1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/exec.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/loginclass.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/filedesc.h> 68 #include <sys/tty.h> 69 #include <sys/signalvar.h> 70 #include <sys/sdt.h> 71 #include <sys/sx.h> 72 #include <sys/user.h> 73 #include <sys/vnode.h> 74 #include <sys/wait.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 96 "int"); 97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 100 "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 104 105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 106 MALLOC_DEFINE(M_SESSION, "session", "session header"); 107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 109 110 static void doenterpgrp(struct proc *, struct pgrp *); 111 static void orphanpg(struct pgrp *pg); 112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 115 int preferthread); 116 static void pgadjustjobc(struct pgrp *pgrp, int entering); 117 static void pgdelete(struct pgrp *); 118 static int proc_ctor(void *mem, int size, void *arg, int flags); 119 static void proc_dtor(void *mem, int size, void *arg); 120 static int proc_init(void *mem, int size, int flags); 121 static void proc_fini(void *mem, int size); 122 static void pargs_free(struct pargs *pa); 123 static struct proc *zpfind_locked(pid_t pid); 124 125 /* 126 * Other process lists 127 */ 128 struct pidhashhead *pidhashtbl; 129 u_long pidhash; 130 struct pgrphashhead *pgrphashtbl; 131 u_long pgrphash; 132 struct proclist allproc; 133 struct proclist zombproc; 134 struct sx allproc_lock; 135 struct sx proctree_lock; 136 struct mtx ppeers_lock; 137 uma_zone_t proc_zone; 138 139 /* 140 * The offset of various fields in struct proc and struct thread. 141 * These are used by kernel debuggers to enumerate kernel threads and 142 * processes. 143 */ 144 const int proc_off_p_pid = offsetof(struct proc, p_pid); 145 const int proc_off_p_comm = offsetof(struct proc, p_comm); 146 const int proc_off_p_list = offsetof(struct proc, p_list); 147 const int proc_off_p_threads = offsetof(struct proc, p_threads); 148 const int thread_off_td_tid = offsetof(struct thread, td_tid); 149 const int thread_off_td_name = offsetof(struct thread, td_name); 150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 152 const int thread_off_td_plist = offsetof(struct thread, td_plist); 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 static int vmmap_skip_res_cnt = 0; 158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 159 &vmmap_skip_res_cnt, 0, 160 "Skip calculation of the pages resident count in kern.proc.vmmap"); 161 162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 163 #ifdef COMPAT_FREEBSD32 164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 165 #endif 166 167 /* 168 * Initialize global process hashing structures. 169 */ 170 void 171 procinit(void) 172 { 173 174 sx_init(&allproc_lock, "allproc"); 175 sx_init(&proctree_lock, "proctree"); 176 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 177 LIST_INIT(&allproc); 178 LIST_INIT(&zombproc); 179 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 180 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 181 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 182 proc_ctor, proc_dtor, proc_init, proc_fini, 183 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 184 uihashinit(); 185 } 186 187 /* 188 * Prepare a proc for use. 189 */ 190 static int 191 proc_ctor(void *mem, int size, void *arg, int flags) 192 { 193 struct proc *p; 194 195 p = (struct proc *)mem; 196 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 197 EVENTHANDLER_INVOKE(process_ctor, p); 198 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 199 return (0); 200 } 201 202 /* 203 * Reclaim a proc after use. 204 */ 205 static void 206 proc_dtor(void *mem, int size, void *arg) 207 { 208 struct proc *p; 209 struct thread *td; 210 211 /* INVARIANTS checks go here */ 212 p = (struct proc *)mem; 213 td = FIRST_THREAD_IN_PROC(p); 214 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 215 if (td != NULL) { 216 #ifdef INVARIANTS 217 KASSERT((p->p_numthreads == 1), 218 ("bad number of threads in exiting process")); 219 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 220 #endif 221 /* Free all OSD associated to this thread. */ 222 osd_thread_exit(td); 223 } 224 EVENTHANDLER_INVOKE(process_dtor, p); 225 if (p->p_ksi != NULL) 226 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 227 SDT_PROBE3(proc, , dtor, return, p, size, arg); 228 } 229 230 /* 231 * Initialize type-stable parts of a proc (when newly created). 232 */ 233 static int 234 proc_init(void *mem, int size, int flags) 235 { 236 struct proc *p; 237 238 p = (struct proc *)mem; 239 SDT_PROBE3(proc, , init, entry, p, size, flags); 240 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 241 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 242 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 243 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 244 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 245 cv_init(&p->p_pwait, "ppwait"); 246 cv_init(&p->p_dbgwait, "dbgwait"); 247 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 248 EVENTHANDLER_INVOKE(process_init, p); 249 p->p_stats = pstats_alloc(); 250 p->p_pgrp = NULL; 251 SDT_PROBE3(proc, , init, return, p, size, flags); 252 return (0); 253 } 254 255 /* 256 * UMA should ensure that this function is never called. 257 * Freeing a proc structure would violate type stability. 258 */ 259 static void 260 proc_fini(void *mem, int size) 261 { 262 #ifdef notnow 263 struct proc *p; 264 265 p = (struct proc *)mem; 266 EVENTHANDLER_INVOKE(process_fini, p); 267 pstats_free(p->p_stats); 268 thread_free(FIRST_THREAD_IN_PROC(p)); 269 mtx_destroy(&p->p_mtx); 270 if (p->p_ksi != NULL) 271 ksiginfo_free(p->p_ksi); 272 #else 273 panic("proc reclaimed"); 274 #endif 275 } 276 277 /* 278 * Is p an inferior of the current process? 279 */ 280 int 281 inferior(struct proc *p) 282 { 283 284 sx_assert(&proctree_lock, SX_LOCKED); 285 PROC_LOCK_ASSERT(p, MA_OWNED); 286 for (; p != curproc; p = proc_realparent(p)) { 287 if (p->p_pid == 0) 288 return (0); 289 } 290 return (1); 291 } 292 293 struct proc * 294 pfind_locked(pid_t pid) 295 { 296 struct proc *p; 297 298 sx_assert(&allproc_lock, SX_LOCKED); 299 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 300 if (p->p_pid == pid) { 301 PROC_LOCK(p); 302 if (p->p_state == PRS_NEW) { 303 PROC_UNLOCK(p); 304 p = NULL; 305 } 306 break; 307 } 308 } 309 return (p); 310 } 311 312 /* 313 * Locate a process by number; return only "live" processes -- i.e., neither 314 * zombies nor newly born but incompletely initialized processes. By not 315 * returning processes in the PRS_NEW state, we allow callers to avoid 316 * testing for that condition to avoid dereferencing p_ucred, et al. 317 */ 318 struct proc * 319 pfind(pid_t pid) 320 { 321 struct proc *p; 322 323 sx_slock(&allproc_lock); 324 p = pfind_locked(pid); 325 sx_sunlock(&allproc_lock); 326 return (p); 327 } 328 329 static struct proc * 330 pfind_tid_locked(pid_t tid) 331 { 332 struct proc *p; 333 struct thread *td; 334 335 sx_assert(&allproc_lock, SX_LOCKED); 336 FOREACH_PROC_IN_SYSTEM(p) { 337 PROC_LOCK(p); 338 if (p->p_state == PRS_NEW) { 339 PROC_UNLOCK(p); 340 continue; 341 } 342 FOREACH_THREAD_IN_PROC(p, td) { 343 if (td->td_tid == tid) 344 goto found; 345 } 346 PROC_UNLOCK(p); 347 } 348 found: 349 return (p); 350 } 351 352 /* 353 * Locate a process group by number. 354 * The caller must hold proctree_lock. 355 */ 356 struct pgrp * 357 pgfind(pgid) 358 register pid_t pgid; 359 { 360 register struct pgrp *pgrp; 361 362 sx_assert(&proctree_lock, SX_LOCKED); 363 364 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 365 if (pgrp->pg_id == pgid) { 366 PGRP_LOCK(pgrp); 367 return (pgrp); 368 } 369 } 370 return (NULL); 371 } 372 373 /* 374 * Locate process and do additional manipulations, depending on flags. 375 */ 376 int 377 pget(pid_t pid, int flags, struct proc **pp) 378 { 379 struct proc *p; 380 int error; 381 382 sx_slock(&allproc_lock); 383 if (pid <= PID_MAX) { 384 p = pfind_locked(pid); 385 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 386 p = zpfind_locked(pid); 387 } else if ((flags & PGET_NOTID) == 0) { 388 p = pfind_tid_locked(pid); 389 } else { 390 p = NULL; 391 } 392 sx_sunlock(&allproc_lock); 393 if (p == NULL) 394 return (ESRCH); 395 if ((flags & PGET_CANSEE) != 0) { 396 error = p_cansee(curthread, p); 397 if (error != 0) 398 goto errout; 399 } 400 if ((flags & PGET_CANDEBUG) != 0) { 401 error = p_candebug(curthread, p); 402 if (error != 0) 403 goto errout; 404 } 405 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 406 error = EPERM; 407 goto errout; 408 } 409 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 410 error = ESRCH; 411 goto errout; 412 } 413 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 414 /* 415 * XXXRW: Not clear ESRCH is the right error during proc 416 * execve(). 417 */ 418 error = ESRCH; 419 goto errout; 420 } 421 if ((flags & PGET_HOLD) != 0) { 422 _PHOLD(p); 423 PROC_UNLOCK(p); 424 } 425 *pp = p; 426 return (0); 427 errout: 428 PROC_UNLOCK(p); 429 return (error); 430 } 431 432 /* 433 * Create a new process group. 434 * pgid must be equal to the pid of p. 435 * Begin a new session if required. 436 */ 437 int 438 enterpgrp(p, pgid, pgrp, sess) 439 register struct proc *p; 440 pid_t pgid; 441 struct pgrp *pgrp; 442 struct session *sess; 443 { 444 445 sx_assert(&proctree_lock, SX_XLOCKED); 446 447 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 448 KASSERT(p->p_pid == pgid, 449 ("enterpgrp: new pgrp and pid != pgid")); 450 KASSERT(pgfind(pgid) == NULL, 451 ("enterpgrp: pgrp with pgid exists")); 452 KASSERT(!SESS_LEADER(p), 453 ("enterpgrp: session leader attempted setpgrp")); 454 455 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 456 457 if (sess != NULL) { 458 /* 459 * new session 460 */ 461 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 462 PROC_LOCK(p); 463 p->p_flag &= ~P_CONTROLT; 464 PROC_UNLOCK(p); 465 PGRP_LOCK(pgrp); 466 sess->s_leader = p; 467 sess->s_sid = p->p_pid; 468 refcount_init(&sess->s_count, 1); 469 sess->s_ttyvp = NULL; 470 sess->s_ttydp = NULL; 471 sess->s_ttyp = NULL; 472 bcopy(p->p_session->s_login, sess->s_login, 473 sizeof(sess->s_login)); 474 pgrp->pg_session = sess; 475 KASSERT(p == curproc, 476 ("enterpgrp: mksession and p != curproc")); 477 } else { 478 pgrp->pg_session = p->p_session; 479 sess_hold(pgrp->pg_session); 480 PGRP_LOCK(pgrp); 481 } 482 pgrp->pg_id = pgid; 483 LIST_INIT(&pgrp->pg_members); 484 485 /* 486 * As we have an exclusive lock of proctree_lock, 487 * this should not deadlock. 488 */ 489 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 490 pgrp->pg_jobc = 0; 491 SLIST_INIT(&pgrp->pg_sigiolst); 492 PGRP_UNLOCK(pgrp); 493 494 doenterpgrp(p, pgrp); 495 496 return (0); 497 } 498 499 /* 500 * Move p to an existing process group 501 */ 502 int 503 enterthispgrp(p, pgrp) 504 register struct proc *p; 505 struct pgrp *pgrp; 506 { 507 508 sx_assert(&proctree_lock, SX_XLOCKED); 509 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 510 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 511 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 512 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 513 KASSERT(pgrp->pg_session == p->p_session, 514 ("%s: pgrp's session %p, p->p_session %p.\n", 515 __func__, 516 pgrp->pg_session, 517 p->p_session)); 518 KASSERT(pgrp != p->p_pgrp, 519 ("%s: p belongs to pgrp.", __func__)); 520 521 doenterpgrp(p, pgrp); 522 523 return (0); 524 } 525 526 /* 527 * Move p to a process group 528 */ 529 static void 530 doenterpgrp(p, pgrp) 531 struct proc *p; 532 struct pgrp *pgrp; 533 { 534 struct pgrp *savepgrp; 535 536 sx_assert(&proctree_lock, SX_XLOCKED); 537 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 538 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 539 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 540 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 541 542 savepgrp = p->p_pgrp; 543 544 /* 545 * Adjust eligibility of affected pgrps to participate in job control. 546 * Increment eligibility counts before decrementing, otherwise we 547 * could reach 0 spuriously during the first call. 548 */ 549 fixjobc(p, pgrp, 1); 550 fixjobc(p, p->p_pgrp, 0); 551 552 PGRP_LOCK(pgrp); 553 PGRP_LOCK(savepgrp); 554 PROC_LOCK(p); 555 LIST_REMOVE(p, p_pglist); 556 p->p_pgrp = pgrp; 557 PROC_UNLOCK(p); 558 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 559 PGRP_UNLOCK(savepgrp); 560 PGRP_UNLOCK(pgrp); 561 if (LIST_EMPTY(&savepgrp->pg_members)) 562 pgdelete(savepgrp); 563 } 564 565 /* 566 * remove process from process group 567 */ 568 int 569 leavepgrp(p) 570 register struct proc *p; 571 { 572 struct pgrp *savepgrp; 573 574 sx_assert(&proctree_lock, SX_XLOCKED); 575 savepgrp = p->p_pgrp; 576 PGRP_LOCK(savepgrp); 577 PROC_LOCK(p); 578 LIST_REMOVE(p, p_pglist); 579 p->p_pgrp = NULL; 580 PROC_UNLOCK(p); 581 PGRP_UNLOCK(savepgrp); 582 if (LIST_EMPTY(&savepgrp->pg_members)) 583 pgdelete(savepgrp); 584 return (0); 585 } 586 587 /* 588 * delete a process group 589 */ 590 static void 591 pgdelete(pgrp) 592 register struct pgrp *pgrp; 593 { 594 struct session *savesess; 595 struct tty *tp; 596 597 sx_assert(&proctree_lock, SX_XLOCKED); 598 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 599 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 600 601 /* 602 * Reset any sigio structures pointing to us as a result of 603 * F_SETOWN with our pgid. 604 */ 605 funsetownlst(&pgrp->pg_sigiolst); 606 607 PGRP_LOCK(pgrp); 608 tp = pgrp->pg_session->s_ttyp; 609 LIST_REMOVE(pgrp, pg_hash); 610 savesess = pgrp->pg_session; 611 PGRP_UNLOCK(pgrp); 612 613 /* Remove the reference to the pgrp before deallocating it. */ 614 if (tp != NULL) { 615 tty_lock(tp); 616 tty_rel_pgrp(tp, pgrp); 617 } 618 619 mtx_destroy(&pgrp->pg_mtx); 620 free(pgrp, M_PGRP); 621 sess_release(savesess); 622 } 623 624 static void 625 pgadjustjobc(pgrp, entering) 626 struct pgrp *pgrp; 627 int entering; 628 { 629 630 PGRP_LOCK(pgrp); 631 if (entering) 632 pgrp->pg_jobc++; 633 else { 634 --pgrp->pg_jobc; 635 if (pgrp->pg_jobc == 0) 636 orphanpg(pgrp); 637 } 638 PGRP_UNLOCK(pgrp); 639 } 640 641 /* 642 * Adjust pgrp jobc counters when specified process changes process group. 643 * We count the number of processes in each process group that "qualify" 644 * the group for terminal job control (those with a parent in a different 645 * process group of the same session). If that count reaches zero, the 646 * process group becomes orphaned. Check both the specified process' 647 * process group and that of its children. 648 * entering == 0 => p is leaving specified group. 649 * entering == 1 => p is entering specified group. 650 */ 651 void 652 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 653 { 654 struct pgrp *hispgrp; 655 struct session *mysession; 656 struct proc *q; 657 658 sx_assert(&proctree_lock, SX_LOCKED); 659 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 660 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 661 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 662 663 /* 664 * Check p's parent to see whether p qualifies its own process 665 * group; if so, adjust count for p's process group. 666 */ 667 mysession = pgrp->pg_session; 668 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 669 hispgrp->pg_session == mysession) 670 pgadjustjobc(pgrp, entering); 671 672 /* 673 * Check this process' children to see whether they qualify 674 * their process groups; if so, adjust counts for children's 675 * process groups. 676 */ 677 LIST_FOREACH(q, &p->p_children, p_sibling) { 678 hispgrp = q->p_pgrp; 679 if (hispgrp == pgrp || 680 hispgrp->pg_session != mysession) 681 continue; 682 if (q->p_state == PRS_ZOMBIE) 683 continue; 684 pgadjustjobc(hispgrp, entering); 685 } 686 } 687 688 void 689 killjobc(void) 690 { 691 struct session *sp; 692 struct tty *tp; 693 struct proc *p; 694 struct vnode *ttyvp; 695 696 p = curproc; 697 MPASS(p->p_flag & P_WEXIT); 698 /* 699 * Do a quick check to see if there is anything to do with the 700 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 701 */ 702 PROC_LOCK(p); 703 if (!SESS_LEADER(p) && 704 (p->p_pgrp == p->p_pptr->p_pgrp) && 705 LIST_EMPTY(&p->p_children)) { 706 PROC_UNLOCK(p); 707 return; 708 } 709 PROC_UNLOCK(p); 710 711 sx_xlock(&proctree_lock); 712 if (SESS_LEADER(p)) { 713 sp = p->p_session; 714 715 /* 716 * s_ttyp is not zero'd; we use this to indicate that 717 * the session once had a controlling terminal. (for 718 * logging and informational purposes) 719 */ 720 SESS_LOCK(sp); 721 ttyvp = sp->s_ttyvp; 722 tp = sp->s_ttyp; 723 sp->s_ttyvp = NULL; 724 sp->s_ttydp = NULL; 725 sp->s_leader = NULL; 726 SESS_UNLOCK(sp); 727 728 /* 729 * Signal foreground pgrp and revoke access to 730 * controlling terminal if it has not been revoked 731 * already. 732 * 733 * Because the TTY may have been revoked in the mean 734 * time and could already have a new session associated 735 * with it, make sure we don't send a SIGHUP to a 736 * foreground process group that does not belong to this 737 * session. 738 */ 739 740 if (tp != NULL) { 741 tty_lock(tp); 742 if (tp->t_session == sp) 743 tty_signal_pgrp(tp, SIGHUP); 744 tty_unlock(tp); 745 } 746 747 if (ttyvp != NULL) { 748 sx_xunlock(&proctree_lock); 749 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 750 VOP_REVOKE(ttyvp, REVOKEALL); 751 VOP_UNLOCK(ttyvp, 0); 752 } 753 vrele(ttyvp); 754 sx_xlock(&proctree_lock); 755 } 756 } 757 fixjobc(p, p->p_pgrp, 0); 758 sx_xunlock(&proctree_lock); 759 } 760 761 /* 762 * A process group has become orphaned; 763 * if there are any stopped processes in the group, 764 * hang-up all process in that group. 765 */ 766 static void 767 orphanpg(pg) 768 struct pgrp *pg; 769 { 770 register struct proc *p; 771 772 PGRP_LOCK_ASSERT(pg, MA_OWNED); 773 774 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 775 PROC_LOCK(p); 776 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 777 PROC_UNLOCK(p); 778 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 779 PROC_LOCK(p); 780 kern_psignal(p, SIGHUP); 781 kern_psignal(p, SIGCONT); 782 PROC_UNLOCK(p); 783 } 784 return; 785 } 786 PROC_UNLOCK(p); 787 } 788 } 789 790 void 791 sess_hold(struct session *s) 792 { 793 794 refcount_acquire(&s->s_count); 795 } 796 797 void 798 sess_release(struct session *s) 799 { 800 801 if (refcount_release(&s->s_count)) { 802 if (s->s_ttyp != NULL) { 803 tty_lock(s->s_ttyp); 804 tty_rel_sess(s->s_ttyp, s); 805 } 806 mtx_destroy(&s->s_mtx); 807 free(s, M_SESSION); 808 } 809 } 810 811 #ifdef DDB 812 813 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 814 { 815 register struct pgrp *pgrp; 816 register struct proc *p; 817 register int i; 818 819 for (i = 0; i <= pgrphash; i++) { 820 if (!LIST_EMPTY(&pgrphashtbl[i])) { 821 printf("\tindx %d\n", i); 822 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 823 printf( 824 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 825 (void *)pgrp, (long)pgrp->pg_id, 826 (void *)pgrp->pg_session, 827 pgrp->pg_session->s_count, 828 (void *)LIST_FIRST(&pgrp->pg_members)); 829 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 830 printf("\t\tpid %ld addr %p pgrp %p\n", 831 (long)p->p_pid, (void *)p, 832 (void *)p->p_pgrp); 833 } 834 } 835 } 836 } 837 } 838 #endif /* DDB */ 839 840 /* 841 * Calculate the kinfo_proc members which contain process-wide 842 * informations. 843 * Must be called with the target process locked. 844 */ 845 static void 846 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 847 { 848 struct thread *td; 849 850 PROC_LOCK_ASSERT(p, MA_OWNED); 851 852 kp->ki_estcpu = 0; 853 kp->ki_pctcpu = 0; 854 FOREACH_THREAD_IN_PROC(p, td) { 855 thread_lock(td); 856 kp->ki_pctcpu += sched_pctcpu(td); 857 kp->ki_estcpu += sched_estcpu(td); 858 thread_unlock(td); 859 } 860 } 861 862 /* 863 * Clear kinfo_proc and fill in any information that is common 864 * to all threads in the process. 865 * Must be called with the target process locked. 866 */ 867 static void 868 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 869 { 870 struct thread *td0; 871 struct tty *tp; 872 struct session *sp; 873 struct ucred *cred; 874 struct sigacts *ps; 875 876 /* For proc_realparent. */ 877 sx_assert(&proctree_lock, SX_LOCKED); 878 PROC_LOCK_ASSERT(p, MA_OWNED); 879 bzero(kp, sizeof(*kp)); 880 881 kp->ki_structsize = sizeof(*kp); 882 kp->ki_paddr = p; 883 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 884 kp->ki_args = p->p_args; 885 kp->ki_textvp = p->p_textvp; 886 #ifdef KTRACE 887 kp->ki_tracep = p->p_tracevp; 888 kp->ki_traceflag = p->p_traceflag; 889 #endif 890 kp->ki_fd = p->p_fd; 891 kp->ki_vmspace = p->p_vmspace; 892 kp->ki_flag = p->p_flag; 893 kp->ki_flag2 = p->p_flag2; 894 cred = p->p_ucred; 895 if (cred) { 896 kp->ki_uid = cred->cr_uid; 897 kp->ki_ruid = cred->cr_ruid; 898 kp->ki_svuid = cred->cr_svuid; 899 kp->ki_cr_flags = 0; 900 if (cred->cr_flags & CRED_FLAG_CAPMODE) 901 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 902 /* XXX bde doesn't like KI_NGROUPS */ 903 if (cred->cr_ngroups > KI_NGROUPS) { 904 kp->ki_ngroups = KI_NGROUPS; 905 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 906 } else 907 kp->ki_ngroups = cred->cr_ngroups; 908 bcopy(cred->cr_groups, kp->ki_groups, 909 kp->ki_ngroups * sizeof(gid_t)); 910 kp->ki_rgid = cred->cr_rgid; 911 kp->ki_svgid = cred->cr_svgid; 912 /* If jailed(cred), emulate the old P_JAILED flag. */ 913 if (jailed(cred)) { 914 kp->ki_flag |= P_JAILED; 915 /* If inside the jail, use 0 as a jail ID. */ 916 if (cred->cr_prison != curthread->td_ucred->cr_prison) 917 kp->ki_jid = cred->cr_prison->pr_id; 918 } 919 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 920 sizeof(kp->ki_loginclass)); 921 } 922 ps = p->p_sigacts; 923 if (ps) { 924 mtx_lock(&ps->ps_mtx); 925 kp->ki_sigignore = ps->ps_sigignore; 926 kp->ki_sigcatch = ps->ps_sigcatch; 927 mtx_unlock(&ps->ps_mtx); 928 } 929 if (p->p_state != PRS_NEW && 930 p->p_state != PRS_ZOMBIE && 931 p->p_vmspace != NULL) { 932 struct vmspace *vm = p->p_vmspace; 933 934 kp->ki_size = vm->vm_map.size; 935 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 936 FOREACH_THREAD_IN_PROC(p, td0) { 937 if (!TD_IS_SWAPPED(td0)) 938 kp->ki_rssize += td0->td_kstack_pages; 939 } 940 kp->ki_swrss = vm->vm_swrss; 941 kp->ki_tsize = vm->vm_tsize; 942 kp->ki_dsize = vm->vm_dsize; 943 kp->ki_ssize = vm->vm_ssize; 944 } else if (p->p_state == PRS_ZOMBIE) 945 kp->ki_stat = SZOMB; 946 if (kp->ki_flag & P_INMEM) 947 kp->ki_sflag = PS_INMEM; 948 else 949 kp->ki_sflag = 0; 950 /* Calculate legacy swtime as seconds since 'swtick'. */ 951 kp->ki_swtime = (ticks - p->p_swtick) / hz; 952 kp->ki_pid = p->p_pid; 953 kp->ki_nice = p->p_nice; 954 kp->ki_fibnum = p->p_fibnum; 955 kp->ki_start = p->p_stats->p_start; 956 timevaladd(&kp->ki_start, &boottime); 957 PROC_STATLOCK(p); 958 rufetch(p, &kp->ki_rusage); 959 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 960 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 961 PROC_STATUNLOCK(p); 962 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 963 /* Some callers want child times in a single value. */ 964 kp->ki_childtime = kp->ki_childstime; 965 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 966 967 FOREACH_THREAD_IN_PROC(p, td0) 968 kp->ki_cow += td0->td_cow; 969 970 tp = NULL; 971 if (p->p_pgrp) { 972 kp->ki_pgid = p->p_pgrp->pg_id; 973 kp->ki_jobc = p->p_pgrp->pg_jobc; 974 sp = p->p_pgrp->pg_session; 975 976 if (sp != NULL) { 977 kp->ki_sid = sp->s_sid; 978 SESS_LOCK(sp); 979 strlcpy(kp->ki_login, sp->s_login, 980 sizeof(kp->ki_login)); 981 if (sp->s_ttyvp) 982 kp->ki_kiflag |= KI_CTTY; 983 if (SESS_LEADER(p)) 984 kp->ki_kiflag |= KI_SLEADER; 985 /* XXX proctree_lock */ 986 tp = sp->s_ttyp; 987 SESS_UNLOCK(sp); 988 } 989 } 990 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 991 kp->ki_tdev = tty_udev(tp); 992 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 993 if (tp->t_session) 994 kp->ki_tsid = tp->t_session->s_sid; 995 } else 996 kp->ki_tdev = NODEV; 997 if (p->p_comm[0] != '\0') 998 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 999 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1000 p->p_sysent->sv_name[0] != '\0') 1001 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1002 kp->ki_siglist = p->p_siglist; 1003 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1004 kp->ki_acflag = p->p_acflag; 1005 kp->ki_lock = p->p_lock; 1006 if (p->p_pptr) { 1007 kp->ki_ppid = proc_realparent(p)->p_pid; 1008 if (p->p_flag & P_TRACED) 1009 kp->ki_tracer = p->p_pptr->p_pid; 1010 } 1011 } 1012 1013 /* 1014 * Fill in information that is thread specific. Must be called with 1015 * target process locked. If 'preferthread' is set, overwrite certain 1016 * process-related fields that are maintained for both threads and 1017 * processes. 1018 */ 1019 static void 1020 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1021 { 1022 struct proc *p; 1023 1024 p = td->td_proc; 1025 kp->ki_tdaddr = td; 1026 PROC_LOCK_ASSERT(p, MA_OWNED); 1027 1028 if (preferthread) 1029 PROC_STATLOCK(p); 1030 thread_lock(td); 1031 if (td->td_wmesg != NULL) 1032 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1033 else 1034 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1035 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 1036 if (TD_ON_LOCK(td)) { 1037 kp->ki_kiflag |= KI_LOCKBLOCK; 1038 strlcpy(kp->ki_lockname, td->td_lockname, 1039 sizeof(kp->ki_lockname)); 1040 } else { 1041 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1042 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1043 } 1044 1045 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1046 if (TD_ON_RUNQ(td) || 1047 TD_CAN_RUN(td) || 1048 TD_IS_RUNNING(td)) { 1049 kp->ki_stat = SRUN; 1050 } else if (P_SHOULDSTOP(p)) { 1051 kp->ki_stat = SSTOP; 1052 } else if (TD_IS_SLEEPING(td)) { 1053 kp->ki_stat = SSLEEP; 1054 } else if (TD_ON_LOCK(td)) { 1055 kp->ki_stat = SLOCK; 1056 } else { 1057 kp->ki_stat = SWAIT; 1058 } 1059 } else if (p->p_state == PRS_ZOMBIE) { 1060 kp->ki_stat = SZOMB; 1061 } else { 1062 kp->ki_stat = SIDL; 1063 } 1064 1065 /* Things in the thread */ 1066 kp->ki_wchan = td->td_wchan; 1067 kp->ki_pri.pri_level = td->td_priority; 1068 kp->ki_pri.pri_native = td->td_base_pri; 1069 1070 /* 1071 * Note: legacy fields; clamp at the old NOCPU value and/or 1072 * the maximum u_char CPU value. 1073 */ 1074 if (td->td_lastcpu == NOCPU) 1075 kp->ki_lastcpu_old = NOCPU_OLD; 1076 else if (td->td_lastcpu > MAXCPU_OLD) 1077 kp->ki_lastcpu_old = MAXCPU_OLD; 1078 else 1079 kp->ki_lastcpu_old = td->td_lastcpu; 1080 1081 if (td->td_oncpu == NOCPU) 1082 kp->ki_oncpu_old = NOCPU_OLD; 1083 else if (td->td_oncpu > MAXCPU_OLD) 1084 kp->ki_oncpu_old = MAXCPU_OLD; 1085 else 1086 kp->ki_oncpu_old = td->td_oncpu; 1087 1088 kp->ki_lastcpu = td->td_lastcpu; 1089 kp->ki_oncpu = td->td_oncpu; 1090 kp->ki_tdflags = td->td_flags; 1091 kp->ki_tid = td->td_tid; 1092 kp->ki_numthreads = p->p_numthreads; 1093 kp->ki_pcb = td->td_pcb; 1094 kp->ki_kstack = (void *)td->td_kstack; 1095 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1096 kp->ki_pri.pri_class = td->td_pri_class; 1097 kp->ki_pri.pri_user = td->td_user_pri; 1098 1099 if (preferthread) { 1100 rufetchtd(td, &kp->ki_rusage); 1101 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1102 kp->ki_pctcpu = sched_pctcpu(td); 1103 kp->ki_estcpu = sched_estcpu(td); 1104 kp->ki_cow = td->td_cow; 1105 } 1106 1107 /* We can't get this anymore but ps etc never used it anyway. */ 1108 kp->ki_rqindex = 0; 1109 1110 if (preferthread) 1111 kp->ki_siglist = td->td_siglist; 1112 kp->ki_sigmask = td->td_sigmask; 1113 thread_unlock(td); 1114 if (preferthread) 1115 PROC_STATUNLOCK(p); 1116 } 1117 1118 /* 1119 * Fill in a kinfo_proc structure for the specified process. 1120 * Must be called with the target process locked. 1121 */ 1122 void 1123 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1124 { 1125 1126 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1127 1128 fill_kinfo_proc_only(p, kp); 1129 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1130 fill_kinfo_aggregate(p, kp); 1131 } 1132 1133 struct pstats * 1134 pstats_alloc(void) 1135 { 1136 1137 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1138 } 1139 1140 /* 1141 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1142 */ 1143 void 1144 pstats_fork(struct pstats *src, struct pstats *dst) 1145 { 1146 1147 bzero(&dst->pstat_startzero, 1148 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1149 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1150 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1151 } 1152 1153 void 1154 pstats_free(struct pstats *ps) 1155 { 1156 1157 free(ps, M_SUBPROC); 1158 } 1159 1160 static struct proc * 1161 zpfind_locked(pid_t pid) 1162 { 1163 struct proc *p; 1164 1165 sx_assert(&allproc_lock, SX_LOCKED); 1166 LIST_FOREACH(p, &zombproc, p_list) { 1167 if (p->p_pid == pid) { 1168 PROC_LOCK(p); 1169 break; 1170 } 1171 } 1172 return (p); 1173 } 1174 1175 /* 1176 * Locate a zombie process by number 1177 */ 1178 struct proc * 1179 zpfind(pid_t pid) 1180 { 1181 struct proc *p; 1182 1183 sx_slock(&allproc_lock); 1184 p = zpfind_locked(pid); 1185 sx_sunlock(&allproc_lock); 1186 return (p); 1187 } 1188 1189 #ifdef COMPAT_FREEBSD32 1190 1191 /* 1192 * This function is typically used to copy out the kernel address, so 1193 * it can be replaced by assignment of zero. 1194 */ 1195 static inline uint32_t 1196 ptr32_trim(void *ptr) 1197 { 1198 uintptr_t uptr; 1199 1200 uptr = (uintptr_t)ptr; 1201 return ((uptr > UINT_MAX) ? 0 : uptr); 1202 } 1203 1204 #define PTRTRIM_CP(src,dst,fld) \ 1205 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1206 1207 static void 1208 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1209 { 1210 int i; 1211 1212 bzero(ki32, sizeof(struct kinfo_proc32)); 1213 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1214 CP(*ki, *ki32, ki_layout); 1215 PTRTRIM_CP(*ki, *ki32, ki_args); 1216 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1217 PTRTRIM_CP(*ki, *ki32, ki_addr); 1218 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1219 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1220 PTRTRIM_CP(*ki, *ki32, ki_fd); 1221 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1222 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1223 CP(*ki, *ki32, ki_pid); 1224 CP(*ki, *ki32, ki_ppid); 1225 CP(*ki, *ki32, ki_pgid); 1226 CP(*ki, *ki32, ki_tpgid); 1227 CP(*ki, *ki32, ki_sid); 1228 CP(*ki, *ki32, ki_tsid); 1229 CP(*ki, *ki32, ki_jobc); 1230 CP(*ki, *ki32, ki_tdev); 1231 CP(*ki, *ki32, ki_siglist); 1232 CP(*ki, *ki32, ki_sigmask); 1233 CP(*ki, *ki32, ki_sigignore); 1234 CP(*ki, *ki32, ki_sigcatch); 1235 CP(*ki, *ki32, ki_uid); 1236 CP(*ki, *ki32, ki_ruid); 1237 CP(*ki, *ki32, ki_svuid); 1238 CP(*ki, *ki32, ki_rgid); 1239 CP(*ki, *ki32, ki_svgid); 1240 CP(*ki, *ki32, ki_ngroups); 1241 for (i = 0; i < KI_NGROUPS; i++) 1242 CP(*ki, *ki32, ki_groups[i]); 1243 CP(*ki, *ki32, ki_size); 1244 CP(*ki, *ki32, ki_rssize); 1245 CP(*ki, *ki32, ki_swrss); 1246 CP(*ki, *ki32, ki_tsize); 1247 CP(*ki, *ki32, ki_dsize); 1248 CP(*ki, *ki32, ki_ssize); 1249 CP(*ki, *ki32, ki_xstat); 1250 CP(*ki, *ki32, ki_acflag); 1251 CP(*ki, *ki32, ki_pctcpu); 1252 CP(*ki, *ki32, ki_estcpu); 1253 CP(*ki, *ki32, ki_slptime); 1254 CP(*ki, *ki32, ki_swtime); 1255 CP(*ki, *ki32, ki_cow); 1256 CP(*ki, *ki32, ki_runtime); 1257 TV_CP(*ki, *ki32, ki_start); 1258 TV_CP(*ki, *ki32, ki_childtime); 1259 CP(*ki, *ki32, ki_flag); 1260 CP(*ki, *ki32, ki_kiflag); 1261 CP(*ki, *ki32, ki_traceflag); 1262 CP(*ki, *ki32, ki_stat); 1263 CP(*ki, *ki32, ki_nice); 1264 CP(*ki, *ki32, ki_lock); 1265 CP(*ki, *ki32, ki_rqindex); 1266 CP(*ki, *ki32, ki_oncpu); 1267 CP(*ki, *ki32, ki_lastcpu); 1268 1269 /* XXX TODO: wrap cpu value as appropriate */ 1270 CP(*ki, *ki32, ki_oncpu_old); 1271 CP(*ki, *ki32, ki_lastcpu_old); 1272 1273 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1274 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1275 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1276 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1277 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1278 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1279 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1280 CP(*ki, *ki32, ki_tracer); 1281 CP(*ki, *ki32, ki_flag2); 1282 CP(*ki, *ki32, ki_fibnum); 1283 CP(*ki, *ki32, ki_cr_flags); 1284 CP(*ki, *ki32, ki_jid); 1285 CP(*ki, *ki32, ki_numthreads); 1286 CP(*ki, *ki32, ki_tid); 1287 CP(*ki, *ki32, ki_pri); 1288 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1289 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1290 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1291 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1292 PTRTRIM_CP(*ki, *ki32, ki_udata); 1293 CP(*ki, *ki32, ki_sflag); 1294 CP(*ki, *ki32, ki_tdflags); 1295 } 1296 #endif 1297 1298 int 1299 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1300 { 1301 struct thread *td; 1302 struct kinfo_proc ki; 1303 #ifdef COMPAT_FREEBSD32 1304 struct kinfo_proc32 ki32; 1305 #endif 1306 int error; 1307 1308 PROC_LOCK_ASSERT(p, MA_OWNED); 1309 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1310 1311 error = 0; 1312 fill_kinfo_proc(p, &ki); 1313 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1314 #ifdef COMPAT_FREEBSD32 1315 if ((flags & KERN_PROC_MASK32) != 0) { 1316 freebsd32_kinfo_proc_out(&ki, &ki32); 1317 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1318 error = ENOMEM; 1319 } else 1320 #endif 1321 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1322 error = ENOMEM; 1323 } else { 1324 FOREACH_THREAD_IN_PROC(p, td) { 1325 fill_kinfo_thread(td, &ki, 1); 1326 #ifdef COMPAT_FREEBSD32 1327 if ((flags & KERN_PROC_MASK32) != 0) { 1328 freebsd32_kinfo_proc_out(&ki, &ki32); 1329 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1330 error = ENOMEM; 1331 } else 1332 #endif 1333 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1334 error = ENOMEM; 1335 if (error != 0) 1336 break; 1337 } 1338 } 1339 PROC_UNLOCK(p); 1340 return (error); 1341 } 1342 1343 static int 1344 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1345 int doingzomb) 1346 { 1347 struct sbuf sb; 1348 struct kinfo_proc ki; 1349 struct proc *np; 1350 int error, error2; 1351 pid_t pid; 1352 1353 pid = p->p_pid; 1354 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1355 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1356 error = kern_proc_out(p, &sb, flags); 1357 error2 = sbuf_finish(&sb); 1358 sbuf_delete(&sb); 1359 if (error != 0) 1360 return (error); 1361 else if (error2 != 0) 1362 return (error2); 1363 if (doingzomb) 1364 np = zpfind(pid); 1365 else { 1366 if (pid == 0) 1367 return (0); 1368 np = pfind(pid); 1369 } 1370 if (np == NULL) 1371 return (ESRCH); 1372 if (np != p) { 1373 PROC_UNLOCK(np); 1374 return (ESRCH); 1375 } 1376 PROC_UNLOCK(np); 1377 return (0); 1378 } 1379 1380 static int 1381 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1382 { 1383 int *name = (int *)arg1; 1384 u_int namelen = arg2; 1385 struct proc *p; 1386 int flags, doingzomb, oid_number; 1387 int error = 0; 1388 1389 oid_number = oidp->oid_number; 1390 if (oid_number != KERN_PROC_ALL && 1391 (oid_number & KERN_PROC_INC_THREAD) == 0) 1392 flags = KERN_PROC_NOTHREADS; 1393 else { 1394 flags = 0; 1395 oid_number &= ~KERN_PROC_INC_THREAD; 1396 } 1397 #ifdef COMPAT_FREEBSD32 1398 if (req->flags & SCTL_MASK32) 1399 flags |= KERN_PROC_MASK32; 1400 #endif 1401 if (oid_number == KERN_PROC_PID) { 1402 if (namelen != 1) 1403 return (EINVAL); 1404 error = sysctl_wire_old_buffer(req, 0); 1405 if (error) 1406 return (error); 1407 sx_slock(&proctree_lock); 1408 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1409 if (error == 0) 1410 error = sysctl_out_proc(p, req, flags, 0); 1411 sx_sunlock(&proctree_lock); 1412 return (error); 1413 } 1414 1415 switch (oid_number) { 1416 case KERN_PROC_ALL: 1417 if (namelen != 0) 1418 return (EINVAL); 1419 break; 1420 case KERN_PROC_PROC: 1421 if (namelen != 0 && namelen != 1) 1422 return (EINVAL); 1423 break; 1424 default: 1425 if (namelen != 1) 1426 return (EINVAL); 1427 break; 1428 } 1429 1430 if (!req->oldptr) { 1431 /* overestimate by 5 procs */ 1432 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1433 if (error) 1434 return (error); 1435 } 1436 error = sysctl_wire_old_buffer(req, 0); 1437 if (error != 0) 1438 return (error); 1439 sx_slock(&proctree_lock); 1440 sx_slock(&allproc_lock); 1441 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1442 if (!doingzomb) 1443 p = LIST_FIRST(&allproc); 1444 else 1445 p = LIST_FIRST(&zombproc); 1446 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1447 /* 1448 * Skip embryonic processes. 1449 */ 1450 PROC_LOCK(p); 1451 if (p->p_state == PRS_NEW) { 1452 PROC_UNLOCK(p); 1453 continue; 1454 } 1455 KASSERT(p->p_ucred != NULL, 1456 ("process credential is NULL for non-NEW proc")); 1457 /* 1458 * Show a user only appropriate processes. 1459 */ 1460 if (p_cansee(curthread, p)) { 1461 PROC_UNLOCK(p); 1462 continue; 1463 } 1464 /* 1465 * TODO - make more efficient (see notes below). 1466 * do by session. 1467 */ 1468 switch (oid_number) { 1469 1470 case KERN_PROC_GID: 1471 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1472 PROC_UNLOCK(p); 1473 continue; 1474 } 1475 break; 1476 1477 case KERN_PROC_PGRP: 1478 /* could do this by traversing pgrp */ 1479 if (p->p_pgrp == NULL || 1480 p->p_pgrp->pg_id != (pid_t)name[0]) { 1481 PROC_UNLOCK(p); 1482 continue; 1483 } 1484 break; 1485 1486 case KERN_PROC_RGID: 1487 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1488 PROC_UNLOCK(p); 1489 continue; 1490 } 1491 break; 1492 1493 case KERN_PROC_SESSION: 1494 if (p->p_session == NULL || 1495 p->p_session->s_sid != (pid_t)name[0]) { 1496 PROC_UNLOCK(p); 1497 continue; 1498 } 1499 break; 1500 1501 case KERN_PROC_TTY: 1502 if ((p->p_flag & P_CONTROLT) == 0 || 1503 p->p_session == NULL) { 1504 PROC_UNLOCK(p); 1505 continue; 1506 } 1507 /* XXX proctree_lock */ 1508 SESS_LOCK(p->p_session); 1509 if (p->p_session->s_ttyp == NULL || 1510 tty_udev(p->p_session->s_ttyp) != 1511 (dev_t)name[0]) { 1512 SESS_UNLOCK(p->p_session); 1513 PROC_UNLOCK(p); 1514 continue; 1515 } 1516 SESS_UNLOCK(p->p_session); 1517 break; 1518 1519 case KERN_PROC_UID: 1520 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1521 PROC_UNLOCK(p); 1522 continue; 1523 } 1524 break; 1525 1526 case KERN_PROC_RUID: 1527 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1528 PROC_UNLOCK(p); 1529 continue; 1530 } 1531 break; 1532 1533 case KERN_PROC_PROC: 1534 break; 1535 1536 default: 1537 break; 1538 1539 } 1540 1541 error = sysctl_out_proc(p, req, flags, doingzomb); 1542 if (error) { 1543 sx_sunlock(&allproc_lock); 1544 sx_sunlock(&proctree_lock); 1545 return (error); 1546 } 1547 } 1548 } 1549 sx_sunlock(&allproc_lock); 1550 sx_sunlock(&proctree_lock); 1551 return (0); 1552 } 1553 1554 struct pargs * 1555 pargs_alloc(int len) 1556 { 1557 struct pargs *pa; 1558 1559 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1560 M_WAITOK); 1561 refcount_init(&pa->ar_ref, 1); 1562 pa->ar_length = len; 1563 return (pa); 1564 } 1565 1566 static void 1567 pargs_free(struct pargs *pa) 1568 { 1569 1570 free(pa, M_PARGS); 1571 } 1572 1573 void 1574 pargs_hold(struct pargs *pa) 1575 { 1576 1577 if (pa == NULL) 1578 return; 1579 refcount_acquire(&pa->ar_ref); 1580 } 1581 1582 void 1583 pargs_drop(struct pargs *pa) 1584 { 1585 1586 if (pa == NULL) 1587 return; 1588 if (refcount_release(&pa->ar_ref)) 1589 pargs_free(pa); 1590 } 1591 1592 static int 1593 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1594 size_t len) 1595 { 1596 ssize_t n; 1597 1598 /* 1599 * This may return a short read if the string is shorter than the chunk 1600 * and is aligned at the end of the page, and the following page is not 1601 * mapped. 1602 */ 1603 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1604 if (n <= 0) 1605 return (ENOMEM); 1606 return (0); 1607 } 1608 1609 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1610 1611 enum proc_vector_type { 1612 PROC_ARG, 1613 PROC_ENV, 1614 PROC_AUX, 1615 }; 1616 1617 #ifdef COMPAT_FREEBSD32 1618 static int 1619 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1620 size_t *vsizep, enum proc_vector_type type) 1621 { 1622 struct freebsd32_ps_strings pss; 1623 Elf32_Auxinfo aux; 1624 vm_offset_t vptr, ptr; 1625 uint32_t *proc_vector32; 1626 char **proc_vector; 1627 size_t vsize, size; 1628 int i, error; 1629 1630 error = 0; 1631 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1632 sizeof(pss)) != sizeof(pss)) 1633 return (ENOMEM); 1634 switch (type) { 1635 case PROC_ARG: 1636 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1637 vsize = pss.ps_nargvstr; 1638 if (vsize > ARG_MAX) 1639 return (ENOEXEC); 1640 size = vsize * sizeof(int32_t); 1641 break; 1642 case PROC_ENV: 1643 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1644 vsize = pss.ps_nenvstr; 1645 if (vsize > ARG_MAX) 1646 return (ENOEXEC); 1647 size = vsize * sizeof(int32_t); 1648 break; 1649 case PROC_AUX: 1650 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1651 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1652 if (vptr % 4 != 0) 1653 return (ENOEXEC); 1654 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1655 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1656 sizeof(aux)) 1657 return (ENOMEM); 1658 if (aux.a_type == AT_NULL) 1659 break; 1660 ptr += sizeof(aux); 1661 } 1662 if (aux.a_type != AT_NULL) 1663 return (ENOEXEC); 1664 vsize = i + 1; 1665 size = vsize * sizeof(aux); 1666 break; 1667 default: 1668 KASSERT(0, ("Wrong proc vector type: %d", type)); 1669 return (EINVAL); 1670 } 1671 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1672 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1673 error = ENOMEM; 1674 goto done; 1675 } 1676 if (type == PROC_AUX) { 1677 *proc_vectorp = (char **)proc_vector32; 1678 *vsizep = vsize; 1679 return (0); 1680 } 1681 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1682 for (i = 0; i < (int)vsize; i++) 1683 proc_vector[i] = PTRIN(proc_vector32[i]); 1684 *proc_vectorp = proc_vector; 1685 *vsizep = vsize; 1686 done: 1687 free(proc_vector32, M_TEMP); 1688 return (error); 1689 } 1690 #endif 1691 1692 static int 1693 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1694 size_t *vsizep, enum proc_vector_type type) 1695 { 1696 struct ps_strings pss; 1697 Elf_Auxinfo aux; 1698 vm_offset_t vptr, ptr; 1699 char **proc_vector; 1700 size_t vsize, size; 1701 int i; 1702 1703 #ifdef COMPAT_FREEBSD32 1704 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1705 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1706 #endif 1707 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1708 sizeof(pss)) != sizeof(pss)) 1709 return (ENOMEM); 1710 switch (type) { 1711 case PROC_ARG: 1712 vptr = (vm_offset_t)pss.ps_argvstr; 1713 vsize = pss.ps_nargvstr; 1714 if (vsize > ARG_MAX) 1715 return (ENOEXEC); 1716 size = vsize * sizeof(char *); 1717 break; 1718 case PROC_ENV: 1719 vptr = (vm_offset_t)pss.ps_envstr; 1720 vsize = pss.ps_nenvstr; 1721 if (vsize > ARG_MAX) 1722 return (ENOEXEC); 1723 size = vsize * sizeof(char *); 1724 break; 1725 case PROC_AUX: 1726 /* 1727 * The aux array is just above env array on the stack. Check 1728 * that the address is naturally aligned. 1729 */ 1730 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1731 * sizeof(char *); 1732 #if __ELF_WORD_SIZE == 64 1733 if (vptr % sizeof(uint64_t) != 0) 1734 #else 1735 if (vptr % sizeof(uint32_t) != 0) 1736 #endif 1737 return (ENOEXEC); 1738 /* 1739 * We count the array size reading the aux vectors from the 1740 * stack until AT_NULL vector is returned. So (to keep the code 1741 * simple) we read the process stack twice: the first time here 1742 * to find the size and the second time when copying the vectors 1743 * to the allocated proc_vector. 1744 */ 1745 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1746 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1747 sizeof(aux)) 1748 return (ENOMEM); 1749 if (aux.a_type == AT_NULL) 1750 break; 1751 ptr += sizeof(aux); 1752 } 1753 /* 1754 * If the PROC_AUXV_MAX entries are iterated over, and we have 1755 * not reached AT_NULL, it is most likely we are reading wrong 1756 * data: either the process doesn't have auxv array or data has 1757 * been modified. Return the error in this case. 1758 */ 1759 if (aux.a_type != AT_NULL) 1760 return (ENOEXEC); 1761 vsize = i + 1; 1762 size = vsize * sizeof(aux); 1763 break; 1764 default: 1765 KASSERT(0, ("Wrong proc vector type: %d", type)); 1766 return (EINVAL); /* In case we are built without INVARIANTS. */ 1767 } 1768 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1769 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1770 free(proc_vector, M_TEMP); 1771 return (ENOMEM); 1772 } 1773 *proc_vectorp = proc_vector; 1774 *vsizep = vsize; 1775 1776 return (0); 1777 } 1778 1779 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1780 1781 static int 1782 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1783 enum proc_vector_type type) 1784 { 1785 size_t done, len, nchr, vsize; 1786 int error, i; 1787 char **proc_vector, *sptr; 1788 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1789 1790 PROC_ASSERT_HELD(p); 1791 1792 /* 1793 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1794 */ 1795 nchr = 2 * (PATH_MAX + ARG_MAX); 1796 1797 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1798 if (error != 0) 1799 return (error); 1800 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1801 /* 1802 * The program may have scribbled into its argv array, e.g. to 1803 * remove some arguments. If that has happened, break out 1804 * before trying to read from NULL. 1805 */ 1806 if (proc_vector[i] == NULL) 1807 break; 1808 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1809 error = proc_read_string(td, p, sptr, pss_string, 1810 sizeof(pss_string)); 1811 if (error != 0) 1812 goto done; 1813 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1814 if (done + len >= nchr) 1815 len = nchr - done - 1; 1816 sbuf_bcat(sb, pss_string, len); 1817 if (len != GET_PS_STRINGS_CHUNK_SZ) 1818 break; 1819 done += GET_PS_STRINGS_CHUNK_SZ; 1820 } 1821 sbuf_bcat(sb, "", 1); 1822 done += len + 1; 1823 } 1824 done: 1825 free(proc_vector, M_TEMP); 1826 return (error); 1827 } 1828 1829 int 1830 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1831 { 1832 1833 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1834 } 1835 1836 int 1837 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1838 { 1839 1840 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1841 } 1842 1843 int 1844 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1845 { 1846 size_t vsize, size; 1847 char **auxv; 1848 int error; 1849 1850 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1851 if (error == 0) { 1852 #ifdef COMPAT_FREEBSD32 1853 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1854 size = vsize * sizeof(Elf32_Auxinfo); 1855 else 1856 #endif 1857 size = vsize * sizeof(Elf_Auxinfo); 1858 if (sbuf_bcat(sb, auxv, size) != 0) 1859 error = ENOMEM; 1860 free(auxv, M_TEMP); 1861 } 1862 return (error); 1863 } 1864 1865 /* 1866 * This sysctl allows a process to retrieve the argument list or process 1867 * title for another process without groping around in the address space 1868 * of the other process. It also allow a process to set its own "process 1869 * title to a string of its own choice. 1870 */ 1871 static int 1872 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1873 { 1874 int *name = (int *)arg1; 1875 u_int namelen = arg2; 1876 struct pargs *newpa, *pa; 1877 struct proc *p; 1878 struct sbuf sb; 1879 int flags, error = 0, error2; 1880 1881 if (namelen != 1) 1882 return (EINVAL); 1883 1884 flags = PGET_CANSEE; 1885 if (req->newptr != NULL) 1886 flags |= PGET_ISCURRENT; 1887 error = pget((pid_t)name[0], flags, &p); 1888 if (error) 1889 return (error); 1890 1891 pa = p->p_args; 1892 if (pa != NULL) { 1893 pargs_hold(pa); 1894 PROC_UNLOCK(p); 1895 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1896 pargs_drop(pa); 1897 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1898 _PHOLD(p); 1899 PROC_UNLOCK(p); 1900 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1901 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1902 error = proc_getargv(curthread, p, &sb); 1903 error2 = sbuf_finish(&sb); 1904 PRELE(p); 1905 sbuf_delete(&sb); 1906 if (error == 0 && error2 != 0) 1907 error = error2; 1908 } else { 1909 PROC_UNLOCK(p); 1910 } 1911 if (error != 0 || req->newptr == NULL) 1912 return (error); 1913 1914 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1915 return (ENOMEM); 1916 newpa = pargs_alloc(req->newlen); 1917 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1918 if (error != 0) { 1919 pargs_free(newpa); 1920 return (error); 1921 } 1922 PROC_LOCK(p); 1923 pa = p->p_args; 1924 p->p_args = newpa; 1925 PROC_UNLOCK(p); 1926 pargs_drop(pa); 1927 return (0); 1928 } 1929 1930 /* 1931 * This sysctl allows a process to retrieve environment of another process. 1932 */ 1933 static int 1934 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1935 { 1936 int *name = (int *)arg1; 1937 u_int namelen = arg2; 1938 struct proc *p; 1939 struct sbuf sb; 1940 int error, error2; 1941 1942 if (namelen != 1) 1943 return (EINVAL); 1944 1945 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1946 if (error != 0) 1947 return (error); 1948 if ((p->p_flag & P_SYSTEM) != 0) { 1949 PRELE(p); 1950 return (0); 1951 } 1952 1953 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1954 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1955 error = proc_getenvv(curthread, p, &sb); 1956 error2 = sbuf_finish(&sb); 1957 PRELE(p); 1958 sbuf_delete(&sb); 1959 return (error != 0 ? error : error2); 1960 } 1961 1962 /* 1963 * This sysctl allows a process to retrieve ELF auxiliary vector of 1964 * another process. 1965 */ 1966 static int 1967 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1968 { 1969 int *name = (int *)arg1; 1970 u_int namelen = arg2; 1971 struct proc *p; 1972 struct sbuf sb; 1973 int error, error2; 1974 1975 if (namelen != 1) 1976 return (EINVAL); 1977 1978 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1979 if (error != 0) 1980 return (error); 1981 if ((p->p_flag & P_SYSTEM) != 0) { 1982 PRELE(p); 1983 return (0); 1984 } 1985 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1986 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1987 error = proc_getauxv(curthread, p, &sb); 1988 error2 = sbuf_finish(&sb); 1989 PRELE(p); 1990 sbuf_delete(&sb); 1991 return (error != 0 ? error : error2); 1992 } 1993 1994 /* 1995 * This sysctl allows a process to retrieve the path of the executable for 1996 * itself or another process. 1997 */ 1998 static int 1999 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2000 { 2001 pid_t *pidp = (pid_t *)arg1; 2002 unsigned int arglen = arg2; 2003 struct proc *p; 2004 struct vnode *vp; 2005 char *retbuf, *freebuf; 2006 int error; 2007 2008 if (arglen != 1) 2009 return (EINVAL); 2010 if (*pidp == -1) { /* -1 means this process */ 2011 p = req->td->td_proc; 2012 } else { 2013 error = pget(*pidp, PGET_CANSEE, &p); 2014 if (error != 0) 2015 return (error); 2016 } 2017 2018 vp = p->p_textvp; 2019 if (vp == NULL) { 2020 if (*pidp != -1) 2021 PROC_UNLOCK(p); 2022 return (0); 2023 } 2024 vref(vp); 2025 if (*pidp != -1) 2026 PROC_UNLOCK(p); 2027 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2028 vrele(vp); 2029 if (error) 2030 return (error); 2031 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2032 free(freebuf, M_TEMP); 2033 return (error); 2034 } 2035 2036 static int 2037 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2038 { 2039 struct proc *p; 2040 char *sv_name; 2041 int *name; 2042 int namelen; 2043 int error; 2044 2045 namelen = arg2; 2046 if (namelen != 1) 2047 return (EINVAL); 2048 2049 name = (int *)arg1; 2050 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2051 if (error != 0) 2052 return (error); 2053 sv_name = p->p_sysent->sv_name; 2054 PROC_UNLOCK(p); 2055 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2056 } 2057 2058 #ifdef KINFO_OVMENTRY_SIZE 2059 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2060 #endif 2061 2062 #ifdef COMPAT_FREEBSD7 2063 static int 2064 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2065 { 2066 vm_map_entry_t entry, tmp_entry; 2067 unsigned int last_timestamp; 2068 char *fullpath, *freepath; 2069 struct kinfo_ovmentry *kve; 2070 struct vattr va; 2071 struct ucred *cred; 2072 int error, *name; 2073 struct vnode *vp; 2074 struct proc *p; 2075 vm_map_t map; 2076 struct vmspace *vm; 2077 2078 name = (int *)arg1; 2079 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2080 if (error != 0) 2081 return (error); 2082 vm = vmspace_acquire_ref(p); 2083 if (vm == NULL) { 2084 PRELE(p); 2085 return (ESRCH); 2086 } 2087 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2088 2089 map = &vm->vm_map; 2090 vm_map_lock_read(map); 2091 for (entry = map->header.next; entry != &map->header; 2092 entry = entry->next) { 2093 vm_object_t obj, tobj, lobj; 2094 vm_offset_t addr; 2095 2096 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2097 continue; 2098 2099 bzero(kve, sizeof(*kve)); 2100 kve->kve_structsize = sizeof(*kve); 2101 2102 kve->kve_private_resident = 0; 2103 obj = entry->object.vm_object; 2104 if (obj != NULL) { 2105 VM_OBJECT_RLOCK(obj); 2106 if (obj->shadow_count == 1) 2107 kve->kve_private_resident = 2108 obj->resident_page_count; 2109 } 2110 kve->kve_resident = 0; 2111 addr = entry->start; 2112 while (addr < entry->end) { 2113 if (pmap_extract(map->pmap, addr)) 2114 kve->kve_resident++; 2115 addr += PAGE_SIZE; 2116 } 2117 2118 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2119 if (tobj != obj) 2120 VM_OBJECT_RLOCK(tobj); 2121 if (lobj != obj) 2122 VM_OBJECT_RUNLOCK(lobj); 2123 lobj = tobj; 2124 } 2125 2126 kve->kve_start = (void*)entry->start; 2127 kve->kve_end = (void*)entry->end; 2128 kve->kve_offset = (off_t)entry->offset; 2129 2130 if (entry->protection & VM_PROT_READ) 2131 kve->kve_protection |= KVME_PROT_READ; 2132 if (entry->protection & VM_PROT_WRITE) 2133 kve->kve_protection |= KVME_PROT_WRITE; 2134 if (entry->protection & VM_PROT_EXECUTE) 2135 kve->kve_protection |= KVME_PROT_EXEC; 2136 2137 if (entry->eflags & MAP_ENTRY_COW) 2138 kve->kve_flags |= KVME_FLAG_COW; 2139 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2140 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2141 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2142 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2143 2144 last_timestamp = map->timestamp; 2145 vm_map_unlock_read(map); 2146 2147 kve->kve_fileid = 0; 2148 kve->kve_fsid = 0; 2149 freepath = NULL; 2150 fullpath = ""; 2151 if (lobj) { 2152 vp = NULL; 2153 switch (lobj->type) { 2154 case OBJT_DEFAULT: 2155 kve->kve_type = KVME_TYPE_DEFAULT; 2156 break; 2157 case OBJT_VNODE: 2158 kve->kve_type = KVME_TYPE_VNODE; 2159 vp = lobj->handle; 2160 vref(vp); 2161 break; 2162 case OBJT_SWAP: 2163 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2164 kve->kve_type = KVME_TYPE_VNODE; 2165 if ((lobj->flags & OBJ_TMPFS) != 0) { 2166 vp = lobj->un_pager.swp.swp_tmpfs; 2167 vref(vp); 2168 } 2169 } else { 2170 kve->kve_type = KVME_TYPE_SWAP; 2171 } 2172 break; 2173 case OBJT_DEVICE: 2174 kve->kve_type = KVME_TYPE_DEVICE; 2175 break; 2176 case OBJT_PHYS: 2177 kve->kve_type = KVME_TYPE_PHYS; 2178 break; 2179 case OBJT_DEAD: 2180 kve->kve_type = KVME_TYPE_DEAD; 2181 break; 2182 case OBJT_SG: 2183 kve->kve_type = KVME_TYPE_SG; 2184 break; 2185 default: 2186 kve->kve_type = KVME_TYPE_UNKNOWN; 2187 break; 2188 } 2189 if (lobj != obj) 2190 VM_OBJECT_RUNLOCK(lobj); 2191 2192 kve->kve_ref_count = obj->ref_count; 2193 kve->kve_shadow_count = obj->shadow_count; 2194 VM_OBJECT_RUNLOCK(obj); 2195 if (vp != NULL) { 2196 vn_fullpath(curthread, vp, &fullpath, 2197 &freepath); 2198 cred = curthread->td_ucred; 2199 vn_lock(vp, LK_SHARED | LK_RETRY); 2200 if (VOP_GETATTR(vp, &va, cred) == 0) { 2201 kve->kve_fileid = va.va_fileid; 2202 kve->kve_fsid = va.va_fsid; 2203 } 2204 vput(vp); 2205 } 2206 } else { 2207 kve->kve_type = KVME_TYPE_NONE; 2208 kve->kve_ref_count = 0; 2209 kve->kve_shadow_count = 0; 2210 } 2211 2212 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2213 if (freepath != NULL) 2214 free(freepath, M_TEMP); 2215 2216 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2217 vm_map_lock_read(map); 2218 if (error) 2219 break; 2220 if (last_timestamp != map->timestamp) { 2221 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2222 entry = tmp_entry; 2223 } 2224 } 2225 vm_map_unlock_read(map); 2226 vmspace_free(vm); 2227 PRELE(p); 2228 free(kve, M_TEMP); 2229 return (error); 2230 } 2231 #endif /* COMPAT_FREEBSD7 */ 2232 2233 #ifdef KINFO_VMENTRY_SIZE 2234 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2235 #endif 2236 2237 static void 2238 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2239 struct kinfo_vmentry *kve) 2240 { 2241 vm_object_t obj, tobj; 2242 vm_page_t m, m_adv; 2243 vm_offset_t addr; 2244 vm_paddr_t locked_pa; 2245 vm_pindex_t pi, pi_adv, pindex; 2246 2247 locked_pa = 0; 2248 obj = entry->object.vm_object; 2249 addr = entry->start; 2250 m_adv = NULL; 2251 pi = OFF_TO_IDX(entry->offset); 2252 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2253 if (m_adv != NULL) { 2254 m = m_adv; 2255 } else { 2256 pi_adv = OFF_TO_IDX(entry->end - addr); 2257 pindex = pi; 2258 for (tobj = obj;; tobj = tobj->backing_object) { 2259 m = vm_page_find_least(tobj, pindex); 2260 if (m != NULL) { 2261 if (m->pindex == pindex) 2262 break; 2263 if (pi_adv > m->pindex - pindex) { 2264 pi_adv = m->pindex - pindex; 2265 m_adv = m; 2266 } 2267 } 2268 if (tobj->backing_object == NULL) 2269 goto next; 2270 pindex += OFF_TO_IDX(tobj-> 2271 backing_object_offset); 2272 } 2273 } 2274 m_adv = NULL; 2275 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2276 (addr & (pagesizes[1] - 1)) == 0 && 2277 (pmap_mincore(map->pmap, addr, &locked_pa) & 2278 MINCORE_SUPER) != 0) { 2279 kve->kve_flags |= KVME_FLAG_SUPER; 2280 pi_adv = OFF_TO_IDX(pagesizes[1]); 2281 } else { 2282 /* 2283 * We do not test the found page on validity. 2284 * Either the page is busy and being paged in, 2285 * or it was invalidated. The first case 2286 * should be counted as resident, the second 2287 * is not so clear; we do account both. 2288 */ 2289 pi_adv = 1; 2290 } 2291 kve->kve_resident += pi_adv; 2292 next:; 2293 } 2294 PA_UNLOCK_COND(locked_pa); 2295 } 2296 2297 /* 2298 * Must be called with the process locked and will return unlocked. 2299 */ 2300 int 2301 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2302 { 2303 vm_map_entry_t entry, tmp_entry; 2304 struct vattr va; 2305 vm_map_t map; 2306 vm_object_t obj, tobj, lobj; 2307 char *fullpath, *freepath; 2308 struct kinfo_vmentry *kve; 2309 struct ucred *cred; 2310 struct vnode *vp; 2311 struct vmspace *vm; 2312 vm_offset_t addr; 2313 unsigned int last_timestamp; 2314 int error; 2315 2316 PROC_LOCK_ASSERT(p, MA_OWNED); 2317 2318 _PHOLD(p); 2319 PROC_UNLOCK(p); 2320 vm = vmspace_acquire_ref(p); 2321 if (vm == NULL) { 2322 PRELE(p); 2323 return (ESRCH); 2324 } 2325 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2326 2327 error = 0; 2328 map = &vm->vm_map; 2329 vm_map_lock_read(map); 2330 for (entry = map->header.next; entry != &map->header; 2331 entry = entry->next) { 2332 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2333 continue; 2334 2335 addr = entry->end; 2336 bzero(kve, sizeof(*kve)); 2337 obj = entry->object.vm_object; 2338 if (obj != NULL) { 2339 for (tobj = obj; tobj != NULL; 2340 tobj = tobj->backing_object) { 2341 VM_OBJECT_RLOCK(tobj); 2342 lobj = tobj; 2343 } 2344 if (obj->backing_object == NULL) 2345 kve->kve_private_resident = 2346 obj->resident_page_count; 2347 if (!vmmap_skip_res_cnt) 2348 kern_proc_vmmap_resident(map, entry, kve); 2349 for (tobj = obj; tobj != NULL; 2350 tobj = tobj->backing_object) { 2351 if (tobj != obj && tobj != lobj) 2352 VM_OBJECT_RUNLOCK(tobj); 2353 } 2354 } else { 2355 lobj = NULL; 2356 } 2357 2358 kve->kve_start = entry->start; 2359 kve->kve_end = entry->end; 2360 kve->kve_offset = entry->offset; 2361 2362 if (entry->protection & VM_PROT_READ) 2363 kve->kve_protection |= KVME_PROT_READ; 2364 if (entry->protection & VM_PROT_WRITE) 2365 kve->kve_protection |= KVME_PROT_WRITE; 2366 if (entry->protection & VM_PROT_EXECUTE) 2367 kve->kve_protection |= KVME_PROT_EXEC; 2368 2369 if (entry->eflags & MAP_ENTRY_COW) 2370 kve->kve_flags |= KVME_FLAG_COW; 2371 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2372 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2373 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2374 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2375 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2376 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2377 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2378 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2379 2380 last_timestamp = map->timestamp; 2381 vm_map_unlock_read(map); 2382 2383 freepath = NULL; 2384 fullpath = ""; 2385 if (lobj != NULL) { 2386 vp = NULL; 2387 switch (lobj->type) { 2388 case OBJT_DEFAULT: 2389 kve->kve_type = KVME_TYPE_DEFAULT; 2390 break; 2391 case OBJT_VNODE: 2392 kve->kve_type = KVME_TYPE_VNODE; 2393 vp = lobj->handle; 2394 vref(vp); 2395 break; 2396 case OBJT_SWAP: 2397 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2398 kve->kve_type = KVME_TYPE_VNODE; 2399 if ((lobj->flags & OBJ_TMPFS) != 0) { 2400 vp = lobj->un_pager.swp.swp_tmpfs; 2401 vref(vp); 2402 } 2403 } else { 2404 kve->kve_type = KVME_TYPE_SWAP; 2405 } 2406 break; 2407 case OBJT_DEVICE: 2408 kve->kve_type = KVME_TYPE_DEVICE; 2409 break; 2410 case OBJT_PHYS: 2411 kve->kve_type = KVME_TYPE_PHYS; 2412 break; 2413 case OBJT_DEAD: 2414 kve->kve_type = KVME_TYPE_DEAD; 2415 break; 2416 case OBJT_SG: 2417 kve->kve_type = KVME_TYPE_SG; 2418 break; 2419 case OBJT_MGTDEVICE: 2420 kve->kve_type = KVME_TYPE_MGTDEVICE; 2421 break; 2422 default: 2423 kve->kve_type = KVME_TYPE_UNKNOWN; 2424 break; 2425 } 2426 if (lobj != obj) 2427 VM_OBJECT_RUNLOCK(lobj); 2428 2429 kve->kve_ref_count = obj->ref_count; 2430 kve->kve_shadow_count = obj->shadow_count; 2431 VM_OBJECT_RUNLOCK(obj); 2432 if (vp != NULL) { 2433 vn_fullpath(curthread, vp, &fullpath, 2434 &freepath); 2435 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2436 cred = curthread->td_ucred; 2437 vn_lock(vp, LK_SHARED | LK_RETRY); 2438 if (VOP_GETATTR(vp, &va, cred) == 0) { 2439 kve->kve_vn_fileid = va.va_fileid; 2440 kve->kve_vn_fsid = va.va_fsid; 2441 kve->kve_vn_mode = 2442 MAKEIMODE(va.va_type, va.va_mode); 2443 kve->kve_vn_size = va.va_size; 2444 kve->kve_vn_rdev = va.va_rdev; 2445 kve->kve_status = KF_ATTR_VALID; 2446 } 2447 vput(vp); 2448 } 2449 } else { 2450 kve->kve_type = KVME_TYPE_NONE; 2451 kve->kve_ref_count = 0; 2452 kve->kve_shadow_count = 0; 2453 } 2454 2455 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2456 if (freepath != NULL) 2457 free(freepath, M_TEMP); 2458 2459 /* Pack record size down */ 2460 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2461 kve->kve_structsize = 2462 offsetof(struct kinfo_vmentry, kve_path) + 2463 strlen(kve->kve_path) + 1; 2464 else 2465 kve->kve_structsize = sizeof(*kve); 2466 kve->kve_structsize = roundup(kve->kve_structsize, 2467 sizeof(uint64_t)); 2468 2469 /* Halt filling and truncate rather than exceeding maxlen */ 2470 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2471 error = 0; 2472 vm_map_lock_read(map); 2473 break; 2474 } else if (maxlen != -1) 2475 maxlen -= kve->kve_structsize; 2476 2477 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2478 error = ENOMEM; 2479 vm_map_lock_read(map); 2480 if (error != 0) 2481 break; 2482 if (last_timestamp != map->timestamp) { 2483 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2484 entry = tmp_entry; 2485 } 2486 } 2487 vm_map_unlock_read(map); 2488 vmspace_free(vm); 2489 PRELE(p); 2490 free(kve, M_TEMP); 2491 return (error); 2492 } 2493 2494 static int 2495 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2496 { 2497 struct proc *p; 2498 struct sbuf sb; 2499 int error, error2, *name; 2500 2501 name = (int *)arg1; 2502 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2503 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2504 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2505 if (error != 0) { 2506 sbuf_delete(&sb); 2507 return (error); 2508 } 2509 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2510 error2 = sbuf_finish(&sb); 2511 sbuf_delete(&sb); 2512 return (error != 0 ? error : error2); 2513 } 2514 2515 #if defined(STACK) || defined(DDB) 2516 static int 2517 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2518 { 2519 struct kinfo_kstack *kkstp; 2520 int error, i, *name, numthreads; 2521 lwpid_t *lwpidarray; 2522 struct thread *td; 2523 struct stack *st; 2524 struct sbuf sb; 2525 struct proc *p; 2526 2527 name = (int *)arg1; 2528 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2529 if (error != 0) 2530 return (error); 2531 2532 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2533 st = stack_create(); 2534 2535 lwpidarray = NULL; 2536 PROC_LOCK(p); 2537 do { 2538 if (lwpidarray != NULL) { 2539 free(lwpidarray, M_TEMP); 2540 lwpidarray = NULL; 2541 } 2542 numthreads = p->p_numthreads; 2543 PROC_UNLOCK(p); 2544 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2545 M_WAITOK | M_ZERO); 2546 PROC_LOCK(p); 2547 } while (numthreads < p->p_numthreads); 2548 2549 /* 2550 * XXXRW: During the below loop, execve(2) and countless other sorts 2551 * of changes could have taken place. Should we check to see if the 2552 * vmspace has been replaced, or the like, in order to prevent 2553 * giving a snapshot that spans, say, execve(2), with some threads 2554 * before and some after? Among other things, the credentials could 2555 * have changed, in which case the right to extract debug info might 2556 * no longer be assured. 2557 */ 2558 i = 0; 2559 FOREACH_THREAD_IN_PROC(p, td) { 2560 KASSERT(i < numthreads, 2561 ("sysctl_kern_proc_kstack: numthreads")); 2562 lwpidarray[i] = td->td_tid; 2563 i++; 2564 } 2565 numthreads = i; 2566 for (i = 0; i < numthreads; i++) { 2567 td = thread_find(p, lwpidarray[i]); 2568 if (td == NULL) { 2569 continue; 2570 } 2571 bzero(kkstp, sizeof(*kkstp)); 2572 (void)sbuf_new(&sb, kkstp->kkst_trace, 2573 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2574 thread_lock(td); 2575 kkstp->kkst_tid = td->td_tid; 2576 if (TD_IS_SWAPPED(td)) { 2577 kkstp->kkst_state = KKST_STATE_SWAPPED; 2578 } else if (TD_IS_RUNNING(td)) { 2579 if (stack_save_td_running(st, td) == 0) 2580 kkstp->kkst_state = KKST_STATE_STACKOK; 2581 else 2582 kkstp->kkst_state = KKST_STATE_RUNNING; 2583 } else { 2584 kkstp->kkst_state = KKST_STATE_STACKOK; 2585 stack_save_td(st, td); 2586 } 2587 thread_unlock(td); 2588 PROC_UNLOCK(p); 2589 stack_sbuf_print(&sb, st); 2590 sbuf_finish(&sb); 2591 sbuf_delete(&sb); 2592 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2593 PROC_LOCK(p); 2594 if (error) 2595 break; 2596 } 2597 _PRELE(p); 2598 PROC_UNLOCK(p); 2599 if (lwpidarray != NULL) 2600 free(lwpidarray, M_TEMP); 2601 stack_destroy(st); 2602 free(kkstp, M_TEMP); 2603 return (error); 2604 } 2605 #endif 2606 2607 /* 2608 * This sysctl allows a process to retrieve the full list of groups from 2609 * itself or another process. 2610 */ 2611 static int 2612 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2613 { 2614 pid_t *pidp = (pid_t *)arg1; 2615 unsigned int arglen = arg2; 2616 struct proc *p; 2617 struct ucred *cred; 2618 int error; 2619 2620 if (arglen != 1) 2621 return (EINVAL); 2622 if (*pidp == -1) { /* -1 means this process */ 2623 p = req->td->td_proc; 2624 PROC_LOCK(p); 2625 } else { 2626 error = pget(*pidp, PGET_CANSEE, &p); 2627 if (error != 0) 2628 return (error); 2629 } 2630 2631 cred = crhold(p->p_ucred); 2632 PROC_UNLOCK(p); 2633 2634 error = SYSCTL_OUT(req, cred->cr_groups, 2635 cred->cr_ngroups * sizeof(gid_t)); 2636 crfree(cred); 2637 return (error); 2638 } 2639 2640 /* 2641 * This sysctl allows a process to retrieve or/and set the resource limit for 2642 * another process. 2643 */ 2644 static int 2645 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2646 { 2647 int *name = (int *)arg1; 2648 u_int namelen = arg2; 2649 struct rlimit rlim; 2650 struct proc *p; 2651 u_int which; 2652 int flags, error; 2653 2654 if (namelen != 2) 2655 return (EINVAL); 2656 2657 which = (u_int)name[1]; 2658 if (which >= RLIM_NLIMITS) 2659 return (EINVAL); 2660 2661 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2662 return (EINVAL); 2663 2664 flags = PGET_HOLD | PGET_NOTWEXIT; 2665 if (req->newptr != NULL) 2666 flags |= PGET_CANDEBUG; 2667 else 2668 flags |= PGET_CANSEE; 2669 error = pget((pid_t)name[0], flags, &p); 2670 if (error != 0) 2671 return (error); 2672 2673 /* 2674 * Retrieve limit. 2675 */ 2676 if (req->oldptr != NULL) { 2677 PROC_LOCK(p); 2678 lim_rlimit_proc(p, which, &rlim); 2679 PROC_UNLOCK(p); 2680 } 2681 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2682 if (error != 0) 2683 goto errout; 2684 2685 /* 2686 * Set limit. 2687 */ 2688 if (req->newptr != NULL) { 2689 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2690 if (error == 0) 2691 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2692 } 2693 2694 errout: 2695 PRELE(p); 2696 return (error); 2697 } 2698 2699 /* 2700 * This sysctl allows a process to retrieve ps_strings structure location of 2701 * another process. 2702 */ 2703 static int 2704 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2705 { 2706 int *name = (int *)arg1; 2707 u_int namelen = arg2; 2708 struct proc *p; 2709 vm_offset_t ps_strings; 2710 int error; 2711 #ifdef COMPAT_FREEBSD32 2712 uint32_t ps_strings32; 2713 #endif 2714 2715 if (namelen != 1) 2716 return (EINVAL); 2717 2718 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2719 if (error != 0) 2720 return (error); 2721 #ifdef COMPAT_FREEBSD32 2722 if ((req->flags & SCTL_MASK32) != 0) { 2723 /* 2724 * We return 0 if the 32 bit emulation request is for a 64 bit 2725 * process. 2726 */ 2727 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2728 PTROUT(p->p_sysent->sv_psstrings) : 0; 2729 PROC_UNLOCK(p); 2730 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2731 return (error); 2732 } 2733 #endif 2734 ps_strings = p->p_sysent->sv_psstrings; 2735 PROC_UNLOCK(p); 2736 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2737 return (error); 2738 } 2739 2740 /* 2741 * This sysctl allows a process to retrieve umask of another process. 2742 */ 2743 static int 2744 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2745 { 2746 int *name = (int *)arg1; 2747 u_int namelen = arg2; 2748 struct proc *p; 2749 int error; 2750 u_short fd_cmask; 2751 2752 if (namelen != 1) 2753 return (EINVAL); 2754 2755 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2756 if (error != 0) 2757 return (error); 2758 2759 FILEDESC_SLOCK(p->p_fd); 2760 fd_cmask = p->p_fd->fd_cmask; 2761 FILEDESC_SUNLOCK(p->p_fd); 2762 PRELE(p); 2763 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2764 return (error); 2765 } 2766 2767 /* 2768 * This sysctl allows a process to set and retrieve binary osreldate of 2769 * another process. 2770 */ 2771 static int 2772 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2773 { 2774 int *name = (int *)arg1; 2775 u_int namelen = arg2; 2776 struct proc *p; 2777 int flags, error, osrel; 2778 2779 if (namelen != 1) 2780 return (EINVAL); 2781 2782 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2783 return (EINVAL); 2784 2785 flags = PGET_HOLD | PGET_NOTWEXIT; 2786 if (req->newptr != NULL) 2787 flags |= PGET_CANDEBUG; 2788 else 2789 flags |= PGET_CANSEE; 2790 error = pget((pid_t)name[0], flags, &p); 2791 if (error != 0) 2792 return (error); 2793 2794 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2795 if (error != 0) 2796 goto errout; 2797 2798 if (req->newptr != NULL) { 2799 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2800 if (error != 0) 2801 goto errout; 2802 if (osrel < 0) { 2803 error = EINVAL; 2804 goto errout; 2805 } 2806 p->p_osrel = osrel; 2807 } 2808 errout: 2809 PRELE(p); 2810 return (error); 2811 } 2812 2813 static int 2814 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2815 { 2816 int *name = (int *)arg1; 2817 u_int namelen = arg2; 2818 struct proc *p; 2819 struct kinfo_sigtramp kst; 2820 const struct sysentvec *sv; 2821 int error; 2822 #ifdef COMPAT_FREEBSD32 2823 struct kinfo_sigtramp32 kst32; 2824 #endif 2825 2826 if (namelen != 1) 2827 return (EINVAL); 2828 2829 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2830 if (error != 0) 2831 return (error); 2832 sv = p->p_sysent; 2833 #ifdef COMPAT_FREEBSD32 2834 if ((req->flags & SCTL_MASK32) != 0) { 2835 bzero(&kst32, sizeof(kst32)); 2836 if (SV_PROC_FLAG(p, SV_ILP32)) { 2837 if (sv->sv_sigcode_base != 0) { 2838 kst32.ksigtramp_start = sv->sv_sigcode_base; 2839 kst32.ksigtramp_end = sv->sv_sigcode_base + 2840 *sv->sv_szsigcode; 2841 } else { 2842 kst32.ksigtramp_start = sv->sv_psstrings - 2843 *sv->sv_szsigcode; 2844 kst32.ksigtramp_end = sv->sv_psstrings; 2845 } 2846 } 2847 PROC_UNLOCK(p); 2848 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2849 return (error); 2850 } 2851 #endif 2852 bzero(&kst, sizeof(kst)); 2853 if (sv->sv_sigcode_base != 0) { 2854 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2855 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2856 *sv->sv_szsigcode; 2857 } else { 2858 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2859 *sv->sv_szsigcode; 2860 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2861 } 2862 PROC_UNLOCK(p); 2863 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2864 return (error); 2865 } 2866 2867 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2868 2869 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2870 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2871 "Return entire process table"); 2872 2873 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2874 sysctl_kern_proc, "Process table"); 2875 2876 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2877 sysctl_kern_proc, "Process table"); 2878 2879 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2880 sysctl_kern_proc, "Process table"); 2881 2882 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2883 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2884 2885 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2886 sysctl_kern_proc, "Process table"); 2887 2888 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2889 sysctl_kern_proc, "Process table"); 2890 2891 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2892 sysctl_kern_proc, "Process table"); 2893 2894 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2895 sysctl_kern_proc, "Process table"); 2896 2897 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2898 sysctl_kern_proc, "Return process table, no threads"); 2899 2900 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2901 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2902 sysctl_kern_proc_args, "Process argument list"); 2903 2904 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2905 sysctl_kern_proc_env, "Process environment"); 2906 2907 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2908 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2909 2910 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2911 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2912 2913 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2914 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2915 "Process syscall vector name (ABI type)"); 2916 2917 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2918 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2919 2920 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2921 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2922 2923 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2924 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2925 2926 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2927 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2928 2929 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2930 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2931 2932 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2933 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2934 2935 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2936 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2937 2938 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2939 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2940 2941 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2942 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2943 "Return process table, no threads"); 2944 2945 #ifdef COMPAT_FREEBSD7 2946 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2947 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2948 #endif 2949 2950 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2951 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2952 2953 #if defined(STACK) || defined(DDB) 2954 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2955 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2956 #endif 2957 2958 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2959 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2960 2961 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2962 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2963 "Process resource limits"); 2964 2965 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2966 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2967 "Process ps_strings location"); 2968 2969 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2970 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2971 2972 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2973 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2974 "Process binary osreldate"); 2975 2976 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2977 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2978 "Process signal trampoline location"); 2979 2980 int allproc_gen; 2981 2982 /* 2983 * stop_all_proc() purpose is to stop all process which have usermode, 2984 * except current process for obvious reasons. This makes it somewhat 2985 * unreliable when invoked from multithreaded process. The service 2986 * must not be user-callable anyway. 2987 */ 2988 void 2989 stop_all_proc(void) 2990 { 2991 struct proc *cp, *p; 2992 int r, gen; 2993 bool restart, seen_stopped, seen_exiting, stopped_some; 2994 2995 cp = curproc; 2996 allproc_loop: 2997 sx_xlock(&allproc_lock); 2998 gen = allproc_gen; 2999 seen_exiting = seen_stopped = stopped_some = restart = false; 3000 LIST_REMOVE(cp, p_list); 3001 LIST_INSERT_HEAD(&allproc, cp, p_list); 3002 for (;;) { 3003 p = LIST_NEXT(cp, p_list); 3004 if (p == NULL) 3005 break; 3006 LIST_REMOVE(cp, p_list); 3007 LIST_INSERT_AFTER(p, cp, p_list); 3008 PROC_LOCK(p); 3009 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3010 PROC_UNLOCK(p); 3011 continue; 3012 } 3013 if ((p->p_flag & P_WEXIT) != 0) { 3014 seen_exiting = true; 3015 PROC_UNLOCK(p); 3016 continue; 3017 } 3018 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3019 /* 3020 * Stopped processes are tolerated when there 3021 * are no other processes which might continue 3022 * them. P_STOPPED_SINGLE but not 3023 * P_TOTAL_STOP process still has at least one 3024 * thread running. 3025 */ 3026 seen_stopped = true; 3027 PROC_UNLOCK(p); 3028 continue; 3029 } 3030 _PHOLD(p); 3031 sx_xunlock(&allproc_lock); 3032 r = thread_single(p, SINGLE_ALLPROC); 3033 if (r != 0) 3034 restart = true; 3035 else 3036 stopped_some = true; 3037 _PRELE(p); 3038 PROC_UNLOCK(p); 3039 sx_xlock(&allproc_lock); 3040 } 3041 /* Catch forked children we did not see in iteration. */ 3042 if (gen != allproc_gen) 3043 restart = true; 3044 sx_xunlock(&allproc_lock); 3045 if (restart || stopped_some || seen_exiting || seen_stopped) { 3046 kern_yield(PRI_USER); 3047 goto allproc_loop; 3048 } 3049 } 3050 3051 void 3052 resume_all_proc(void) 3053 { 3054 struct proc *cp, *p; 3055 3056 cp = curproc; 3057 sx_xlock(&allproc_lock); 3058 LIST_REMOVE(cp, p_list); 3059 LIST_INSERT_HEAD(&allproc, cp, p_list); 3060 for (;;) { 3061 p = LIST_NEXT(cp, p_list); 3062 if (p == NULL) 3063 break; 3064 LIST_REMOVE(cp, p_list); 3065 LIST_INSERT_AFTER(p, cp, p_list); 3066 PROC_LOCK(p); 3067 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3068 sx_xunlock(&allproc_lock); 3069 _PHOLD(p); 3070 thread_single_end(p, SINGLE_ALLPROC); 3071 _PRELE(p); 3072 PROC_UNLOCK(p); 3073 sx_xlock(&allproc_lock); 3074 } else { 3075 PROC_UNLOCK(p); 3076 } 3077 } 3078 sx_xunlock(&allproc_lock); 3079 } 3080 3081 /* #define TOTAL_STOP_DEBUG 1 */ 3082 #ifdef TOTAL_STOP_DEBUG 3083 volatile static int ap_resume; 3084 #include <sys/mount.h> 3085 3086 static int 3087 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3088 { 3089 int error, val; 3090 3091 val = 0; 3092 ap_resume = 0; 3093 error = sysctl_handle_int(oidp, &val, 0, req); 3094 if (error != 0 || req->newptr == NULL) 3095 return (error); 3096 if (val != 0) { 3097 stop_all_proc(); 3098 syncer_suspend(); 3099 while (ap_resume == 0) 3100 ; 3101 syncer_resume(); 3102 resume_all_proc(); 3103 } 3104 return (0); 3105 } 3106 3107 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3108 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3109 sysctl_debug_stop_all_proc, "I", 3110 ""); 3111 #endif 3112