xref: /freebsd/sys/kern/kern_proc.c (revision 3f68b24e10aeb1a1cd85f2d349da44138d52c501)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_ktrace.h"
38 #include "opt_kstack_pages.h"
39 #include "opt_stack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/elf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/exec.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/loginclass.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/ptrace.h>
57 #include <sys/refcount.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sysent.h>
62 #include <sys/sched.h>
63 #include <sys/smp.h>
64 #include <sys/stack.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/signalvar.h>
70 #include <sys/sdt.h>
71 #include <sys/sx.h>
72 #include <sys/user.h>
73 #include <sys/vnode.h>
74 #include <sys/wait.h>
75 
76 #ifdef DDB
77 #include <ddb/ddb.h>
78 #endif
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/uma.h>
88 
89 #ifdef COMPAT_FREEBSD32
90 #include <compat/freebsd32/freebsd32.h>
91 #include <compat/freebsd32/freebsd32_util.h>
92 #endif
93 
94 SDT_PROVIDER_DEFINE(proc);
95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
96     "int");
97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
98     "int");
99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
100     "struct thread *");
101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
104 
105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
106 MALLOC_DEFINE(M_SESSION, "session", "session header");
107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109 
110 static void doenterpgrp(struct proc *, struct pgrp *);
111 static void orphanpg(struct pgrp *pg);
112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115     int preferthread);
116 static void pgadjustjobc(struct pgrp *pgrp, int entering);
117 static void pgdelete(struct pgrp *);
118 static int proc_ctor(void *mem, int size, void *arg, int flags);
119 static void proc_dtor(void *mem, int size, void *arg);
120 static int proc_init(void *mem, int size, int flags);
121 static void proc_fini(void *mem, int size);
122 static void pargs_free(struct pargs *pa);
123 static struct proc *zpfind_locked(pid_t pid);
124 
125 /*
126  * Other process lists
127  */
128 struct pidhashhead *pidhashtbl;
129 u_long pidhash;
130 struct pgrphashhead *pgrphashtbl;
131 u_long pgrphash;
132 struct proclist allproc;
133 struct proclist zombproc;
134 struct sx allproc_lock;
135 struct sx proctree_lock;
136 struct mtx ppeers_lock;
137 uma_zone_t proc_zone;
138 
139 /*
140  * The offset of various fields in struct proc and struct thread.
141  * These are used by kernel debuggers to enumerate kernel threads and
142  * processes.
143  */
144 const int proc_off_p_pid = offsetof(struct proc, p_pid);
145 const int proc_off_p_comm = offsetof(struct proc, p_comm);
146 const int proc_off_p_list = offsetof(struct proc, p_list);
147 const int proc_off_p_threads = offsetof(struct proc, p_threads);
148 const int thread_off_td_tid = offsetof(struct thread, td_tid);
149 const int thread_off_td_name = offsetof(struct thread, td_name);
150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
152 const int thread_off_td_plist = offsetof(struct thread, td_plist);
153 
154 int kstack_pages = KSTACK_PAGES;
155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
156     "Kernel stack size in pages");
157 static int vmmap_skip_res_cnt = 0;
158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
159     &vmmap_skip_res_cnt, 0,
160     "Skip calculation of the pages resident count in kern.proc.vmmap");
161 
162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
163 #ifdef COMPAT_FREEBSD32
164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
165 #endif
166 
167 /*
168  * Initialize global process hashing structures.
169  */
170 void
171 procinit(void)
172 {
173 
174 	sx_init(&allproc_lock, "allproc");
175 	sx_init(&proctree_lock, "proctree");
176 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
177 	LIST_INIT(&allproc);
178 	LIST_INIT(&zombproc);
179 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
180 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
181 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
182 	    proc_ctor, proc_dtor, proc_init, proc_fini,
183 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
184 	uihashinit();
185 }
186 
187 /*
188  * Prepare a proc for use.
189  */
190 static int
191 proc_ctor(void *mem, int size, void *arg, int flags)
192 {
193 	struct proc *p;
194 
195 	p = (struct proc *)mem;
196 	SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
197 	EVENTHANDLER_INVOKE(process_ctor, p);
198 	SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
199 	return (0);
200 }
201 
202 /*
203  * Reclaim a proc after use.
204  */
205 static void
206 proc_dtor(void *mem, int size, void *arg)
207 {
208 	struct proc *p;
209 	struct thread *td;
210 
211 	/* INVARIANTS checks go here */
212 	p = (struct proc *)mem;
213 	td = FIRST_THREAD_IN_PROC(p);
214 	SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
215 	if (td != NULL) {
216 #ifdef INVARIANTS
217 		KASSERT((p->p_numthreads == 1),
218 		    ("bad number of threads in exiting process"));
219 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
220 #endif
221 		/* Free all OSD associated to this thread. */
222 		osd_thread_exit(td);
223 	}
224 	EVENTHANDLER_INVOKE(process_dtor, p);
225 	if (p->p_ksi != NULL)
226 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
227 	SDT_PROBE3(proc, , dtor, return, p, size, arg);
228 }
229 
230 /*
231  * Initialize type-stable parts of a proc (when newly created).
232  */
233 static int
234 proc_init(void *mem, int size, int flags)
235 {
236 	struct proc *p;
237 
238 	p = (struct proc *)mem;
239 	SDT_PROBE3(proc, , init, entry, p, size, flags);
240 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
241 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
242 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
243 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
244 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
245 	cv_init(&p->p_pwait, "ppwait");
246 	cv_init(&p->p_dbgwait, "dbgwait");
247 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
248 	EVENTHANDLER_INVOKE(process_init, p);
249 	p->p_stats = pstats_alloc();
250 	p->p_pgrp = NULL;
251 	SDT_PROBE3(proc, , init, return, p, size, flags);
252 	return (0);
253 }
254 
255 /*
256  * UMA should ensure that this function is never called.
257  * Freeing a proc structure would violate type stability.
258  */
259 static void
260 proc_fini(void *mem, int size)
261 {
262 #ifdef notnow
263 	struct proc *p;
264 
265 	p = (struct proc *)mem;
266 	EVENTHANDLER_INVOKE(process_fini, p);
267 	pstats_free(p->p_stats);
268 	thread_free(FIRST_THREAD_IN_PROC(p));
269 	mtx_destroy(&p->p_mtx);
270 	if (p->p_ksi != NULL)
271 		ksiginfo_free(p->p_ksi);
272 #else
273 	panic("proc reclaimed");
274 #endif
275 }
276 
277 /*
278  * Is p an inferior of the current process?
279  */
280 int
281 inferior(struct proc *p)
282 {
283 
284 	sx_assert(&proctree_lock, SX_LOCKED);
285 	PROC_LOCK_ASSERT(p, MA_OWNED);
286 	for (; p != curproc; p = proc_realparent(p)) {
287 		if (p->p_pid == 0)
288 			return (0);
289 	}
290 	return (1);
291 }
292 
293 struct proc *
294 pfind_locked(pid_t pid)
295 {
296 	struct proc *p;
297 
298 	sx_assert(&allproc_lock, SX_LOCKED);
299 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
300 		if (p->p_pid == pid) {
301 			PROC_LOCK(p);
302 			if (p->p_state == PRS_NEW) {
303 				PROC_UNLOCK(p);
304 				p = NULL;
305 			}
306 			break;
307 		}
308 	}
309 	return (p);
310 }
311 
312 /*
313  * Locate a process by number; return only "live" processes -- i.e., neither
314  * zombies nor newly born but incompletely initialized processes.  By not
315  * returning processes in the PRS_NEW state, we allow callers to avoid
316  * testing for that condition to avoid dereferencing p_ucred, et al.
317  */
318 struct proc *
319 pfind(pid_t pid)
320 {
321 	struct proc *p;
322 
323 	sx_slock(&allproc_lock);
324 	p = pfind_locked(pid);
325 	sx_sunlock(&allproc_lock);
326 	return (p);
327 }
328 
329 static struct proc *
330 pfind_tid_locked(pid_t tid)
331 {
332 	struct proc *p;
333 	struct thread *td;
334 
335 	sx_assert(&allproc_lock, SX_LOCKED);
336 	FOREACH_PROC_IN_SYSTEM(p) {
337 		PROC_LOCK(p);
338 		if (p->p_state == PRS_NEW) {
339 			PROC_UNLOCK(p);
340 			continue;
341 		}
342 		FOREACH_THREAD_IN_PROC(p, td) {
343 			if (td->td_tid == tid)
344 				goto found;
345 		}
346 		PROC_UNLOCK(p);
347 	}
348 found:
349 	return (p);
350 }
351 
352 /*
353  * Locate a process group by number.
354  * The caller must hold proctree_lock.
355  */
356 struct pgrp *
357 pgfind(pgid)
358 	register pid_t pgid;
359 {
360 	register struct pgrp *pgrp;
361 
362 	sx_assert(&proctree_lock, SX_LOCKED);
363 
364 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
365 		if (pgrp->pg_id == pgid) {
366 			PGRP_LOCK(pgrp);
367 			return (pgrp);
368 		}
369 	}
370 	return (NULL);
371 }
372 
373 /*
374  * Locate process and do additional manipulations, depending on flags.
375  */
376 int
377 pget(pid_t pid, int flags, struct proc **pp)
378 {
379 	struct proc *p;
380 	int error;
381 
382 	sx_slock(&allproc_lock);
383 	if (pid <= PID_MAX) {
384 		p = pfind_locked(pid);
385 		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
386 			p = zpfind_locked(pid);
387 	} else if ((flags & PGET_NOTID) == 0) {
388 		p = pfind_tid_locked(pid);
389 	} else {
390 		p = NULL;
391 	}
392 	sx_sunlock(&allproc_lock);
393 	if (p == NULL)
394 		return (ESRCH);
395 	if ((flags & PGET_CANSEE) != 0) {
396 		error = p_cansee(curthread, p);
397 		if (error != 0)
398 			goto errout;
399 	}
400 	if ((flags & PGET_CANDEBUG) != 0) {
401 		error = p_candebug(curthread, p);
402 		if (error != 0)
403 			goto errout;
404 	}
405 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
406 		error = EPERM;
407 		goto errout;
408 	}
409 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
410 		error = ESRCH;
411 		goto errout;
412 	}
413 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
414 		/*
415 		 * XXXRW: Not clear ESRCH is the right error during proc
416 		 * execve().
417 		 */
418 		error = ESRCH;
419 		goto errout;
420 	}
421 	if ((flags & PGET_HOLD) != 0) {
422 		_PHOLD(p);
423 		PROC_UNLOCK(p);
424 	}
425 	*pp = p;
426 	return (0);
427 errout:
428 	PROC_UNLOCK(p);
429 	return (error);
430 }
431 
432 /*
433  * Create a new process group.
434  * pgid must be equal to the pid of p.
435  * Begin a new session if required.
436  */
437 int
438 enterpgrp(p, pgid, pgrp, sess)
439 	register struct proc *p;
440 	pid_t pgid;
441 	struct pgrp *pgrp;
442 	struct session *sess;
443 {
444 
445 	sx_assert(&proctree_lock, SX_XLOCKED);
446 
447 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
448 	KASSERT(p->p_pid == pgid,
449 	    ("enterpgrp: new pgrp and pid != pgid"));
450 	KASSERT(pgfind(pgid) == NULL,
451 	    ("enterpgrp: pgrp with pgid exists"));
452 	KASSERT(!SESS_LEADER(p),
453 	    ("enterpgrp: session leader attempted setpgrp"));
454 
455 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
456 
457 	if (sess != NULL) {
458 		/*
459 		 * new session
460 		 */
461 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
462 		PROC_LOCK(p);
463 		p->p_flag &= ~P_CONTROLT;
464 		PROC_UNLOCK(p);
465 		PGRP_LOCK(pgrp);
466 		sess->s_leader = p;
467 		sess->s_sid = p->p_pid;
468 		refcount_init(&sess->s_count, 1);
469 		sess->s_ttyvp = NULL;
470 		sess->s_ttydp = NULL;
471 		sess->s_ttyp = NULL;
472 		bcopy(p->p_session->s_login, sess->s_login,
473 			    sizeof(sess->s_login));
474 		pgrp->pg_session = sess;
475 		KASSERT(p == curproc,
476 		    ("enterpgrp: mksession and p != curproc"));
477 	} else {
478 		pgrp->pg_session = p->p_session;
479 		sess_hold(pgrp->pg_session);
480 		PGRP_LOCK(pgrp);
481 	}
482 	pgrp->pg_id = pgid;
483 	LIST_INIT(&pgrp->pg_members);
484 
485 	/*
486 	 * As we have an exclusive lock of proctree_lock,
487 	 * this should not deadlock.
488 	 */
489 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
490 	pgrp->pg_jobc = 0;
491 	SLIST_INIT(&pgrp->pg_sigiolst);
492 	PGRP_UNLOCK(pgrp);
493 
494 	doenterpgrp(p, pgrp);
495 
496 	return (0);
497 }
498 
499 /*
500  * Move p to an existing process group
501  */
502 int
503 enterthispgrp(p, pgrp)
504 	register struct proc *p;
505 	struct pgrp *pgrp;
506 {
507 
508 	sx_assert(&proctree_lock, SX_XLOCKED);
509 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
510 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
511 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
512 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
513 	KASSERT(pgrp->pg_session == p->p_session,
514 		("%s: pgrp's session %p, p->p_session %p.\n",
515 		__func__,
516 		pgrp->pg_session,
517 		p->p_session));
518 	KASSERT(pgrp != p->p_pgrp,
519 		("%s: p belongs to pgrp.", __func__));
520 
521 	doenterpgrp(p, pgrp);
522 
523 	return (0);
524 }
525 
526 /*
527  * Move p to a process group
528  */
529 static void
530 doenterpgrp(p, pgrp)
531 	struct proc *p;
532 	struct pgrp *pgrp;
533 {
534 	struct pgrp *savepgrp;
535 
536 	sx_assert(&proctree_lock, SX_XLOCKED);
537 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
538 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
539 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
540 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
541 
542 	savepgrp = p->p_pgrp;
543 
544 	/*
545 	 * Adjust eligibility of affected pgrps to participate in job control.
546 	 * Increment eligibility counts before decrementing, otherwise we
547 	 * could reach 0 spuriously during the first call.
548 	 */
549 	fixjobc(p, pgrp, 1);
550 	fixjobc(p, p->p_pgrp, 0);
551 
552 	PGRP_LOCK(pgrp);
553 	PGRP_LOCK(savepgrp);
554 	PROC_LOCK(p);
555 	LIST_REMOVE(p, p_pglist);
556 	p->p_pgrp = pgrp;
557 	PROC_UNLOCK(p);
558 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
559 	PGRP_UNLOCK(savepgrp);
560 	PGRP_UNLOCK(pgrp);
561 	if (LIST_EMPTY(&savepgrp->pg_members))
562 		pgdelete(savepgrp);
563 }
564 
565 /*
566  * remove process from process group
567  */
568 int
569 leavepgrp(p)
570 	register struct proc *p;
571 {
572 	struct pgrp *savepgrp;
573 
574 	sx_assert(&proctree_lock, SX_XLOCKED);
575 	savepgrp = p->p_pgrp;
576 	PGRP_LOCK(savepgrp);
577 	PROC_LOCK(p);
578 	LIST_REMOVE(p, p_pglist);
579 	p->p_pgrp = NULL;
580 	PROC_UNLOCK(p);
581 	PGRP_UNLOCK(savepgrp);
582 	if (LIST_EMPTY(&savepgrp->pg_members))
583 		pgdelete(savepgrp);
584 	return (0);
585 }
586 
587 /*
588  * delete a process group
589  */
590 static void
591 pgdelete(pgrp)
592 	register struct pgrp *pgrp;
593 {
594 	struct session *savesess;
595 	struct tty *tp;
596 
597 	sx_assert(&proctree_lock, SX_XLOCKED);
598 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
599 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
600 
601 	/*
602 	 * Reset any sigio structures pointing to us as a result of
603 	 * F_SETOWN with our pgid.
604 	 */
605 	funsetownlst(&pgrp->pg_sigiolst);
606 
607 	PGRP_LOCK(pgrp);
608 	tp = pgrp->pg_session->s_ttyp;
609 	LIST_REMOVE(pgrp, pg_hash);
610 	savesess = pgrp->pg_session;
611 	PGRP_UNLOCK(pgrp);
612 
613 	/* Remove the reference to the pgrp before deallocating it. */
614 	if (tp != NULL) {
615 		tty_lock(tp);
616 		tty_rel_pgrp(tp, pgrp);
617 	}
618 
619 	mtx_destroy(&pgrp->pg_mtx);
620 	free(pgrp, M_PGRP);
621 	sess_release(savesess);
622 }
623 
624 static void
625 pgadjustjobc(pgrp, entering)
626 	struct pgrp *pgrp;
627 	int entering;
628 {
629 
630 	PGRP_LOCK(pgrp);
631 	if (entering)
632 		pgrp->pg_jobc++;
633 	else {
634 		--pgrp->pg_jobc;
635 		if (pgrp->pg_jobc == 0)
636 			orphanpg(pgrp);
637 	}
638 	PGRP_UNLOCK(pgrp);
639 }
640 
641 /*
642  * Adjust pgrp jobc counters when specified process changes process group.
643  * We count the number of processes in each process group that "qualify"
644  * the group for terminal job control (those with a parent in a different
645  * process group of the same session).  If that count reaches zero, the
646  * process group becomes orphaned.  Check both the specified process'
647  * process group and that of its children.
648  * entering == 0 => p is leaving specified group.
649  * entering == 1 => p is entering specified group.
650  */
651 void
652 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
653 {
654 	struct pgrp *hispgrp;
655 	struct session *mysession;
656 	struct proc *q;
657 
658 	sx_assert(&proctree_lock, SX_LOCKED);
659 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
660 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
661 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
662 
663 	/*
664 	 * Check p's parent to see whether p qualifies its own process
665 	 * group; if so, adjust count for p's process group.
666 	 */
667 	mysession = pgrp->pg_session;
668 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
669 	    hispgrp->pg_session == mysession)
670 		pgadjustjobc(pgrp, entering);
671 
672 	/*
673 	 * Check this process' children to see whether they qualify
674 	 * their process groups; if so, adjust counts for children's
675 	 * process groups.
676 	 */
677 	LIST_FOREACH(q, &p->p_children, p_sibling) {
678 		hispgrp = q->p_pgrp;
679 		if (hispgrp == pgrp ||
680 		    hispgrp->pg_session != mysession)
681 			continue;
682 		if (q->p_state == PRS_ZOMBIE)
683 			continue;
684 		pgadjustjobc(hispgrp, entering);
685 	}
686 }
687 
688 void
689 killjobc(void)
690 {
691 	struct session *sp;
692 	struct tty *tp;
693 	struct proc *p;
694 	struct vnode *ttyvp;
695 
696 	p = curproc;
697 	MPASS(p->p_flag & P_WEXIT);
698 	/*
699 	 * Do a quick check to see if there is anything to do with the
700 	 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
701 	 */
702 	PROC_LOCK(p);
703 	if (!SESS_LEADER(p) &&
704 	    (p->p_pgrp == p->p_pptr->p_pgrp) &&
705 	    LIST_EMPTY(&p->p_children)) {
706 		PROC_UNLOCK(p);
707 		return;
708 	}
709 	PROC_UNLOCK(p);
710 
711 	sx_xlock(&proctree_lock);
712 	if (SESS_LEADER(p)) {
713 		sp = p->p_session;
714 
715 		/*
716 		 * s_ttyp is not zero'd; we use this to indicate that
717 		 * the session once had a controlling terminal. (for
718 		 * logging and informational purposes)
719 		 */
720 		SESS_LOCK(sp);
721 		ttyvp = sp->s_ttyvp;
722 		tp = sp->s_ttyp;
723 		sp->s_ttyvp = NULL;
724 		sp->s_ttydp = NULL;
725 		sp->s_leader = NULL;
726 		SESS_UNLOCK(sp);
727 
728 		/*
729 		 * Signal foreground pgrp and revoke access to
730 		 * controlling terminal if it has not been revoked
731 		 * already.
732 		 *
733 		 * Because the TTY may have been revoked in the mean
734 		 * time and could already have a new session associated
735 		 * with it, make sure we don't send a SIGHUP to a
736 		 * foreground process group that does not belong to this
737 		 * session.
738 		 */
739 
740 		if (tp != NULL) {
741 			tty_lock(tp);
742 			if (tp->t_session == sp)
743 				tty_signal_pgrp(tp, SIGHUP);
744 			tty_unlock(tp);
745 		}
746 
747 		if (ttyvp != NULL) {
748 			sx_xunlock(&proctree_lock);
749 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
750 				VOP_REVOKE(ttyvp, REVOKEALL);
751 				VOP_UNLOCK(ttyvp, 0);
752 			}
753 			vrele(ttyvp);
754 			sx_xlock(&proctree_lock);
755 		}
756 	}
757 	fixjobc(p, p->p_pgrp, 0);
758 	sx_xunlock(&proctree_lock);
759 }
760 
761 /*
762  * A process group has become orphaned;
763  * if there are any stopped processes in the group,
764  * hang-up all process in that group.
765  */
766 static void
767 orphanpg(pg)
768 	struct pgrp *pg;
769 {
770 	register struct proc *p;
771 
772 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
773 
774 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
775 		PROC_LOCK(p);
776 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
777 			PROC_UNLOCK(p);
778 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
779 				PROC_LOCK(p);
780 				kern_psignal(p, SIGHUP);
781 				kern_psignal(p, SIGCONT);
782 				PROC_UNLOCK(p);
783 			}
784 			return;
785 		}
786 		PROC_UNLOCK(p);
787 	}
788 }
789 
790 void
791 sess_hold(struct session *s)
792 {
793 
794 	refcount_acquire(&s->s_count);
795 }
796 
797 void
798 sess_release(struct session *s)
799 {
800 
801 	if (refcount_release(&s->s_count)) {
802 		if (s->s_ttyp != NULL) {
803 			tty_lock(s->s_ttyp);
804 			tty_rel_sess(s->s_ttyp, s);
805 		}
806 		mtx_destroy(&s->s_mtx);
807 		free(s, M_SESSION);
808 	}
809 }
810 
811 #ifdef DDB
812 
813 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
814 {
815 	register struct pgrp *pgrp;
816 	register struct proc *p;
817 	register int i;
818 
819 	for (i = 0; i <= pgrphash; i++) {
820 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
821 			printf("\tindx %d\n", i);
822 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
823 				printf(
824 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
825 				    (void *)pgrp, (long)pgrp->pg_id,
826 				    (void *)pgrp->pg_session,
827 				    pgrp->pg_session->s_count,
828 				    (void *)LIST_FIRST(&pgrp->pg_members));
829 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
830 					printf("\t\tpid %ld addr %p pgrp %p\n",
831 					    (long)p->p_pid, (void *)p,
832 					    (void *)p->p_pgrp);
833 				}
834 			}
835 		}
836 	}
837 }
838 #endif /* DDB */
839 
840 /*
841  * Calculate the kinfo_proc members which contain process-wide
842  * informations.
843  * Must be called with the target process locked.
844  */
845 static void
846 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
847 {
848 	struct thread *td;
849 
850 	PROC_LOCK_ASSERT(p, MA_OWNED);
851 
852 	kp->ki_estcpu = 0;
853 	kp->ki_pctcpu = 0;
854 	FOREACH_THREAD_IN_PROC(p, td) {
855 		thread_lock(td);
856 		kp->ki_pctcpu += sched_pctcpu(td);
857 		kp->ki_estcpu += sched_estcpu(td);
858 		thread_unlock(td);
859 	}
860 }
861 
862 /*
863  * Clear kinfo_proc and fill in any information that is common
864  * to all threads in the process.
865  * Must be called with the target process locked.
866  */
867 static void
868 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
869 {
870 	struct thread *td0;
871 	struct tty *tp;
872 	struct session *sp;
873 	struct ucred *cred;
874 	struct sigacts *ps;
875 
876 	/* For proc_realparent. */
877 	sx_assert(&proctree_lock, SX_LOCKED);
878 	PROC_LOCK_ASSERT(p, MA_OWNED);
879 	bzero(kp, sizeof(*kp));
880 
881 	kp->ki_structsize = sizeof(*kp);
882 	kp->ki_paddr = p;
883 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
884 	kp->ki_args = p->p_args;
885 	kp->ki_textvp = p->p_textvp;
886 #ifdef KTRACE
887 	kp->ki_tracep = p->p_tracevp;
888 	kp->ki_traceflag = p->p_traceflag;
889 #endif
890 	kp->ki_fd = p->p_fd;
891 	kp->ki_vmspace = p->p_vmspace;
892 	kp->ki_flag = p->p_flag;
893 	kp->ki_flag2 = p->p_flag2;
894 	cred = p->p_ucred;
895 	if (cred) {
896 		kp->ki_uid = cred->cr_uid;
897 		kp->ki_ruid = cred->cr_ruid;
898 		kp->ki_svuid = cred->cr_svuid;
899 		kp->ki_cr_flags = 0;
900 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
901 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
902 		/* XXX bde doesn't like KI_NGROUPS */
903 		if (cred->cr_ngroups > KI_NGROUPS) {
904 			kp->ki_ngroups = KI_NGROUPS;
905 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
906 		} else
907 			kp->ki_ngroups = cred->cr_ngroups;
908 		bcopy(cred->cr_groups, kp->ki_groups,
909 		    kp->ki_ngroups * sizeof(gid_t));
910 		kp->ki_rgid = cred->cr_rgid;
911 		kp->ki_svgid = cred->cr_svgid;
912 		/* If jailed(cred), emulate the old P_JAILED flag. */
913 		if (jailed(cred)) {
914 			kp->ki_flag |= P_JAILED;
915 			/* If inside the jail, use 0 as a jail ID. */
916 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
917 				kp->ki_jid = cred->cr_prison->pr_id;
918 		}
919 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
920 		    sizeof(kp->ki_loginclass));
921 	}
922 	ps = p->p_sigacts;
923 	if (ps) {
924 		mtx_lock(&ps->ps_mtx);
925 		kp->ki_sigignore = ps->ps_sigignore;
926 		kp->ki_sigcatch = ps->ps_sigcatch;
927 		mtx_unlock(&ps->ps_mtx);
928 	}
929 	if (p->p_state != PRS_NEW &&
930 	    p->p_state != PRS_ZOMBIE &&
931 	    p->p_vmspace != NULL) {
932 		struct vmspace *vm = p->p_vmspace;
933 
934 		kp->ki_size = vm->vm_map.size;
935 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
936 		FOREACH_THREAD_IN_PROC(p, td0) {
937 			if (!TD_IS_SWAPPED(td0))
938 				kp->ki_rssize += td0->td_kstack_pages;
939 		}
940 		kp->ki_swrss = vm->vm_swrss;
941 		kp->ki_tsize = vm->vm_tsize;
942 		kp->ki_dsize = vm->vm_dsize;
943 		kp->ki_ssize = vm->vm_ssize;
944 	} else if (p->p_state == PRS_ZOMBIE)
945 		kp->ki_stat = SZOMB;
946 	if (kp->ki_flag & P_INMEM)
947 		kp->ki_sflag = PS_INMEM;
948 	else
949 		kp->ki_sflag = 0;
950 	/* Calculate legacy swtime as seconds since 'swtick'. */
951 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
952 	kp->ki_pid = p->p_pid;
953 	kp->ki_nice = p->p_nice;
954 	kp->ki_fibnum = p->p_fibnum;
955 	kp->ki_start = p->p_stats->p_start;
956 	timevaladd(&kp->ki_start, &boottime);
957 	PROC_STATLOCK(p);
958 	rufetch(p, &kp->ki_rusage);
959 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
960 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
961 	PROC_STATUNLOCK(p);
962 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
963 	/* Some callers want child times in a single value. */
964 	kp->ki_childtime = kp->ki_childstime;
965 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
966 
967 	FOREACH_THREAD_IN_PROC(p, td0)
968 		kp->ki_cow += td0->td_cow;
969 
970 	tp = NULL;
971 	if (p->p_pgrp) {
972 		kp->ki_pgid = p->p_pgrp->pg_id;
973 		kp->ki_jobc = p->p_pgrp->pg_jobc;
974 		sp = p->p_pgrp->pg_session;
975 
976 		if (sp != NULL) {
977 			kp->ki_sid = sp->s_sid;
978 			SESS_LOCK(sp);
979 			strlcpy(kp->ki_login, sp->s_login,
980 			    sizeof(kp->ki_login));
981 			if (sp->s_ttyvp)
982 				kp->ki_kiflag |= KI_CTTY;
983 			if (SESS_LEADER(p))
984 				kp->ki_kiflag |= KI_SLEADER;
985 			/* XXX proctree_lock */
986 			tp = sp->s_ttyp;
987 			SESS_UNLOCK(sp);
988 		}
989 	}
990 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
991 		kp->ki_tdev = tty_udev(tp);
992 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
993 		if (tp->t_session)
994 			kp->ki_tsid = tp->t_session->s_sid;
995 	} else
996 		kp->ki_tdev = NODEV;
997 	if (p->p_comm[0] != '\0')
998 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
999 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1000 	    p->p_sysent->sv_name[0] != '\0')
1001 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1002 	kp->ki_siglist = p->p_siglist;
1003 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1004 	kp->ki_acflag = p->p_acflag;
1005 	kp->ki_lock = p->p_lock;
1006 	if (p->p_pptr) {
1007 		kp->ki_ppid = proc_realparent(p)->p_pid;
1008 		if (p->p_flag & P_TRACED)
1009 			kp->ki_tracer = p->p_pptr->p_pid;
1010 	}
1011 }
1012 
1013 /*
1014  * Fill in information that is thread specific.  Must be called with
1015  * target process locked.  If 'preferthread' is set, overwrite certain
1016  * process-related fields that are maintained for both threads and
1017  * processes.
1018  */
1019 static void
1020 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1021 {
1022 	struct proc *p;
1023 
1024 	p = td->td_proc;
1025 	kp->ki_tdaddr = td;
1026 	PROC_LOCK_ASSERT(p, MA_OWNED);
1027 
1028 	if (preferthread)
1029 		PROC_STATLOCK(p);
1030 	thread_lock(td);
1031 	if (td->td_wmesg != NULL)
1032 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1033 	else
1034 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1035 	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
1036 	if (TD_ON_LOCK(td)) {
1037 		kp->ki_kiflag |= KI_LOCKBLOCK;
1038 		strlcpy(kp->ki_lockname, td->td_lockname,
1039 		    sizeof(kp->ki_lockname));
1040 	} else {
1041 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1042 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1043 	}
1044 
1045 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1046 		if (TD_ON_RUNQ(td) ||
1047 		    TD_CAN_RUN(td) ||
1048 		    TD_IS_RUNNING(td)) {
1049 			kp->ki_stat = SRUN;
1050 		} else if (P_SHOULDSTOP(p)) {
1051 			kp->ki_stat = SSTOP;
1052 		} else if (TD_IS_SLEEPING(td)) {
1053 			kp->ki_stat = SSLEEP;
1054 		} else if (TD_ON_LOCK(td)) {
1055 			kp->ki_stat = SLOCK;
1056 		} else {
1057 			kp->ki_stat = SWAIT;
1058 		}
1059 	} else if (p->p_state == PRS_ZOMBIE) {
1060 		kp->ki_stat = SZOMB;
1061 	} else {
1062 		kp->ki_stat = SIDL;
1063 	}
1064 
1065 	/* Things in the thread */
1066 	kp->ki_wchan = td->td_wchan;
1067 	kp->ki_pri.pri_level = td->td_priority;
1068 	kp->ki_pri.pri_native = td->td_base_pri;
1069 
1070 	/*
1071 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1072 	 * the maximum u_char CPU value.
1073 	 */
1074 	if (td->td_lastcpu == NOCPU)
1075 		kp->ki_lastcpu_old = NOCPU_OLD;
1076 	else if (td->td_lastcpu > MAXCPU_OLD)
1077 		kp->ki_lastcpu_old = MAXCPU_OLD;
1078 	else
1079 		kp->ki_lastcpu_old = td->td_lastcpu;
1080 
1081 	if (td->td_oncpu == NOCPU)
1082 		kp->ki_oncpu_old = NOCPU_OLD;
1083 	else if (td->td_oncpu > MAXCPU_OLD)
1084 		kp->ki_oncpu_old = MAXCPU_OLD;
1085 	else
1086 		kp->ki_oncpu_old = td->td_oncpu;
1087 
1088 	kp->ki_lastcpu = td->td_lastcpu;
1089 	kp->ki_oncpu = td->td_oncpu;
1090 	kp->ki_tdflags = td->td_flags;
1091 	kp->ki_tid = td->td_tid;
1092 	kp->ki_numthreads = p->p_numthreads;
1093 	kp->ki_pcb = td->td_pcb;
1094 	kp->ki_kstack = (void *)td->td_kstack;
1095 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1096 	kp->ki_pri.pri_class = td->td_pri_class;
1097 	kp->ki_pri.pri_user = td->td_user_pri;
1098 
1099 	if (preferthread) {
1100 		rufetchtd(td, &kp->ki_rusage);
1101 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1102 		kp->ki_pctcpu = sched_pctcpu(td);
1103 		kp->ki_estcpu = sched_estcpu(td);
1104 		kp->ki_cow = td->td_cow;
1105 	}
1106 
1107 	/* We can't get this anymore but ps etc never used it anyway. */
1108 	kp->ki_rqindex = 0;
1109 
1110 	if (preferthread)
1111 		kp->ki_siglist = td->td_siglist;
1112 	kp->ki_sigmask = td->td_sigmask;
1113 	thread_unlock(td);
1114 	if (preferthread)
1115 		PROC_STATUNLOCK(p);
1116 }
1117 
1118 /*
1119  * Fill in a kinfo_proc structure for the specified process.
1120  * Must be called with the target process locked.
1121  */
1122 void
1123 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1124 {
1125 
1126 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1127 
1128 	fill_kinfo_proc_only(p, kp);
1129 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1130 	fill_kinfo_aggregate(p, kp);
1131 }
1132 
1133 struct pstats *
1134 pstats_alloc(void)
1135 {
1136 
1137 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1138 }
1139 
1140 /*
1141  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1142  */
1143 void
1144 pstats_fork(struct pstats *src, struct pstats *dst)
1145 {
1146 
1147 	bzero(&dst->pstat_startzero,
1148 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1149 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1150 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1151 }
1152 
1153 void
1154 pstats_free(struct pstats *ps)
1155 {
1156 
1157 	free(ps, M_SUBPROC);
1158 }
1159 
1160 static struct proc *
1161 zpfind_locked(pid_t pid)
1162 {
1163 	struct proc *p;
1164 
1165 	sx_assert(&allproc_lock, SX_LOCKED);
1166 	LIST_FOREACH(p, &zombproc, p_list) {
1167 		if (p->p_pid == pid) {
1168 			PROC_LOCK(p);
1169 			break;
1170 		}
1171 	}
1172 	return (p);
1173 }
1174 
1175 /*
1176  * Locate a zombie process by number
1177  */
1178 struct proc *
1179 zpfind(pid_t pid)
1180 {
1181 	struct proc *p;
1182 
1183 	sx_slock(&allproc_lock);
1184 	p = zpfind_locked(pid);
1185 	sx_sunlock(&allproc_lock);
1186 	return (p);
1187 }
1188 
1189 #ifdef COMPAT_FREEBSD32
1190 
1191 /*
1192  * This function is typically used to copy out the kernel address, so
1193  * it can be replaced by assignment of zero.
1194  */
1195 static inline uint32_t
1196 ptr32_trim(void *ptr)
1197 {
1198 	uintptr_t uptr;
1199 
1200 	uptr = (uintptr_t)ptr;
1201 	return ((uptr > UINT_MAX) ? 0 : uptr);
1202 }
1203 
1204 #define PTRTRIM_CP(src,dst,fld) \
1205 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1206 
1207 static void
1208 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1209 {
1210 	int i;
1211 
1212 	bzero(ki32, sizeof(struct kinfo_proc32));
1213 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1214 	CP(*ki, *ki32, ki_layout);
1215 	PTRTRIM_CP(*ki, *ki32, ki_args);
1216 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1217 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1218 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1219 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1220 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1221 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1222 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1223 	CP(*ki, *ki32, ki_pid);
1224 	CP(*ki, *ki32, ki_ppid);
1225 	CP(*ki, *ki32, ki_pgid);
1226 	CP(*ki, *ki32, ki_tpgid);
1227 	CP(*ki, *ki32, ki_sid);
1228 	CP(*ki, *ki32, ki_tsid);
1229 	CP(*ki, *ki32, ki_jobc);
1230 	CP(*ki, *ki32, ki_tdev);
1231 	CP(*ki, *ki32, ki_siglist);
1232 	CP(*ki, *ki32, ki_sigmask);
1233 	CP(*ki, *ki32, ki_sigignore);
1234 	CP(*ki, *ki32, ki_sigcatch);
1235 	CP(*ki, *ki32, ki_uid);
1236 	CP(*ki, *ki32, ki_ruid);
1237 	CP(*ki, *ki32, ki_svuid);
1238 	CP(*ki, *ki32, ki_rgid);
1239 	CP(*ki, *ki32, ki_svgid);
1240 	CP(*ki, *ki32, ki_ngroups);
1241 	for (i = 0; i < KI_NGROUPS; i++)
1242 		CP(*ki, *ki32, ki_groups[i]);
1243 	CP(*ki, *ki32, ki_size);
1244 	CP(*ki, *ki32, ki_rssize);
1245 	CP(*ki, *ki32, ki_swrss);
1246 	CP(*ki, *ki32, ki_tsize);
1247 	CP(*ki, *ki32, ki_dsize);
1248 	CP(*ki, *ki32, ki_ssize);
1249 	CP(*ki, *ki32, ki_xstat);
1250 	CP(*ki, *ki32, ki_acflag);
1251 	CP(*ki, *ki32, ki_pctcpu);
1252 	CP(*ki, *ki32, ki_estcpu);
1253 	CP(*ki, *ki32, ki_slptime);
1254 	CP(*ki, *ki32, ki_swtime);
1255 	CP(*ki, *ki32, ki_cow);
1256 	CP(*ki, *ki32, ki_runtime);
1257 	TV_CP(*ki, *ki32, ki_start);
1258 	TV_CP(*ki, *ki32, ki_childtime);
1259 	CP(*ki, *ki32, ki_flag);
1260 	CP(*ki, *ki32, ki_kiflag);
1261 	CP(*ki, *ki32, ki_traceflag);
1262 	CP(*ki, *ki32, ki_stat);
1263 	CP(*ki, *ki32, ki_nice);
1264 	CP(*ki, *ki32, ki_lock);
1265 	CP(*ki, *ki32, ki_rqindex);
1266 	CP(*ki, *ki32, ki_oncpu);
1267 	CP(*ki, *ki32, ki_lastcpu);
1268 
1269 	/* XXX TODO: wrap cpu value as appropriate */
1270 	CP(*ki, *ki32, ki_oncpu_old);
1271 	CP(*ki, *ki32, ki_lastcpu_old);
1272 
1273 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1274 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1275 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1276 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1277 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1278 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1279 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1280 	CP(*ki, *ki32, ki_tracer);
1281 	CP(*ki, *ki32, ki_flag2);
1282 	CP(*ki, *ki32, ki_fibnum);
1283 	CP(*ki, *ki32, ki_cr_flags);
1284 	CP(*ki, *ki32, ki_jid);
1285 	CP(*ki, *ki32, ki_numthreads);
1286 	CP(*ki, *ki32, ki_tid);
1287 	CP(*ki, *ki32, ki_pri);
1288 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1289 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1290 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1291 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1292 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1293 	CP(*ki, *ki32, ki_sflag);
1294 	CP(*ki, *ki32, ki_tdflags);
1295 }
1296 #endif
1297 
1298 int
1299 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1300 {
1301 	struct thread *td;
1302 	struct kinfo_proc ki;
1303 #ifdef COMPAT_FREEBSD32
1304 	struct kinfo_proc32 ki32;
1305 #endif
1306 	int error;
1307 
1308 	PROC_LOCK_ASSERT(p, MA_OWNED);
1309 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1310 
1311 	error = 0;
1312 	fill_kinfo_proc(p, &ki);
1313 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1314 #ifdef COMPAT_FREEBSD32
1315 		if ((flags & KERN_PROC_MASK32) != 0) {
1316 			freebsd32_kinfo_proc_out(&ki, &ki32);
1317 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1318 				error = ENOMEM;
1319 		} else
1320 #endif
1321 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1322 				error = ENOMEM;
1323 	} else {
1324 		FOREACH_THREAD_IN_PROC(p, td) {
1325 			fill_kinfo_thread(td, &ki, 1);
1326 #ifdef COMPAT_FREEBSD32
1327 			if ((flags & KERN_PROC_MASK32) != 0) {
1328 				freebsd32_kinfo_proc_out(&ki, &ki32);
1329 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1330 					error = ENOMEM;
1331 			} else
1332 #endif
1333 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1334 					error = ENOMEM;
1335 			if (error != 0)
1336 				break;
1337 		}
1338 	}
1339 	PROC_UNLOCK(p);
1340 	return (error);
1341 }
1342 
1343 static int
1344 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1345     int doingzomb)
1346 {
1347 	struct sbuf sb;
1348 	struct kinfo_proc ki;
1349 	struct proc *np;
1350 	int error, error2;
1351 	pid_t pid;
1352 
1353 	pid = p->p_pid;
1354 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1355 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1356 	error = kern_proc_out(p, &sb, flags);
1357 	error2 = sbuf_finish(&sb);
1358 	sbuf_delete(&sb);
1359 	if (error != 0)
1360 		return (error);
1361 	else if (error2 != 0)
1362 		return (error2);
1363 	if (doingzomb)
1364 		np = zpfind(pid);
1365 	else {
1366 		if (pid == 0)
1367 			return (0);
1368 		np = pfind(pid);
1369 	}
1370 	if (np == NULL)
1371 		return (ESRCH);
1372 	if (np != p) {
1373 		PROC_UNLOCK(np);
1374 		return (ESRCH);
1375 	}
1376 	PROC_UNLOCK(np);
1377 	return (0);
1378 }
1379 
1380 static int
1381 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1382 {
1383 	int *name = (int *)arg1;
1384 	u_int namelen = arg2;
1385 	struct proc *p;
1386 	int flags, doingzomb, oid_number;
1387 	int error = 0;
1388 
1389 	oid_number = oidp->oid_number;
1390 	if (oid_number != KERN_PROC_ALL &&
1391 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1392 		flags = KERN_PROC_NOTHREADS;
1393 	else {
1394 		flags = 0;
1395 		oid_number &= ~KERN_PROC_INC_THREAD;
1396 	}
1397 #ifdef COMPAT_FREEBSD32
1398 	if (req->flags & SCTL_MASK32)
1399 		flags |= KERN_PROC_MASK32;
1400 #endif
1401 	if (oid_number == KERN_PROC_PID) {
1402 		if (namelen != 1)
1403 			return (EINVAL);
1404 		error = sysctl_wire_old_buffer(req, 0);
1405 		if (error)
1406 			return (error);
1407 		sx_slock(&proctree_lock);
1408 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1409 		if (error == 0)
1410 			error = sysctl_out_proc(p, req, flags, 0);
1411 		sx_sunlock(&proctree_lock);
1412 		return (error);
1413 	}
1414 
1415 	switch (oid_number) {
1416 	case KERN_PROC_ALL:
1417 		if (namelen != 0)
1418 			return (EINVAL);
1419 		break;
1420 	case KERN_PROC_PROC:
1421 		if (namelen != 0 && namelen != 1)
1422 			return (EINVAL);
1423 		break;
1424 	default:
1425 		if (namelen != 1)
1426 			return (EINVAL);
1427 		break;
1428 	}
1429 
1430 	if (!req->oldptr) {
1431 		/* overestimate by 5 procs */
1432 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1433 		if (error)
1434 			return (error);
1435 	}
1436 	error = sysctl_wire_old_buffer(req, 0);
1437 	if (error != 0)
1438 		return (error);
1439 	sx_slock(&proctree_lock);
1440 	sx_slock(&allproc_lock);
1441 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1442 		if (!doingzomb)
1443 			p = LIST_FIRST(&allproc);
1444 		else
1445 			p = LIST_FIRST(&zombproc);
1446 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
1447 			/*
1448 			 * Skip embryonic processes.
1449 			 */
1450 			PROC_LOCK(p);
1451 			if (p->p_state == PRS_NEW) {
1452 				PROC_UNLOCK(p);
1453 				continue;
1454 			}
1455 			KASSERT(p->p_ucred != NULL,
1456 			    ("process credential is NULL for non-NEW proc"));
1457 			/*
1458 			 * Show a user only appropriate processes.
1459 			 */
1460 			if (p_cansee(curthread, p)) {
1461 				PROC_UNLOCK(p);
1462 				continue;
1463 			}
1464 			/*
1465 			 * TODO - make more efficient (see notes below).
1466 			 * do by session.
1467 			 */
1468 			switch (oid_number) {
1469 
1470 			case KERN_PROC_GID:
1471 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1472 					PROC_UNLOCK(p);
1473 					continue;
1474 				}
1475 				break;
1476 
1477 			case KERN_PROC_PGRP:
1478 				/* could do this by traversing pgrp */
1479 				if (p->p_pgrp == NULL ||
1480 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1481 					PROC_UNLOCK(p);
1482 					continue;
1483 				}
1484 				break;
1485 
1486 			case KERN_PROC_RGID:
1487 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1488 					PROC_UNLOCK(p);
1489 					continue;
1490 				}
1491 				break;
1492 
1493 			case KERN_PROC_SESSION:
1494 				if (p->p_session == NULL ||
1495 				    p->p_session->s_sid != (pid_t)name[0]) {
1496 					PROC_UNLOCK(p);
1497 					continue;
1498 				}
1499 				break;
1500 
1501 			case KERN_PROC_TTY:
1502 				if ((p->p_flag & P_CONTROLT) == 0 ||
1503 				    p->p_session == NULL) {
1504 					PROC_UNLOCK(p);
1505 					continue;
1506 				}
1507 				/* XXX proctree_lock */
1508 				SESS_LOCK(p->p_session);
1509 				if (p->p_session->s_ttyp == NULL ||
1510 				    tty_udev(p->p_session->s_ttyp) !=
1511 				    (dev_t)name[0]) {
1512 					SESS_UNLOCK(p->p_session);
1513 					PROC_UNLOCK(p);
1514 					continue;
1515 				}
1516 				SESS_UNLOCK(p->p_session);
1517 				break;
1518 
1519 			case KERN_PROC_UID:
1520 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1521 					PROC_UNLOCK(p);
1522 					continue;
1523 				}
1524 				break;
1525 
1526 			case KERN_PROC_RUID:
1527 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1528 					PROC_UNLOCK(p);
1529 					continue;
1530 				}
1531 				break;
1532 
1533 			case KERN_PROC_PROC:
1534 				break;
1535 
1536 			default:
1537 				break;
1538 
1539 			}
1540 
1541 			error = sysctl_out_proc(p, req, flags, doingzomb);
1542 			if (error) {
1543 				sx_sunlock(&allproc_lock);
1544 				sx_sunlock(&proctree_lock);
1545 				return (error);
1546 			}
1547 		}
1548 	}
1549 	sx_sunlock(&allproc_lock);
1550 	sx_sunlock(&proctree_lock);
1551 	return (0);
1552 }
1553 
1554 struct pargs *
1555 pargs_alloc(int len)
1556 {
1557 	struct pargs *pa;
1558 
1559 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1560 		M_WAITOK);
1561 	refcount_init(&pa->ar_ref, 1);
1562 	pa->ar_length = len;
1563 	return (pa);
1564 }
1565 
1566 static void
1567 pargs_free(struct pargs *pa)
1568 {
1569 
1570 	free(pa, M_PARGS);
1571 }
1572 
1573 void
1574 pargs_hold(struct pargs *pa)
1575 {
1576 
1577 	if (pa == NULL)
1578 		return;
1579 	refcount_acquire(&pa->ar_ref);
1580 }
1581 
1582 void
1583 pargs_drop(struct pargs *pa)
1584 {
1585 
1586 	if (pa == NULL)
1587 		return;
1588 	if (refcount_release(&pa->ar_ref))
1589 		pargs_free(pa);
1590 }
1591 
1592 static int
1593 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1594     size_t len)
1595 {
1596 	ssize_t n;
1597 
1598 	/*
1599 	 * This may return a short read if the string is shorter than the chunk
1600 	 * and is aligned at the end of the page, and the following page is not
1601 	 * mapped.
1602 	 */
1603 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1604 	if (n <= 0)
1605 		return (ENOMEM);
1606 	return (0);
1607 }
1608 
1609 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1610 
1611 enum proc_vector_type {
1612 	PROC_ARG,
1613 	PROC_ENV,
1614 	PROC_AUX,
1615 };
1616 
1617 #ifdef COMPAT_FREEBSD32
1618 static int
1619 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1620     size_t *vsizep, enum proc_vector_type type)
1621 {
1622 	struct freebsd32_ps_strings pss;
1623 	Elf32_Auxinfo aux;
1624 	vm_offset_t vptr, ptr;
1625 	uint32_t *proc_vector32;
1626 	char **proc_vector;
1627 	size_t vsize, size;
1628 	int i, error;
1629 
1630 	error = 0;
1631 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1632 	    sizeof(pss)) != sizeof(pss))
1633 		return (ENOMEM);
1634 	switch (type) {
1635 	case PROC_ARG:
1636 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1637 		vsize = pss.ps_nargvstr;
1638 		if (vsize > ARG_MAX)
1639 			return (ENOEXEC);
1640 		size = vsize * sizeof(int32_t);
1641 		break;
1642 	case PROC_ENV:
1643 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1644 		vsize = pss.ps_nenvstr;
1645 		if (vsize > ARG_MAX)
1646 			return (ENOEXEC);
1647 		size = vsize * sizeof(int32_t);
1648 		break;
1649 	case PROC_AUX:
1650 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1651 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1652 		if (vptr % 4 != 0)
1653 			return (ENOEXEC);
1654 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1655 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1656 			    sizeof(aux))
1657 				return (ENOMEM);
1658 			if (aux.a_type == AT_NULL)
1659 				break;
1660 			ptr += sizeof(aux);
1661 		}
1662 		if (aux.a_type != AT_NULL)
1663 			return (ENOEXEC);
1664 		vsize = i + 1;
1665 		size = vsize * sizeof(aux);
1666 		break;
1667 	default:
1668 		KASSERT(0, ("Wrong proc vector type: %d", type));
1669 		return (EINVAL);
1670 	}
1671 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1672 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1673 		error = ENOMEM;
1674 		goto done;
1675 	}
1676 	if (type == PROC_AUX) {
1677 		*proc_vectorp = (char **)proc_vector32;
1678 		*vsizep = vsize;
1679 		return (0);
1680 	}
1681 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1682 	for (i = 0; i < (int)vsize; i++)
1683 		proc_vector[i] = PTRIN(proc_vector32[i]);
1684 	*proc_vectorp = proc_vector;
1685 	*vsizep = vsize;
1686 done:
1687 	free(proc_vector32, M_TEMP);
1688 	return (error);
1689 }
1690 #endif
1691 
1692 static int
1693 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1694     size_t *vsizep, enum proc_vector_type type)
1695 {
1696 	struct ps_strings pss;
1697 	Elf_Auxinfo aux;
1698 	vm_offset_t vptr, ptr;
1699 	char **proc_vector;
1700 	size_t vsize, size;
1701 	int i;
1702 
1703 #ifdef COMPAT_FREEBSD32
1704 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1705 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1706 #endif
1707 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1708 	    sizeof(pss)) != sizeof(pss))
1709 		return (ENOMEM);
1710 	switch (type) {
1711 	case PROC_ARG:
1712 		vptr = (vm_offset_t)pss.ps_argvstr;
1713 		vsize = pss.ps_nargvstr;
1714 		if (vsize > ARG_MAX)
1715 			return (ENOEXEC);
1716 		size = vsize * sizeof(char *);
1717 		break;
1718 	case PROC_ENV:
1719 		vptr = (vm_offset_t)pss.ps_envstr;
1720 		vsize = pss.ps_nenvstr;
1721 		if (vsize > ARG_MAX)
1722 			return (ENOEXEC);
1723 		size = vsize * sizeof(char *);
1724 		break;
1725 	case PROC_AUX:
1726 		/*
1727 		 * The aux array is just above env array on the stack. Check
1728 		 * that the address is naturally aligned.
1729 		 */
1730 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1731 		    * sizeof(char *);
1732 #if __ELF_WORD_SIZE == 64
1733 		if (vptr % sizeof(uint64_t) != 0)
1734 #else
1735 		if (vptr % sizeof(uint32_t) != 0)
1736 #endif
1737 			return (ENOEXEC);
1738 		/*
1739 		 * We count the array size reading the aux vectors from the
1740 		 * stack until AT_NULL vector is returned.  So (to keep the code
1741 		 * simple) we read the process stack twice: the first time here
1742 		 * to find the size and the second time when copying the vectors
1743 		 * to the allocated proc_vector.
1744 		 */
1745 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1746 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1747 			    sizeof(aux))
1748 				return (ENOMEM);
1749 			if (aux.a_type == AT_NULL)
1750 				break;
1751 			ptr += sizeof(aux);
1752 		}
1753 		/*
1754 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1755 		 * not reached AT_NULL, it is most likely we are reading wrong
1756 		 * data: either the process doesn't have auxv array or data has
1757 		 * been modified. Return the error in this case.
1758 		 */
1759 		if (aux.a_type != AT_NULL)
1760 			return (ENOEXEC);
1761 		vsize = i + 1;
1762 		size = vsize * sizeof(aux);
1763 		break;
1764 	default:
1765 		KASSERT(0, ("Wrong proc vector type: %d", type));
1766 		return (EINVAL); /* In case we are built without INVARIANTS. */
1767 	}
1768 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1769 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1770 		free(proc_vector, M_TEMP);
1771 		return (ENOMEM);
1772 	}
1773 	*proc_vectorp = proc_vector;
1774 	*vsizep = vsize;
1775 
1776 	return (0);
1777 }
1778 
1779 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1780 
1781 static int
1782 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1783     enum proc_vector_type type)
1784 {
1785 	size_t done, len, nchr, vsize;
1786 	int error, i;
1787 	char **proc_vector, *sptr;
1788 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1789 
1790 	PROC_ASSERT_HELD(p);
1791 
1792 	/*
1793 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1794 	 */
1795 	nchr = 2 * (PATH_MAX + ARG_MAX);
1796 
1797 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1798 	if (error != 0)
1799 		return (error);
1800 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1801 		/*
1802 		 * The program may have scribbled into its argv array, e.g. to
1803 		 * remove some arguments.  If that has happened, break out
1804 		 * before trying to read from NULL.
1805 		 */
1806 		if (proc_vector[i] == NULL)
1807 			break;
1808 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1809 			error = proc_read_string(td, p, sptr, pss_string,
1810 			    sizeof(pss_string));
1811 			if (error != 0)
1812 				goto done;
1813 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1814 			if (done + len >= nchr)
1815 				len = nchr - done - 1;
1816 			sbuf_bcat(sb, pss_string, len);
1817 			if (len != GET_PS_STRINGS_CHUNK_SZ)
1818 				break;
1819 			done += GET_PS_STRINGS_CHUNK_SZ;
1820 		}
1821 		sbuf_bcat(sb, "", 1);
1822 		done += len + 1;
1823 	}
1824 done:
1825 	free(proc_vector, M_TEMP);
1826 	return (error);
1827 }
1828 
1829 int
1830 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1831 {
1832 
1833 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1834 }
1835 
1836 int
1837 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1838 {
1839 
1840 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1841 }
1842 
1843 int
1844 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1845 {
1846 	size_t vsize, size;
1847 	char **auxv;
1848 	int error;
1849 
1850 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1851 	if (error == 0) {
1852 #ifdef COMPAT_FREEBSD32
1853 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1854 			size = vsize * sizeof(Elf32_Auxinfo);
1855 		else
1856 #endif
1857 			size = vsize * sizeof(Elf_Auxinfo);
1858 		if (sbuf_bcat(sb, auxv, size) != 0)
1859 			error = ENOMEM;
1860 		free(auxv, M_TEMP);
1861 	}
1862 	return (error);
1863 }
1864 
1865 /*
1866  * This sysctl allows a process to retrieve the argument list or process
1867  * title for another process without groping around in the address space
1868  * of the other process.  It also allow a process to set its own "process
1869  * title to a string of its own choice.
1870  */
1871 static int
1872 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1873 {
1874 	int *name = (int *)arg1;
1875 	u_int namelen = arg2;
1876 	struct pargs *newpa, *pa;
1877 	struct proc *p;
1878 	struct sbuf sb;
1879 	int flags, error = 0, error2;
1880 
1881 	if (namelen != 1)
1882 		return (EINVAL);
1883 
1884 	flags = PGET_CANSEE;
1885 	if (req->newptr != NULL)
1886 		flags |= PGET_ISCURRENT;
1887 	error = pget((pid_t)name[0], flags, &p);
1888 	if (error)
1889 		return (error);
1890 
1891 	pa = p->p_args;
1892 	if (pa != NULL) {
1893 		pargs_hold(pa);
1894 		PROC_UNLOCK(p);
1895 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1896 		pargs_drop(pa);
1897 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1898 		_PHOLD(p);
1899 		PROC_UNLOCK(p);
1900 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1901 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1902 		error = proc_getargv(curthread, p, &sb);
1903 		error2 = sbuf_finish(&sb);
1904 		PRELE(p);
1905 		sbuf_delete(&sb);
1906 		if (error == 0 && error2 != 0)
1907 			error = error2;
1908 	} else {
1909 		PROC_UNLOCK(p);
1910 	}
1911 	if (error != 0 || req->newptr == NULL)
1912 		return (error);
1913 
1914 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1915 		return (ENOMEM);
1916 	newpa = pargs_alloc(req->newlen);
1917 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1918 	if (error != 0) {
1919 		pargs_free(newpa);
1920 		return (error);
1921 	}
1922 	PROC_LOCK(p);
1923 	pa = p->p_args;
1924 	p->p_args = newpa;
1925 	PROC_UNLOCK(p);
1926 	pargs_drop(pa);
1927 	return (0);
1928 }
1929 
1930 /*
1931  * This sysctl allows a process to retrieve environment of another process.
1932  */
1933 static int
1934 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1935 {
1936 	int *name = (int *)arg1;
1937 	u_int namelen = arg2;
1938 	struct proc *p;
1939 	struct sbuf sb;
1940 	int error, error2;
1941 
1942 	if (namelen != 1)
1943 		return (EINVAL);
1944 
1945 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1946 	if (error != 0)
1947 		return (error);
1948 	if ((p->p_flag & P_SYSTEM) != 0) {
1949 		PRELE(p);
1950 		return (0);
1951 	}
1952 
1953 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1954 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1955 	error = proc_getenvv(curthread, p, &sb);
1956 	error2 = sbuf_finish(&sb);
1957 	PRELE(p);
1958 	sbuf_delete(&sb);
1959 	return (error != 0 ? error : error2);
1960 }
1961 
1962 /*
1963  * This sysctl allows a process to retrieve ELF auxiliary vector of
1964  * another process.
1965  */
1966 static int
1967 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1968 {
1969 	int *name = (int *)arg1;
1970 	u_int namelen = arg2;
1971 	struct proc *p;
1972 	struct sbuf sb;
1973 	int error, error2;
1974 
1975 	if (namelen != 1)
1976 		return (EINVAL);
1977 
1978 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1979 	if (error != 0)
1980 		return (error);
1981 	if ((p->p_flag & P_SYSTEM) != 0) {
1982 		PRELE(p);
1983 		return (0);
1984 	}
1985 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1986 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1987 	error = proc_getauxv(curthread, p, &sb);
1988 	error2 = sbuf_finish(&sb);
1989 	PRELE(p);
1990 	sbuf_delete(&sb);
1991 	return (error != 0 ? error : error2);
1992 }
1993 
1994 /*
1995  * This sysctl allows a process to retrieve the path of the executable for
1996  * itself or another process.
1997  */
1998 static int
1999 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2000 {
2001 	pid_t *pidp = (pid_t *)arg1;
2002 	unsigned int arglen = arg2;
2003 	struct proc *p;
2004 	struct vnode *vp;
2005 	char *retbuf, *freebuf;
2006 	int error;
2007 
2008 	if (arglen != 1)
2009 		return (EINVAL);
2010 	if (*pidp == -1) {	/* -1 means this process */
2011 		p = req->td->td_proc;
2012 	} else {
2013 		error = pget(*pidp, PGET_CANSEE, &p);
2014 		if (error != 0)
2015 			return (error);
2016 	}
2017 
2018 	vp = p->p_textvp;
2019 	if (vp == NULL) {
2020 		if (*pidp != -1)
2021 			PROC_UNLOCK(p);
2022 		return (0);
2023 	}
2024 	vref(vp);
2025 	if (*pidp != -1)
2026 		PROC_UNLOCK(p);
2027 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
2028 	vrele(vp);
2029 	if (error)
2030 		return (error);
2031 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2032 	free(freebuf, M_TEMP);
2033 	return (error);
2034 }
2035 
2036 static int
2037 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2038 {
2039 	struct proc *p;
2040 	char *sv_name;
2041 	int *name;
2042 	int namelen;
2043 	int error;
2044 
2045 	namelen = arg2;
2046 	if (namelen != 1)
2047 		return (EINVAL);
2048 
2049 	name = (int *)arg1;
2050 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2051 	if (error != 0)
2052 		return (error);
2053 	sv_name = p->p_sysent->sv_name;
2054 	PROC_UNLOCK(p);
2055 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2056 }
2057 
2058 #ifdef KINFO_OVMENTRY_SIZE
2059 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2060 #endif
2061 
2062 #ifdef COMPAT_FREEBSD7
2063 static int
2064 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2065 {
2066 	vm_map_entry_t entry, tmp_entry;
2067 	unsigned int last_timestamp;
2068 	char *fullpath, *freepath;
2069 	struct kinfo_ovmentry *kve;
2070 	struct vattr va;
2071 	struct ucred *cred;
2072 	int error, *name;
2073 	struct vnode *vp;
2074 	struct proc *p;
2075 	vm_map_t map;
2076 	struct vmspace *vm;
2077 
2078 	name = (int *)arg1;
2079 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2080 	if (error != 0)
2081 		return (error);
2082 	vm = vmspace_acquire_ref(p);
2083 	if (vm == NULL) {
2084 		PRELE(p);
2085 		return (ESRCH);
2086 	}
2087 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2088 
2089 	map = &vm->vm_map;
2090 	vm_map_lock_read(map);
2091 	for (entry = map->header.next; entry != &map->header;
2092 	    entry = entry->next) {
2093 		vm_object_t obj, tobj, lobj;
2094 		vm_offset_t addr;
2095 
2096 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2097 			continue;
2098 
2099 		bzero(kve, sizeof(*kve));
2100 		kve->kve_structsize = sizeof(*kve);
2101 
2102 		kve->kve_private_resident = 0;
2103 		obj = entry->object.vm_object;
2104 		if (obj != NULL) {
2105 			VM_OBJECT_RLOCK(obj);
2106 			if (obj->shadow_count == 1)
2107 				kve->kve_private_resident =
2108 				    obj->resident_page_count;
2109 		}
2110 		kve->kve_resident = 0;
2111 		addr = entry->start;
2112 		while (addr < entry->end) {
2113 			if (pmap_extract(map->pmap, addr))
2114 				kve->kve_resident++;
2115 			addr += PAGE_SIZE;
2116 		}
2117 
2118 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2119 			if (tobj != obj)
2120 				VM_OBJECT_RLOCK(tobj);
2121 			if (lobj != obj)
2122 				VM_OBJECT_RUNLOCK(lobj);
2123 			lobj = tobj;
2124 		}
2125 
2126 		kve->kve_start = (void*)entry->start;
2127 		kve->kve_end = (void*)entry->end;
2128 		kve->kve_offset = (off_t)entry->offset;
2129 
2130 		if (entry->protection & VM_PROT_READ)
2131 			kve->kve_protection |= KVME_PROT_READ;
2132 		if (entry->protection & VM_PROT_WRITE)
2133 			kve->kve_protection |= KVME_PROT_WRITE;
2134 		if (entry->protection & VM_PROT_EXECUTE)
2135 			kve->kve_protection |= KVME_PROT_EXEC;
2136 
2137 		if (entry->eflags & MAP_ENTRY_COW)
2138 			kve->kve_flags |= KVME_FLAG_COW;
2139 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2140 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2141 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2142 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2143 
2144 		last_timestamp = map->timestamp;
2145 		vm_map_unlock_read(map);
2146 
2147 		kve->kve_fileid = 0;
2148 		kve->kve_fsid = 0;
2149 		freepath = NULL;
2150 		fullpath = "";
2151 		if (lobj) {
2152 			vp = NULL;
2153 			switch (lobj->type) {
2154 			case OBJT_DEFAULT:
2155 				kve->kve_type = KVME_TYPE_DEFAULT;
2156 				break;
2157 			case OBJT_VNODE:
2158 				kve->kve_type = KVME_TYPE_VNODE;
2159 				vp = lobj->handle;
2160 				vref(vp);
2161 				break;
2162 			case OBJT_SWAP:
2163 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2164 					kve->kve_type = KVME_TYPE_VNODE;
2165 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2166 						vp = lobj->un_pager.swp.swp_tmpfs;
2167 						vref(vp);
2168 					}
2169 				} else {
2170 					kve->kve_type = KVME_TYPE_SWAP;
2171 				}
2172 				break;
2173 			case OBJT_DEVICE:
2174 				kve->kve_type = KVME_TYPE_DEVICE;
2175 				break;
2176 			case OBJT_PHYS:
2177 				kve->kve_type = KVME_TYPE_PHYS;
2178 				break;
2179 			case OBJT_DEAD:
2180 				kve->kve_type = KVME_TYPE_DEAD;
2181 				break;
2182 			case OBJT_SG:
2183 				kve->kve_type = KVME_TYPE_SG;
2184 				break;
2185 			default:
2186 				kve->kve_type = KVME_TYPE_UNKNOWN;
2187 				break;
2188 			}
2189 			if (lobj != obj)
2190 				VM_OBJECT_RUNLOCK(lobj);
2191 
2192 			kve->kve_ref_count = obj->ref_count;
2193 			kve->kve_shadow_count = obj->shadow_count;
2194 			VM_OBJECT_RUNLOCK(obj);
2195 			if (vp != NULL) {
2196 				vn_fullpath(curthread, vp, &fullpath,
2197 				    &freepath);
2198 				cred = curthread->td_ucred;
2199 				vn_lock(vp, LK_SHARED | LK_RETRY);
2200 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2201 					kve->kve_fileid = va.va_fileid;
2202 					kve->kve_fsid = va.va_fsid;
2203 				}
2204 				vput(vp);
2205 			}
2206 		} else {
2207 			kve->kve_type = KVME_TYPE_NONE;
2208 			kve->kve_ref_count = 0;
2209 			kve->kve_shadow_count = 0;
2210 		}
2211 
2212 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2213 		if (freepath != NULL)
2214 			free(freepath, M_TEMP);
2215 
2216 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2217 		vm_map_lock_read(map);
2218 		if (error)
2219 			break;
2220 		if (last_timestamp != map->timestamp) {
2221 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2222 			entry = tmp_entry;
2223 		}
2224 	}
2225 	vm_map_unlock_read(map);
2226 	vmspace_free(vm);
2227 	PRELE(p);
2228 	free(kve, M_TEMP);
2229 	return (error);
2230 }
2231 #endif	/* COMPAT_FREEBSD7 */
2232 
2233 #ifdef KINFO_VMENTRY_SIZE
2234 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2235 #endif
2236 
2237 static void
2238 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2239     struct kinfo_vmentry *kve)
2240 {
2241 	vm_object_t obj, tobj;
2242 	vm_page_t m, m_adv;
2243 	vm_offset_t addr;
2244 	vm_paddr_t locked_pa;
2245 	vm_pindex_t pi, pi_adv, pindex;
2246 
2247 	locked_pa = 0;
2248 	obj = entry->object.vm_object;
2249 	addr = entry->start;
2250 	m_adv = NULL;
2251 	pi = OFF_TO_IDX(entry->offset);
2252 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2253 		if (m_adv != NULL) {
2254 			m = m_adv;
2255 		} else {
2256 			pi_adv = OFF_TO_IDX(entry->end - addr);
2257 			pindex = pi;
2258 			for (tobj = obj;; tobj = tobj->backing_object) {
2259 				m = vm_page_find_least(tobj, pindex);
2260 				if (m != NULL) {
2261 					if (m->pindex == pindex)
2262 						break;
2263 					if (pi_adv > m->pindex - pindex) {
2264 						pi_adv = m->pindex - pindex;
2265 						m_adv = m;
2266 					}
2267 				}
2268 				if (tobj->backing_object == NULL)
2269 					goto next;
2270 				pindex += OFF_TO_IDX(tobj->
2271 				    backing_object_offset);
2272 			}
2273 		}
2274 		m_adv = NULL;
2275 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2276 		    (addr & (pagesizes[1] - 1)) == 0 &&
2277 		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2278 		    MINCORE_SUPER) != 0) {
2279 			kve->kve_flags |= KVME_FLAG_SUPER;
2280 			pi_adv = OFF_TO_IDX(pagesizes[1]);
2281 		} else {
2282 			/*
2283 			 * We do not test the found page on validity.
2284 			 * Either the page is busy and being paged in,
2285 			 * or it was invalidated.  The first case
2286 			 * should be counted as resident, the second
2287 			 * is not so clear; we do account both.
2288 			 */
2289 			pi_adv = 1;
2290 		}
2291 		kve->kve_resident += pi_adv;
2292 next:;
2293 	}
2294 	PA_UNLOCK_COND(locked_pa);
2295 }
2296 
2297 /*
2298  * Must be called with the process locked and will return unlocked.
2299  */
2300 int
2301 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2302 {
2303 	vm_map_entry_t entry, tmp_entry;
2304 	struct vattr va;
2305 	vm_map_t map;
2306 	vm_object_t obj, tobj, lobj;
2307 	char *fullpath, *freepath;
2308 	struct kinfo_vmentry *kve;
2309 	struct ucred *cred;
2310 	struct vnode *vp;
2311 	struct vmspace *vm;
2312 	vm_offset_t addr;
2313 	unsigned int last_timestamp;
2314 	int error;
2315 
2316 	PROC_LOCK_ASSERT(p, MA_OWNED);
2317 
2318 	_PHOLD(p);
2319 	PROC_UNLOCK(p);
2320 	vm = vmspace_acquire_ref(p);
2321 	if (vm == NULL) {
2322 		PRELE(p);
2323 		return (ESRCH);
2324 	}
2325 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2326 
2327 	error = 0;
2328 	map = &vm->vm_map;
2329 	vm_map_lock_read(map);
2330 	for (entry = map->header.next; entry != &map->header;
2331 	    entry = entry->next) {
2332 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2333 			continue;
2334 
2335 		addr = entry->end;
2336 		bzero(kve, sizeof(*kve));
2337 		obj = entry->object.vm_object;
2338 		if (obj != NULL) {
2339 			for (tobj = obj; tobj != NULL;
2340 			    tobj = tobj->backing_object) {
2341 				VM_OBJECT_RLOCK(tobj);
2342 				lobj = tobj;
2343 			}
2344 			if (obj->backing_object == NULL)
2345 				kve->kve_private_resident =
2346 				    obj->resident_page_count;
2347 			if (!vmmap_skip_res_cnt)
2348 				kern_proc_vmmap_resident(map, entry, kve);
2349 			for (tobj = obj; tobj != NULL;
2350 			    tobj = tobj->backing_object) {
2351 				if (tobj != obj && tobj != lobj)
2352 					VM_OBJECT_RUNLOCK(tobj);
2353 			}
2354 		} else {
2355 			lobj = NULL;
2356 		}
2357 
2358 		kve->kve_start = entry->start;
2359 		kve->kve_end = entry->end;
2360 		kve->kve_offset = entry->offset;
2361 
2362 		if (entry->protection & VM_PROT_READ)
2363 			kve->kve_protection |= KVME_PROT_READ;
2364 		if (entry->protection & VM_PROT_WRITE)
2365 			kve->kve_protection |= KVME_PROT_WRITE;
2366 		if (entry->protection & VM_PROT_EXECUTE)
2367 			kve->kve_protection |= KVME_PROT_EXEC;
2368 
2369 		if (entry->eflags & MAP_ENTRY_COW)
2370 			kve->kve_flags |= KVME_FLAG_COW;
2371 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2372 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2373 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2374 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2375 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2376 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2377 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2378 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2379 
2380 		last_timestamp = map->timestamp;
2381 		vm_map_unlock_read(map);
2382 
2383 		freepath = NULL;
2384 		fullpath = "";
2385 		if (lobj != NULL) {
2386 			vp = NULL;
2387 			switch (lobj->type) {
2388 			case OBJT_DEFAULT:
2389 				kve->kve_type = KVME_TYPE_DEFAULT;
2390 				break;
2391 			case OBJT_VNODE:
2392 				kve->kve_type = KVME_TYPE_VNODE;
2393 				vp = lobj->handle;
2394 				vref(vp);
2395 				break;
2396 			case OBJT_SWAP:
2397 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2398 					kve->kve_type = KVME_TYPE_VNODE;
2399 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2400 						vp = lobj->un_pager.swp.swp_tmpfs;
2401 						vref(vp);
2402 					}
2403 				} else {
2404 					kve->kve_type = KVME_TYPE_SWAP;
2405 				}
2406 				break;
2407 			case OBJT_DEVICE:
2408 				kve->kve_type = KVME_TYPE_DEVICE;
2409 				break;
2410 			case OBJT_PHYS:
2411 				kve->kve_type = KVME_TYPE_PHYS;
2412 				break;
2413 			case OBJT_DEAD:
2414 				kve->kve_type = KVME_TYPE_DEAD;
2415 				break;
2416 			case OBJT_SG:
2417 				kve->kve_type = KVME_TYPE_SG;
2418 				break;
2419 			case OBJT_MGTDEVICE:
2420 				kve->kve_type = KVME_TYPE_MGTDEVICE;
2421 				break;
2422 			default:
2423 				kve->kve_type = KVME_TYPE_UNKNOWN;
2424 				break;
2425 			}
2426 			if (lobj != obj)
2427 				VM_OBJECT_RUNLOCK(lobj);
2428 
2429 			kve->kve_ref_count = obj->ref_count;
2430 			kve->kve_shadow_count = obj->shadow_count;
2431 			VM_OBJECT_RUNLOCK(obj);
2432 			if (vp != NULL) {
2433 				vn_fullpath(curthread, vp, &fullpath,
2434 				    &freepath);
2435 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2436 				cred = curthread->td_ucred;
2437 				vn_lock(vp, LK_SHARED | LK_RETRY);
2438 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2439 					kve->kve_vn_fileid = va.va_fileid;
2440 					kve->kve_vn_fsid = va.va_fsid;
2441 					kve->kve_vn_mode =
2442 					    MAKEIMODE(va.va_type, va.va_mode);
2443 					kve->kve_vn_size = va.va_size;
2444 					kve->kve_vn_rdev = va.va_rdev;
2445 					kve->kve_status = KF_ATTR_VALID;
2446 				}
2447 				vput(vp);
2448 			}
2449 		} else {
2450 			kve->kve_type = KVME_TYPE_NONE;
2451 			kve->kve_ref_count = 0;
2452 			kve->kve_shadow_count = 0;
2453 		}
2454 
2455 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2456 		if (freepath != NULL)
2457 			free(freepath, M_TEMP);
2458 
2459 		/* Pack record size down */
2460 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2461 			kve->kve_structsize =
2462 			    offsetof(struct kinfo_vmentry, kve_path) +
2463 			    strlen(kve->kve_path) + 1;
2464 		else
2465 			kve->kve_structsize = sizeof(*kve);
2466 		kve->kve_structsize = roundup(kve->kve_structsize,
2467 		    sizeof(uint64_t));
2468 
2469 		/* Halt filling and truncate rather than exceeding maxlen */
2470 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2471 			error = 0;
2472 			vm_map_lock_read(map);
2473 			break;
2474 		} else if (maxlen != -1)
2475 			maxlen -= kve->kve_structsize;
2476 
2477 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2478 			error = ENOMEM;
2479 		vm_map_lock_read(map);
2480 		if (error != 0)
2481 			break;
2482 		if (last_timestamp != map->timestamp) {
2483 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2484 			entry = tmp_entry;
2485 		}
2486 	}
2487 	vm_map_unlock_read(map);
2488 	vmspace_free(vm);
2489 	PRELE(p);
2490 	free(kve, M_TEMP);
2491 	return (error);
2492 }
2493 
2494 static int
2495 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2496 {
2497 	struct proc *p;
2498 	struct sbuf sb;
2499 	int error, error2, *name;
2500 
2501 	name = (int *)arg1;
2502 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2503 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2504 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2505 	if (error != 0) {
2506 		sbuf_delete(&sb);
2507 		return (error);
2508 	}
2509 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2510 	error2 = sbuf_finish(&sb);
2511 	sbuf_delete(&sb);
2512 	return (error != 0 ? error : error2);
2513 }
2514 
2515 #if defined(STACK) || defined(DDB)
2516 static int
2517 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2518 {
2519 	struct kinfo_kstack *kkstp;
2520 	int error, i, *name, numthreads;
2521 	lwpid_t *lwpidarray;
2522 	struct thread *td;
2523 	struct stack *st;
2524 	struct sbuf sb;
2525 	struct proc *p;
2526 
2527 	name = (int *)arg1;
2528 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2529 	if (error != 0)
2530 		return (error);
2531 
2532 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2533 	st = stack_create();
2534 
2535 	lwpidarray = NULL;
2536 	PROC_LOCK(p);
2537 	do {
2538 		if (lwpidarray != NULL) {
2539 			free(lwpidarray, M_TEMP);
2540 			lwpidarray = NULL;
2541 		}
2542 		numthreads = p->p_numthreads;
2543 		PROC_UNLOCK(p);
2544 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2545 		    M_WAITOK | M_ZERO);
2546 		PROC_LOCK(p);
2547 	} while (numthreads < p->p_numthreads);
2548 
2549 	/*
2550 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2551 	 * of changes could have taken place.  Should we check to see if the
2552 	 * vmspace has been replaced, or the like, in order to prevent
2553 	 * giving a snapshot that spans, say, execve(2), with some threads
2554 	 * before and some after?  Among other things, the credentials could
2555 	 * have changed, in which case the right to extract debug info might
2556 	 * no longer be assured.
2557 	 */
2558 	i = 0;
2559 	FOREACH_THREAD_IN_PROC(p, td) {
2560 		KASSERT(i < numthreads,
2561 		    ("sysctl_kern_proc_kstack: numthreads"));
2562 		lwpidarray[i] = td->td_tid;
2563 		i++;
2564 	}
2565 	numthreads = i;
2566 	for (i = 0; i < numthreads; i++) {
2567 		td = thread_find(p, lwpidarray[i]);
2568 		if (td == NULL) {
2569 			continue;
2570 		}
2571 		bzero(kkstp, sizeof(*kkstp));
2572 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2573 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2574 		thread_lock(td);
2575 		kkstp->kkst_tid = td->td_tid;
2576 		if (TD_IS_SWAPPED(td)) {
2577 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2578 		} else if (TD_IS_RUNNING(td)) {
2579 			if (stack_save_td_running(st, td) == 0)
2580 				kkstp->kkst_state = KKST_STATE_STACKOK;
2581 			else
2582 				kkstp->kkst_state = KKST_STATE_RUNNING;
2583 		} else {
2584 			kkstp->kkst_state = KKST_STATE_STACKOK;
2585 			stack_save_td(st, td);
2586 		}
2587 		thread_unlock(td);
2588 		PROC_UNLOCK(p);
2589 		stack_sbuf_print(&sb, st);
2590 		sbuf_finish(&sb);
2591 		sbuf_delete(&sb);
2592 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2593 		PROC_LOCK(p);
2594 		if (error)
2595 			break;
2596 	}
2597 	_PRELE(p);
2598 	PROC_UNLOCK(p);
2599 	if (lwpidarray != NULL)
2600 		free(lwpidarray, M_TEMP);
2601 	stack_destroy(st);
2602 	free(kkstp, M_TEMP);
2603 	return (error);
2604 }
2605 #endif
2606 
2607 /*
2608  * This sysctl allows a process to retrieve the full list of groups from
2609  * itself or another process.
2610  */
2611 static int
2612 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2613 {
2614 	pid_t *pidp = (pid_t *)arg1;
2615 	unsigned int arglen = arg2;
2616 	struct proc *p;
2617 	struct ucred *cred;
2618 	int error;
2619 
2620 	if (arglen != 1)
2621 		return (EINVAL);
2622 	if (*pidp == -1) {	/* -1 means this process */
2623 		p = req->td->td_proc;
2624 		PROC_LOCK(p);
2625 	} else {
2626 		error = pget(*pidp, PGET_CANSEE, &p);
2627 		if (error != 0)
2628 			return (error);
2629 	}
2630 
2631 	cred = crhold(p->p_ucred);
2632 	PROC_UNLOCK(p);
2633 
2634 	error = SYSCTL_OUT(req, cred->cr_groups,
2635 	    cred->cr_ngroups * sizeof(gid_t));
2636 	crfree(cred);
2637 	return (error);
2638 }
2639 
2640 /*
2641  * This sysctl allows a process to retrieve or/and set the resource limit for
2642  * another process.
2643  */
2644 static int
2645 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2646 {
2647 	int *name = (int *)arg1;
2648 	u_int namelen = arg2;
2649 	struct rlimit rlim;
2650 	struct proc *p;
2651 	u_int which;
2652 	int flags, error;
2653 
2654 	if (namelen != 2)
2655 		return (EINVAL);
2656 
2657 	which = (u_int)name[1];
2658 	if (which >= RLIM_NLIMITS)
2659 		return (EINVAL);
2660 
2661 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2662 		return (EINVAL);
2663 
2664 	flags = PGET_HOLD | PGET_NOTWEXIT;
2665 	if (req->newptr != NULL)
2666 		flags |= PGET_CANDEBUG;
2667 	else
2668 		flags |= PGET_CANSEE;
2669 	error = pget((pid_t)name[0], flags, &p);
2670 	if (error != 0)
2671 		return (error);
2672 
2673 	/*
2674 	 * Retrieve limit.
2675 	 */
2676 	if (req->oldptr != NULL) {
2677 		PROC_LOCK(p);
2678 		lim_rlimit_proc(p, which, &rlim);
2679 		PROC_UNLOCK(p);
2680 	}
2681 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2682 	if (error != 0)
2683 		goto errout;
2684 
2685 	/*
2686 	 * Set limit.
2687 	 */
2688 	if (req->newptr != NULL) {
2689 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2690 		if (error == 0)
2691 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2692 	}
2693 
2694 errout:
2695 	PRELE(p);
2696 	return (error);
2697 }
2698 
2699 /*
2700  * This sysctl allows a process to retrieve ps_strings structure location of
2701  * another process.
2702  */
2703 static int
2704 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2705 {
2706 	int *name = (int *)arg1;
2707 	u_int namelen = arg2;
2708 	struct proc *p;
2709 	vm_offset_t ps_strings;
2710 	int error;
2711 #ifdef COMPAT_FREEBSD32
2712 	uint32_t ps_strings32;
2713 #endif
2714 
2715 	if (namelen != 1)
2716 		return (EINVAL);
2717 
2718 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2719 	if (error != 0)
2720 		return (error);
2721 #ifdef COMPAT_FREEBSD32
2722 	if ((req->flags & SCTL_MASK32) != 0) {
2723 		/*
2724 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2725 		 * process.
2726 		 */
2727 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2728 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2729 		PROC_UNLOCK(p);
2730 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2731 		return (error);
2732 	}
2733 #endif
2734 	ps_strings = p->p_sysent->sv_psstrings;
2735 	PROC_UNLOCK(p);
2736 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2737 	return (error);
2738 }
2739 
2740 /*
2741  * This sysctl allows a process to retrieve umask of another process.
2742  */
2743 static int
2744 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2745 {
2746 	int *name = (int *)arg1;
2747 	u_int namelen = arg2;
2748 	struct proc *p;
2749 	int error;
2750 	u_short fd_cmask;
2751 
2752 	if (namelen != 1)
2753 		return (EINVAL);
2754 
2755 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2756 	if (error != 0)
2757 		return (error);
2758 
2759 	FILEDESC_SLOCK(p->p_fd);
2760 	fd_cmask = p->p_fd->fd_cmask;
2761 	FILEDESC_SUNLOCK(p->p_fd);
2762 	PRELE(p);
2763 	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2764 	return (error);
2765 }
2766 
2767 /*
2768  * This sysctl allows a process to set and retrieve binary osreldate of
2769  * another process.
2770  */
2771 static int
2772 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2773 {
2774 	int *name = (int *)arg1;
2775 	u_int namelen = arg2;
2776 	struct proc *p;
2777 	int flags, error, osrel;
2778 
2779 	if (namelen != 1)
2780 		return (EINVAL);
2781 
2782 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2783 		return (EINVAL);
2784 
2785 	flags = PGET_HOLD | PGET_NOTWEXIT;
2786 	if (req->newptr != NULL)
2787 		flags |= PGET_CANDEBUG;
2788 	else
2789 		flags |= PGET_CANSEE;
2790 	error = pget((pid_t)name[0], flags, &p);
2791 	if (error != 0)
2792 		return (error);
2793 
2794 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2795 	if (error != 0)
2796 		goto errout;
2797 
2798 	if (req->newptr != NULL) {
2799 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2800 		if (error != 0)
2801 			goto errout;
2802 		if (osrel < 0) {
2803 			error = EINVAL;
2804 			goto errout;
2805 		}
2806 		p->p_osrel = osrel;
2807 	}
2808 errout:
2809 	PRELE(p);
2810 	return (error);
2811 }
2812 
2813 static int
2814 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2815 {
2816 	int *name = (int *)arg1;
2817 	u_int namelen = arg2;
2818 	struct proc *p;
2819 	struct kinfo_sigtramp kst;
2820 	const struct sysentvec *sv;
2821 	int error;
2822 #ifdef COMPAT_FREEBSD32
2823 	struct kinfo_sigtramp32 kst32;
2824 #endif
2825 
2826 	if (namelen != 1)
2827 		return (EINVAL);
2828 
2829 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2830 	if (error != 0)
2831 		return (error);
2832 	sv = p->p_sysent;
2833 #ifdef COMPAT_FREEBSD32
2834 	if ((req->flags & SCTL_MASK32) != 0) {
2835 		bzero(&kst32, sizeof(kst32));
2836 		if (SV_PROC_FLAG(p, SV_ILP32)) {
2837 			if (sv->sv_sigcode_base != 0) {
2838 				kst32.ksigtramp_start = sv->sv_sigcode_base;
2839 				kst32.ksigtramp_end = sv->sv_sigcode_base +
2840 				    *sv->sv_szsigcode;
2841 			} else {
2842 				kst32.ksigtramp_start = sv->sv_psstrings -
2843 				    *sv->sv_szsigcode;
2844 				kst32.ksigtramp_end = sv->sv_psstrings;
2845 			}
2846 		}
2847 		PROC_UNLOCK(p);
2848 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2849 		return (error);
2850 	}
2851 #endif
2852 	bzero(&kst, sizeof(kst));
2853 	if (sv->sv_sigcode_base != 0) {
2854 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2855 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2856 		    *sv->sv_szsigcode;
2857 	} else {
2858 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2859 		    *sv->sv_szsigcode;
2860 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2861 	}
2862 	PROC_UNLOCK(p);
2863 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2864 	return (error);
2865 }
2866 
2867 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2868 
2869 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2870 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2871 	"Return entire process table");
2872 
2873 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2874 	sysctl_kern_proc, "Process table");
2875 
2876 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2877 	sysctl_kern_proc, "Process table");
2878 
2879 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2880 	sysctl_kern_proc, "Process table");
2881 
2882 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2883 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2884 
2885 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2886 	sysctl_kern_proc, "Process table");
2887 
2888 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2889 	sysctl_kern_proc, "Process table");
2890 
2891 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2892 	sysctl_kern_proc, "Process table");
2893 
2894 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2895 	sysctl_kern_proc, "Process table");
2896 
2897 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2898 	sysctl_kern_proc, "Return process table, no threads");
2899 
2900 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2901 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2902 	sysctl_kern_proc_args, "Process argument list");
2903 
2904 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2905 	sysctl_kern_proc_env, "Process environment");
2906 
2907 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2908 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2909 
2910 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2911 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2912 
2913 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2914 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2915 	"Process syscall vector name (ABI type)");
2916 
2917 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2918 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2919 
2920 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2921 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2922 
2923 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2924 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2925 
2926 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2927 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2928 
2929 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2930 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2931 
2932 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2933 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2934 
2935 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2936 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2937 
2938 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2939 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2940 
2941 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2942 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2943 	"Return process table, no threads");
2944 
2945 #ifdef COMPAT_FREEBSD7
2946 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2947 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2948 #endif
2949 
2950 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2951 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2952 
2953 #if defined(STACK) || defined(DDB)
2954 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2955 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2956 #endif
2957 
2958 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2959 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2960 
2961 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2962 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2963 	"Process resource limits");
2964 
2965 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2966 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2967 	"Process ps_strings location");
2968 
2969 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2970 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2971 
2972 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2973 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2974 	"Process binary osreldate");
2975 
2976 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2977 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2978 	"Process signal trampoline location");
2979 
2980 int allproc_gen;
2981 
2982 /*
2983  * stop_all_proc() purpose is to stop all process which have usermode,
2984  * except current process for obvious reasons.  This makes it somewhat
2985  * unreliable when invoked from multithreaded process.  The service
2986  * must not be user-callable anyway.
2987  */
2988 void
2989 stop_all_proc(void)
2990 {
2991 	struct proc *cp, *p;
2992 	int r, gen;
2993 	bool restart, seen_stopped, seen_exiting, stopped_some;
2994 
2995 	cp = curproc;
2996 allproc_loop:
2997 	sx_xlock(&allproc_lock);
2998 	gen = allproc_gen;
2999 	seen_exiting = seen_stopped = stopped_some = restart = false;
3000 	LIST_REMOVE(cp, p_list);
3001 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3002 	for (;;) {
3003 		p = LIST_NEXT(cp, p_list);
3004 		if (p == NULL)
3005 			break;
3006 		LIST_REMOVE(cp, p_list);
3007 		LIST_INSERT_AFTER(p, cp, p_list);
3008 		PROC_LOCK(p);
3009 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3010 			PROC_UNLOCK(p);
3011 			continue;
3012 		}
3013 		if ((p->p_flag & P_WEXIT) != 0) {
3014 			seen_exiting = true;
3015 			PROC_UNLOCK(p);
3016 			continue;
3017 		}
3018 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3019 			/*
3020 			 * Stopped processes are tolerated when there
3021 			 * are no other processes which might continue
3022 			 * them.  P_STOPPED_SINGLE but not
3023 			 * P_TOTAL_STOP process still has at least one
3024 			 * thread running.
3025 			 */
3026 			seen_stopped = true;
3027 			PROC_UNLOCK(p);
3028 			continue;
3029 		}
3030 		_PHOLD(p);
3031 		sx_xunlock(&allproc_lock);
3032 		r = thread_single(p, SINGLE_ALLPROC);
3033 		if (r != 0)
3034 			restart = true;
3035 		else
3036 			stopped_some = true;
3037 		_PRELE(p);
3038 		PROC_UNLOCK(p);
3039 		sx_xlock(&allproc_lock);
3040 	}
3041 	/* Catch forked children we did not see in iteration. */
3042 	if (gen != allproc_gen)
3043 		restart = true;
3044 	sx_xunlock(&allproc_lock);
3045 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3046 		kern_yield(PRI_USER);
3047 		goto allproc_loop;
3048 	}
3049 }
3050 
3051 void
3052 resume_all_proc(void)
3053 {
3054 	struct proc *cp, *p;
3055 
3056 	cp = curproc;
3057 	sx_xlock(&allproc_lock);
3058 	LIST_REMOVE(cp, p_list);
3059 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3060 	for (;;) {
3061 		p = LIST_NEXT(cp, p_list);
3062 		if (p == NULL)
3063 			break;
3064 		LIST_REMOVE(cp, p_list);
3065 		LIST_INSERT_AFTER(p, cp, p_list);
3066 		PROC_LOCK(p);
3067 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3068 			sx_xunlock(&allproc_lock);
3069 			_PHOLD(p);
3070 			thread_single_end(p, SINGLE_ALLPROC);
3071 			_PRELE(p);
3072 			PROC_UNLOCK(p);
3073 			sx_xlock(&allproc_lock);
3074 		} else {
3075 			PROC_UNLOCK(p);
3076 		}
3077 	}
3078 	sx_xunlock(&allproc_lock);
3079 }
3080 
3081 /* #define	TOTAL_STOP_DEBUG	1 */
3082 #ifdef TOTAL_STOP_DEBUG
3083 volatile static int ap_resume;
3084 #include <sys/mount.h>
3085 
3086 static int
3087 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3088 {
3089 	int error, val;
3090 
3091 	val = 0;
3092 	ap_resume = 0;
3093 	error = sysctl_handle_int(oidp, &val, 0, req);
3094 	if (error != 0 || req->newptr == NULL)
3095 		return (error);
3096 	if (val != 0) {
3097 		stop_all_proc();
3098 		syncer_suspend();
3099 		while (ap_resume == 0)
3100 			;
3101 		syncer_resume();
3102 		resume_all_proc();
3103 	}
3104 	return (0);
3105 }
3106 
3107 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3108     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3109     sysctl_debug_stop_all_proc, "I",
3110     "");
3111 #endif
3112