1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_extern.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/uma.h> 86 87 #ifdef COMPAT_FREEBSD32 88 #include <compat/freebsd32/freebsd32.h> 89 #include <compat/freebsd32/freebsd32_util.h> 90 #endif 91 92 SDT_PROVIDER_DEFINE(proc); 93 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 98 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 99 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 100 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 102 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 103 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 104 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 108 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 109 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 110 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 111 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 112 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 113 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 114 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 115 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 116 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 117 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 118 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 119 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 120 121 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 122 MALLOC_DEFINE(M_SESSION, "session", "session header"); 123 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 124 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 125 126 static void doenterpgrp(struct proc *, struct pgrp *); 127 static void orphanpg(struct pgrp *pg); 128 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 129 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 130 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 131 int preferthread); 132 static void pgadjustjobc(struct pgrp *pgrp, int entering); 133 static void pgdelete(struct pgrp *); 134 static int proc_ctor(void *mem, int size, void *arg, int flags); 135 static void proc_dtor(void *mem, int size, void *arg); 136 static int proc_init(void *mem, int size, int flags); 137 static void proc_fini(void *mem, int size); 138 static void pargs_free(struct pargs *pa); 139 140 /* 141 * Other process lists 142 */ 143 struct pidhashhead *pidhashtbl; 144 u_long pidhash; 145 struct pgrphashhead *pgrphashtbl; 146 u_long pgrphash; 147 struct proclist allproc; 148 struct proclist zombproc; 149 struct sx allproc_lock; 150 struct sx proctree_lock; 151 struct mtx ppeers_lock; 152 uma_zone_t proc_zone; 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 158 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 159 #ifdef COMPAT_FREEBSD32 160 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 161 #endif 162 163 /* 164 * Initialize global process hashing structures. 165 */ 166 void 167 procinit() 168 { 169 170 sx_init(&allproc_lock, "allproc"); 171 sx_init(&proctree_lock, "proctree"); 172 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 173 LIST_INIT(&allproc); 174 LIST_INIT(&zombproc); 175 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 176 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 177 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 178 proc_ctor, proc_dtor, proc_init, proc_fini, 179 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 180 uihashinit(); 181 } 182 183 /* 184 * Prepare a proc for use. 185 */ 186 static int 187 proc_ctor(void *mem, int size, void *arg, int flags) 188 { 189 struct proc *p; 190 191 p = (struct proc *)mem; 192 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 193 EVENTHANDLER_INVOKE(process_ctor, p); 194 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 195 return (0); 196 } 197 198 /* 199 * Reclaim a proc after use. 200 */ 201 static void 202 proc_dtor(void *mem, int size, void *arg) 203 { 204 struct proc *p; 205 struct thread *td; 206 207 /* INVARIANTS checks go here */ 208 p = (struct proc *)mem; 209 td = FIRST_THREAD_IN_PROC(p); 210 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 211 if (td != NULL) { 212 #ifdef INVARIANTS 213 KASSERT((p->p_numthreads == 1), 214 ("bad number of threads in exiting process")); 215 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 216 #endif 217 /* Free all OSD associated to this thread. */ 218 osd_thread_exit(td); 219 } 220 EVENTHANDLER_INVOKE(process_dtor, p); 221 if (p->p_ksi != NULL) 222 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 223 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 224 } 225 226 /* 227 * Initialize type-stable parts of a proc (when newly created). 228 */ 229 static int 230 proc_init(void *mem, int size, int flags) 231 { 232 struct proc *p; 233 234 p = (struct proc *)mem; 235 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 236 p->p_sched = (struct p_sched *)&p[1]; 237 bzero(&p->p_mtx, sizeof(struct mtx)); 238 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 239 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 240 cv_init(&p->p_pwait, "ppwait"); 241 cv_init(&p->p_dbgwait, "dbgwait"); 242 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 243 EVENTHANDLER_INVOKE(process_init, p); 244 p->p_stats = pstats_alloc(); 245 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 246 return (0); 247 } 248 249 /* 250 * UMA should ensure that this function is never called. 251 * Freeing a proc structure would violate type stability. 252 */ 253 static void 254 proc_fini(void *mem, int size) 255 { 256 #ifdef notnow 257 struct proc *p; 258 259 p = (struct proc *)mem; 260 EVENTHANDLER_INVOKE(process_fini, p); 261 pstats_free(p->p_stats); 262 thread_free(FIRST_THREAD_IN_PROC(p)); 263 mtx_destroy(&p->p_mtx); 264 if (p->p_ksi != NULL) 265 ksiginfo_free(p->p_ksi); 266 #else 267 panic("proc reclaimed"); 268 #endif 269 } 270 271 /* 272 * Is p an inferior of the current process? 273 */ 274 int 275 inferior(p) 276 register struct proc *p; 277 { 278 279 sx_assert(&proctree_lock, SX_LOCKED); 280 for (; p != curproc; p = p->p_pptr) 281 if (p->p_pid == 0) 282 return (0); 283 return (1); 284 } 285 286 /* 287 * Locate a process by number; return only "live" processes -- i.e., neither 288 * zombies nor newly born but incompletely initialized processes. By not 289 * returning processes in the PRS_NEW state, we allow callers to avoid 290 * testing for that condition to avoid dereferencing p_ucred, et al. 291 */ 292 struct proc * 293 pfind(pid) 294 register pid_t pid; 295 { 296 register struct proc *p; 297 298 sx_slock(&allproc_lock); 299 LIST_FOREACH(p, PIDHASH(pid), p_hash) 300 if (p->p_pid == pid) { 301 PROC_LOCK(p); 302 if (p->p_state == PRS_NEW) { 303 PROC_UNLOCK(p); 304 p = NULL; 305 } 306 break; 307 } 308 sx_sunlock(&allproc_lock); 309 return (p); 310 } 311 312 /* 313 * Locate a process group by number. 314 * The caller must hold proctree_lock. 315 */ 316 struct pgrp * 317 pgfind(pgid) 318 register pid_t pgid; 319 { 320 register struct pgrp *pgrp; 321 322 sx_assert(&proctree_lock, SX_LOCKED); 323 324 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 325 if (pgrp->pg_id == pgid) { 326 PGRP_LOCK(pgrp); 327 return (pgrp); 328 } 329 } 330 return (NULL); 331 } 332 333 /* 334 * Locate process and do additional manipulations, depending on flags. 335 */ 336 int 337 pget(pid_t pid, int flags, struct proc **pp) 338 { 339 struct proc *p; 340 int error; 341 342 p = pfind(pid); 343 if (p == NULL) 344 return (ESRCH); 345 if ((flags & PGET_CANSEE) != 0) { 346 error = p_cansee(curthread, p); 347 if (error != 0) 348 goto errout; 349 } 350 if ((flags & PGET_CANDEBUG) != 0) { 351 error = p_candebug(curthread, p); 352 if (error != 0) 353 goto errout; 354 } 355 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 356 error = EPERM; 357 goto errout; 358 } 359 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 360 error = ESRCH; 361 goto errout; 362 } 363 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 364 /* 365 * XXXRW: Not clear ESRCH is the right error during proc 366 * execve(). 367 */ 368 error = ESRCH; 369 goto errout; 370 } 371 if ((flags & PGET_HOLD) != 0) { 372 _PHOLD(p); 373 PROC_UNLOCK(p); 374 } 375 *pp = p; 376 return (0); 377 errout: 378 PROC_UNLOCK(p); 379 return (error); 380 } 381 382 /* 383 * Create a new process group. 384 * pgid must be equal to the pid of p. 385 * Begin a new session if required. 386 */ 387 int 388 enterpgrp(p, pgid, pgrp, sess) 389 register struct proc *p; 390 pid_t pgid; 391 struct pgrp *pgrp; 392 struct session *sess; 393 { 394 struct pgrp *pgrp2; 395 396 sx_assert(&proctree_lock, SX_XLOCKED); 397 398 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 399 KASSERT(p->p_pid == pgid, 400 ("enterpgrp: new pgrp and pid != pgid")); 401 402 pgrp2 = pgfind(pgid); 403 404 KASSERT(pgrp2 == NULL, 405 ("enterpgrp: pgrp with pgid exists")); 406 KASSERT(!SESS_LEADER(p), 407 ("enterpgrp: session leader attempted setpgrp")); 408 409 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 410 411 if (sess != NULL) { 412 /* 413 * new session 414 */ 415 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 416 PROC_LOCK(p); 417 p->p_flag &= ~P_CONTROLT; 418 PROC_UNLOCK(p); 419 PGRP_LOCK(pgrp); 420 sess->s_leader = p; 421 sess->s_sid = p->p_pid; 422 refcount_init(&sess->s_count, 1); 423 sess->s_ttyvp = NULL; 424 sess->s_ttydp = NULL; 425 sess->s_ttyp = NULL; 426 bcopy(p->p_session->s_login, sess->s_login, 427 sizeof(sess->s_login)); 428 pgrp->pg_session = sess; 429 KASSERT(p == curproc, 430 ("enterpgrp: mksession and p != curproc")); 431 } else { 432 pgrp->pg_session = p->p_session; 433 sess_hold(pgrp->pg_session); 434 PGRP_LOCK(pgrp); 435 } 436 pgrp->pg_id = pgid; 437 LIST_INIT(&pgrp->pg_members); 438 439 /* 440 * As we have an exclusive lock of proctree_lock, 441 * this should not deadlock. 442 */ 443 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 444 pgrp->pg_jobc = 0; 445 SLIST_INIT(&pgrp->pg_sigiolst); 446 PGRP_UNLOCK(pgrp); 447 448 doenterpgrp(p, pgrp); 449 450 return (0); 451 } 452 453 /* 454 * Move p to an existing process group 455 */ 456 int 457 enterthispgrp(p, pgrp) 458 register struct proc *p; 459 struct pgrp *pgrp; 460 { 461 462 sx_assert(&proctree_lock, SX_XLOCKED); 463 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 464 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 465 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 466 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 467 KASSERT(pgrp->pg_session == p->p_session, 468 ("%s: pgrp's session %p, p->p_session %p.\n", 469 __func__, 470 pgrp->pg_session, 471 p->p_session)); 472 KASSERT(pgrp != p->p_pgrp, 473 ("%s: p belongs to pgrp.", __func__)); 474 475 doenterpgrp(p, pgrp); 476 477 return (0); 478 } 479 480 /* 481 * Move p to a process group 482 */ 483 static void 484 doenterpgrp(p, pgrp) 485 struct proc *p; 486 struct pgrp *pgrp; 487 { 488 struct pgrp *savepgrp; 489 490 sx_assert(&proctree_lock, SX_XLOCKED); 491 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 492 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 493 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 494 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 495 496 savepgrp = p->p_pgrp; 497 498 /* 499 * Adjust eligibility of affected pgrps to participate in job control. 500 * Increment eligibility counts before decrementing, otherwise we 501 * could reach 0 spuriously during the first call. 502 */ 503 fixjobc(p, pgrp, 1); 504 fixjobc(p, p->p_pgrp, 0); 505 506 PGRP_LOCK(pgrp); 507 PGRP_LOCK(savepgrp); 508 PROC_LOCK(p); 509 LIST_REMOVE(p, p_pglist); 510 p->p_pgrp = pgrp; 511 PROC_UNLOCK(p); 512 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 513 PGRP_UNLOCK(savepgrp); 514 PGRP_UNLOCK(pgrp); 515 if (LIST_EMPTY(&savepgrp->pg_members)) 516 pgdelete(savepgrp); 517 } 518 519 /* 520 * remove process from process group 521 */ 522 int 523 leavepgrp(p) 524 register struct proc *p; 525 { 526 struct pgrp *savepgrp; 527 528 sx_assert(&proctree_lock, SX_XLOCKED); 529 savepgrp = p->p_pgrp; 530 PGRP_LOCK(savepgrp); 531 PROC_LOCK(p); 532 LIST_REMOVE(p, p_pglist); 533 p->p_pgrp = NULL; 534 PROC_UNLOCK(p); 535 PGRP_UNLOCK(savepgrp); 536 if (LIST_EMPTY(&savepgrp->pg_members)) 537 pgdelete(savepgrp); 538 return (0); 539 } 540 541 /* 542 * delete a process group 543 */ 544 static void 545 pgdelete(pgrp) 546 register struct pgrp *pgrp; 547 { 548 struct session *savesess; 549 struct tty *tp; 550 551 sx_assert(&proctree_lock, SX_XLOCKED); 552 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 553 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 554 555 /* 556 * Reset any sigio structures pointing to us as a result of 557 * F_SETOWN with our pgid. 558 */ 559 funsetownlst(&pgrp->pg_sigiolst); 560 561 PGRP_LOCK(pgrp); 562 tp = pgrp->pg_session->s_ttyp; 563 LIST_REMOVE(pgrp, pg_hash); 564 savesess = pgrp->pg_session; 565 PGRP_UNLOCK(pgrp); 566 567 /* Remove the reference to the pgrp before deallocating it. */ 568 if (tp != NULL) { 569 tty_lock(tp); 570 tty_rel_pgrp(tp, pgrp); 571 } 572 573 mtx_destroy(&pgrp->pg_mtx); 574 free(pgrp, M_PGRP); 575 sess_release(savesess); 576 } 577 578 static void 579 pgadjustjobc(pgrp, entering) 580 struct pgrp *pgrp; 581 int entering; 582 { 583 584 PGRP_LOCK(pgrp); 585 if (entering) 586 pgrp->pg_jobc++; 587 else { 588 --pgrp->pg_jobc; 589 if (pgrp->pg_jobc == 0) 590 orphanpg(pgrp); 591 } 592 PGRP_UNLOCK(pgrp); 593 } 594 595 /* 596 * Adjust pgrp jobc counters when specified process changes process group. 597 * We count the number of processes in each process group that "qualify" 598 * the group for terminal job control (those with a parent in a different 599 * process group of the same session). If that count reaches zero, the 600 * process group becomes orphaned. Check both the specified process' 601 * process group and that of its children. 602 * entering == 0 => p is leaving specified group. 603 * entering == 1 => p is entering specified group. 604 */ 605 void 606 fixjobc(p, pgrp, entering) 607 register struct proc *p; 608 register struct pgrp *pgrp; 609 int entering; 610 { 611 register struct pgrp *hispgrp; 612 register struct session *mysession; 613 614 sx_assert(&proctree_lock, SX_LOCKED); 615 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 616 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 617 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 618 619 /* 620 * Check p's parent to see whether p qualifies its own process 621 * group; if so, adjust count for p's process group. 622 */ 623 mysession = pgrp->pg_session; 624 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 625 hispgrp->pg_session == mysession) 626 pgadjustjobc(pgrp, entering); 627 628 /* 629 * Check this process' children to see whether they qualify 630 * their process groups; if so, adjust counts for children's 631 * process groups. 632 */ 633 LIST_FOREACH(p, &p->p_children, p_sibling) { 634 hispgrp = p->p_pgrp; 635 if (hispgrp == pgrp || 636 hispgrp->pg_session != mysession) 637 continue; 638 PROC_LOCK(p); 639 if (p->p_state == PRS_ZOMBIE) { 640 PROC_UNLOCK(p); 641 continue; 642 } 643 PROC_UNLOCK(p); 644 pgadjustjobc(hispgrp, entering); 645 } 646 } 647 648 /* 649 * A process group has become orphaned; 650 * if there are any stopped processes in the group, 651 * hang-up all process in that group. 652 */ 653 static void 654 orphanpg(pg) 655 struct pgrp *pg; 656 { 657 register struct proc *p; 658 659 PGRP_LOCK_ASSERT(pg, MA_OWNED); 660 661 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 662 PROC_LOCK(p); 663 if (P_SHOULDSTOP(p)) { 664 PROC_UNLOCK(p); 665 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 666 PROC_LOCK(p); 667 kern_psignal(p, SIGHUP); 668 kern_psignal(p, SIGCONT); 669 PROC_UNLOCK(p); 670 } 671 return; 672 } 673 PROC_UNLOCK(p); 674 } 675 } 676 677 void 678 sess_hold(struct session *s) 679 { 680 681 refcount_acquire(&s->s_count); 682 } 683 684 void 685 sess_release(struct session *s) 686 { 687 688 if (refcount_release(&s->s_count)) { 689 if (s->s_ttyp != NULL) { 690 tty_lock(s->s_ttyp); 691 tty_rel_sess(s->s_ttyp, s); 692 } 693 mtx_destroy(&s->s_mtx); 694 free(s, M_SESSION); 695 } 696 } 697 698 #include "opt_ddb.h" 699 #ifdef DDB 700 #include <ddb/ddb.h> 701 702 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 703 { 704 register struct pgrp *pgrp; 705 register struct proc *p; 706 register int i; 707 708 for (i = 0; i <= pgrphash; i++) { 709 if (!LIST_EMPTY(&pgrphashtbl[i])) { 710 printf("\tindx %d\n", i); 711 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 712 printf( 713 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 714 (void *)pgrp, (long)pgrp->pg_id, 715 (void *)pgrp->pg_session, 716 pgrp->pg_session->s_count, 717 (void *)LIST_FIRST(&pgrp->pg_members)); 718 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 719 printf("\t\tpid %ld addr %p pgrp %p\n", 720 (long)p->p_pid, (void *)p, 721 (void *)p->p_pgrp); 722 } 723 } 724 } 725 } 726 } 727 #endif /* DDB */ 728 729 /* 730 * Calculate the kinfo_proc members which contain process-wide 731 * informations. 732 * Must be called with the target process locked. 733 */ 734 static void 735 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 736 { 737 struct thread *td; 738 739 PROC_LOCK_ASSERT(p, MA_OWNED); 740 741 kp->ki_estcpu = 0; 742 kp->ki_pctcpu = 0; 743 FOREACH_THREAD_IN_PROC(p, td) { 744 thread_lock(td); 745 kp->ki_pctcpu += sched_pctcpu(td); 746 kp->ki_estcpu += td->td_estcpu; 747 thread_unlock(td); 748 } 749 } 750 751 /* 752 * Clear kinfo_proc and fill in any information that is common 753 * to all threads in the process. 754 * Must be called with the target process locked. 755 */ 756 static void 757 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 758 { 759 struct thread *td0; 760 struct tty *tp; 761 struct session *sp; 762 struct ucred *cred; 763 struct sigacts *ps; 764 765 PROC_LOCK_ASSERT(p, MA_OWNED); 766 bzero(kp, sizeof(*kp)); 767 768 kp->ki_structsize = sizeof(*kp); 769 kp->ki_paddr = p; 770 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 771 kp->ki_args = p->p_args; 772 kp->ki_textvp = p->p_textvp; 773 #ifdef KTRACE 774 kp->ki_tracep = p->p_tracevp; 775 kp->ki_traceflag = p->p_traceflag; 776 #endif 777 kp->ki_fd = p->p_fd; 778 kp->ki_vmspace = p->p_vmspace; 779 kp->ki_flag = p->p_flag; 780 cred = p->p_ucred; 781 if (cred) { 782 kp->ki_uid = cred->cr_uid; 783 kp->ki_ruid = cred->cr_ruid; 784 kp->ki_svuid = cred->cr_svuid; 785 kp->ki_cr_flags = 0; 786 if (cred->cr_flags & CRED_FLAG_CAPMODE) 787 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 788 /* XXX bde doesn't like KI_NGROUPS */ 789 if (cred->cr_ngroups > KI_NGROUPS) { 790 kp->ki_ngroups = KI_NGROUPS; 791 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 792 } else 793 kp->ki_ngroups = cred->cr_ngroups; 794 bcopy(cred->cr_groups, kp->ki_groups, 795 kp->ki_ngroups * sizeof(gid_t)); 796 kp->ki_rgid = cred->cr_rgid; 797 kp->ki_svgid = cred->cr_svgid; 798 /* If jailed(cred), emulate the old P_JAILED flag. */ 799 if (jailed(cred)) { 800 kp->ki_flag |= P_JAILED; 801 /* If inside the jail, use 0 as a jail ID. */ 802 if (cred->cr_prison != curthread->td_ucred->cr_prison) 803 kp->ki_jid = cred->cr_prison->pr_id; 804 } 805 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 806 sizeof(kp->ki_loginclass)); 807 } 808 ps = p->p_sigacts; 809 if (ps) { 810 mtx_lock(&ps->ps_mtx); 811 kp->ki_sigignore = ps->ps_sigignore; 812 kp->ki_sigcatch = ps->ps_sigcatch; 813 mtx_unlock(&ps->ps_mtx); 814 } 815 if (p->p_state != PRS_NEW && 816 p->p_state != PRS_ZOMBIE && 817 p->p_vmspace != NULL) { 818 struct vmspace *vm = p->p_vmspace; 819 820 kp->ki_size = vm->vm_map.size; 821 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 822 FOREACH_THREAD_IN_PROC(p, td0) { 823 if (!TD_IS_SWAPPED(td0)) 824 kp->ki_rssize += td0->td_kstack_pages; 825 } 826 kp->ki_swrss = vm->vm_swrss; 827 kp->ki_tsize = vm->vm_tsize; 828 kp->ki_dsize = vm->vm_dsize; 829 kp->ki_ssize = vm->vm_ssize; 830 } else if (p->p_state == PRS_ZOMBIE) 831 kp->ki_stat = SZOMB; 832 if (kp->ki_flag & P_INMEM) 833 kp->ki_sflag = PS_INMEM; 834 else 835 kp->ki_sflag = 0; 836 /* Calculate legacy swtime as seconds since 'swtick'. */ 837 kp->ki_swtime = (ticks - p->p_swtick) / hz; 838 kp->ki_pid = p->p_pid; 839 kp->ki_nice = p->p_nice; 840 kp->ki_start = p->p_stats->p_start; 841 timevaladd(&kp->ki_start, &boottime); 842 PROC_SLOCK(p); 843 rufetch(p, &kp->ki_rusage); 844 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 845 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 846 PROC_SUNLOCK(p); 847 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 848 /* Some callers want child times in a single value. */ 849 kp->ki_childtime = kp->ki_childstime; 850 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 851 852 tp = NULL; 853 if (p->p_pgrp) { 854 kp->ki_pgid = p->p_pgrp->pg_id; 855 kp->ki_jobc = p->p_pgrp->pg_jobc; 856 sp = p->p_pgrp->pg_session; 857 858 if (sp != NULL) { 859 kp->ki_sid = sp->s_sid; 860 SESS_LOCK(sp); 861 strlcpy(kp->ki_login, sp->s_login, 862 sizeof(kp->ki_login)); 863 if (sp->s_ttyvp) 864 kp->ki_kiflag |= KI_CTTY; 865 if (SESS_LEADER(p)) 866 kp->ki_kiflag |= KI_SLEADER; 867 /* XXX proctree_lock */ 868 tp = sp->s_ttyp; 869 SESS_UNLOCK(sp); 870 } 871 } 872 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 873 kp->ki_tdev = tty_udev(tp); 874 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 875 if (tp->t_session) 876 kp->ki_tsid = tp->t_session->s_sid; 877 } else 878 kp->ki_tdev = NODEV; 879 if (p->p_comm[0] != '\0') 880 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 881 if (p->p_sysent && p->p_sysent->sv_name != NULL && 882 p->p_sysent->sv_name[0] != '\0') 883 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 884 kp->ki_siglist = p->p_siglist; 885 kp->ki_xstat = p->p_xstat; 886 kp->ki_acflag = p->p_acflag; 887 kp->ki_lock = p->p_lock; 888 if (p->p_pptr) 889 kp->ki_ppid = p->p_pptr->p_pid; 890 } 891 892 /* 893 * Fill in information that is thread specific. Must be called with 894 * target process locked. If 'preferthread' is set, overwrite certain 895 * process-related fields that are maintained for both threads and 896 * processes. 897 */ 898 static void 899 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 900 { 901 struct proc *p; 902 903 p = td->td_proc; 904 kp->ki_tdaddr = td; 905 PROC_LOCK_ASSERT(p, MA_OWNED); 906 907 if (preferthread) 908 PROC_SLOCK(p); 909 thread_lock(td); 910 if (td->td_wmesg != NULL) 911 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 912 else 913 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 914 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 915 if (TD_ON_LOCK(td)) { 916 kp->ki_kiflag |= KI_LOCKBLOCK; 917 strlcpy(kp->ki_lockname, td->td_lockname, 918 sizeof(kp->ki_lockname)); 919 } else { 920 kp->ki_kiflag &= ~KI_LOCKBLOCK; 921 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 922 } 923 924 if (p->p_state == PRS_NORMAL) { /* approximate. */ 925 if (TD_ON_RUNQ(td) || 926 TD_CAN_RUN(td) || 927 TD_IS_RUNNING(td)) { 928 kp->ki_stat = SRUN; 929 } else if (P_SHOULDSTOP(p)) { 930 kp->ki_stat = SSTOP; 931 } else if (TD_IS_SLEEPING(td)) { 932 kp->ki_stat = SSLEEP; 933 } else if (TD_ON_LOCK(td)) { 934 kp->ki_stat = SLOCK; 935 } else { 936 kp->ki_stat = SWAIT; 937 } 938 } else if (p->p_state == PRS_ZOMBIE) { 939 kp->ki_stat = SZOMB; 940 } else { 941 kp->ki_stat = SIDL; 942 } 943 944 /* Things in the thread */ 945 kp->ki_wchan = td->td_wchan; 946 kp->ki_pri.pri_level = td->td_priority; 947 kp->ki_pri.pri_native = td->td_base_pri; 948 kp->ki_lastcpu = td->td_lastcpu; 949 kp->ki_oncpu = td->td_oncpu; 950 kp->ki_tdflags = td->td_flags; 951 kp->ki_tid = td->td_tid; 952 kp->ki_numthreads = p->p_numthreads; 953 kp->ki_pcb = td->td_pcb; 954 kp->ki_kstack = (void *)td->td_kstack; 955 kp->ki_slptime = (ticks - td->td_slptick) / hz; 956 kp->ki_pri.pri_class = td->td_pri_class; 957 kp->ki_pri.pri_user = td->td_user_pri; 958 959 if (preferthread) { 960 rufetchtd(td, &kp->ki_rusage); 961 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 962 kp->ki_pctcpu = sched_pctcpu(td); 963 kp->ki_estcpu = td->td_estcpu; 964 } 965 966 /* We can't get this anymore but ps etc never used it anyway. */ 967 kp->ki_rqindex = 0; 968 969 if (preferthread) 970 kp->ki_siglist = td->td_siglist; 971 kp->ki_sigmask = td->td_sigmask; 972 thread_unlock(td); 973 if (preferthread) 974 PROC_SUNLOCK(p); 975 } 976 977 /* 978 * Fill in a kinfo_proc structure for the specified process. 979 * Must be called with the target process locked. 980 */ 981 void 982 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 983 { 984 985 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 986 987 fill_kinfo_proc_only(p, kp); 988 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 989 fill_kinfo_aggregate(p, kp); 990 } 991 992 struct pstats * 993 pstats_alloc(void) 994 { 995 996 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 997 } 998 999 /* 1000 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1001 */ 1002 void 1003 pstats_fork(struct pstats *src, struct pstats *dst) 1004 { 1005 1006 bzero(&dst->pstat_startzero, 1007 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1008 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1009 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1010 } 1011 1012 void 1013 pstats_free(struct pstats *ps) 1014 { 1015 1016 free(ps, M_SUBPROC); 1017 } 1018 1019 /* 1020 * Locate a zombie process by number 1021 */ 1022 struct proc * 1023 zpfind(pid_t pid) 1024 { 1025 struct proc *p; 1026 1027 sx_slock(&allproc_lock); 1028 LIST_FOREACH(p, &zombproc, p_list) 1029 if (p->p_pid == pid) { 1030 PROC_LOCK(p); 1031 break; 1032 } 1033 sx_sunlock(&allproc_lock); 1034 return (p); 1035 } 1036 1037 #define KERN_PROC_ZOMBMASK 0x3 1038 #define KERN_PROC_NOTHREADS 0x4 1039 1040 #ifdef COMPAT_FREEBSD32 1041 1042 /* 1043 * This function is typically used to copy out the kernel address, so 1044 * it can be replaced by assignment of zero. 1045 */ 1046 static inline uint32_t 1047 ptr32_trim(void *ptr) 1048 { 1049 uintptr_t uptr; 1050 1051 uptr = (uintptr_t)ptr; 1052 return ((uptr > UINT_MAX) ? 0 : uptr); 1053 } 1054 1055 #define PTRTRIM_CP(src,dst,fld) \ 1056 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1057 1058 static void 1059 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1060 { 1061 int i; 1062 1063 bzero(ki32, sizeof(struct kinfo_proc32)); 1064 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1065 CP(*ki, *ki32, ki_layout); 1066 PTRTRIM_CP(*ki, *ki32, ki_args); 1067 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1068 PTRTRIM_CP(*ki, *ki32, ki_addr); 1069 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1070 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1071 PTRTRIM_CP(*ki, *ki32, ki_fd); 1072 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1073 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1074 CP(*ki, *ki32, ki_pid); 1075 CP(*ki, *ki32, ki_ppid); 1076 CP(*ki, *ki32, ki_pgid); 1077 CP(*ki, *ki32, ki_tpgid); 1078 CP(*ki, *ki32, ki_sid); 1079 CP(*ki, *ki32, ki_tsid); 1080 CP(*ki, *ki32, ki_jobc); 1081 CP(*ki, *ki32, ki_tdev); 1082 CP(*ki, *ki32, ki_siglist); 1083 CP(*ki, *ki32, ki_sigmask); 1084 CP(*ki, *ki32, ki_sigignore); 1085 CP(*ki, *ki32, ki_sigcatch); 1086 CP(*ki, *ki32, ki_uid); 1087 CP(*ki, *ki32, ki_ruid); 1088 CP(*ki, *ki32, ki_svuid); 1089 CP(*ki, *ki32, ki_rgid); 1090 CP(*ki, *ki32, ki_svgid); 1091 CP(*ki, *ki32, ki_ngroups); 1092 for (i = 0; i < KI_NGROUPS; i++) 1093 CP(*ki, *ki32, ki_groups[i]); 1094 CP(*ki, *ki32, ki_size); 1095 CP(*ki, *ki32, ki_rssize); 1096 CP(*ki, *ki32, ki_swrss); 1097 CP(*ki, *ki32, ki_tsize); 1098 CP(*ki, *ki32, ki_dsize); 1099 CP(*ki, *ki32, ki_ssize); 1100 CP(*ki, *ki32, ki_xstat); 1101 CP(*ki, *ki32, ki_acflag); 1102 CP(*ki, *ki32, ki_pctcpu); 1103 CP(*ki, *ki32, ki_estcpu); 1104 CP(*ki, *ki32, ki_slptime); 1105 CP(*ki, *ki32, ki_swtime); 1106 CP(*ki, *ki32, ki_runtime); 1107 TV_CP(*ki, *ki32, ki_start); 1108 TV_CP(*ki, *ki32, ki_childtime); 1109 CP(*ki, *ki32, ki_flag); 1110 CP(*ki, *ki32, ki_kiflag); 1111 CP(*ki, *ki32, ki_traceflag); 1112 CP(*ki, *ki32, ki_stat); 1113 CP(*ki, *ki32, ki_nice); 1114 CP(*ki, *ki32, ki_lock); 1115 CP(*ki, *ki32, ki_rqindex); 1116 CP(*ki, *ki32, ki_oncpu); 1117 CP(*ki, *ki32, ki_lastcpu); 1118 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1119 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1120 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1121 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1122 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1123 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1124 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1125 CP(*ki, *ki32, ki_cr_flags); 1126 CP(*ki, *ki32, ki_jid); 1127 CP(*ki, *ki32, ki_numthreads); 1128 CP(*ki, *ki32, ki_tid); 1129 CP(*ki, *ki32, ki_pri); 1130 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1131 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1132 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1133 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1134 PTRTRIM_CP(*ki, *ki32, ki_udata); 1135 CP(*ki, *ki32, ki_sflag); 1136 CP(*ki, *ki32, ki_tdflags); 1137 } 1138 1139 static int 1140 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1141 { 1142 struct kinfo_proc32 ki32; 1143 int error; 1144 1145 if (req->flags & SCTL_MASK32) { 1146 freebsd32_kinfo_proc_out(ki, &ki32); 1147 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1148 } else 1149 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1150 return (error); 1151 } 1152 #else 1153 static int 1154 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1155 { 1156 1157 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1158 } 1159 #endif 1160 1161 /* 1162 * Must be called with the process locked and will return with it unlocked. 1163 */ 1164 static int 1165 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1166 { 1167 struct thread *td; 1168 struct kinfo_proc kinfo_proc; 1169 int error = 0; 1170 struct proc *np; 1171 pid_t pid = p->p_pid; 1172 1173 PROC_LOCK_ASSERT(p, MA_OWNED); 1174 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1175 1176 fill_kinfo_proc(p, &kinfo_proc); 1177 if (flags & KERN_PROC_NOTHREADS) 1178 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1179 else { 1180 FOREACH_THREAD_IN_PROC(p, td) { 1181 fill_kinfo_thread(td, &kinfo_proc, 1); 1182 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1183 if (error) 1184 break; 1185 } 1186 } 1187 PROC_UNLOCK(p); 1188 if (error) 1189 return (error); 1190 if (flags & KERN_PROC_ZOMBMASK) 1191 np = zpfind(pid); 1192 else { 1193 if (pid == 0) 1194 return (0); 1195 np = pfind(pid); 1196 } 1197 if (np == NULL) 1198 return (ESRCH); 1199 if (np != p) { 1200 PROC_UNLOCK(np); 1201 return (ESRCH); 1202 } 1203 PROC_UNLOCK(np); 1204 return (0); 1205 } 1206 1207 static int 1208 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1209 { 1210 int *name = (int *)arg1; 1211 u_int namelen = arg2; 1212 struct proc *p; 1213 int flags, doingzomb, oid_number; 1214 int error = 0; 1215 1216 oid_number = oidp->oid_number; 1217 if (oid_number != KERN_PROC_ALL && 1218 (oid_number & KERN_PROC_INC_THREAD) == 0) 1219 flags = KERN_PROC_NOTHREADS; 1220 else { 1221 flags = 0; 1222 oid_number &= ~KERN_PROC_INC_THREAD; 1223 } 1224 if (oid_number == KERN_PROC_PID) { 1225 if (namelen != 1) 1226 return (EINVAL); 1227 error = sysctl_wire_old_buffer(req, 0); 1228 if (error) 1229 return (error); 1230 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1231 if (error != 0) 1232 return (error); 1233 error = sysctl_out_proc(p, req, flags); 1234 return (error); 1235 } 1236 1237 switch (oid_number) { 1238 case KERN_PROC_ALL: 1239 if (namelen != 0) 1240 return (EINVAL); 1241 break; 1242 case KERN_PROC_PROC: 1243 if (namelen != 0 && namelen != 1) 1244 return (EINVAL); 1245 break; 1246 default: 1247 if (namelen != 1) 1248 return (EINVAL); 1249 break; 1250 } 1251 1252 if (!req->oldptr) { 1253 /* overestimate by 5 procs */ 1254 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1255 if (error) 1256 return (error); 1257 } 1258 error = sysctl_wire_old_buffer(req, 0); 1259 if (error != 0) 1260 return (error); 1261 sx_slock(&allproc_lock); 1262 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1263 if (!doingzomb) 1264 p = LIST_FIRST(&allproc); 1265 else 1266 p = LIST_FIRST(&zombproc); 1267 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1268 /* 1269 * Skip embryonic processes. 1270 */ 1271 PROC_LOCK(p); 1272 if (p->p_state == PRS_NEW) { 1273 PROC_UNLOCK(p); 1274 continue; 1275 } 1276 KASSERT(p->p_ucred != NULL, 1277 ("process credential is NULL for non-NEW proc")); 1278 /* 1279 * Show a user only appropriate processes. 1280 */ 1281 if (p_cansee(curthread, p)) { 1282 PROC_UNLOCK(p); 1283 continue; 1284 } 1285 /* 1286 * TODO - make more efficient (see notes below). 1287 * do by session. 1288 */ 1289 switch (oid_number) { 1290 1291 case KERN_PROC_GID: 1292 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1293 PROC_UNLOCK(p); 1294 continue; 1295 } 1296 break; 1297 1298 case KERN_PROC_PGRP: 1299 /* could do this by traversing pgrp */ 1300 if (p->p_pgrp == NULL || 1301 p->p_pgrp->pg_id != (pid_t)name[0]) { 1302 PROC_UNLOCK(p); 1303 continue; 1304 } 1305 break; 1306 1307 case KERN_PROC_RGID: 1308 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1309 PROC_UNLOCK(p); 1310 continue; 1311 } 1312 break; 1313 1314 case KERN_PROC_SESSION: 1315 if (p->p_session == NULL || 1316 p->p_session->s_sid != (pid_t)name[0]) { 1317 PROC_UNLOCK(p); 1318 continue; 1319 } 1320 break; 1321 1322 case KERN_PROC_TTY: 1323 if ((p->p_flag & P_CONTROLT) == 0 || 1324 p->p_session == NULL) { 1325 PROC_UNLOCK(p); 1326 continue; 1327 } 1328 /* XXX proctree_lock */ 1329 SESS_LOCK(p->p_session); 1330 if (p->p_session->s_ttyp == NULL || 1331 tty_udev(p->p_session->s_ttyp) != 1332 (dev_t)name[0]) { 1333 SESS_UNLOCK(p->p_session); 1334 PROC_UNLOCK(p); 1335 continue; 1336 } 1337 SESS_UNLOCK(p->p_session); 1338 break; 1339 1340 case KERN_PROC_UID: 1341 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1342 PROC_UNLOCK(p); 1343 continue; 1344 } 1345 break; 1346 1347 case KERN_PROC_RUID: 1348 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1349 PROC_UNLOCK(p); 1350 continue; 1351 } 1352 break; 1353 1354 case KERN_PROC_PROC: 1355 break; 1356 1357 default: 1358 break; 1359 1360 } 1361 1362 error = sysctl_out_proc(p, req, flags | doingzomb); 1363 if (error) { 1364 sx_sunlock(&allproc_lock); 1365 return (error); 1366 } 1367 } 1368 } 1369 sx_sunlock(&allproc_lock); 1370 return (0); 1371 } 1372 1373 struct pargs * 1374 pargs_alloc(int len) 1375 { 1376 struct pargs *pa; 1377 1378 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1379 M_WAITOK); 1380 refcount_init(&pa->ar_ref, 1); 1381 pa->ar_length = len; 1382 return (pa); 1383 } 1384 1385 static void 1386 pargs_free(struct pargs *pa) 1387 { 1388 1389 free(pa, M_PARGS); 1390 } 1391 1392 void 1393 pargs_hold(struct pargs *pa) 1394 { 1395 1396 if (pa == NULL) 1397 return; 1398 refcount_acquire(&pa->ar_ref); 1399 } 1400 1401 void 1402 pargs_drop(struct pargs *pa) 1403 { 1404 1405 if (pa == NULL) 1406 return; 1407 if (refcount_release(&pa->ar_ref)) 1408 pargs_free(pa); 1409 } 1410 1411 static int 1412 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1413 size_t len) 1414 { 1415 struct iovec iov; 1416 struct uio uio; 1417 1418 iov.iov_base = (caddr_t)buf; 1419 iov.iov_len = len; 1420 uio.uio_iov = &iov; 1421 uio.uio_iovcnt = 1; 1422 uio.uio_offset = offset; 1423 uio.uio_resid = (ssize_t)len; 1424 uio.uio_segflg = UIO_SYSSPACE; 1425 uio.uio_rw = UIO_READ; 1426 uio.uio_td = td; 1427 1428 return (proc_rwmem(p, &uio)); 1429 } 1430 1431 static int 1432 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1433 size_t len) 1434 { 1435 size_t i; 1436 int error; 1437 1438 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1439 /* 1440 * Reading the chunk may validly return EFAULT if the string is shorter 1441 * than the chunk and is aligned at the end of the page, assuming the 1442 * next page is not mapped. So if EFAULT is returned do a fallback to 1443 * one byte read loop. 1444 */ 1445 if (error == EFAULT) { 1446 for (i = 0; i < len; i++, buf++, sptr++) { 1447 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1448 if (error != 0) 1449 return (error); 1450 if (*buf == '\0') 1451 break; 1452 } 1453 error = 0; 1454 } 1455 return (error); 1456 } 1457 1458 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1459 1460 enum proc_vector_type { 1461 PROC_ARG, 1462 PROC_ENV, 1463 PROC_AUX, 1464 }; 1465 1466 #ifdef COMPAT_FREEBSD32 1467 static int 1468 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1469 size_t *vsizep, enum proc_vector_type type) 1470 { 1471 struct freebsd32_ps_strings pss; 1472 Elf32_Auxinfo aux; 1473 vm_offset_t vptr, ptr; 1474 uint32_t *proc_vector32; 1475 char **proc_vector; 1476 size_t vsize, size; 1477 int i, error; 1478 1479 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1480 &pss, sizeof(pss)); 1481 if (error != 0) 1482 return (error); 1483 switch (type) { 1484 case PROC_ARG: 1485 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1486 vsize = pss.ps_nargvstr; 1487 if (vsize > ARG_MAX) 1488 return (ENOEXEC); 1489 size = vsize * sizeof(int32_t); 1490 break; 1491 case PROC_ENV: 1492 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1493 vsize = pss.ps_nenvstr; 1494 if (vsize > ARG_MAX) 1495 return (ENOEXEC); 1496 size = vsize * sizeof(int32_t); 1497 break; 1498 case PROC_AUX: 1499 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1500 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1501 if (vptr % 4 != 0) 1502 return (ENOEXEC); 1503 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1504 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1505 if (error != 0) 1506 return (error); 1507 if (aux.a_type == AT_NULL) 1508 break; 1509 ptr += sizeof(aux); 1510 } 1511 if (aux.a_type != AT_NULL) 1512 return (ENOEXEC); 1513 vsize = i + 1; 1514 size = vsize * sizeof(aux); 1515 break; 1516 default: 1517 KASSERT(0, ("Wrong proc vector type: %d", type)); 1518 return (EINVAL); 1519 } 1520 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1521 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1522 if (error != 0) 1523 goto done; 1524 if (type == PROC_AUX) { 1525 *proc_vectorp = (char **)proc_vector32; 1526 *vsizep = vsize; 1527 return (0); 1528 } 1529 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1530 for (i = 0; i < (int)vsize; i++) 1531 proc_vector[i] = PTRIN(proc_vector32[i]); 1532 *proc_vectorp = proc_vector; 1533 *vsizep = vsize; 1534 done: 1535 free(proc_vector32, M_TEMP); 1536 return (error); 1537 } 1538 #endif 1539 1540 static int 1541 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1542 size_t *vsizep, enum proc_vector_type type) 1543 { 1544 struct ps_strings pss; 1545 Elf_Auxinfo aux; 1546 vm_offset_t vptr, ptr; 1547 char **proc_vector; 1548 size_t vsize, size; 1549 int error, i; 1550 1551 #ifdef COMPAT_FREEBSD32 1552 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1553 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1554 #endif 1555 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1556 &pss, sizeof(pss)); 1557 if (error != 0) 1558 return (error); 1559 switch (type) { 1560 case PROC_ARG: 1561 vptr = (vm_offset_t)pss.ps_argvstr; 1562 vsize = pss.ps_nargvstr; 1563 if (vsize > ARG_MAX) 1564 return (ENOEXEC); 1565 size = vsize * sizeof(char *); 1566 break; 1567 case PROC_ENV: 1568 vptr = (vm_offset_t)pss.ps_envstr; 1569 vsize = pss.ps_nenvstr; 1570 if (vsize > ARG_MAX) 1571 return (ENOEXEC); 1572 size = vsize * sizeof(char *); 1573 break; 1574 case PROC_AUX: 1575 /* 1576 * The aux array is just above env array on the stack. Check 1577 * that the address is naturally aligned. 1578 */ 1579 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1580 * sizeof(char *); 1581 #if __ELF_WORD_SIZE == 64 1582 if (vptr % sizeof(uint64_t) != 0) 1583 #else 1584 if (vptr % sizeof(uint32_t) != 0) 1585 #endif 1586 return (ENOEXEC); 1587 /* 1588 * We count the array size reading the aux vectors from the 1589 * stack until AT_NULL vector is returned. So (to keep the code 1590 * simple) we read the process stack twice: the first time here 1591 * to find the size and the second time when copying the vectors 1592 * to the allocated proc_vector. 1593 */ 1594 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1595 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1596 if (error != 0) 1597 return (error); 1598 if (aux.a_type == AT_NULL) 1599 break; 1600 ptr += sizeof(aux); 1601 } 1602 /* 1603 * If the PROC_AUXV_MAX entries are iterated over, and we have 1604 * not reached AT_NULL, it is most likely we are reading wrong 1605 * data: either the process doesn't have auxv array or data has 1606 * been modified. Return the error in this case. 1607 */ 1608 if (aux.a_type != AT_NULL) 1609 return (ENOEXEC); 1610 vsize = i + 1; 1611 size = vsize * sizeof(aux); 1612 break; 1613 default: 1614 KASSERT(0, ("Wrong proc vector type: %d", type)); 1615 return (EINVAL); /* In case we are built without INVARIANTS. */ 1616 } 1617 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1618 if (proc_vector == NULL) 1619 return (ENOMEM); 1620 error = proc_read_mem(td, p, vptr, proc_vector, size); 1621 if (error != 0) { 1622 free(proc_vector, M_TEMP); 1623 return (error); 1624 } 1625 *proc_vectorp = proc_vector; 1626 *vsizep = vsize; 1627 1628 return (0); 1629 } 1630 1631 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1632 1633 static int 1634 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1635 enum proc_vector_type type) 1636 { 1637 size_t done, len, nchr, vsize; 1638 int error, i; 1639 char **proc_vector, *sptr; 1640 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1641 1642 PROC_ASSERT_HELD(p); 1643 1644 /* 1645 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1646 */ 1647 nchr = 2 * (PATH_MAX + ARG_MAX); 1648 1649 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1650 if (error != 0) 1651 return (error); 1652 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1653 /* 1654 * The program may have scribbled into its argv array, e.g. to 1655 * remove some arguments. If that has happened, break out 1656 * before trying to read from NULL. 1657 */ 1658 if (proc_vector[i] == NULL) 1659 break; 1660 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1661 error = proc_read_string(td, p, sptr, pss_string, 1662 sizeof(pss_string)); 1663 if (error != 0) 1664 goto done; 1665 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1666 if (done + len >= nchr) 1667 len = nchr - done - 1; 1668 sbuf_bcat(sb, pss_string, len); 1669 if (len != GET_PS_STRINGS_CHUNK_SZ) 1670 break; 1671 done += GET_PS_STRINGS_CHUNK_SZ; 1672 } 1673 sbuf_bcat(sb, "", 1); 1674 done += len + 1; 1675 } 1676 done: 1677 free(proc_vector, M_TEMP); 1678 return (error); 1679 } 1680 1681 int 1682 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1683 { 1684 1685 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1686 } 1687 1688 int 1689 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1690 { 1691 1692 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1693 } 1694 1695 /* 1696 * This sysctl allows a process to retrieve the argument list or process 1697 * title for another process without groping around in the address space 1698 * of the other process. It also allow a process to set its own "process 1699 * title to a string of its own choice. 1700 */ 1701 static int 1702 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1703 { 1704 int *name = (int *)arg1; 1705 u_int namelen = arg2; 1706 struct pargs *newpa, *pa; 1707 struct proc *p; 1708 struct sbuf sb; 1709 int flags, error = 0, error2; 1710 1711 if (namelen != 1) 1712 return (EINVAL); 1713 1714 flags = PGET_CANSEE; 1715 if (req->newptr != NULL) 1716 flags |= PGET_ISCURRENT; 1717 error = pget((pid_t)name[0], flags, &p); 1718 if (error) 1719 return (error); 1720 1721 pa = p->p_args; 1722 if (pa != NULL) { 1723 pargs_hold(pa); 1724 PROC_UNLOCK(p); 1725 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1726 pargs_drop(pa); 1727 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1728 _PHOLD(p); 1729 PROC_UNLOCK(p); 1730 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1731 error = proc_getargv(curthread, p, &sb); 1732 error2 = sbuf_finish(&sb); 1733 PRELE(p); 1734 sbuf_delete(&sb); 1735 if (error == 0 && error2 != 0) 1736 error = error2; 1737 } else { 1738 PROC_UNLOCK(p); 1739 } 1740 if (error != 0 || req->newptr == NULL) 1741 return (error); 1742 1743 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1744 return (ENOMEM); 1745 newpa = pargs_alloc(req->newlen); 1746 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1747 if (error != 0) { 1748 pargs_free(newpa); 1749 return (error); 1750 } 1751 PROC_LOCK(p); 1752 pa = p->p_args; 1753 p->p_args = newpa; 1754 PROC_UNLOCK(p); 1755 pargs_drop(pa); 1756 return (0); 1757 } 1758 1759 /* 1760 * This sysctl allows a process to retrieve environment of another process. 1761 */ 1762 static int 1763 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1764 { 1765 int *name = (int *)arg1; 1766 u_int namelen = arg2; 1767 struct proc *p; 1768 struct sbuf sb; 1769 int error, error2; 1770 1771 if (namelen != 1) 1772 return (EINVAL); 1773 1774 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1775 if (error != 0) 1776 return (error); 1777 if ((p->p_flag & P_SYSTEM) != 0) { 1778 PRELE(p); 1779 return (0); 1780 } 1781 1782 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1783 error = proc_getenvv(curthread, p, &sb); 1784 error2 = sbuf_finish(&sb); 1785 PRELE(p); 1786 sbuf_delete(&sb); 1787 return (error != 0 ? error : error2); 1788 } 1789 1790 /* 1791 * This sysctl allows a process to retrieve ELF auxiliary vector of 1792 * another process. 1793 */ 1794 static int 1795 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1796 { 1797 int *name = (int *)arg1; 1798 u_int namelen = arg2; 1799 struct proc *p; 1800 size_t vsize, size; 1801 char **auxv; 1802 int error; 1803 1804 if (namelen != 1) 1805 return (EINVAL); 1806 1807 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1808 if (error != 0) 1809 return (error); 1810 if ((p->p_flag & P_SYSTEM) != 0) { 1811 PRELE(p); 1812 return (0); 1813 } 1814 error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX); 1815 if (error == 0) { 1816 #ifdef COMPAT_FREEBSD32 1817 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1818 size = vsize * sizeof(Elf32_Auxinfo); 1819 else 1820 #endif 1821 size = vsize * sizeof(Elf_Auxinfo); 1822 PRELE(p); 1823 error = SYSCTL_OUT(req, auxv, size); 1824 free(auxv, M_TEMP); 1825 } else { 1826 PRELE(p); 1827 } 1828 return (error); 1829 } 1830 1831 /* 1832 * This sysctl allows a process to retrieve the path of the executable for 1833 * itself or another process. 1834 */ 1835 static int 1836 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1837 { 1838 pid_t *pidp = (pid_t *)arg1; 1839 unsigned int arglen = arg2; 1840 struct proc *p; 1841 struct vnode *vp; 1842 char *retbuf, *freebuf; 1843 int error, vfslocked; 1844 1845 if (arglen != 1) 1846 return (EINVAL); 1847 if (*pidp == -1) { /* -1 means this process */ 1848 p = req->td->td_proc; 1849 } else { 1850 error = pget(*pidp, PGET_CANSEE, &p); 1851 if (error != 0) 1852 return (error); 1853 } 1854 1855 vp = p->p_textvp; 1856 if (vp == NULL) { 1857 if (*pidp != -1) 1858 PROC_UNLOCK(p); 1859 return (0); 1860 } 1861 vref(vp); 1862 if (*pidp != -1) 1863 PROC_UNLOCK(p); 1864 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1865 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1866 vrele(vp); 1867 VFS_UNLOCK_GIANT(vfslocked); 1868 if (error) 1869 return (error); 1870 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1871 free(freebuf, M_TEMP); 1872 return (error); 1873 } 1874 1875 static int 1876 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1877 { 1878 struct proc *p; 1879 char *sv_name; 1880 int *name; 1881 int namelen; 1882 int error; 1883 1884 namelen = arg2; 1885 if (namelen != 1) 1886 return (EINVAL); 1887 1888 name = (int *)arg1; 1889 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1890 if (error != 0) 1891 return (error); 1892 sv_name = p->p_sysent->sv_name; 1893 PROC_UNLOCK(p); 1894 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1895 } 1896 1897 #ifdef KINFO_OVMENTRY_SIZE 1898 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1899 #endif 1900 1901 #ifdef COMPAT_FREEBSD7 1902 static int 1903 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1904 { 1905 vm_map_entry_t entry, tmp_entry; 1906 unsigned int last_timestamp; 1907 char *fullpath, *freepath; 1908 struct kinfo_ovmentry *kve; 1909 struct vattr va; 1910 struct ucred *cred; 1911 int error, *name; 1912 struct vnode *vp; 1913 struct proc *p; 1914 vm_map_t map; 1915 struct vmspace *vm; 1916 1917 name = (int *)arg1; 1918 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1919 if (error != 0) 1920 return (error); 1921 vm = vmspace_acquire_ref(p); 1922 if (vm == NULL) { 1923 PRELE(p); 1924 return (ESRCH); 1925 } 1926 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1927 1928 map = &vm->vm_map; 1929 vm_map_lock_read(map); 1930 for (entry = map->header.next; entry != &map->header; 1931 entry = entry->next) { 1932 vm_object_t obj, tobj, lobj; 1933 vm_offset_t addr; 1934 int vfslocked; 1935 1936 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1937 continue; 1938 1939 bzero(kve, sizeof(*kve)); 1940 kve->kve_structsize = sizeof(*kve); 1941 1942 kve->kve_private_resident = 0; 1943 obj = entry->object.vm_object; 1944 if (obj != NULL) { 1945 VM_OBJECT_LOCK(obj); 1946 if (obj->shadow_count == 1) 1947 kve->kve_private_resident = 1948 obj->resident_page_count; 1949 } 1950 kve->kve_resident = 0; 1951 addr = entry->start; 1952 while (addr < entry->end) { 1953 if (pmap_extract(map->pmap, addr)) 1954 kve->kve_resident++; 1955 addr += PAGE_SIZE; 1956 } 1957 1958 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1959 if (tobj != obj) 1960 VM_OBJECT_LOCK(tobj); 1961 if (lobj != obj) 1962 VM_OBJECT_UNLOCK(lobj); 1963 lobj = tobj; 1964 } 1965 1966 kve->kve_start = (void*)entry->start; 1967 kve->kve_end = (void*)entry->end; 1968 kve->kve_offset = (off_t)entry->offset; 1969 1970 if (entry->protection & VM_PROT_READ) 1971 kve->kve_protection |= KVME_PROT_READ; 1972 if (entry->protection & VM_PROT_WRITE) 1973 kve->kve_protection |= KVME_PROT_WRITE; 1974 if (entry->protection & VM_PROT_EXECUTE) 1975 kve->kve_protection |= KVME_PROT_EXEC; 1976 1977 if (entry->eflags & MAP_ENTRY_COW) 1978 kve->kve_flags |= KVME_FLAG_COW; 1979 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1980 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1981 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1982 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1983 1984 last_timestamp = map->timestamp; 1985 vm_map_unlock_read(map); 1986 1987 kve->kve_fileid = 0; 1988 kve->kve_fsid = 0; 1989 freepath = NULL; 1990 fullpath = ""; 1991 if (lobj) { 1992 vp = NULL; 1993 switch (lobj->type) { 1994 case OBJT_DEFAULT: 1995 kve->kve_type = KVME_TYPE_DEFAULT; 1996 break; 1997 case OBJT_VNODE: 1998 kve->kve_type = KVME_TYPE_VNODE; 1999 vp = lobj->handle; 2000 vref(vp); 2001 break; 2002 case OBJT_SWAP: 2003 kve->kve_type = KVME_TYPE_SWAP; 2004 break; 2005 case OBJT_DEVICE: 2006 kve->kve_type = KVME_TYPE_DEVICE; 2007 break; 2008 case OBJT_PHYS: 2009 kve->kve_type = KVME_TYPE_PHYS; 2010 break; 2011 case OBJT_DEAD: 2012 kve->kve_type = KVME_TYPE_DEAD; 2013 break; 2014 case OBJT_SG: 2015 kve->kve_type = KVME_TYPE_SG; 2016 break; 2017 default: 2018 kve->kve_type = KVME_TYPE_UNKNOWN; 2019 break; 2020 } 2021 if (lobj != obj) 2022 VM_OBJECT_UNLOCK(lobj); 2023 2024 kve->kve_ref_count = obj->ref_count; 2025 kve->kve_shadow_count = obj->shadow_count; 2026 VM_OBJECT_UNLOCK(obj); 2027 if (vp != NULL) { 2028 vn_fullpath(curthread, vp, &fullpath, 2029 &freepath); 2030 cred = curthread->td_ucred; 2031 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2032 vn_lock(vp, LK_SHARED | LK_RETRY); 2033 if (VOP_GETATTR(vp, &va, cred) == 0) { 2034 kve->kve_fileid = va.va_fileid; 2035 kve->kve_fsid = va.va_fsid; 2036 } 2037 vput(vp); 2038 VFS_UNLOCK_GIANT(vfslocked); 2039 } 2040 } else { 2041 kve->kve_type = KVME_TYPE_NONE; 2042 kve->kve_ref_count = 0; 2043 kve->kve_shadow_count = 0; 2044 } 2045 2046 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2047 if (freepath != NULL) 2048 free(freepath, M_TEMP); 2049 2050 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2051 vm_map_lock_read(map); 2052 if (error) 2053 break; 2054 if (last_timestamp != map->timestamp) { 2055 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2056 entry = tmp_entry; 2057 } 2058 } 2059 vm_map_unlock_read(map); 2060 vmspace_free(vm); 2061 PRELE(p); 2062 free(kve, M_TEMP); 2063 return (error); 2064 } 2065 #endif /* COMPAT_FREEBSD7 */ 2066 2067 #ifdef KINFO_VMENTRY_SIZE 2068 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2069 #endif 2070 2071 static int 2072 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2073 { 2074 vm_map_entry_t entry, tmp_entry; 2075 unsigned int last_timestamp; 2076 char *fullpath, *freepath; 2077 struct kinfo_vmentry *kve; 2078 struct vattr va; 2079 struct ucred *cred; 2080 int error, *name; 2081 struct vnode *vp; 2082 struct proc *p; 2083 struct vmspace *vm; 2084 vm_map_t map; 2085 2086 name = (int *)arg1; 2087 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2088 if (error != 0) 2089 return (error); 2090 vm = vmspace_acquire_ref(p); 2091 if (vm == NULL) { 2092 PRELE(p); 2093 return (ESRCH); 2094 } 2095 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2096 2097 map = &vm->vm_map; 2098 vm_map_lock_read(map); 2099 for (entry = map->header.next; entry != &map->header; 2100 entry = entry->next) { 2101 vm_object_t obj, tobj, lobj; 2102 vm_offset_t addr; 2103 vm_paddr_t locked_pa; 2104 int vfslocked, mincoreinfo; 2105 2106 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2107 continue; 2108 2109 bzero(kve, sizeof(*kve)); 2110 2111 kve->kve_private_resident = 0; 2112 obj = entry->object.vm_object; 2113 if (obj != NULL) { 2114 VM_OBJECT_LOCK(obj); 2115 if (obj->shadow_count == 1) 2116 kve->kve_private_resident = 2117 obj->resident_page_count; 2118 } 2119 kve->kve_resident = 0; 2120 addr = entry->start; 2121 while (addr < entry->end) { 2122 locked_pa = 0; 2123 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2124 if (locked_pa != 0) 2125 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2126 if (mincoreinfo & MINCORE_INCORE) 2127 kve->kve_resident++; 2128 if (mincoreinfo & MINCORE_SUPER) 2129 kve->kve_flags |= KVME_FLAG_SUPER; 2130 addr += PAGE_SIZE; 2131 } 2132 2133 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2134 if (tobj != obj) 2135 VM_OBJECT_LOCK(tobj); 2136 if (lobj != obj) 2137 VM_OBJECT_UNLOCK(lobj); 2138 lobj = tobj; 2139 } 2140 2141 kve->kve_start = entry->start; 2142 kve->kve_end = entry->end; 2143 kve->kve_offset = entry->offset; 2144 2145 if (entry->protection & VM_PROT_READ) 2146 kve->kve_protection |= KVME_PROT_READ; 2147 if (entry->protection & VM_PROT_WRITE) 2148 kve->kve_protection |= KVME_PROT_WRITE; 2149 if (entry->protection & VM_PROT_EXECUTE) 2150 kve->kve_protection |= KVME_PROT_EXEC; 2151 2152 if (entry->eflags & MAP_ENTRY_COW) 2153 kve->kve_flags |= KVME_FLAG_COW; 2154 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2155 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2156 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2157 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2158 2159 last_timestamp = map->timestamp; 2160 vm_map_unlock_read(map); 2161 2162 freepath = NULL; 2163 fullpath = ""; 2164 if (lobj) { 2165 vp = NULL; 2166 switch (lobj->type) { 2167 case OBJT_DEFAULT: 2168 kve->kve_type = KVME_TYPE_DEFAULT; 2169 break; 2170 case OBJT_VNODE: 2171 kve->kve_type = KVME_TYPE_VNODE; 2172 vp = lobj->handle; 2173 vref(vp); 2174 break; 2175 case OBJT_SWAP: 2176 kve->kve_type = KVME_TYPE_SWAP; 2177 break; 2178 case OBJT_DEVICE: 2179 kve->kve_type = KVME_TYPE_DEVICE; 2180 break; 2181 case OBJT_PHYS: 2182 kve->kve_type = KVME_TYPE_PHYS; 2183 break; 2184 case OBJT_DEAD: 2185 kve->kve_type = KVME_TYPE_DEAD; 2186 break; 2187 case OBJT_SG: 2188 kve->kve_type = KVME_TYPE_SG; 2189 break; 2190 default: 2191 kve->kve_type = KVME_TYPE_UNKNOWN; 2192 break; 2193 } 2194 if (lobj != obj) 2195 VM_OBJECT_UNLOCK(lobj); 2196 2197 kve->kve_ref_count = obj->ref_count; 2198 kve->kve_shadow_count = obj->shadow_count; 2199 VM_OBJECT_UNLOCK(obj); 2200 if (vp != NULL) { 2201 vn_fullpath(curthread, vp, &fullpath, 2202 &freepath); 2203 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2204 cred = curthread->td_ucred; 2205 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2206 vn_lock(vp, LK_SHARED | LK_RETRY); 2207 if (VOP_GETATTR(vp, &va, cred) == 0) { 2208 kve->kve_vn_fileid = va.va_fileid; 2209 kve->kve_vn_fsid = va.va_fsid; 2210 kve->kve_vn_mode = 2211 MAKEIMODE(va.va_type, va.va_mode); 2212 kve->kve_vn_size = va.va_size; 2213 kve->kve_vn_rdev = va.va_rdev; 2214 kve->kve_status = KF_ATTR_VALID; 2215 } 2216 vput(vp); 2217 VFS_UNLOCK_GIANT(vfslocked); 2218 } 2219 } else { 2220 kve->kve_type = KVME_TYPE_NONE; 2221 kve->kve_ref_count = 0; 2222 kve->kve_shadow_count = 0; 2223 } 2224 2225 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2226 if (freepath != NULL) 2227 free(freepath, M_TEMP); 2228 2229 /* Pack record size down */ 2230 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2231 strlen(kve->kve_path) + 1; 2232 kve->kve_structsize = roundup(kve->kve_structsize, 2233 sizeof(uint64_t)); 2234 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 2235 vm_map_lock_read(map); 2236 if (error) 2237 break; 2238 if (last_timestamp != map->timestamp) { 2239 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2240 entry = tmp_entry; 2241 } 2242 } 2243 vm_map_unlock_read(map); 2244 vmspace_free(vm); 2245 PRELE(p); 2246 free(kve, M_TEMP); 2247 return (error); 2248 } 2249 2250 #if defined(STACK) || defined(DDB) 2251 static int 2252 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2253 { 2254 struct kinfo_kstack *kkstp; 2255 int error, i, *name, numthreads; 2256 lwpid_t *lwpidarray; 2257 struct thread *td; 2258 struct stack *st; 2259 struct sbuf sb; 2260 struct proc *p; 2261 2262 name = (int *)arg1; 2263 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2264 if (error != 0) 2265 return (error); 2266 2267 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2268 st = stack_create(); 2269 2270 lwpidarray = NULL; 2271 numthreads = 0; 2272 PROC_LOCK(p); 2273 repeat: 2274 if (numthreads < p->p_numthreads) { 2275 if (lwpidarray != NULL) { 2276 free(lwpidarray, M_TEMP); 2277 lwpidarray = NULL; 2278 } 2279 numthreads = p->p_numthreads; 2280 PROC_UNLOCK(p); 2281 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2282 M_WAITOK | M_ZERO); 2283 PROC_LOCK(p); 2284 goto repeat; 2285 } 2286 i = 0; 2287 2288 /* 2289 * XXXRW: During the below loop, execve(2) and countless other sorts 2290 * of changes could have taken place. Should we check to see if the 2291 * vmspace has been replaced, or the like, in order to prevent 2292 * giving a snapshot that spans, say, execve(2), with some threads 2293 * before and some after? Among other things, the credentials could 2294 * have changed, in which case the right to extract debug info might 2295 * no longer be assured. 2296 */ 2297 FOREACH_THREAD_IN_PROC(p, td) { 2298 KASSERT(i < numthreads, 2299 ("sysctl_kern_proc_kstack: numthreads")); 2300 lwpidarray[i] = td->td_tid; 2301 i++; 2302 } 2303 numthreads = i; 2304 for (i = 0; i < numthreads; i++) { 2305 td = thread_find(p, lwpidarray[i]); 2306 if (td == NULL) { 2307 continue; 2308 } 2309 bzero(kkstp, sizeof(*kkstp)); 2310 (void)sbuf_new(&sb, kkstp->kkst_trace, 2311 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2312 thread_lock(td); 2313 kkstp->kkst_tid = td->td_tid; 2314 if (TD_IS_SWAPPED(td)) 2315 kkstp->kkst_state = KKST_STATE_SWAPPED; 2316 else if (TD_IS_RUNNING(td)) 2317 kkstp->kkst_state = KKST_STATE_RUNNING; 2318 else { 2319 kkstp->kkst_state = KKST_STATE_STACKOK; 2320 stack_save_td(st, td); 2321 } 2322 thread_unlock(td); 2323 PROC_UNLOCK(p); 2324 stack_sbuf_print(&sb, st); 2325 sbuf_finish(&sb); 2326 sbuf_delete(&sb); 2327 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2328 PROC_LOCK(p); 2329 if (error) 2330 break; 2331 } 2332 _PRELE(p); 2333 PROC_UNLOCK(p); 2334 if (lwpidarray != NULL) 2335 free(lwpidarray, M_TEMP); 2336 stack_destroy(st); 2337 free(kkstp, M_TEMP); 2338 return (error); 2339 } 2340 #endif 2341 2342 /* 2343 * This sysctl allows a process to retrieve the full list of groups from 2344 * itself or another process. 2345 */ 2346 static int 2347 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2348 { 2349 pid_t *pidp = (pid_t *)arg1; 2350 unsigned int arglen = arg2; 2351 struct proc *p; 2352 struct ucred *cred; 2353 int error; 2354 2355 if (arglen != 1) 2356 return (EINVAL); 2357 if (*pidp == -1) { /* -1 means this process */ 2358 p = req->td->td_proc; 2359 } else { 2360 error = pget(*pidp, PGET_CANSEE, &p); 2361 if (error != 0) 2362 return (error); 2363 } 2364 2365 cred = crhold(p->p_ucred); 2366 if (*pidp != -1) 2367 PROC_UNLOCK(p); 2368 2369 error = SYSCTL_OUT(req, cred->cr_groups, 2370 cred->cr_ngroups * sizeof(gid_t)); 2371 crfree(cred); 2372 return (error); 2373 } 2374 2375 /* 2376 * This sysctl allows a process to retrieve or/and set the resource limit for 2377 * another process. 2378 */ 2379 static int 2380 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2381 { 2382 int *name = (int *)arg1; 2383 u_int namelen = arg2; 2384 struct rlimit rlim; 2385 struct proc *p; 2386 u_int which; 2387 int flags, error; 2388 2389 if (namelen != 2) 2390 return (EINVAL); 2391 2392 which = (u_int)name[1]; 2393 if (which >= RLIM_NLIMITS) 2394 return (EINVAL); 2395 2396 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2397 return (EINVAL); 2398 2399 flags = PGET_HOLD | PGET_NOTWEXIT; 2400 if (req->newptr != NULL) 2401 flags |= PGET_CANDEBUG; 2402 else 2403 flags |= PGET_CANSEE; 2404 error = pget((pid_t)name[0], flags, &p); 2405 if (error != 0) 2406 return (error); 2407 2408 /* 2409 * Retrieve limit. 2410 */ 2411 if (req->oldptr != NULL) { 2412 PROC_LOCK(p); 2413 lim_rlimit(p, which, &rlim); 2414 PROC_UNLOCK(p); 2415 } 2416 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2417 if (error != 0) 2418 goto errout; 2419 2420 /* 2421 * Set limit. 2422 */ 2423 if (req->newptr != NULL) { 2424 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2425 if (error == 0) 2426 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2427 } 2428 2429 errout: 2430 PRELE(p); 2431 return (error); 2432 } 2433 2434 /* 2435 * This sysctl allows a process to retrieve ps_strings structure location of 2436 * another process. 2437 */ 2438 static int 2439 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2440 { 2441 int *name = (int *)arg1; 2442 u_int namelen = arg2; 2443 struct proc *p; 2444 vm_offset_t ps_strings; 2445 int error; 2446 #ifdef COMPAT_FREEBSD32 2447 uint32_t ps_strings32; 2448 #endif 2449 2450 if (namelen != 1) 2451 return (EINVAL); 2452 2453 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2454 if (error != 0) 2455 return (error); 2456 #ifdef COMPAT_FREEBSD32 2457 if ((req->flags & SCTL_MASK32) != 0) { 2458 /* 2459 * We return 0 if the 32 bit emulation request is for a 64 bit 2460 * process. 2461 */ 2462 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2463 PTROUT(p->p_sysent->sv_psstrings) : 0; 2464 PROC_UNLOCK(p); 2465 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2466 return (error); 2467 } 2468 #endif 2469 ps_strings = p->p_sysent->sv_psstrings; 2470 PROC_UNLOCK(p); 2471 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2472 return (error); 2473 } 2474 2475 /* 2476 * This sysctl allows a process to retrieve umask of another process. 2477 */ 2478 static int 2479 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2480 { 2481 int *name = (int *)arg1; 2482 u_int namelen = arg2; 2483 struct proc *p; 2484 int error; 2485 u_short fd_cmask; 2486 2487 if (namelen != 1) 2488 return (EINVAL); 2489 2490 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2491 if (error != 0) 2492 return (error); 2493 2494 FILEDESC_SLOCK(p->p_fd); 2495 fd_cmask = p->p_fd->fd_cmask; 2496 FILEDESC_SUNLOCK(p->p_fd); 2497 PRELE(p); 2498 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2499 return (error); 2500 } 2501 2502 /* 2503 * This sysctl allows a process to set and retrieve binary osreldate of 2504 * another process. 2505 */ 2506 static int 2507 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2508 { 2509 int *name = (int *)arg1; 2510 u_int namelen = arg2; 2511 struct proc *p; 2512 int flags, error, osrel; 2513 2514 if (namelen != 1) 2515 return (EINVAL); 2516 2517 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2518 return (EINVAL); 2519 2520 flags = PGET_HOLD | PGET_NOTWEXIT; 2521 if (req->newptr != NULL) 2522 flags |= PGET_CANDEBUG; 2523 else 2524 flags |= PGET_CANSEE; 2525 error = pget((pid_t)name[0], flags, &p); 2526 if (error != 0) 2527 return (error); 2528 2529 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2530 if (error != 0) 2531 goto errout; 2532 2533 if (req->newptr != NULL) { 2534 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2535 if (error != 0) 2536 goto errout; 2537 if (osrel < 0) { 2538 error = EINVAL; 2539 goto errout; 2540 } 2541 p->p_osrel = osrel; 2542 } 2543 errout: 2544 PRELE(p); 2545 return (error); 2546 } 2547 2548 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2549 2550 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2551 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2552 "Return entire process table"); 2553 2554 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2555 sysctl_kern_proc, "Process table"); 2556 2557 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2558 sysctl_kern_proc, "Process table"); 2559 2560 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2561 sysctl_kern_proc, "Process table"); 2562 2563 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2564 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2565 2566 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2567 sysctl_kern_proc, "Process table"); 2568 2569 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2570 sysctl_kern_proc, "Process table"); 2571 2572 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2573 sysctl_kern_proc, "Process table"); 2574 2575 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2576 sysctl_kern_proc, "Process table"); 2577 2578 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2579 sysctl_kern_proc, "Return process table, no threads"); 2580 2581 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2582 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2583 sysctl_kern_proc_args, "Process argument list"); 2584 2585 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2586 sysctl_kern_proc_env, "Process environment"); 2587 2588 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2589 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2590 2591 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2592 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2593 2594 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2595 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2596 "Process syscall vector name (ABI type)"); 2597 2598 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2599 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2600 2601 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2602 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2603 2604 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2605 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2606 2607 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2608 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2609 2610 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2611 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2612 2613 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2614 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2615 2616 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2617 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2618 2619 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2620 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2621 2622 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2623 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2624 "Return process table, no threads"); 2625 2626 #ifdef COMPAT_FREEBSD7 2627 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2628 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2629 #endif 2630 2631 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2632 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2633 2634 #if defined(STACK) || defined(DDB) 2635 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2636 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2637 #endif 2638 2639 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2640 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2641 2642 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2643 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2644 "Process resource limits"); 2645 2646 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2647 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2648 "Process ps_strings location"); 2649 2650 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2651 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2652 2653 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2654 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2655 "Process binary osreldate"); 2656