(*ki, *ki32, ki_lock);
1503 	CP(*ki, *ki32, ki_rqindex);
1504 	CP(*ki, *ki32, ki_oncpu);
1505 	CP(*ki, *ki32, ki_lastcpu);
1506 
1507 	/* XXX TODO: wrap cpu value as appropriate */
1508 	CP(*ki, *ki32, ki_oncpu_old);
1509 	CP(*ki, *ki32, ki_lastcpu_old);
1510 
1511 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1512 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1513 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1514 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1515 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1516 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1517 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1518 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1519 	CP(*ki, *ki32, ki_tracer);
1520 	CP(*ki, *ki32, ki_flag2);
1521 	CP(*ki, *ki32, ki_fibnum);
1522 	CP(*ki, *ki32, ki_cr_flags);
1523 	CP(*ki, *ki32, ki_jid);
1524 	CP(*ki, *ki32, ki_numthreads);
1525 	CP(*ki, *ki32, ki_tid);
1526 	CP(*ki, *ki32, ki_pri);
1527 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1528 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1529 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1530 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1531 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1532 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1533 	CP(*ki, *ki32, ki_sflag);
1534 	CP(*ki, *ki32, ki_tdflags);
1535 }
1536 #endif
1537 
1538 static ssize_t
1539 kern_proc_out_size(struct proc *p, int flags)
1540 {
1541 	ssize_t size = 0;
1542 
1543 	PROC_LOCK_ASSERT(p, MA_OWNED);
1544 
1545 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1546 #ifdef COMPAT_FREEBSD32
1547 		if ((flags & KERN_PROC_MASK32) != 0) {
1548 			size += sizeof(struct kinfo_proc32);
1549 		} else
1550 #endif
1551 			size += sizeof(struct kinfo_proc);
1552 	} else {
1553 #ifdef COMPAT_FREEBSD32
1554 		if ((flags & KERN_PROC_MASK32) != 0)
1555 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1556 		else
1557 #endif
1558 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
1559 	}
1560 	PROC_UNLOCK(p);
1561 	return (size);
1562 }
1563 
1564 int
1565 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1566 {
1567 	struct thread *td;
1568 	struct kinfo_proc ki;
1569 #ifdef COMPAT_FREEBSD32
1570 	struct kinfo_proc32 ki32;
1571 #endif
1572 	int error;
1573 
1574 	PROC_LOCK_ASSERT(p, MA_OWNED);
1575 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1576 
1577 	error = 0;
1578 	fill_kinfo_proc(p, &ki);
1579 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1580 #ifdef COMPAT_FREEBSD32
1581 		if ((flags & KERN_PROC_MASK32) != 0) {
1582 			freebsd32_kinfo_proc_out(&ki, &ki32);
1583 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1584 				error = ENOMEM;
1585 		} else
1586 #endif
1587 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1588 				error = ENOMEM;
1589 	} else {
1590 		FOREACH_THREAD_IN_PROC(p, td) {
1591 			fill_kinfo_thread(td, &ki, 1);
1592 #ifdef COMPAT_FREEBSD32
1593 			if ((flags & KERN_PROC_MASK32) != 0) {
1594 				freebsd32_kinfo_proc_out(&ki, &ki32);
1595 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1596 					error = ENOMEM;
1597 			} else
1598 #endif
1599 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1600 					error = ENOMEM;
1601 			if (error != 0)
1602 				break;
1603 		}
1604 	}
1605 	PROC_UNLOCK(p);
1606 	return (error);
1607 }
1608 
1609 static int
1610 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1611 {
1612 	struct sbuf sb;
1613 	struct kinfo_proc ki;
1614 	int error, error2;
1615 
1616 	if (req->oldptr == NULL)
1617 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1618 
1619 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1620 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1621 	error = kern_proc_out(p, &sb, flags);
1622 	error2 = sbuf_finish(&sb);
1623 	sbuf_delete(&sb);
1624 	if (error != 0)
1625 		return (error);
1626 	else if (error2 != 0)
1627 		return (error2);
1628 	return (0);
1629 }
1630 
1631 int
1632 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1633 {
1634 	struct proc *p;
1635 	int error, i, j;
1636 
1637 	for (i = 0; i < pidhashlock + 1; i++) {
1638 		sx_slock(&pidhashtbl_lock[i]);
1639 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
1640 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1641 				if (p->p_state == PRS_NEW)
1642 					continue;
1643 				error = cb(p, cbarg);
1644 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1645 				if (error != 0) {
1646 					sx_sunlock(&pidhashtbl_lock[i]);
1647 					return (error);
1648 				}
1649 			}
1650 		}
1651 		sx_sunlock(&pidhashtbl_lock[i]);
1652 	}
1653 	return (0);
1654 }
1655 
1656 struct kern_proc_out_args {
1657 	struct sysctl_req *req;
1658 	int flags;
1659 	int oid_number;
1660 	int *name;
1661 };
1662 
1663 static int
1664 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1665 {
1666 	struct kern_proc_out_args *arg = origarg;
1667 	int *name = arg->name;
1668 	int oid_number = arg->oid_number;
1669 	int flags = arg->flags;
1670 	struct sysctl_req *req = arg->req;
1671 	int error = 0;
1672 
1673 	PROC_LOCK(p);
1674 
1675 	KASSERT(p->p_ucred != NULL,
1676 	    ("process credential is NULL for non-NEW proc"));
1677 	/*
1678 	 * Show a user only appropriate processes.
1679 	 */
1680 	if (p_cansee(curthread, p))
1681 		goto skip;
1682 	/*
1683 	 * TODO - make more efficient (see notes below).
1684 	 * do by session.
1685 	 */
1686 	switch (oid_number) {
1687 	case KERN_PROC_GID:
1688 		if (p->p_ucred->cr_gid != (gid_t)name[0])
1689 			goto skip;
1690 		break;
1691 
1692 	case KERN_PROC_PGRP:
1693 		/* could do this by traversing pgrp */
1694 		if (p->p_pgrp == NULL ||
1695 		    p->p_pgrp->pg_id != (pid_t)name[0])
1696 			goto skip;
1697 		break;
1698 
1699 	case KERN_PROC_RGID:
1700 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
1701 			goto skip;
1702 		break;
1703 
1704 	case KERN_PROC_SESSION:
1705 		if (p->p_session == NULL ||
1706 		    p->p_session->s_sid != (pid_t)name[0])
1707 			goto skip;
1708 		break;
1709 
1710 	case KERN_PROC_TTY:
1711 		if ((p->p_flag & P_CONTROLT) == 0 ||
1712 		    p->p_session == NULL)
1713 			goto skip;
1714 		/* XXX proctree_lock */
1715 		SESS_LOCK(p->p_session);
1716 		if (p->p_session->s_ttyp == NULL ||
1717 		    tty_udev(p->p_session->s_ttyp) !=
1718 		    (dev_t)name[0]) {
1719 			SESS_UNLOCK(p->p_session);
1720 			goto skip;
1721 		}
1722 		SESS_UNLOCK(p->p_session);
1723 		break;
1724 
1725 	case KERN_PROC_UID:
1726 		if (p->p_ucred->cr_uid != (uid_t)name[0])
1727 			goto skip;
1728 		break;
1729 
1730 	case KERN_PROC_RUID:
1731 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
1732 			goto skip;
1733 		break;
1734 
1735 	case KERN_PROC_PROC:
1736 		break;
1737 
1738 	default:
1739 		break;
1740 	}
1741 	error = sysctl_out_proc(p, req, flags);
1742 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1743 	return (error);
1744 skip:
1745 	PROC_UNLOCK(p);
1746 	return (0);
1747 }
1748 
1749 static int
1750 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1751 {
1752 	struct kern_proc_out_args iterarg;
1753 	int *name = (int *)arg1;
1754 	u_int namelen = arg2;
1755 	struct proc *p;
1756 	int flags, oid_number;
1757 	int error = 0;
1758 
1759 	oid_number = oidp->oid_number;
1760 	if (oid_number != KERN_PROC_ALL &&
1761 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1762 		flags = KERN_PROC_NOTHREADS;
1763 	else {
1764 		flags = 0;
1765 		oid_number &= ~KERN_PROC_INC_THREAD;
1766 	}
1767 #ifdef COMPAT_FREEBSD32
1768 	if (req->flags & SCTL_MASK32)
1769 		flags |= KERN_PROC_MASK32;
1770 #endif
1771 	if (oid_number == KERN_PROC_PID) {
1772 		if (namelen != 1)
1773 			return (EINVAL);
1774 		error = sysctl_wire_old_buffer(req, 0);
1775 		if (error)
1776 			return (error);
1777 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1778 		if (error == 0)
1779 			error = sysctl_out_proc(p, req, flags);
1780 		return (error);
1781 	}
1782 
1783 	switch (oid_number) {
1784 	case KERN_PROC_ALL:
1785 		if (namelen != 0)
1786 			return (EINVAL);
1787 		break;
1788 	case KERN_PROC_PROC:
1789 		if (namelen != 0 && namelen != 1)
1790 			return (EINVAL);
1791 		break;
1792 	default:
1793 		if (namelen != 1)
1794 			return (EINVAL);
1795 		break;
1796 	}
1797 
1798 	if (req->oldptr == NULL) {
1799 		/* overestimate by 5 procs */
1800 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1801 		if (error)
1802 			return (error);
1803 	} else {
1804 		error = sysctl_wire_old_buffer(req, 0);
1805 		if (error != 0)
1806 			return (error);
1807 	}
1808 	iterarg.flags = flags;
1809 	iterarg.oid_number = oid_number;
1810 	iterarg.req = req;
1811 	iterarg.name = name;
1812 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1813 	return (error);
1814 }
1815 
1816 struct pargs *
1817 pargs_alloc(int len)
1818 {
1819 	struct pargs *pa;
1820 
1821 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1822 		M_WAITOK);
1823 	refcount_init(&pa->ar_ref, 1);
1824 	pa->ar_length = len;
1825 	return (pa);
1826 }
1827 
1828 static void
1829 pargs_free(struct pargs *pa)
1830 {
1831 
1832 	free(pa, M_PARGS);
1833 }
1834 
1835 void
1836 pargs_hold(struct pargs *pa)
1837 {
1838 
1839 	if (pa == NULL)
1840 		return;
1841 	refcount_acquire(&pa->ar_ref);
1842 }
1843 
1844 void
1845 pargs_drop(struct pargs *pa)
1846 {
1847 
1848 	if (pa == NULL)
1849 		return;
1850 	if (refcount_release(&pa->ar_ref))
1851 		pargs_free(pa);
1852 }
1853 
1854 static int
1855 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1856     size_t len)
1857 {
1858 	ssize_t n;
1859 
1860 	/*
1861 	 * This may return a short read if the string is shorter than the chunk
1862 	 * and is aligned at the end of the page, and the following page is not
1863 	 * mapped.
1864 	 */
1865 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1866 	if (n <= 0)
1867 		return (ENOMEM);
1868 	return (0);
1869 }
1870 
1871 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1872 
1873 enum proc_vector_type {
1874 	PROC_ARG,
1875 	PROC_ENV,
1876 	PROC_AUX,
1877 };
1878 
1879 #ifdef COMPAT_FREEBSD32
1880 static int
1881 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1882     size_t *vsizep, enum proc_vector_type type)
1883 {
1884 	struct freebsd32_ps_strings pss;
1885 	Elf32_Auxinfo aux;
1886 	vm_offset_t vptr, ptr;
1887 	uint32_t *proc_vector32;
1888 	char **proc_vector;
1889 	size_t vsize, size;
1890 	int i, error;
1891 
1892 	error = 0;
1893 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1894 	    sizeof(pss)) != sizeof(pss))
1895 		return (ENOMEM);
1896 	switch (type) {
1897 	case PROC_ARG:
1898 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1899 		vsize = pss.ps_nargvstr;
1900 		if (vsize > ARG_MAX)
1901 			return (ENOEXEC);
1902 		size = vsize * sizeof(int32_t);
1903 		break;
1904 	case PROC_ENV:
1905 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1906 		vsize = pss.ps_nenvstr;
1907 		if (vsize > ARG_MAX)
1908 			return (ENOEXEC);
1909 		size = vsize * sizeof(int32_t);
1910 		break;
1911 	case PROC_AUX:
1912 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1913 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1914 		if (vptr % 4 != 0)
1915 			return (ENOEXEC);
1916 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1917 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1918 			    sizeof(aux))
1919 				return (ENOMEM);
1920 			if (aux.a_type == AT_NULL)
1921 				break;
1922 			ptr += sizeof(aux);
1923 		}
1924 		if (aux.a_type != AT_NULL)
1925 			return (ENOEXEC);
1926 		vsize = i + 1;
1927 		size = vsize * sizeof(aux);
1928 		break;
1929 	default:
1930 		KASSERT(0, ("Wrong proc vector type: %d", type));
1931 		return (EINVAL);
1932 	}
1933 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1934 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1935 		error = ENOMEM;
1936 		goto done;
1937 	}
1938 	if (type == PROC_AUX) {
1939 		*proc_vectorp = (char **)proc_vector32;
1940 		*vsizep = vsize;
1941 		return (0);
1942 	}
1943 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1944 	for (i = 0; i < (int)vsize; i++)
1945 		proc_vector[i] = PTRIN(proc_vector32[i]);
1946 	*proc_vectorp = proc_vector;
1947 	*vsizep = vsize;
1948 done:
1949 	free(proc_vector32, M_TEMP);
1950 	return (error);
1951 }
1952 #endif
1953 
1954 static int
1955 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1956     size_t *vsizep, enum proc_vector_type type)
1957 {
1958 	struct ps_strings pss;
1959 	Elf_Auxinfo aux;
1960 	vm_offset_t vptr, ptr;
1961 	char **proc_vector;
1962 	size_t vsize, size;
1963 	int i;
1964 
1965 #ifdef COMPAT_FREEBSD32
1966 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1967 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1968 #endif
1969 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1970 	    sizeof(pss)) != sizeof(pss))
1971 		return (ENOMEM);
1972 	switch (type) {
1973 	case PROC_ARG:
1974 		vptr = (vm_offset_t)pss.ps_argvstr;
1975 		vsize = pss.ps_nargvstr;
1976 		if (vsize > ARG_MAX)
1977 			return (ENOEXEC);
1978 		size = vsize * sizeof(char *);
1979 		break;
1980 	case PROC_ENV:
1981 		vptr = (vm_offset_t)pss.ps_envstr;
1982 		vsize = pss.ps_nenvstr;
1983 		if (vsize > ARG_MAX)
1984 			return (ENOEXEC);
1985 		size = vsize * sizeof(char *);
1986 		break;
1987 	case PROC_AUX:
1988 		/*
1989 		 * The aux array is just above env array on the stack. Check
1990 		 * that the address is naturally aligned.
1991 		 */
1992 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1993 		    * sizeof(char *);
1994 #if __ELF_WORD_SIZE == 64
1995 		if (vptr % sizeof(uint64_t) != 0)
1996 #else
1997 		if (vptr % sizeof(uint32_t) != 0)
1998 #endif
1999 			return (ENOEXEC);
2000 		/*
2001 		 * We count the array size reading the aux vectors from the
2002 		 * stack until AT_NULL vector is returned.  So (to keep the code
2003 		 * simple) we read the process stack twice: the first time here
2004 		 * to find the size and the second time when copying the vectors
2005 		 * to the allocated proc_vector.
2006 		 */
2007 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
2008 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
2009 			    sizeof(aux))
2010 				return (ENOMEM);
2011 			if (aux.a_type == AT_NULL)
2012 				break;
2013 			ptr += sizeof(aux);
2014 		}
2015 		/*
2016 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
2017 		 * not reached AT_NULL, it is most likely we are reading wrong
2018 		 * data: either the process doesn't have auxv array or data has
2019 		 * been modified. Return the error in this case.
2020 		 */
2021 		if (aux.a_type != AT_NULL)
2022 			return (ENOEXEC);
2023 		vsize = i + 1;
2024 		size = vsize * sizeof(aux);
2025 		break;
2026 	default:
2027 		KASSERT(0, ("Wrong proc vector type: %d", type));
2028 		return (EINVAL); /* In case we are built without INVARIANTS. */
2029 	}
2030 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
2031 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
2032 		free(proc_vector, M_TEMP);
2033 		return (ENOMEM);
2034 	}
2035 	*proc_vectorp = proc_vector;
2036 	*vsizep = vsize;
2037 
2038 	return (0);
2039 }
2040 
2041 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
2042 
2043 static int
2044 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
2045     enum proc_vector_type type)
2046 {
2047 	size_t done, len, nchr, vsize;
2048 	int error, i;
2049 	char **proc_vector, *sptr;
2050 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
2051 
2052 	PROC_ASSERT_HELD(p);
2053 
2054 	/*
2055 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2056 	 */
2057 	nchr = 2 * (PATH_MAX + ARG_MAX);
2058 
2059 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2060 	if (error != 0)
2061 		return (error);
2062 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2063 		/*
2064 		 * The program may have scribbled into its argv array, e.g. to
2065 		 * remove some arguments.  If that has happened, break out
2066 		 * before trying to read from NULL.
2067 		 */
2068 		if (proc_vector[i] == NULL)
2069 			break;
2070 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2071 			error = proc_read_string(td, p, sptr, pss_string,
2072 			    sizeof(pss_string));
2073 			if (error != 0)
2074 				goto done;
2075 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2076 			if (done + len >= nchr)
2077 				len = nchr - done - 1;
2078 			sbuf_bcat(sb, pss_string, len);
2079 			if (len != GET_PS_STRINGS_CHUNK_SZ)
2080 				break;
2081 			done += GET_PS_STRINGS_CHUNK_SZ;
2082 		}
2083 		sbuf_bcat(sb, "", 1);
2084 		done += len + 1;
2085 	}
2086 done:
2087 	free(proc_vector, M_TEMP);
2088 	return (error);
2089 }
2090 
2091 int
2092 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2093 {
2094 
2095 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
2096 }
2097 
2098 int
2099 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2100 {
2101 
2102 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
2103 }
2104 
2105 int
2106 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2107 {
2108 	size_t vsize, size;
2109 	char **auxv;
2110 	int error;
2111 
2112 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2113 	if (error == 0) {
2114 #ifdef COMPAT_FREEBSD32
2115 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2116 			size = vsize * sizeof(Elf32_Auxinfo);
2117 		else
2118 #endif
2119 			size = vsize * sizeof(Elf_Auxinfo);
2120 		if (sbuf_bcat(sb, auxv, size) != 0)
2121 			error = ENOMEM;
2122 		free(auxv, M_TEMP);
2123 	}
2124 	return (error);
2125 }
2126 
2127 /*
2128  * This sysctl allows a process to retrieve the argument list or process
2129  * title for another process without groping around in the address space
2130  * of the other process.  It also allow a process to set its own "process
2131  * title to a string of its own choice.
2132  */
2133 static int
2134 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2135 {
2136 	int *name = (int *)arg1;
2137 	u_int namelen = arg2;
2138 	struct pargs *newpa, *pa;
2139 	struct proc *p;
2140 	struct sbuf sb;
2141 	int flags, error = 0, error2;
2142 	pid_t pid;
2143 
2144 	if (namelen != 1)
2145 		return (EINVAL);
2146 
2147 	pid = (pid_t)name[0];
2148 	/*
2149 	 * If the query is for this process and it is single-threaded, there
2150 	 * is nobody to modify pargs, thus we can just read.
2151 	 */
2152 	p = curproc;
2153 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2154 	    (pa = p->p_args) != NULL)
2155 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2156 
2157 	flags = PGET_CANSEE;
2158 	if (req->newptr != NULL)
2159 		flags |= PGET_ISCURRENT;
2160 	error = pget(pid, flags, &p);
2161 	if (error)
2162 		return (error);
2163 
2164 	pa = p->p_args;
2165 	if (pa != NULL) {
2166 		pargs_hold(pa);
2167 		PROC_UNLOCK(p);
2168 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2169 		pargs_drop(pa);
2170 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2171 		_PHOLD(p);
2172 		PROC_UNLOCK(p);
2173 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2174 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2175 		error = proc_getargv(curthread, p, &sb);
2176 		error2 = sbuf_finish(&sb);
2177 		PRELE(p);
2178 		sbuf_delete(&sb);
2179 		if (error == 0 && error2 != 0)
2180 			error = error2;
2181 	} else {
2182 		PROC_UNLOCK(p);
2183 	}
2184 	if (error != 0 || req->newptr == NULL)
2185 		return (error);
2186 
2187 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2188 		return (ENOMEM);
2189 
2190 	if (req->newlen == 0) {
2191 		/*
2192 		 * Clear the argument pointer, so that we'll fetch arguments
2193 		 * with proc_getargv() until further notice.
2194 		 */
2195 		newpa = NULL;
2196 	} else {
2197 		newpa = pargs_alloc(req->newlen);
2198 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2199 		if (error != 0) {
2200 			pargs_free(newpa);
2201 			return (error);
2202 		}
2203 	}
2204 	PROC_LOCK(p);
2205 	pa = p->p_args;
2206 	p->p_args = newpa;
2207 	PROC_UNLOCK(p);
2208 	pargs_drop(pa);
2209 	return (0);
2210 }
2211 
2212 /*
2213  * This sysctl allows a process to retrieve environment of another process.
2214  */
2215 static int
2216 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2217 {
2218 	int *name = (int *)arg1;
2219 	u_int namelen = arg2;
2220 	struct proc *p;
2221 	struct sbuf sb;
2222 	int error, error2;
2223 
2224 	if (namelen != 1)
2225 		return (EINVAL);
2226 
2227 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2228 	if (error != 0)
2229 		return (error);
2230 	if ((p->p_flag & P_SYSTEM) != 0) {
2231 		PRELE(p);
2232 		return (0);
2233 	}
2234 
2235 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2236 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2237 	error = proc_getenvv(curthread, p, &sb);
2238 	error2 = sbuf_finish(&sb);
2239 	PRELE(p);
2240 	sbuf_delete(&sb);
2241 	return (error != 0 ? error : error2);
2242 }
2243 
2244 /*
2245  * This sysctl allows a process to retrieve ELF auxiliary vector of
2246  * another process.
2247  */
2248 static int
2249 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2250 {
2251 	int *name = (int *)arg1;
2252 	u_int namelen = arg2;
2253 	struct proc *p;
2254 	struct sbuf sb;
2255 	int error, error2;
2256 
2257 	if (namelen != 1)
2258 		return (EINVAL);
2259 
2260 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2261 	if (error != 0)
2262 		return (error);
2263 	if ((p->p_flag & P_SYSTEM) != 0) {
2264 		PRELE(p);
2265 		return (0);
2266 	}
2267 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2268 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2269 	error = proc_getauxv(curthread, p, &sb);
2270 	error2 = sbuf_finish(&sb);
2271 	PRELE(p);
2272 	sbuf_delete(&sb);
2273 	return (error != 0 ? error : error2);
2274 }
2275 
2276 /*
2277  * This sysctl allows a process to retrieve the path of the executable for
2278  * itself or another process.
2279  */
2280 static int
2281 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2282 {
2283 	pid_t *pidp = (pid_t *)arg1;
2284 	unsigned int arglen = arg2;
2285 	struct proc *p;
2286 	struct vnode *vp;
2287 	char *retbuf, *freebuf;
2288 	int error;
2289 
2290 	if (arglen != 1)
2291 		return (EINVAL);
2292 	if (*pidp == -1) {	/* -1 means this process */
2293 		p = req->td->td_proc;
2294 	} else {
2295 		error = pget(*pidp, PGET_CANSEE, &p);
2296 		if (error != 0)
2297 			return (error);
2298 	}
2299 
2300 	vp = p->p_textvp;
2301 	if (vp == NULL) {
2302 		if (*pidp != -1)
2303 			PROC_UNLOCK(p);
2304 		return (0);
2305 	}
2306 	vref(vp);
2307 	if (*pidp != -1)
2308 		PROC_UNLOCK(p);
2309 	error = vn_fullpath(vp, &retbuf, &freebuf);
2310 	vrele(vp);
2311 	if (error)
2312 		return (error);
2313 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2314 	free(freebuf, M_TEMP);
2315 	return (error);
2316 }
2317 
2318 static int
2319 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2320 {
2321 	struct proc *p;
2322 	char *sv_name;
2323 	int *name;
2324 	int namelen;
2325 	int error;
2326 
2327 	namelen = arg2;
2328 	if (namelen != 1)
2329 		return (EINVAL);
2330 
2331 	name = (int *)arg1;
2332 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2333 	if (error != 0)
2334 		return (error);
2335 	sv_name = p->p_sysent->sv_name;
2336 	PROC_UNLOCK(p);
2337 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2338 }
2339 
2340 #ifdef KINFO_OVMENTRY_SIZE
2341 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2342 #endif
2343 
2344 #ifdef COMPAT_FREEBSD7
2345 static int
2346 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2347 {
2348 	vm_map_entry_t entry, tmp_entry;
2349 	unsigned int last_timestamp;
2350 	char *fullpath, *freepath;
2351 	struct kinfo_ovmentry *kve;
2352 	struct vattr va;
2353 	struct ucred *cred;
2354 	int error, *name;
2355 	struct vnode *vp;
2356 	struct proc *p;
2357 	vm_map_t map;
2358 	struct vmspace *vm;
2359 
2360 	name = (int *)arg1;
2361 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2362 	if (error != 0)
2363 		return (error);
2364 	vm = vmspace_acquire_ref(p);
2365 	if (vm == NULL) {
2366 		PRELE(p);
2367 		return (ESRCH);
2368 	}
2369 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2370 
2371 	map = &vm->vm_map;
2372 	vm_map_lock_read(map);
2373 	VM_MAP_ENTRY_FOREACH(entry, map) {
2374 		vm_object_t obj, tobj, lobj;
2375 		vm_offset_t addr;
2376 
2377 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2378 			continue;
2379 
2380 		bzero(kve, sizeof(*kve));
2381 		kve->kve_structsize = sizeof(*kve);
2382 
2383 		kve->kve_private_resident = 0;
2384 		obj = entry->object.vm_object;
2385 		if (obj != NULL) {
2386 			VM_OBJECT_RLOCK(obj);
2387 			if (obj->shadow_count == 1)
2388 				kve->kve_private_resident =
2389 				    obj->resident_page_count;
2390 		}
2391 		kve->kve_resident = 0;
2392 		addr = entry->start;
2393 		while (addr < entry->end) {
2394 			if (pmap_extract(map->pmap, addr))
2395 				kve->kve_resident++;
2396 			addr += PAGE_SIZE;
2397 		}
2398 
2399 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2400 			if (tobj != obj) {
2401 				VM_OBJECT_RLOCK(tobj);
2402 				kve->kve_offset += tobj->backing_object_offset;
2403 			}
2404 			if (lobj != obj)
2405 				VM_OBJECT_RUNLOCK(lobj);
2406 			lobj = tobj;
2407 		}
2408 
2409 		kve->kve_start = (void*)entry->start;
2410 		kve->kve_end = (void*)entry->end;
2411 		kve->kve_offset += (off_t)entry->offset;
2412 
2413 		if (entry->protection & VM_PROT_READ)
2414 			kve->kve_protection |= KVME_PROT_READ;
2415 		if (entry->protection & VM_PROT_WRITE)
2416 			kve->kve_protection |= KVME_PROT_WRITE;
2417 		if (entry->protection & VM_PROT_EXECUTE)
2418 			kve->kve_protection |= KVME_PROT_EXEC;
2419 
2420 		if (entry->eflags & MAP_ENTRY_COW)
2421 			kve->kve_flags |= KVME_FLAG_COW;
2422 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2423 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2424 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2425 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2426 
2427 		last_timestamp = map->timestamp;
2428 		vm_map_unlock_read(map);
2429 
2430 		kve->kve_fileid = 0;
2431 		kve->kve_fsid = 0;
2432 		freepath = NULL;
2433 		fullpath = "";
2434 		if (lobj) {
2435 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2436 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2437 				kve->kve_type = KVME_TYPE_UNKNOWN;
2438 			if (vp != NULL)
2439 				vref(vp);
2440 			if (lobj != obj)
2441 				VM_OBJECT_RUNLOCK(lobj);
2442 
2443 			kve->kve_ref_count = obj->ref_count;
2444 			kve->kve_shadow_count = obj->shadow_count;
2445 			VM_OBJECT_RUNLOCK(obj);
2446 			if (vp != NULL) {
2447 				vn_fullpath(vp, &fullpath, &freepath);
2448 				cred = curthread->td_ucred;
2449 				vn_lock(vp, LK_SHARED | LK_RETRY);
2450 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2451 					kve->kve_fileid = va.va_fileid;
2452 					/* truncate */
2453 					kve->kve_fsid = va.va_fsid;
2454 				}
2455 				vput(vp);
2456 			}
2457 		} else {
2458 			kve->kve_type = KVME_TYPE_NONE;
2459 			kve->kve_ref_count = 0;
2460 			kve->kve_shadow_count = 0;
2461 		}
2462 
2463 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2464 		if (freepath != NULL)
2465 			free(freepath, M_TEMP);
2466 
2467 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2468 		vm_map_lock_read(map);
2469 		if (error)
2470 			break;
2471 		if (last_timestamp != map->timestamp) {
2472 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2473 			entry = tmp_entry;
2474 		}
2475 	}
2476 	vm_map_unlock_read(map);
2477 	vmspace_free(vm);
2478 	PRELE(p);
2479 	free(kve, M_TEMP);
2480 	return (error);
2481 }
2482 #endif	/* COMPAT_FREEBSD7 */
2483 
2484 #ifdef KINFO_VMENTRY_SIZE
2485 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2486 #endif
2487 
2488 void
2489 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2490     int *resident_count, bool *super)
2491 {
2492 	vm_object_t obj, tobj;
2493 	vm_page_t m, m_adv;
2494 	vm_offset_t addr;
2495 	vm_paddr_t pa;
2496 	vm_pindex_t pi, pi_adv, pindex;
2497 
2498 	*super = false;
2499 	*resident_count = 0;
2500 	if (vmmap_skip_res_cnt)
2501 		return;
2502 
2503 	pa = 0;
2504 	obj = entry->object.vm_object;
2505 	addr = entry->start;
2506 	m_adv = NULL;
2507 	pi = OFF_TO_IDX(entry->offset);
2508 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2509 		if (m_adv != NULL) {
2510 			m = m_adv;
2511 		} else {
2512 			pi_adv = atop(entry->end - addr);
2513 			pindex = pi;
2514 			for (tobj = obj;; tobj = tobj->backing_object) {
2515 				m = vm_page_find_least(tobj, pindex);
2516 				if (m != NULL) {
2517 					if (m->pindex == pindex)
2518 						break;
2519 					if (pi_adv > m->pindex - pindex) {
2520 						pi_adv = m->pindex - pindex;
2521 						m_adv = m;
2522 					}
2523 				}
2524 				if (tobj->backing_object == NULL)
2525 					goto next;
2526 				pindex += OFF_TO_IDX(tobj->
2527 				    backing_object_offset);
2528 			}
2529 		}
2530 		m_adv = NULL;
2531 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2532 		    (addr & (pagesizes[1] - 1)) == 0 &&
2533 		    (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2534 			*super = true;
2535 			pi_adv = atop(pagesizes[1]);
2536 		} else {
2537 			/*
2538 			 * We do not test the found page on validity.
2539 			 * Either the page is busy and being paged in,
2540 			 * or it was invalidated.  The first case
2541 			 * should be counted as resident, the second
2542 			 * is not so clear; we do account both.
2543 			 */
2544 			pi_adv = 1;
2545 		}
2546 		*resident_count += pi_adv;
2547 next:;
2548 	}
2549 }
2550 
2551 /*
2552  * Must be called with the process locked and will return unlocked.
2553  */
2554 int
2555 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2556 {
2557 	vm_map_entry_t entry, tmp_entry;
2558 	struct vattr va;
2559 	vm_map_t map;
2560 	vm_object_t obj, tobj, lobj;
2561 	char *fullpath, *freepath;
2562 	struct kinfo_vmentry *kve;
2563 	struct ucred *cred;
2564 	struct vnode *vp;
2565 	struct vmspace *vm;
2566 	vm_offset_t addr;
2567 	unsigned int last_timestamp;
2568 	int error;
2569 	bool super;
2570 
2571 	PROC_LOCK_ASSERT(p, MA_OWNED);
2572 
2573 	_PHOLD(p);
2574 	PROC_UNLOCK(p);
2575 	vm = vmspace_acquire_ref(p);
2576 	if (vm == NULL) {
2577 		PRELE(p);
2578 		return (ESRCH);
2579 	}
2580 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2581 
2582 	error = 0;
2583 	map = &vm->vm_map;
2584 	vm_map_lock_read(map);
2585 	VM_MAP_ENTRY_FOREACH(entry, map) {
2586 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2587 			continue;
2588 
2589 		addr = entry->end;
2590 		bzero(kve, sizeof(*kve));
2591 		obj = entry->object.vm_object;
2592 		if (obj != NULL) {
2593 			for (tobj = obj; tobj != NULL;
2594 			    tobj = tobj->backing_object) {
2595 				VM_OBJECT_RLOCK(tobj);
2596 				kve->kve_offset += tobj->backing_object_offset;
2597 				lobj = tobj;
2598 			}
2599 			if (obj->backing_object == NULL)
2600 				kve->kve_private_resident =
2601 				    obj->resident_page_count;
2602 			kern_proc_vmmap_resident(map, entry,
2603 			    &kve->kve_resident, &super);
2604 			if (super)
2605 				kve->kve_flags |= KVME_FLAG_SUPER;
2606 			for (tobj = obj; tobj != NULL;
2607 			    tobj = tobj->backing_object) {
2608 				if (tobj != obj && tobj != lobj)
2609 					VM_OBJECT_RUNLOCK(tobj);
2610 			}
2611 		} else {
2612 			lobj = NULL;
2613 		}
2614 
2615 		kve->kve_start = entry->start;
2616 		kve->kve_end = entry->end;
2617 		kve->kve_offset += entry->offset;
2618 
2619 		if (entry->protection & VM_PROT_READ)
2620 			kve->kve_protection |= KVME_PROT_READ;
2621 		if (entry->protection & VM_PROT_WRITE)
2622 			kve->kve_protection |= KVME_PROT_WRITE;
2623 		if (entry->protection & VM_PROT_EXECUTE)
2624 			kve->kve_protection |= KVME_PROT_EXEC;
2625 
2626 		if (entry->eflags & MAP_ENTRY_COW)
2627 			kve->kve_flags |= KVME_FLAG_COW;
2628 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2629 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2630 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2631 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2632 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2633 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2634 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2635 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2636 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
2637 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
2638 
2639 		last_timestamp = map->timestamp;
2640 		vm_map_unlock_read(map);
2641 
2642 		freepath = NULL;
2643 		fullpath = "";
2644 		if (lobj != NULL) {
2645 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2646 			if (vp != NULL)
2647 				vref(vp);
2648 			if (lobj != obj)
2649 				VM_OBJECT_RUNLOCK(lobj);
2650 
2651 			kve->kve_ref_count = obj->ref_count;
2652 			kve->kve_shadow_count = obj->shadow_count;
2653 			VM_OBJECT_RUNLOCK(obj);
2654 			if (vp != NULL) {
2655 				vn_fullpath(vp, &fullpath, &freepath);
2656 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2657 				cred = curthread->td_ucred;
2658 				vn_lock(vp, LK_SHARED | LK_RETRY);
2659 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2660 					kve->kve_vn_fileid = va.va_fileid;
2661 					kve->kve_vn_fsid = va.va_fsid;
2662 					kve->kve_vn_fsid_freebsd11 =
2663 					    kve->kve_vn_fsid; /* truncate */
2664 					kve->kve_vn_mode =
2665 					    MAKEIMODE(va.va_type, va.va_mode);
2666 					kve->kve_vn_size = va.va_size;
2667 					kve->kve_vn_rdev = va.va_rdev;
2668 					kve->kve_vn_rdev_freebsd11 =
2669 					    kve->kve_vn_rdev; /* truncate */
2670 					kve->kve_status = KF_ATTR_VALID;
2671 				}
2672 				vput(vp);
2673 			}
2674 		} else {
2675 			kve->kve_type = KVME_TYPE_NONE;
2676 			kve->kve_ref_count = 0;
2677 			kve->kve_shadow_count = 0;
2678 		}
2679 
2680 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2681 		if (freepath != NULL)
2682 			free(freepath, M_TEMP);
2683 
2684 		/* Pack record size down */
2685 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2686 			kve->kve_structsize =
2687 			    offsetof(struct kinfo_vmentry, kve_path) +
2688 			    strlen(kve->kve_path) + 1;
2689 		else
2690 			kve->kve_structsize = sizeof(*kve);
2691 		kve->kve_structsize = roundup(kve->kve_structsize,
2692 		    sizeof(uint64_t));
2693 
2694 		/* Halt filling and truncate rather than exceeding maxlen */
2695 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2696 			error = 0;
2697 			vm_map_lock_read(map);
2698 			break;
2699 		} else if (maxlen != -1)
2700 			maxlen -= kve->kve_structsize;
2701 
2702 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2703 			error = ENOMEM;
2704 		vm_map_lock_read(map);
2705 		if (error != 0)
2706 			break;
2707 		if (last_timestamp != map->timestamp) {
2708 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2709 			entry = tmp_entry;
2710 		}
2711 	}
2712 	vm_map_unlock_read(map);
2713 	vmspace_free(vm);
2714 	PRELE(p);
2715 	free(kve, M_TEMP);
2716 	return (error);
2717 }
2718 
2719 static int
2720 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2721 {
2722 	struct proc *p;
2723 	struct sbuf sb;
2724 	int error, error2, *name;
2725 
2726 	name = (int *)arg1;
2727 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2728 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2729 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2730 	if (error != 0) {
2731 		sbuf_delete(&sb);
2732 		return (error);
2733 	}
2734 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2735 	error2 = sbuf_finish(&sb);
2736 	sbuf_delete(&sb);
2737 	return (error != 0 ? error : error2);
2738 }
2739 
2740 #if defined(STACK) || defined(DDB)
2741 static int
2742 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2743 {
2744 	struct kinfo_kstack *kkstp;
2745 	int error, i, *name, numthreads;
2746 	lwpid_t *lwpidarray;
2747 	struct thread *td;
2748 	struct stack *st;
2749 	struct sbuf sb;
2750 	struct proc *p;
2751 	bool locked;
2752 
2753 	name = (int *)arg1;
2754 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2755 	if (error != 0)
2756 		return (error);
2757 
2758 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2759 	st = stack_create(M_WAITOK);
2760 
2761 	lwpidarray = NULL;
2762 	PROC_LOCK(p);
2763 	do {
2764 		if (lwpidarray != NULL) {
2765 			free(lwpidarray, M_TEMP);
2766 			lwpidarray = NULL;
2767 		}
2768 		numthreads = p->p_numthreads;
2769 		PROC_UNLOCK(p);
2770 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2771 		    M_WAITOK | M_ZERO);
2772 		PROC_LOCK(p);
2773 	} while (numthreads < p->p_numthreads);
2774 
2775 	/*
2776 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2777 	 * of changes could have taken place.  Should we check to see if the
2778 	 * vmspace has been replaced, or the like, in order to prevent
2779 	 * giving a snapshot that spans, say, execve(2), with some threads
2780 	 * before and some after?  Among other things, the credentials could
2781 	 * have changed, in which case the right to extract debug info might
2782 	 * no longer be assured.
2783 	 */
2784 	i = 0;
2785 	FOREACH_THREAD_IN_PROC(p, td) {
2786 		KASSERT(i < numthreads,
2787 		    ("sysctl_kern_proc_kstack: numthreads"));
2788 		lwpidarray[i] = td->td_tid;
2789 		i++;
2790 	}
2791 	PROC_UNLOCK(p);
2792 	locked = false;
2793 	numthreads = i;
2794 	for (i = 0; i < numthreads; i++) {
2795 		td = tdfind(lwpidarray[i], p->p_pid);
2796 		if (td == NULL) {
2797 			continue;
2798 		}
2799 		locked = true;
2800 		bzero(kkstp, sizeof(*kkstp));
2801 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2802 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2803 		thread_lock(td);
2804 		kkstp->kkst_tid = td->td_tid;
2805 		if (TD_IS_SWAPPED(td))
2806 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2807 		else if (stack_save_td(st, td) == 0)
2808 			kkstp->kkst_state = KKST_STATE_STACKOK;
2809 		else
2810 			kkstp->kkst_state = KKST_STATE_RUNNING;
2811 		thread_unlock(td);
2812 		PROC_UNLOCK(p);
2813 		locked = false;
2814 		stack_sbuf_print(&sb, st);
2815 		sbuf_finish(&sb);
2816 		sbuf_delete(&sb);
2817 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2818 		if (error)
2819 			break;
2820 	}
2821 	if (!locked)
2822 		PROC_LOCK(p);
2823 	_PRELE(p);
2824 	PROC_UNLOCK(p);
2825 	if (lwpidarray != NULL)
2826 		free(lwpidarray, M_TEMP);
2827 	stack_destroy(st);
2828 	free(kkstp, M_TEMP);
2829 	return (error);
2830 }
2831 #endif
2832 
2833 /*
2834  * This sysctl allows a process to retrieve the full list of groups from
2835  * itself or another process.
2836  */
2837 static int
2838 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2839 {
2840 	pid_t *pidp = (pid_t *)arg1;
2841 	unsigned int arglen = arg2;
2842 	struct proc *p;
2843 	struct ucred *cred;
2844 	int error;
2845 
2846 	if (arglen != 1)
2847 		return (EINVAL);
2848 	if (*pidp == -1) {	/* -1 means this process */
2849 		p = req->td->td_proc;
2850 		PROC_LOCK(p);
2851 	} else {
2852 		error = pget(*pidp, PGET_CANSEE, &p);
2853 		if (error != 0)
2854 			return (error);
2855 	}
2856 
2857 	cred = crhold(p->p_ucred);
2858 	PROC_UNLOCK(p);
2859 
2860 	error = SYSCTL_OUT(req, cred->cr_groups,
2861 	    cred->cr_ngroups * sizeof(gid_t));
2862 	crfree(cred);
2863 	return (error);
2864 }
2865 
2866 /*
2867  * This sysctl allows a process to retrieve or/and set the resource limit for
2868  * another process.
2869  */
2870 static int
2871 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2872 {
2873 	int *name = (int *)arg1;
2874 	u_int namelen = arg2;
2875 	struct rlimit rlim;
2876 	struct proc *p;
2877 	u_int which;
2878 	int flags, error;
2879 
2880 	if (namelen != 2)
2881 		return (EINVAL);
2882 
2883 	which = (u_int)name[1];
2884 	if (which >= RLIM_NLIMITS)
2885 		return (EINVAL);
2886 
2887 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2888 		return (EINVAL);
2889 
2890 	flags = PGET_HOLD | PGET_NOTWEXIT;
2891 	if (req->newptr != NULL)
2892 		flags |= PGET_CANDEBUG;
2893 	else
2894 		flags |= PGET_CANSEE;
2895 	error = pget((pid_t)name[0], flags, &p);
2896 	if (error != 0)
2897 		return (error);
2898 
2899 	/*
2900 	 * Retrieve limit.
2901 	 */
2902 	if (req->oldptr != NULL) {
2903 		PROC_LOCK(p);
2904 		lim_rlimit_proc(p, which, &rlim);
2905 		PROC_UNLOCK(p);
2906 	}
2907 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2908 	if (error != 0)
2909 		goto errout;
2910 
2911 	/*
2912 	 * Set limit.
2913 	 */
2914 	if (req->newptr != NULL) {
2915 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2916 		if (error == 0)
2917 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2918 	}
2919 
2920 errout:
2921 	PRELE(p);
2922 	return (error);
2923 }
2924 
2925 /*
2926  * This sysctl allows a process to retrieve ps_strings structure location of
2927  * another process.
2928  */
2929 static int
2930 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2931 {
2932 	int *name = (int *)arg1;
2933 	u_int namelen = arg2;
2934 	struct proc *p;
2935 	vm_offset_t ps_strings;
2936 	int error;
2937 #ifdef COMPAT_FREEBSD32
2938 	uint32_t ps_strings32;
2939 #endif
2940 
2941 	if (namelen != 1)
2942 		return (EINVAL);
2943 
2944 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2945 	if (error != 0)
2946 		return (error);
2947 #ifdef COMPAT_FREEBSD32
2948 	if ((req->flags & SCTL_MASK32) != 0) {
2949 		/*
2950 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2951 		 * process.
2952 		 */
2953 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2954 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2955 		PROC_UNLOCK(p);
2956 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2957 		return (error);
2958 	}
2959 #endif
2960 	ps_strings = p->p_sysent->sv_psstrings;
2961 	PROC_UNLOCK(p);
2962 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2963 	return (error);
2964 }
2965 
2966 /*
2967  * This sysctl allows a process to retrieve umask of another process.
2968  */
2969 static int
2970 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2971 {
2972 	int *name = (int *)arg1;
2973 	u_int namelen = arg2;
2974 	struct proc *p;
2975 	int error;
2976 	u_short fd_cmask;
2977 	pid_t pid;
2978 
2979 	if (namelen != 1)
2980 		return (EINVAL);
2981 
2982 	pid = (pid_t)name[0];
2983 	p = curproc;
2984 	if (pid == p->p_pid || pid == 0) {
2985 		fd_cmask = p->p_fd->fd_cmask;
2986 		goto out;
2987 	}
2988 
2989 	error = pget(pid, PGET_WANTREAD, &p);
2990 	if (error != 0)
2991 		return (error);
2992 
2993 	fd_cmask = p->p_fd->fd_cmask;
2994 	PRELE(p);
2995 out:
2996 	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2997 	return (error);
2998 }
2999 
3000 /*
3001  * This sysctl allows a process to set and retrieve binary osreldate of
3002  * another process.
3003  */
3004 static int
3005 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3006 {
3007 	int *name = (int *)arg1;
3008 	u_int namelen = arg2;
3009 	struct proc *p;
3010 	int flags, error, osrel;
3011 
3012 	if (namelen != 1)
3013 		return (EINVAL);
3014 
3015 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
3016 		return (EINVAL);
3017 
3018 	flags = PGET_HOLD | PGET_NOTWEXIT;
3019 	if (req->newptr != NULL)
3020 		flags |= PGET_CANDEBUG;
3021 	else
3022 		flags |= PGET_CANSEE;
3023 	error = pget((pid_t)name[0], flags, &p);
3024 	if (error != 0)
3025 		return (error);
3026 
3027 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3028 	if (error != 0)
3029 		goto errout;
3030 
3031 	if (req->newptr != NULL) {
3032 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3033 		if (error != 0)
3034 			goto errout;
3035 		if (osrel < 0) {
3036 			error = EINVAL;
3037 			goto errout;
3038 		}
3039 		p->p_osrel = osrel;
3040 	}
3041 errout:
3042 	PRELE(p);
3043 	return (error);
3044 }
3045 
3046 static int
3047 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3048 {
3049 	int *name = (int *)arg1;
3050 	u_int namelen = arg2;
3051 	struct proc *p;
3052 	struct kinfo_sigtramp kst;
3053 	const struct sysentvec *sv;
3054 	int error;
3055 #ifdef COMPAT_FREEBSD32
3056 	struct kinfo_sigtramp32 kst32;
3057 #endif
3058 
3059 	if (namelen != 1)
3060 		return (EINVAL);
3061 
3062 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3063 	if (error != 0)
3064 		return (error);
3065 	sv = p->p_sysent;
3066 #ifdef COMPAT_FREEBSD32
3067 	if ((req->flags & SCTL_MASK32) != 0) {
3068 		bzero(&kst32, sizeof(kst32));
3069 		if (SV_PROC_FLAG(p, SV_ILP32)) {
3070 			if (sv->sv_sigcode_base != 0) {
3071 				kst32.ksigtramp_start = sv->sv_sigcode_base;
3072 				kst32.ksigtramp_end = sv->sv_sigcode_base +
3073 				    *sv->sv_szsigcode;
3074 			} else {
3075 				kst32.ksigtramp_start = sv->sv_psstrings -
3076 				    *sv->sv_szsigcode;
3077 				kst32.ksigtramp_end = sv->sv_psstrings;
3078 			}
3079 		}
3080 		PROC_UNLOCK(p);
3081 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3082 		return (error);
3083 	}
3084 #endif
3085 	bzero(&kst, sizeof(kst));
3086 	if (sv->sv_sigcode_base != 0) {
3087 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
3088 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
3089 		    *sv->sv_szsigcode;
3090 	} else {
3091 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
3092 		    *sv->sv_szsigcode;
3093 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
3094 	}
3095 	PROC_UNLOCK(p);
3096 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
3097 	return (error);
3098 }
3099 
3100 static int
3101 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3102 {
3103 	int *name = (int *)arg1;
3104 	u_int namelen = arg2;
3105 	pid_t pid;
3106 	struct proc *p;
3107 	struct thread *td1;
3108 	uintptr_t addr;
3109 #ifdef COMPAT_FREEBSD32
3110 	uint32_t addr32;
3111 #endif
3112 	int error;
3113 
3114 	if (namelen != 1 || req->newptr != NULL)
3115 		return (EINVAL);
3116 
3117 	pid = (pid_t)name[0];
3118 	error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3119 	if (error != 0)
3120 		return (error);
3121 
3122 	PROC_LOCK(p);
3123 #ifdef COMPAT_FREEBSD32
3124 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3125 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3126 			error = EINVAL;
3127 			goto errlocked;
3128 		}
3129 	}
3130 #endif
3131 	if (pid <= PID_MAX) {
3132 		td1 = FIRST_THREAD_IN_PROC(p);
3133 	} else {
3134 		FOREACH_THREAD_IN_PROC(p, td1) {
3135 			if (td1->td_tid == pid)
3136 				break;
3137 		}
3138 	}
3139 	if (td1 == NULL) {
3140 		error = ESRCH;
3141 		goto errlocked;
3142 	}
3143 	/*
3144 	 * The access to the private thread flags.  It is fine as far
3145 	 * as no out-of-thin-air values are read from td_pflags, and
3146 	 * usermode read of the td_sigblock_ptr is racy inherently,
3147 	 * since target process might have already changed it
3148 	 * meantime.
3149 	 */
3150 	if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3151 		addr = (uintptr_t)td1->td_sigblock_ptr;
3152 	else
3153 		error = ENOTTY;
3154 
3155 errlocked:
3156 	_PRELE(p);
3157 	PROC_UNLOCK(p);
3158 	if (error != 0)
3159 		return (error);
3160 
3161 #ifdef COMPAT_FREEBSD32
3162 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3163 		addr32 = addr;
3164 		error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3165 	} else
3166 #endif
3167 		error = SYSCTL_OUT(req, &addr, sizeof(addr));
3168 	return (error);
3169 }
3170 
3171 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
3172     "Process table");
3173 
3174 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3175 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3176 	"Return entire process table");
3177 
3178 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3179 	sysctl_kern_proc, "Process table");
3180 
3181 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3182 	sysctl_kern_proc, "Process table");
3183 
3184 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3185 	sysctl_kern_proc, "Process table");
3186 
3187 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3188 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3189 
3190 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3191 	sysctl_kern_proc, "Process table");
3192 
3193 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3194 	sysctl_kern_proc, "Process table");
3195 
3196 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3197 	sysctl_kern_proc, "Process table");
3198 
3199 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3200 	sysctl_kern_proc, "Process table");
3201 
3202 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3203 	sysctl_kern_proc, "Return process table, no threads");
3204 
3205 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3206 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3207 	sysctl_kern_proc_args, "Process argument list");
3208 
3209 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3210 	sysctl_kern_proc_env, "Process environment");
3211 
3212 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3213 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3214 
3215 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3216 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3217 
3218 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3219 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3220 	"Process syscall vector name (ABI type)");
3221 
3222 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3223 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3224 
3225 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3226 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3227 
3228 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3229 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3230 
3231 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3232 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3233 
3234 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3235 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3236 
3237 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3238 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3239 
3240 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3241 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3242 
3243 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3244 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3245 
3246 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3247 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3248 	"Return process table, no threads");
3249 
3250 #ifdef COMPAT_FREEBSD7
3251 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3252 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3253 #endif
3254 
3255 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3256 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3257 
3258 #if defined(STACK) || defined(DDB)
3259 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3260 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3261 #endif
3262 
3263 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3264 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3265 
3266 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3267 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3268 	"Process resource limits");
3269 
3270 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3271 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3272 	"Process ps_strings location");
3273 
3274 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3275 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3276 
3277 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3278 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3279 	"Process binary osreldate");
3280 
3281 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3282 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3283 	"Process signal trampoline location");
3284 
3285 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3286 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3287 	"Thread sigfastblock address");
3288 
3289 int allproc_gen;
3290 
3291 /*
3292  * stop_all_proc() purpose is to stop all process which have usermode,
3293  * except current process for obvious reasons.  This makes it somewhat
3294  * unreliable when invoked from multithreaded process.  The service
3295  * must not be user-callable anyway.
3296  */
3297 void
3298 stop_all_proc(void)
3299 {
3300 	struct proc *cp, *p;
3301 	int r, gen;
3302 	bool restart, seen_stopped, seen_exiting, stopped_some;
3303 
3304 	cp = curproc;
3305 allproc_loop:
3306 	sx_xlock(&allproc_lock);
3307 	gen = allproc_gen;
3308 	seen_exiting = seen_stopped = stopped_some = restart = false;
3309 	LIST_REMOVE(cp, p_list);
3310 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3311 	for (;;) {
3312 		p = LIST_NEXT(cp, p_list);
3313 		if (p == NULL)
3314 			break;
3315 		LIST_REMOVE(cp, p_list);
3316 		LIST_INSERT_AFTER(p, cp, p_list);
3317 		PROC_LOCK(p);
3318 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3319 			PROC_UNLOCK(p);
3320 			continue;
3321 		}
3322 		if ((p->p_flag & P_WEXIT) != 0) {
3323 			seen_exiting = true;
3324 			PROC_UNLOCK(p);
3325 			continue;
3326 		}
3327 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3328 			/*
3329 			 * Stopped processes are tolerated when there
3330 			 * are no other processes which might continue
3331 			 * them.  P_STOPPED_SINGLE but not
3332 			 * P_TOTAL_STOP process still has at least one
3333 			 * thread running.
3334 			 */
3335 			seen_stopped = true;
3336 			PROC_UNLOCK(p);
3337 			continue;
3338 		}
3339 		sx_xunlock(&allproc_lock);
3340 		_PHOLD(p);
3341 		r = thread_single(p, SINGLE_ALLPROC);
3342 		if (r != 0)
3343 			restart = true;
3344 		else
3345 			stopped_some = true;
3346 		_PRELE(p);
3347 		PROC_UNLOCK(p);
3348 		sx_xlock(&allproc_lock);
3349 	}
3350 	/* Catch forked children we did not see in iteration. */
3351 	if (gen != allproc_gen)
3352 		restart = true;
3353 	sx_xunlock(&allproc_lock);
3354 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3355 		kern_yield(PRI_USER);
3356 		goto allproc_loop;
3357 	}
3358 }
3359 
3360 void
3361 resume_all_proc(void)
3362 {
3363 	struct proc *cp, *p;
3364 
3365 	cp = curproc;
3366 	sx_xlock(&allproc_lock);
3367 again:
3368 	LIST_REMOVE(cp, p_list);
3369 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3370 	for (;;) {
3371 		p = LIST_NEXT(cp, p_list);
3372 		if (p == NULL)
3373 			break;
3374 		LIST_REMOVE(cp, p_list);
3375 		LIST_INSERT_AFTER(p, cp, p_list);
3376 		PROC_LOCK(p);
3377 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3378 			sx_xunlock(&allproc_lock);
3379 			_PHOLD(p);
3380 			thread_single_end(p, SINGLE_ALLPROC);
3381 			_PRELE(p);
3382 			PROC_UNLOCK(p);
3383 			sx_xlock(&allproc_lock);
3384 		} else {
3385 			PROC_UNLOCK(p);
3386 		}
3387 	}
3388 	/*  Did the loop above missed any stopped process ? */
3389 	FOREACH_PROC_IN_SYSTEM(p) {
3390 		/* No need for proc lock. */
3391 		if ((p->p_flag & P_TOTAL_STOP) != 0)
3392 			goto again;
3393 	}
3394 	sx_xunlock(&allproc_lock);
3395 }
3396 
3397 /* #define	TOTAL_STOP_DEBUG	1 */
3398 #ifdef TOTAL_STOP_DEBUG
3399 volatile static int ap_resume;
3400 #include <sys/mount.h>
3401 
3402 static int
3403 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3404 {
3405 	int error, val;
3406 
3407 	val = 0;
3408 	ap_resume = 0;
3409 	error = sysctl_handle_int(oidp, &val, 0, req);
3410 	if (error != 0 || req->newptr == NULL)
3411 		return (error);
3412 	if (val != 0) {
3413 		stop_all_proc();
3414 		syncer_suspend();
3415 		while (ap_resume == 0)
3416 			;
3417 		syncer_resume();
3418 		resume_all_proc();
3419 	}
3420 	return (0);
3421 }
3422 
3423 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3424     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3425     sysctl_debug_stop_all_proc, "I",
3426     "");
3427 #endif
3428