1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/sysctl.h> 64 #include <sys/filedesc.h> 65 #include <sys/tty.h> 66 #include <sys/signalvar.h> 67 #include <sys/sdt.h> 68 #include <sys/sx.h> 69 #include <sys/user.h> 70 #include <sys/jail.h> 71 #include <sys/vnode.h> 72 #include <sys/eventhandler.h> 73 74 #ifdef DDB 75 #include <ddb/ddb.h> 76 #endif 77 78 #include <vm/vm.h> 79 #include <vm/vm_extern.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/uma.h> 85 86 #ifdef COMPAT_FREEBSD32 87 #include <compat/freebsd32/freebsd32.h> 88 #include <compat/freebsd32/freebsd32_util.h> 89 #endif 90 91 SDT_PROVIDER_DEFINE(proc); 92 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 93 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 97 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 98 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 99 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 100 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 102 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 103 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 104 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 107 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 108 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 109 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 110 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 111 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 112 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 113 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 114 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 115 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 116 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 117 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 118 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 119 120 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 121 MALLOC_DEFINE(M_SESSION, "session", "session header"); 122 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 123 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 124 125 static void doenterpgrp(struct proc *, struct pgrp *); 126 static void orphanpg(struct pgrp *pg); 127 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 128 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 129 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 130 int preferthread); 131 static void pgadjustjobc(struct pgrp *pgrp, int entering); 132 static void pgdelete(struct pgrp *); 133 static int proc_ctor(void *mem, int size, void *arg, int flags); 134 static void proc_dtor(void *mem, int size, void *arg); 135 static int proc_init(void *mem, int size, int flags); 136 static void proc_fini(void *mem, int size); 137 static void pargs_free(struct pargs *pa); 138 139 /* 140 * Other process lists 141 */ 142 struct pidhashhead *pidhashtbl; 143 u_long pidhash; 144 struct pgrphashhead *pgrphashtbl; 145 u_long pgrphash; 146 struct proclist allproc; 147 struct proclist zombproc; 148 struct sx allproc_lock; 149 struct sx proctree_lock; 150 struct mtx ppeers_lock; 151 uma_zone_t proc_zone; 152 153 int kstack_pages = KSTACK_PAGES; 154 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 155 "Kernel stack size in pages"); 156 157 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 158 #ifdef COMPAT_FREEBSD32 159 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 160 #endif 161 162 /* 163 * Initialize global process hashing structures. 164 */ 165 void 166 procinit() 167 { 168 169 sx_init(&allproc_lock, "allproc"); 170 sx_init(&proctree_lock, "proctree"); 171 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 172 LIST_INIT(&allproc); 173 LIST_INIT(&zombproc); 174 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 175 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 176 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 177 proc_ctor, proc_dtor, proc_init, proc_fini, 178 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 179 uihashinit(); 180 } 181 182 /* 183 * Prepare a proc for use. 184 */ 185 static int 186 proc_ctor(void *mem, int size, void *arg, int flags) 187 { 188 struct proc *p; 189 190 p = (struct proc *)mem; 191 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 192 EVENTHANDLER_INVOKE(process_ctor, p); 193 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 194 return (0); 195 } 196 197 /* 198 * Reclaim a proc after use. 199 */ 200 static void 201 proc_dtor(void *mem, int size, void *arg) 202 { 203 struct proc *p; 204 struct thread *td; 205 206 /* INVARIANTS checks go here */ 207 p = (struct proc *)mem; 208 td = FIRST_THREAD_IN_PROC(p); 209 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 210 if (td != NULL) { 211 #ifdef INVARIANTS 212 KASSERT((p->p_numthreads == 1), 213 ("bad number of threads in exiting process")); 214 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 215 #endif 216 /* Free all OSD associated to this thread. */ 217 osd_thread_exit(td); 218 } 219 EVENTHANDLER_INVOKE(process_dtor, p); 220 if (p->p_ksi != NULL) 221 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 222 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 223 } 224 225 /* 226 * Initialize type-stable parts of a proc (when newly created). 227 */ 228 static int 229 proc_init(void *mem, int size, int flags) 230 { 231 struct proc *p; 232 233 p = (struct proc *)mem; 234 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 235 p->p_sched = (struct p_sched *)&p[1]; 236 bzero(&p->p_mtx, sizeof(struct mtx)); 237 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 238 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 239 cv_init(&p->p_pwait, "ppwait"); 240 cv_init(&p->p_dbgwait, "dbgwait"); 241 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 242 EVENTHANDLER_INVOKE(process_init, p); 243 p->p_stats = pstats_alloc(); 244 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 245 return (0); 246 } 247 248 /* 249 * UMA should ensure that this function is never called. 250 * Freeing a proc structure would violate type stability. 251 */ 252 static void 253 proc_fini(void *mem, int size) 254 { 255 #ifdef notnow 256 struct proc *p; 257 258 p = (struct proc *)mem; 259 EVENTHANDLER_INVOKE(process_fini, p); 260 pstats_free(p->p_stats); 261 thread_free(FIRST_THREAD_IN_PROC(p)); 262 mtx_destroy(&p->p_mtx); 263 if (p->p_ksi != NULL) 264 ksiginfo_free(p->p_ksi); 265 #else 266 panic("proc reclaimed"); 267 #endif 268 } 269 270 /* 271 * Is p an inferior of the current process? 272 */ 273 int 274 inferior(p) 275 register struct proc *p; 276 { 277 278 sx_assert(&proctree_lock, SX_LOCKED); 279 for (; p != curproc; p = p->p_pptr) 280 if (p->p_pid == 0) 281 return (0); 282 return (1); 283 } 284 285 /* 286 * Locate a process by number; return only "live" processes -- i.e., neither 287 * zombies nor newly born but incompletely initialized processes. By not 288 * returning processes in the PRS_NEW state, we allow callers to avoid 289 * testing for that condition to avoid dereferencing p_ucred, et al. 290 */ 291 struct proc * 292 pfind(pid) 293 register pid_t pid; 294 { 295 register struct proc *p; 296 297 sx_slock(&allproc_lock); 298 LIST_FOREACH(p, PIDHASH(pid), p_hash) 299 if (p->p_pid == pid) { 300 PROC_LOCK(p); 301 if (p->p_state == PRS_NEW) { 302 PROC_UNLOCK(p); 303 p = NULL; 304 } 305 break; 306 } 307 sx_sunlock(&allproc_lock); 308 return (p); 309 } 310 311 /* 312 * Locate a process group by number. 313 * The caller must hold proctree_lock. 314 */ 315 struct pgrp * 316 pgfind(pgid) 317 register pid_t pgid; 318 { 319 register struct pgrp *pgrp; 320 321 sx_assert(&proctree_lock, SX_LOCKED); 322 323 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 324 if (pgrp->pg_id == pgid) { 325 PGRP_LOCK(pgrp); 326 return (pgrp); 327 } 328 } 329 return (NULL); 330 } 331 332 /* 333 * Locate process and do additional manipulations, depending on flags. 334 */ 335 int 336 pget(pid_t pid, int flags, struct proc **pp) 337 { 338 struct proc *p; 339 int error; 340 341 p = pfind(pid); 342 if (p == NULL) 343 return (ESRCH); 344 if ((flags & PGET_CANSEE) != 0) { 345 error = p_cansee(curthread, p); 346 if (error != 0) 347 goto errout; 348 } 349 if ((flags & PGET_CANDEBUG) != 0) { 350 error = p_candebug(curthread, p); 351 if (error != 0) 352 goto errout; 353 } 354 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 355 error = EPERM; 356 goto errout; 357 } 358 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 359 error = ESRCH; 360 goto errout; 361 } 362 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 363 /* 364 * XXXRW: Not clear ESRCH is the right error during proc 365 * execve(). 366 */ 367 error = ESRCH; 368 goto errout; 369 } 370 if ((flags & PGET_HOLD) != 0) { 371 _PHOLD(p); 372 PROC_UNLOCK(p); 373 } 374 *pp = p; 375 return (0); 376 errout: 377 PROC_UNLOCK(p); 378 return (error); 379 } 380 381 /* 382 * Create a new process group. 383 * pgid must be equal to the pid of p. 384 * Begin a new session if required. 385 */ 386 int 387 enterpgrp(p, pgid, pgrp, sess) 388 register struct proc *p; 389 pid_t pgid; 390 struct pgrp *pgrp; 391 struct session *sess; 392 { 393 struct pgrp *pgrp2; 394 395 sx_assert(&proctree_lock, SX_XLOCKED); 396 397 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 398 KASSERT(p->p_pid == pgid, 399 ("enterpgrp: new pgrp and pid != pgid")); 400 401 pgrp2 = pgfind(pgid); 402 403 KASSERT(pgrp2 == NULL, 404 ("enterpgrp: pgrp with pgid exists")); 405 KASSERT(!SESS_LEADER(p), 406 ("enterpgrp: session leader attempted setpgrp")); 407 408 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 409 410 if (sess != NULL) { 411 /* 412 * new session 413 */ 414 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 415 PROC_LOCK(p); 416 p->p_flag &= ~P_CONTROLT; 417 PROC_UNLOCK(p); 418 PGRP_LOCK(pgrp); 419 sess->s_leader = p; 420 sess->s_sid = p->p_pid; 421 refcount_init(&sess->s_count, 1); 422 sess->s_ttyvp = NULL; 423 sess->s_ttydp = NULL; 424 sess->s_ttyp = NULL; 425 bcopy(p->p_session->s_login, sess->s_login, 426 sizeof(sess->s_login)); 427 pgrp->pg_session = sess; 428 KASSERT(p == curproc, 429 ("enterpgrp: mksession and p != curproc")); 430 } else { 431 pgrp->pg_session = p->p_session; 432 sess_hold(pgrp->pg_session); 433 PGRP_LOCK(pgrp); 434 } 435 pgrp->pg_id = pgid; 436 LIST_INIT(&pgrp->pg_members); 437 438 /* 439 * As we have an exclusive lock of proctree_lock, 440 * this should not deadlock. 441 */ 442 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 443 pgrp->pg_jobc = 0; 444 SLIST_INIT(&pgrp->pg_sigiolst); 445 PGRP_UNLOCK(pgrp); 446 447 doenterpgrp(p, pgrp); 448 449 return (0); 450 } 451 452 /* 453 * Move p to an existing process group 454 */ 455 int 456 enterthispgrp(p, pgrp) 457 register struct proc *p; 458 struct pgrp *pgrp; 459 { 460 461 sx_assert(&proctree_lock, SX_XLOCKED); 462 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 463 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 464 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 465 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 466 KASSERT(pgrp->pg_session == p->p_session, 467 ("%s: pgrp's session %p, p->p_session %p.\n", 468 __func__, 469 pgrp->pg_session, 470 p->p_session)); 471 KASSERT(pgrp != p->p_pgrp, 472 ("%s: p belongs to pgrp.", __func__)); 473 474 doenterpgrp(p, pgrp); 475 476 return (0); 477 } 478 479 /* 480 * Move p to a process group 481 */ 482 static void 483 doenterpgrp(p, pgrp) 484 struct proc *p; 485 struct pgrp *pgrp; 486 { 487 struct pgrp *savepgrp; 488 489 sx_assert(&proctree_lock, SX_XLOCKED); 490 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 491 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 492 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 493 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 494 495 savepgrp = p->p_pgrp; 496 497 /* 498 * Adjust eligibility of affected pgrps to participate in job control. 499 * Increment eligibility counts before decrementing, otherwise we 500 * could reach 0 spuriously during the first call. 501 */ 502 fixjobc(p, pgrp, 1); 503 fixjobc(p, p->p_pgrp, 0); 504 505 PGRP_LOCK(pgrp); 506 PGRP_LOCK(savepgrp); 507 PROC_LOCK(p); 508 LIST_REMOVE(p, p_pglist); 509 p->p_pgrp = pgrp; 510 PROC_UNLOCK(p); 511 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 512 PGRP_UNLOCK(savepgrp); 513 PGRP_UNLOCK(pgrp); 514 if (LIST_EMPTY(&savepgrp->pg_members)) 515 pgdelete(savepgrp); 516 } 517 518 /* 519 * remove process from process group 520 */ 521 int 522 leavepgrp(p) 523 register struct proc *p; 524 { 525 struct pgrp *savepgrp; 526 527 sx_assert(&proctree_lock, SX_XLOCKED); 528 savepgrp = p->p_pgrp; 529 PGRP_LOCK(savepgrp); 530 PROC_LOCK(p); 531 LIST_REMOVE(p, p_pglist); 532 p->p_pgrp = NULL; 533 PROC_UNLOCK(p); 534 PGRP_UNLOCK(savepgrp); 535 if (LIST_EMPTY(&savepgrp->pg_members)) 536 pgdelete(savepgrp); 537 return (0); 538 } 539 540 /* 541 * delete a process group 542 */ 543 static void 544 pgdelete(pgrp) 545 register struct pgrp *pgrp; 546 { 547 struct session *savesess; 548 struct tty *tp; 549 550 sx_assert(&proctree_lock, SX_XLOCKED); 551 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 552 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 553 554 /* 555 * Reset any sigio structures pointing to us as a result of 556 * F_SETOWN with our pgid. 557 */ 558 funsetownlst(&pgrp->pg_sigiolst); 559 560 PGRP_LOCK(pgrp); 561 tp = pgrp->pg_session->s_ttyp; 562 LIST_REMOVE(pgrp, pg_hash); 563 savesess = pgrp->pg_session; 564 PGRP_UNLOCK(pgrp); 565 566 /* Remove the reference to the pgrp before deallocating it. */ 567 if (tp != NULL) { 568 tty_lock(tp); 569 tty_rel_pgrp(tp, pgrp); 570 } 571 572 mtx_destroy(&pgrp->pg_mtx); 573 free(pgrp, M_PGRP); 574 sess_release(savesess); 575 } 576 577 static void 578 pgadjustjobc(pgrp, entering) 579 struct pgrp *pgrp; 580 int entering; 581 { 582 583 PGRP_LOCK(pgrp); 584 if (entering) 585 pgrp->pg_jobc++; 586 else { 587 --pgrp->pg_jobc; 588 if (pgrp->pg_jobc == 0) 589 orphanpg(pgrp); 590 } 591 PGRP_UNLOCK(pgrp); 592 } 593 594 /* 595 * Adjust pgrp jobc counters when specified process changes process group. 596 * We count the number of processes in each process group that "qualify" 597 * the group for terminal job control (those with a parent in a different 598 * process group of the same session). If that count reaches zero, the 599 * process group becomes orphaned. Check both the specified process' 600 * process group and that of its children. 601 * entering == 0 => p is leaving specified group. 602 * entering == 1 => p is entering specified group. 603 */ 604 void 605 fixjobc(p, pgrp, entering) 606 register struct proc *p; 607 register struct pgrp *pgrp; 608 int entering; 609 { 610 register struct pgrp *hispgrp; 611 register struct session *mysession; 612 613 sx_assert(&proctree_lock, SX_LOCKED); 614 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 615 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 616 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 617 618 /* 619 * Check p's parent to see whether p qualifies its own process 620 * group; if so, adjust count for p's process group. 621 */ 622 mysession = pgrp->pg_session; 623 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 624 hispgrp->pg_session == mysession) 625 pgadjustjobc(pgrp, entering); 626 627 /* 628 * Check this process' children to see whether they qualify 629 * their process groups; if so, adjust counts for children's 630 * process groups. 631 */ 632 LIST_FOREACH(p, &p->p_children, p_sibling) { 633 hispgrp = p->p_pgrp; 634 if (hispgrp == pgrp || 635 hispgrp->pg_session != mysession) 636 continue; 637 PROC_LOCK(p); 638 if (p->p_state == PRS_ZOMBIE) { 639 PROC_UNLOCK(p); 640 continue; 641 } 642 PROC_UNLOCK(p); 643 pgadjustjobc(hispgrp, entering); 644 } 645 } 646 647 /* 648 * A process group has become orphaned; 649 * if there are any stopped processes in the group, 650 * hang-up all process in that group. 651 */ 652 static void 653 orphanpg(pg) 654 struct pgrp *pg; 655 { 656 register struct proc *p; 657 658 PGRP_LOCK_ASSERT(pg, MA_OWNED); 659 660 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 661 PROC_LOCK(p); 662 if (P_SHOULDSTOP(p)) { 663 PROC_UNLOCK(p); 664 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 665 PROC_LOCK(p); 666 kern_psignal(p, SIGHUP); 667 kern_psignal(p, SIGCONT); 668 PROC_UNLOCK(p); 669 } 670 return; 671 } 672 PROC_UNLOCK(p); 673 } 674 } 675 676 void 677 sess_hold(struct session *s) 678 { 679 680 refcount_acquire(&s->s_count); 681 } 682 683 void 684 sess_release(struct session *s) 685 { 686 687 if (refcount_release(&s->s_count)) { 688 if (s->s_ttyp != NULL) { 689 tty_lock(s->s_ttyp); 690 tty_rel_sess(s->s_ttyp, s); 691 } 692 mtx_destroy(&s->s_mtx); 693 free(s, M_SESSION); 694 } 695 } 696 697 #include "opt_ddb.h" 698 #ifdef DDB 699 #include <ddb/ddb.h> 700 701 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 702 { 703 register struct pgrp *pgrp; 704 register struct proc *p; 705 register int i; 706 707 for (i = 0; i <= pgrphash; i++) { 708 if (!LIST_EMPTY(&pgrphashtbl[i])) { 709 printf("\tindx %d\n", i); 710 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 711 printf( 712 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 713 (void *)pgrp, (long)pgrp->pg_id, 714 (void *)pgrp->pg_session, 715 pgrp->pg_session->s_count, 716 (void *)LIST_FIRST(&pgrp->pg_members)); 717 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 718 printf("\t\tpid %ld addr %p pgrp %p\n", 719 (long)p->p_pid, (void *)p, 720 (void *)p->p_pgrp); 721 } 722 } 723 } 724 } 725 } 726 #endif /* DDB */ 727 728 /* 729 * Calculate the kinfo_proc members which contain process-wide 730 * informations. 731 * Must be called with the target process locked. 732 */ 733 static void 734 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 735 { 736 struct thread *td; 737 738 PROC_LOCK_ASSERT(p, MA_OWNED); 739 740 kp->ki_estcpu = 0; 741 kp->ki_pctcpu = 0; 742 FOREACH_THREAD_IN_PROC(p, td) { 743 thread_lock(td); 744 kp->ki_pctcpu += sched_pctcpu(td); 745 kp->ki_estcpu += td->td_estcpu; 746 thread_unlock(td); 747 } 748 } 749 750 /* 751 * Clear kinfo_proc and fill in any information that is common 752 * to all threads in the process. 753 * Must be called with the target process locked. 754 */ 755 static void 756 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 757 { 758 struct thread *td0; 759 struct tty *tp; 760 struct session *sp; 761 struct ucred *cred; 762 struct sigacts *ps; 763 764 PROC_LOCK_ASSERT(p, MA_OWNED); 765 bzero(kp, sizeof(*kp)); 766 767 kp->ki_structsize = sizeof(*kp); 768 kp->ki_paddr = p; 769 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 770 kp->ki_args = p->p_args; 771 kp->ki_textvp = p->p_textvp; 772 #ifdef KTRACE 773 kp->ki_tracep = p->p_tracevp; 774 kp->ki_traceflag = p->p_traceflag; 775 #endif 776 kp->ki_fd = p->p_fd; 777 kp->ki_vmspace = p->p_vmspace; 778 kp->ki_flag = p->p_flag; 779 cred = p->p_ucred; 780 if (cred) { 781 kp->ki_uid = cred->cr_uid; 782 kp->ki_ruid = cred->cr_ruid; 783 kp->ki_svuid = cred->cr_svuid; 784 kp->ki_cr_flags = 0; 785 if (cred->cr_flags & CRED_FLAG_CAPMODE) 786 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 787 /* XXX bde doesn't like KI_NGROUPS */ 788 if (cred->cr_ngroups > KI_NGROUPS) { 789 kp->ki_ngroups = KI_NGROUPS; 790 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 791 } else 792 kp->ki_ngroups = cred->cr_ngroups; 793 bcopy(cred->cr_groups, kp->ki_groups, 794 kp->ki_ngroups * sizeof(gid_t)); 795 kp->ki_rgid = cred->cr_rgid; 796 kp->ki_svgid = cred->cr_svgid; 797 /* If jailed(cred), emulate the old P_JAILED flag. */ 798 if (jailed(cred)) { 799 kp->ki_flag |= P_JAILED; 800 /* If inside the jail, use 0 as a jail ID. */ 801 if (cred->cr_prison != curthread->td_ucred->cr_prison) 802 kp->ki_jid = cred->cr_prison->pr_id; 803 } 804 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 805 sizeof(kp->ki_loginclass)); 806 } 807 ps = p->p_sigacts; 808 if (ps) { 809 mtx_lock(&ps->ps_mtx); 810 kp->ki_sigignore = ps->ps_sigignore; 811 kp->ki_sigcatch = ps->ps_sigcatch; 812 mtx_unlock(&ps->ps_mtx); 813 } 814 if (p->p_state != PRS_NEW && 815 p->p_state != PRS_ZOMBIE && 816 p->p_vmspace != NULL) { 817 struct vmspace *vm = p->p_vmspace; 818 819 kp->ki_size = vm->vm_map.size; 820 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 821 FOREACH_THREAD_IN_PROC(p, td0) { 822 if (!TD_IS_SWAPPED(td0)) 823 kp->ki_rssize += td0->td_kstack_pages; 824 } 825 kp->ki_swrss = vm->vm_swrss; 826 kp->ki_tsize = vm->vm_tsize; 827 kp->ki_dsize = vm->vm_dsize; 828 kp->ki_ssize = vm->vm_ssize; 829 } else if (p->p_state == PRS_ZOMBIE) 830 kp->ki_stat = SZOMB; 831 if (kp->ki_flag & P_INMEM) 832 kp->ki_sflag = PS_INMEM; 833 else 834 kp->ki_sflag = 0; 835 /* Calculate legacy swtime as seconds since 'swtick'. */ 836 kp->ki_swtime = (ticks - p->p_swtick) / hz; 837 kp->ki_pid = p->p_pid; 838 kp->ki_nice = p->p_nice; 839 kp->ki_start = p->p_stats->p_start; 840 timevaladd(&kp->ki_start, &boottime); 841 PROC_SLOCK(p); 842 rufetch(p, &kp->ki_rusage); 843 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 844 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 845 PROC_SUNLOCK(p); 846 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 847 /* Some callers want child times in a single value. */ 848 kp->ki_childtime = kp->ki_childstime; 849 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 850 851 tp = NULL; 852 if (p->p_pgrp) { 853 kp->ki_pgid = p->p_pgrp->pg_id; 854 kp->ki_jobc = p->p_pgrp->pg_jobc; 855 sp = p->p_pgrp->pg_session; 856 857 if (sp != NULL) { 858 kp->ki_sid = sp->s_sid; 859 SESS_LOCK(sp); 860 strlcpy(kp->ki_login, sp->s_login, 861 sizeof(kp->ki_login)); 862 if (sp->s_ttyvp) 863 kp->ki_kiflag |= KI_CTTY; 864 if (SESS_LEADER(p)) 865 kp->ki_kiflag |= KI_SLEADER; 866 /* XXX proctree_lock */ 867 tp = sp->s_ttyp; 868 SESS_UNLOCK(sp); 869 } 870 } 871 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 872 kp->ki_tdev = tty_udev(tp); 873 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 874 if (tp->t_session) 875 kp->ki_tsid = tp->t_session->s_sid; 876 } else 877 kp->ki_tdev = NODEV; 878 if (p->p_comm[0] != '\0') 879 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 880 if (p->p_sysent && p->p_sysent->sv_name != NULL && 881 p->p_sysent->sv_name[0] != '\0') 882 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 883 kp->ki_siglist = p->p_siglist; 884 kp->ki_xstat = p->p_xstat; 885 kp->ki_acflag = p->p_acflag; 886 kp->ki_lock = p->p_lock; 887 if (p->p_pptr) 888 kp->ki_ppid = p->p_pptr->p_pid; 889 } 890 891 /* 892 * Fill in information that is thread specific. Must be called with 893 * target process locked. If 'preferthread' is set, overwrite certain 894 * process-related fields that are maintained for both threads and 895 * processes. 896 */ 897 static void 898 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 899 { 900 struct proc *p; 901 902 p = td->td_proc; 903 kp->ki_tdaddr = td; 904 PROC_LOCK_ASSERT(p, MA_OWNED); 905 906 if (preferthread) 907 PROC_SLOCK(p); 908 thread_lock(td); 909 if (td->td_wmesg != NULL) 910 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 911 else 912 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 913 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 914 if (TD_ON_LOCK(td)) { 915 kp->ki_kiflag |= KI_LOCKBLOCK; 916 strlcpy(kp->ki_lockname, td->td_lockname, 917 sizeof(kp->ki_lockname)); 918 } else { 919 kp->ki_kiflag &= ~KI_LOCKBLOCK; 920 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 921 } 922 923 if (p->p_state == PRS_NORMAL) { /* approximate. */ 924 if (TD_ON_RUNQ(td) || 925 TD_CAN_RUN(td) || 926 TD_IS_RUNNING(td)) { 927 kp->ki_stat = SRUN; 928 } else if (P_SHOULDSTOP(p)) { 929 kp->ki_stat = SSTOP; 930 } else if (TD_IS_SLEEPING(td)) { 931 kp->ki_stat = SSLEEP; 932 } else if (TD_ON_LOCK(td)) { 933 kp->ki_stat = SLOCK; 934 } else { 935 kp->ki_stat = SWAIT; 936 } 937 } else if (p->p_state == PRS_ZOMBIE) { 938 kp->ki_stat = SZOMB; 939 } else { 940 kp->ki_stat = SIDL; 941 } 942 943 /* Things in the thread */ 944 kp->ki_wchan = td->td_wchan; 945 kp->ki_pri.pri_level = td->td_priority; 946 kp->ki_pri.pri_native = td->td_base_pri; 947 kp->ki_lastcpu = td->td_lastcpu; 948 kp->ki_oncpu = td->td_oncpu; 949 kp->ki_tdflags = td->td_flags; 950 kp->ki_tid = td->td_tid; 951 kp->ki_numthreads = p->p_numthreads; 952 kp->ki_pcb = td->td_pcb; 953 kp->ki_kstack = (void *)td->td_kstack; 954 kp->ki_slptime = (ticks - td->td_slptick) / hz; 955 kp->ki_pri.pri_class = td->td_pri_class; 956 kp->ki_pri.pri_user = td->td_user_pri; 957 958 if (preferthread) { 959 rufetchtd(td, &kp->ki_rusage); 960 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 961 kp->ki_pctcpu = sched_pctcpu(td); 962 kp->ki_estcpu = td->td_estcpu; 963 } 964 965 /* We can't get this anymore but ps etc never used it anyway. */ 966 kp->ki_rqindex = 0; 967 968 if (preferthread) 969 kp->ki_siglist = td->td_siglist; 970 kp->ki_sigmask = td->td_sigmask; 971 thread_unlock(td); 972 if (preferthread) 973 PROC_SUNLOCK(p); 974 } 975 976 /* 977 * Fill in a kinfo_proc structure for the specified process. 978 * Must be called with the target process locked. 979 */ 980 void 981 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 982 { 983 984 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 985 986 fill_kinfo_proc_only(p, kp); 987 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 988 fill_kinfo_aggregate(p, kp); 989 } 990 991 struct pstats * 992 pstats_alloc(void) 993 { 994 995 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 996 } 997 998 /* 999 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1000 */ 1001 void 1002 pstats_fork(struct pstats *src, struct pstats *dst) 1003 { 1004 1005 bzero(&dst->pstat_startzero, 1006 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1007 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1008 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1009 } 1010 1011 void 1012 pstats_free(struct pstats *ps) 1013 { 1014 1015 free(ps, M_SUBPROC); 1016 } 1017 1018 /* 1019 * Locate a zombie process by number 1020 */ 1021 struct proc * 1022 zpfind(pid_t pid) 1023 { 1024 struct proc *p; 1025 1026 sx_slock(&allproc_lock); 1027 LIST_FOREACH(p, &zombproc, p_list) 1028 if (p->p_pid == pid) { 1029 PROC_LOCK(p); 1030 break; 1031 } 1032 sx_sunlock(&allproc_lock); 1033 return (p); 1034 } 1035 1036 #define KERN_PROC_ZOMBMASK 0x3 1037 #define KERN_PROC_NOTHREADS 0x4 1038 1039 #ifdef COMPAT_FREEBSD32 1040 1041 /* 1042 * This function is typically used to copy out the kernel address, so 1043 * it can be replaced by assignment of zero. 1044 */ 1045 static inline uint32_t 1046 ptr32_trim(void *ptr) 1047 { 1048 uintptr_t uptr; 1049 1050 uptr = (uintptr_t)ptr; 1051 return ((uptr > UINT_MAX) ? 0 : uptr); 1052 } 1053 1054 #define PTRTRIM_CP(src,dst,fld) \ 1055 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1056 1057 static void 1058 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1059 { 1060 int i; 1061 1062 bzero(ki32, sizeof(struct kinfo_proc32)); 1063 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1064 CP(*ki, *ki32, ki_layout); 1065 PTRTRIM_CP(*ki, *ki32, ki_args); 1066 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1067 PTRTRIM_CP(*ki, *ki32, ki_addr); 1068 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1069 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1070 PTRTRIM_CP(*ki, *ki32, ki_fd); 1071 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1072 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1073 CP(*ki, *ki32, ki_pid); 1074 CP(*ki, *ki32, ki_ppid); 1075 CP(*ki, *ki32, ki_pgid); 1076 CP(*ki, *ki32, ki_tpgid); 1077 CP(*ki, *ki32, ki_sid); 1078 CP(*ki, *ki32, ki_tsid); 1079 CP(*ki, *ki32, ki_jobc); 1080 CP(*ki, *ki32, ki_tdev); 1081 CP(*ki, *ki32, ki_siglist); 1082 CP(*ki, *ki32, ki_sigmask); 1083 CP(*ki, *ki32, ki_sigignore); 1084 CP(*ki, *ki32, ki_sigcatch); 1085 CP(*ki, *ki32, ki_uid); 1086 CP(*ki, *ki32, ki_ruid); 1087 CP(*ki, *ki32, ki_svuid); 1088 CP(*ki, *ki32, ki_rgid); 1089 CP(*ki, *ki32, ki_svgid); 1090 CP(*ki, *ki32, ki_ngroups); 1091 for (i = 0; i < KI_NGROUPS; i++) 1092 CP(*ki, *ki32, ki_groups[i]); 1093 CP(*ki, *ki32, ki_size); 1094 CP(*ki, *ki32, ki_rssize); 1095 CP(*ki, *ki32, ki_swrss); 1096 CP(*ki, *ki32, ki_tsize); 1097 CP(*ki, *ki32, ki_dsize); 1098 CP(*ki, *ki32, ki_ssize); 1099 CP(*ki, *ki32, ki_xstat); 1100 CP(*ki, *ki32, ki_acflag); 1101 CP(*ki, *ki32, ki_pctcpu); 1102 CP(*ki, *ki32, ki_estcpu); 1103 CP(*ki, *ki32, ki_slptime); 1104 CP(*ki, *ki32, ki_swtime); 1105 CP(*ki, *ki32, ki_runtime); 1106 TV_CP(*ki, *ki32, ki_start); 1107 TV_CP(*ki, *ki32, ki_childtime); 1108 CP(*ki, *ki32, ki_flag); 1109 CP(*ki, *ki32, ki_kiflag); 1110 CP(*ki, *ki32, ki_traceflag); 1111 CP(*ki, *ki32, ki_stat); 1112 CP(*ki, *ki32, ki_nice); 1113 CP(*ki, *ki32, ki_lock); 1114 CP(*ki, *ki32, ki_rqindex); 1115 CP(*ki, *ki32, ki_oncpu); 1116 CP(*ki, *ki32, ki_lastcpu); 1117 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1118 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1119 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1120 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1121 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1122 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1123 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1124 CP(*ki, *ki32, ki_cr_flags); 1125 CP(*ki, *ki32, ki_jid); 1126 CP(*ki, *ki32, ki_numthreads); 1127 CP(*ki, *ki32, ki_tid); 1128 CP(*ki, *ki32, ki_pri); 1129 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1130 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1131 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1132 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1133 PTRTRIM_CP(*ki, *ki32, ki_udata); 1134 CP(*ki, *ki32, ki_sflag); 1135 CP(*ki, *ki32, ki_tdflags); 1136 } 1137 1138 static int 1139 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1140 { 1141 struct kinfo_proc32 ki32; 1142 int error; 1143 1144 if (req->flags & SCTL_MASK32) { 1145 freebsd32_kinfo_proc_out(ki, &ki32); 1146 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1147 } else 1148 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1149 return (error); 1150 } 1151 #else 1152 static int 1153 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1154 { 1155 1156 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1157 } 1158 #endif 1159 1160 /* 1161 * Must be called with the process locked and will return with it unlocked. 1162 */ 1163 static int 1164 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1165 { 1166 struct thread *td; 1167 struct kinfo_proc kinfo_proc; 1168 int error = 0; 1169 struct proc *np; 1170 pid_t pid = p->p_pid; 1171 1172 PROC_LOCK_ASSERT(p, MA_OWNED); 1173 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1174 1175 fill_kinfo_proc(p, &kinfo_proc); 1176 if (flags & KERN_PROC_NOTHREADS) 1177 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1178 else { 1179 FOREACH_THREAD_IN_PROC(p, td) { 1180 fill_kinfo_thread(td, &kinfo_proc, 1); 1181 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1182 if (error) 1183 break; 1184 } 1185 } 1186 PROC_UNLOCK(p); 1187 if (error) 1188 return (error); 1189 if (flags & KERN_PROC_ZOMBMASK) 1190 np = zpfind(pid); 1191 else { 1192 if (pid == 0) 1193 return (0); 1194 np = pfind(pid); 1195 } 1196 if (np == NULL) 1197 return (ESRCH); 1198 if (np != p) { 1199 PROC_UNLOCK(np); 1200 return (ESRCH); 1201 } 1202 PROC_UNLOCK(np); 1203 return (0); 1204 } 1205 1206 static int 1207 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1208 { 1209 int *name = (int *)arg1; 1210 u_int namelen = arg2; 1211 struct proc *p; 1212 int flags, doingzomb, oid_number; 1213 int error = 0; 1214 1215 oid_number = oidp->oid_number; 1216 if (oid_number != KERN_PROC_ALL && 1217 (oid_number & KERN_PROC_INC_THREAD) == 0) 1218 flags = KERN_PROC_NOTHREADS; 1219 else { 1220 flags = 0; 1221 oid_number &= ~KERN_PROC_INC_THREAD; 1222 } 1223 if (oid_number == KERN_PROC_PID) { 1224 if (namelen != 1) 1225 return (EINVAL); 1226 error = sysctl_wire_old_buffer(req, 0); 1227 if (error) 1228 return (error); 1229 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1230 if (error != 0) 1231 return (error); 1232 error = sysctl_out_proc(p, req, flags); 1233 return (error); 1234 } 1235 1236 switch (oid_number) { 1237 case KERN_PROC_ALL: 1238 if (namelen != 0) 1239 return (EINVAL); 1240 break; 1241 case KERN_PROC_PROC: 1242 if (namelen != 0 && namelen != 1) 1243 return (EINVAL); 1244 break; 1245 default: 1246 if (namelen != 1) 1247 return (EINVAL); 1248 break; 1249 } 1250 1251 if (!req->oldptr) { 1252 /* overestimate by 5 procs */ 1253 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1254 if (error) 1255 return (error); 1256 } 1257 error = sysctl_wire_old_buffer(req, 0); 1258 if (error != 0) 1259 return (error); 1260 sx_slock(&allproc_lock); 1261 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1262 if (!doingzomb) 1263 p = LIST_FIRST(&allproc); 1264 else 1265 p = LIST_FIRST(&zombproc); 1266 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1267 /* 1268 * Skip embryonic processes. 1269 */ 1270 PROC_LOCK(p); 1271 if (p->p_state == PRS_NEW) { 1272 PROC_UNLOCK(p); 1273 continue; 1274 } 1275 KASSERT(p->p_ucred != NULL, 1276 ("process credential is NULL for non-NEW proc")); 1277 /* 1278 * Show a user only appropriate processes. 1279 */ 1280 if (p_cansee(curthread, p)) { 1281 PROC_UNLOCK(p); 1282 continue; 1283 } 1284 /* 1285 * TODO - make more efficient (see notes below). 1286 * do by session. 1287 */ 1288 switch (oid_number) { 1289 1290 case KERN_PROC_GID: 1291 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1292 PROC_UNLOCK(p); 1293 continue; 1294 } 1295 break; 1296 1297 case KERN_PROC_PGRP: 1298 /* could do this by traversing pgrp */ 1299 if (p->p_pgrp == NULL || 1300 p->p_pgrp->pg_id != (pid_t)name[0]) { 1301 PROC_UNLOCK(p); 1302 continue; 1303 } 1304 break; 1305 1306 case KERN_PROC_RGID: 1307 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1308 PROC_UNLOCK(p); 1309 continue; 1310 } 1311 break; 1312 1313 case KERN_PROC_SESSION: 1314 if (p->p_session == NULL || 1315 p->p_session->s_sid != (pid_t)name[0]) { 1316 PROC_UNLOCK(p); 1317 continue; 1318 } 1319 break; 1320 1321 case KERN_PROC_TTY: 1322 if ((p->p_flag & P_CONTROLT) == 0 || 1323 p->p_session == NULL) { 1324 PROC_UNLOCK(p); 1325 continue; 1326 } 1327 /* XXX proctree_lock */ 1328 SESS_LOCK(p->p_session); 1329 if (p->p_session->s_ttyp == NULL || 1330 tty_udev(p->p_session->s_ttyp) != 1331 (dev_t)name[0]) { 1332 SESS_UNLOCK(p->p_session); 1333 PROC_UNLOCK(p); 1334 continue; 1335 } 1336 SESS_UNLOCK(p->p_session); 1337 break; 1338 1339 case KERN_PROC_UID: 1340 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1341 PROC_UNLOCK(p); 1342 continue; 1343 } 1344 break; 1345 1346 case KERN_PROC_RUID: 1347 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1348 PROC_UNLOCK(p); 1349 continue; 1350 } 1351 break; 1352 1353 case KERN_PROC_PROC: 1354 break; 1355 1356 default: 1357 break; 1358 1359 } 1360 1361 error = sysctl_out_proc(p, req, flags | doingzomb); 1362 if (error) { 1363 sx_sunlock(&allproc_lock); 1364 return (error); 1365 } 1366 } 1367 } 1368 sx_sunlock(&allproc_lock); 1369 return (0); 1370 } 1371 1372 struct pargs * 1373 pargs_alloc(int len) 1374 { 1375 struct pargs *pa; 1376 1377 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1378 M_WAITOK); 1379 refcount_init(&pa->ar_ref, 1); 1380 pa->ar_length = len; 1381 return (pa); 1382 } 1383 1384 static void 1385 pargs_free(struct pargs *pa) 1386 { 1387 1388 free(pa, M_PARGS); 1389 } 1390 1391 void 1392 pargs_hold(struct pargs *pa) 1393 { 1394 1395 if (pa == NULL) 1396 return; 1397 refcount_acquire(&pa->ar_ref); 1398 } 1399 1400 void 1401 pargs_drop(struct pargs *pa) 1402 { 1403 1404 if (pa == NULL) 1405 return; 1406 if (refcount_release(&pa->ar_ref)) 1407 pargs_free(pa); 1408 } 1409 1410 static int 1411 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1412 size_t len) 1413 { 1414 struct iovec iov; 1415 struct uio uio; 1416 1417 iov.iov_base = (caddr_t)buf; 1418 iov.iov_len = len; 1419 uio.uio_iov = &iov; 1420 uio.uio_iovcnt = 1; 1421 uio.uio_offset = offset; 1422 uio.uio_resid = (ssize_t)len; 1423 uio.uio_segflg = UIO_SYSSPACE; 1424 uio.uio_rw = UIO_READ; 1425 uio.uio_td = td; 1426 1427 return (proc_rwmem(p, &uio)); 1428 } 1429 1430 static int 1431 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1432 size_t len) 1433 { 1434 size_t i; 1435 int error; 1436 1437 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1438 /* 1439 * Reading the chunk may validly return EFAULT if the string is shorter 1440 * than the chunk and is aligned at the end of the page, assuming the 1441 * next page is not mapped. So if EFAULT is returned do a fallback to 1442 * one byte read loop. 1443 */ 1444 if (error == EFAULT) { 1445 for (i = 0; i < len; i++, buf++, sptr++) { 1446 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1447 if (error != 0) 1448 return (error); 1449 if (*buf == '\0') 1450 break; 1451 } 1452 error = 0; 1453 } 1454 return (error); 1455 } 1456 1457 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1458 1459 enum proc_vector_type { 1460 PROC_ARG, 1461 PROC_ENV, 1462 PROC_AUX, 1463 }; 1464 1465 #ifdef COMPAT_FREEBSD32 1466 static int 1467 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1468 size_t *vsizep, enum proc_vector_type type) 1469 { 1470 struct freebsd32_ps_strings pss; 1471 Elf32_Auxinfo aux; 1472 vm_offset_t vptr, ptr; 1473 uint32_t *proc_vector32; 1474 char **proc_vector; 1475 size_t vsize, size; 1476 int i, error; 1477 1478 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1479 &pss, sizeof(pss)); 1480 if (error != 0) 1481 return (error); 1482 switch (type) { 1483 case PROC_ARG: 1484 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1485 vsize = pss.ps_nargvstr; 1486 if (vsize > ARG_MAX) 1487 return (ENOEXEC); 1488 size = vsize * sizeof(int32_t); 1489 break; 1490 case PROC_ENV: 1491 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1492 vsize = pss.ps_nenvstr; 1493 if (vsize > ARG_MAX) 1494 return (ENOEXEC); 1495 size = vsize * sizeof(int32_t); 1496 break; 1497 case PROC_AUX: 1498 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1499 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1500 if (vptr % 4 != 0) 1501 return (ENOEXEC); 1502 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1503 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1504 if (error != 0) 1505 return (error); 1506 if (aux.a_type == AT_NULL) 1507 break; 1508 ptr += sizeof(aux); 1509 } 1510 if (aux.a_type != AT_NULL) 1511 return (ENOEXEC); 1512 vsize = i + 1; 1513 size = vsize * sizeof(aux); 1514 break; 1515 default: 1516 KASSERT(0, ("Wrong proc vector type: %d", type)); 1517 return (EINVAL); 1518 } 1519 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1520 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1521 if (error != 0) 1522 goto done; 1523 if (type == PROC_AUX) { 1524 *proc_vectorp = (char **)proc_vector32; 1525 *vsizep = vsize; 1526 return (0); 1527 } 1528 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1529 for (i = 0; i < (int)vsize; i++) 1530 proc_vector[i] = PTRIN(proc_vector32[i]); 1531 *proc_vectorp = proc_vector; 1532 *vsizep = vsize; 1533 done: 1534 free(proc_vector32, M_TEMP); 1535 return (error); 1536 } 1537 #endif 1538 1539 static int 1540 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1541 size_t *vsizep, enum proc_vector_type type) 1542 { 1543 struct ps_strings pss; 1544 Elf_Auxinfo aux; 1545 vm_offset_t vptr, ptr; 1546 char **proc_vector; 1547 size_t vsize, size; 1548 int error, i; 1549 1550 #ifdef COMPAT_FREEBSD32 1551 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1552 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1553 #endif 1554 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1555 &pss, sizeof(pss)); 1556 if (error != 0) 1557 return (error); 1558 switch (type) { 1559 case PROC_ARG: 1560 vptr = (vm_offset_t)pss.ps_argvstr; 1561 vsize = pss.ps_nargvstr; 1562 if (vsize > ARG_MAX) 1563 return (ENOEXEC); 1564 size = vsize * sizeof(char *); 1565 break; 1566 case PROC_ENV: 1567 vptr = (vm_offset_t)pss.ps_envstr; 1568 vsize = pss.ps_nenvstr; 1569 if (vsize > ARG_MAX) 1570 return (ENOEXEC); 1571 size = vsize * sizeof(char *); 1572 break; 1573 case PROC_AUX: 1574 /* 1575 * The aux array is just above env array on the stack. Check 1576 * that the address is naturally aligned. 1577 */ 1578 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1579 * sizeof(char *); 1580 #if __ELF_WORD_SIZE == 64 1581 if (vptr % sizeof(uint64_t) != 0) 1582 #else 1583 if (vptr % sizeof(uint32_t) != 0) 1584 #endif 1585 return (ENOEXEC); 1586 /* 1587 * We count the array size reading the aux vectors from the 1588 * stack until AT_NULL vector is returned. So (to keep the code 1589 * simple) we read the process stack twice: the first time here 1590 * to find the size and the second time when copying the vectors 1591 * to the allocated proc_vector. 1592 */ 1593 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1594 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1595 if (error != 0) 1596 return (error); 1597 if (aux.a_type == AT_NULL) 1598 break; 1599 ptr += sizeof(aux); 1600 } 1601 /* 1602 * If the PROC_AUXV_MAX entries are iterated over, and we have 1603 * not reached AT_NULL, it is most likely we are reading wrong 1604 * data: either the process doesn't have auxv array or data has 1605 * been modified. Return the error in this case. 1606 */ 1607 if (aux.a_type != AT_NULL) 1608 return (ENOEXEC); 1609 vsize = i + 1; 1610 size = vsize * sizeof(aux); 1611 break; 1612 default: 1613 KASSERT(0, ("Wrong proc vector type: %d", type)); 1614 return (EINVAL); /* In case we are built without INVARIANTS. */ 1615 } 1616 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1617 if (proc_vector == NULL) 1618 return (ENOMEM); 1619 error = proc_read_mem(td, p, vptr, proc_vector, size); 1620 if (error != 0) { 1621 free(proc_vector, M_TEMP); 1622 return (error); 1623 } 1624 *proc_vectorp = proc_vector; 1625 *vsizep = vsize; 1626 1627 return (0); 1628 } 1629 1630 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1631 1632 static int 1633 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1634 enum proc_vector_type type, size_t nchr) 1635 { 1636 size_t done, len, vsize; 1637 int error, i; 1638 char **proc_vector, *sptr; 1639 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1640 1641 PROC_ASSERT_HELD(p); 1642 1643 /* 1644 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1645 */ 1646 if (nchr > 2 * (PATH_MAX + ARG_MAX)) 1647 nchr = 2 * (PATH_MAX + ARG_MAX); 1648 1649 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1650 if (error != 0) 1651 return (error); 1652 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1653 /* 1654 * The program may have scribbled into its argv array, e.g. to 1655 * remove some arguments. If that has happened, break out 1656 * before trying to read from NULL. 1657 */ 1658 if (proc_vector[i] == NULL) 1659 break; 1660 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1661 error = proc_read_string(td, p, sptr, pss_string, 1662 sizeof(pss_string)); 1663 if (error != 0) 1664 goto done; 1665 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1666 if (done + len >= nchr) 1667 len = nchr - done - 1; 1668 sbuf_bcat(sb, pss_string, len); 1669 if (len != GET_PS_STRINGS_CHUNK_SZ) 1670 break; 1671 done += GET_PS_STRINGS_CHUNK_SZ; 1672 } 1673 sbuf_bcat(sb, "", 1); 1674 done += len + 1; 1675 } 1676 done: 1677 free(proc_vector, M_TEMP); 1678 return (error); 1679 } 1680 1681 int 1682 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb, size_t nchr) 1683 { 1684 1685 return (get_ps_strings(curthread, p, sb, PROC_ARG, nchr)); 1686 } 1687 1688 int 1689 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb, size_t nchr) 1690 { 1691 1692 return (get_ps_strings(curthread, p, sb, PROC_ENV, nchr)); 1693 } 1694 1695 /* 1696 * This sysctl allows a process to retrieve the argument list or process 1697 * title for another process without groping around in the address space 1698 * of the other process. It also allow a process to set its own "process 1699 * title to a string of its own choice. 1700 */ 1701 static int 1702 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1703 { 1704 int *name = (int *)arg1; 1705 u_int namelen = arg2; 1706 struct pargs *newpa, *pa; 1707 struct proc *p; 1708 struct sbuf sb; 1709 int flags, error = 0, error2; 1710 1711 if (namelen != 1) 1712 return (EINVAL); 1713 1714 flags = PGET_CANSEE; 1715 if (req->newptr != NULL) 1716 flags |= PGET_ISCURRENT; 1717 error = pget((pid_t)name[0], flags, &p); 1718 if (error) 1719 return (error); 1720 1721 pa = p->p_args; 1722 if (pa != NULL) { 1723 pargs_hold(pa); 1724 PROC_UNLOCK(p); 1725 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1726 pargs_drop(pa); 1727 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1728 _PHOLD(p); 1729 PROC_UNLOCK(p); 1730 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1731 error = proc_getargv(curthread, p, &sb, req->oldlen); 1732 error2 = sbuf_finish(&sb); 1733 PRELE(p); 1734 sbuf_delete(&sb); 1735 if (error == 0 && error2 != 0) 1736 error = error2; 1737 } else { 1738 PROC_UNLOCK(p); 1739 } 1740 if (error != 0 || req->newptr == NULL) 1741 return (error); 1742 1743 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1744 return (ENOMEM); 1745 newpa = pargs_alloc(req->newlen); 1746 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1747 if (error != 0) { 1748 pargs_free(newpa); 1749 return (error); 1750 } 1751 PROC_LOCK(p); 1752 pa = p->p_args; 1753 p->p_args = newpa; 1754 PROC_UNLOCK(p); 1755 pargs_drop(pa); 1756 return (0); 1757 } 1758 1759 /* 1760 * This sysctl allows a process to retrieve environment of another process. 1761 */ 1762 static int 1763 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1764 { 1765 int *name = (int *)arg1; 1766 u_int namelen = arg2; 1767 struct proc *p; 1768 struct sbuf sb; 1769 int error, error2; 1770 1771 if (namelen != 1) 1772 return (EINVAL); 1773 1774 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1775 if (error != 0) 1776 return (error); 1777 if ((p->p_flag & P_SYSTEM) != 0) { 1778 PRELE(p); 1779 return (0); 1780 } 1781 1782 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1783 error = proc_getenvv(curthread, p, &sb, req->oldlen); 1784 error2 = sbuf_finish(&sb); 1785 PRELE(p); 1786 sbuf_delete(&sb); 1787 return (error != 0 ? error : error2); 1788 } 1789 1790 /* 1791 * This sysctl allows a process to retrieve ELF auxiliary vector of 1792 * another process. 1793 */ 1794 static int 1795 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1796 { 1797 int *name = (int *)arg1; 1798 u_int namelen = arg2; 1799 struct proc *p; 1800 size_t vsize, size; 1801 char **auxv; 1802 int error; 1803 1804 if (namelen != 1) 1805 return (EINVAL); 1806 1807 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1808 if (error != 0) 1809 return (error); 1810 if ((p->p_flag & P_SYSTEM) != 0) { 1811 PRELE(p); 1812 return (0); 1813 } 1814 error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX); 1815 if (error == 0) { 1816 #ifdef COMPAT_FREEBSD32 1817 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1818 size = vsize * sizeof(Elf32_Auxinfo); 1819 else 1820 #endif 1821 size = vsize * sizeof(Elf_Auxinfo); 1822 PRELE(p); 1823 error = SYSCTL_OUT(req, auxv, size); 1824 free(auxv, M_TEMP); 1825 } else { 1826 PRELE(p); 1827 } 1828 return (error); 1829 } 1830 1831 /* 1832 * This sysctl allows a process to retrieve the path of the executable for 1833 * itself or another process. 1834 */ 1835 static int 1836 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1837 { 1838 pid_t *pidp = (pid_t *)arg1; 1839 unsigned int arglen = arg2; 1840 struct proc *p; 1841 struct vnode *vp; 1842 char *retbuf, *freebuf; 1843 int error, vfslocked; 1844 1845 if (arglen != 1) 1846 return (EINVAL); 1847 if (*pidp == -1) { /* -1 means this process */ 1848 p = req->td->td_proc; 1849 } else { 1850 error = pget(*pidp, PGET_CANSEE, &p); 1851 if (error != 0) 1852 return (error); 1853 } 1854 1855 vp = p->p_textvp; 1856 if (vp == NULL) { 1857 if (*pidp != -1) 1858 PROC_UNLOCK(p); 1859 return (0); 1860 } 1861 vref(vp); 1862 if (*pidp != -1) 1863 PROC_UNLOCK(p); 1864 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1865 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1866 vrele(vp); 1867 VFS_UNLOCK_GIANT(vfslocked); 1868 if (error) 1869 return (error); 1870 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1871 free(freebuf, M_TEMP); 1872 return (error); 1873 } 1874 1875 static int 1876 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1877 { 1878 struct proc *p; 1879 char *sv_name; 1880 int *name; 1881 int namelen; 1882 int error; 1883 1884 namelen = arg2; 1885 if (namelen != 1) 1886 return (EINVAL); 1887 1888 name = (int *)arg1; 1889 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1890 if (error != 0) 1891 return (error); 1892 sv_name = p->p_sysent->sv_name; 1893 PROC_UNLOCK(p); 1894 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1895 } 1896 1897 #ifdef KINFO_OVMENTRY_SIZE 1898 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1899 #endif 1900 1901 #ifdef COMPAT_FREEBSD7 1902 static int 1903 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1904 { 1905 vm_map_entry_t entry, tmp_entry; 1906 unsigned int last_timestamp; 1907 char *fullpath, *freepath; 1908 struct kinfo_ovmentry *kve; 1909 struct vattr va; 1910 struct ucred *cred; 1911 int error, *name; 1912 struct vnode *vp; 1913 struct proc *p; 1914 vm_map_t map; 1915 struct vmspace *vm; 1916 1917 name = (int *)arg1; 1918 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1919 if (error != 0) 1920 return (error); 1921 vm = vmspace_acquire_ref(p); 1922 if (vm == NULL) { 1923 PRELE(p); 1924 return (ESRCH); 1925 } 1926 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1927 1928 map = &vm->vm_map; 1929 vm_map_lock_read(map); 1930 for (entry = map->header.next; entry != &map->header; 1931 entry = entry->next) { 1932 vm_object_t obj, tobj, lobj; 1933 vm_offset_t addr; 1934 int vfslocked; 1935 1936 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1937 continue; 1938 1939 bzero(kve, sizeof(*kve)); 1940 kve->kve_structsize = sizeof(*kve); 1941 1942 kve->kve_private_resident = 0; 1943 obj = entry->object.vm_object; 1944 if (obj != NULL) { 1945 VM_OBJECT_LOCK(obj); 1946 if (obj->shadow_count == 1) 1947 kve->kve_private_resident = 1948 obj->resident_page_count; 1949 } 1950 kve->kve_resident = 0; 1951 addr = entry->start; 1952 while (addr < entry->end) { 1953 if (pmap_extract(map->pmap, addr)) 1954 kve->kve_resident++; 1955 addr += PAGE_SIZE; 1956 } 1957 1958 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1959 if (tobj != obj) 1960 VM_OBJECT_LOCK(tobj); 1961 if (lobj != obj) 1962 VM_OBJECT_UNLOCK(lobj); 1963 lobj = tobj; 1964 } 1965 1966 kve->kve_start = (void*)entry->start; 1967 kve->kve_end = (void*)entry->end; 1968 kve->kve_offset = (off_t)entry->offset; 1969 1970 if (entry->protection & VM_PROT_READ) 1971 kve->kve_protection |= KVME_PROT_READ; 1972 if (entry->protection & VM_PROT_WRITE) 1973 kve->kve_protection |= KVME_PROT_WRITE; 1974 if (entry->protection & VM_PROT_EXECUTE) 1975 kve->kve_protection |= KVME_PROT_EXEC; 1976 1977 if (entry->eflags & MAP_ENTRY_COW) 1978 kve->kve_flags |= KVME_FLAG_COW; 1979 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1980 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1981 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1982 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1983 1984 last_timestamp = map->timestamp; 1985 vm_map_unlock_read(map); 1986 1987 kve->kve_fileid = 0; 1988 kve->kve_fsid = 0; 1989 freepath = NULL; 1990 fullpath = ""; 1991 if (lobj) { 1992 vp = NULL; 1993 switch (lobj->type) { 1994 case OBJT_DEFAULT: 1995 kve->kve_type = KVME_TYPE_DEFAULT; 1996 break; 1997 case OBJT_VNODE: 1998 kve->kve_type = KVME_TYPE_VNODE; 1999 vp = lobj->handle; 2000 vref(vp); 2001 break; 2002 case OBJT_SWAP: 2003 kve->kve_type = KVME_TYPE_SWAP; 2004 break; 2005 case OBJT_DEVICE: 2006 kve->kve_type = KVME_TYPE_DEVICE; 2007 break; 2008 case OBJT_PHYS: 2009 kve->kve_type = KVME_TYPE_PHYS; 2010 break; 2011 case OBJT_DEAD: 2012 kve->kve_type = KVME_TYPE_DEAD; 2013 break; 2014 case OBJT_SG: 2015 kve->kve_type = KVME_TYPE_SG; 2016 break; 2017 default: 2018 kve->kve_type = KVME_TYPE_UNKNOWN; 2019 break; 2020 } 2021 if (lobj != obj) 2022 VM_OBJECT_UNLOCK(lobj); 2023 2024 kve->kve_ref_count = obj->ref_count; 2025 kve->kve_shadow_count = obj->shadow_count; 2026 VM_OBJECT_UNLOCK(obj); 2027 if (vp != NULL) { 2028 vn_fullpath(curthread, vp, &fullpath, 2029 &freepath); 2030 cred = curthread->td_ucred; 2031 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2032 vn_lock(vp, LK_SHARED | LK_RETRY); 2033 if (VOP_GETATTR(vp, &va, cred) == 0) { 2034 kve->kve_fileid = va.va_fileid; 2035 kve->kve_fsid = va.va_fsid; 2036 } 2037 vput(vp); 2038 VFS_UNLOCK_GIANT(vfslocked); 2039 } 2040 } else { 2041 kve->kve_type = KVME_TYPE_NONE; 2042 kve->kve_ref_count = 0; 2043 kve->kve_shadow_count = 0; 2044 } 2045 2046 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2047 if (freepath != NULL) 2048 free(freepath, M_TEMP); 2049 2050 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2051 vm_map_lock_read(map); 2052 if (error) 2053 break; 2054 if (last_timestamp != map->timestamp) { 2055 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2056 entry = tmp_entry; 2057 } 2058 } 2059 vm_map_unlock_read(map); 2060 vmspace_free(vm); 2061 PRELE(p); 2062 free(kve, M_TEMP); 2063 return (error); 2064 } 2065 #endif /* COMPAT_FREEBSD7 */ 2066 2067 #ifdef KINFO_VMENTRY_SIZE 2068 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2069 #endif 2070 2071 static int 2072 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2073 { 2074 vm_map_entry_t entry, tmp_entry; 2075 unsigned int last_timestamp; 2076 char *fullpath, *freepath; 2077 struct kinfo_vmentry *kve; 2078 struct vattr va; 2079 struct ucred *cred; 2080 int error, *name; 2081 struct vnode *vp; 2082 struct proc *p; 2083 struct vmspace *vm; 2084 vm_map_t map; 2085 2086 name = (int *)arg1; 2087 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2088 if (error != 0) 2089 return (error); 2090 vm = vmspace_acquire_ref(p); 2091 if (vm == NULL) { 2092 PRELE(p); 2093 return (ESRCH); 2094 } 2095 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2096 2097 map = &vm->vm_map; 2098 vm_map_lock_read(map); 2099 for (entry = map->header.next; entry != &map->header; 2100 entry = entry->next) { 2101 vm_object_t obj, tobj, lobj; 2102 vm_offset_t addr; 2103 vm_paddr_t locked_pa; 2104 int vfslocked, mincoreinfo; 2105 2106 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2107 continue; 2108 2109 bzero(kve, sizeof(*kve)); 2110 2111 kve->kve_private_resident = 0; 2112 obj = entry->object.vm_object; 2113 if (obj != NULL) { 2114 VM_OBJECT_LOCK(obj); 2115 if (obj->shadow_count == 1) 2116 kve->kve_private_resident = 2117 obj->resident_page_count; 2118 } 2119 kve->kve_resident = 0; 2120 addr = entry->start; 2121 while (addr < entry->end) { 2122 locked_pa = 0; 2123 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2124 if (locked_pa != 0) 2125 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2126 if (mincoreinfo & MINCORE_INCORE) 2127 kve->kve_resident++; 2128 if (mincoreinfo & MINCORE_SUPER) 2129 kve->kve_flags |= KVME_FLAG_SUPER; 2130 addr += PAGE_SIZE; 2131 } 2132 2133 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2134 if (tobj != obj) 2135 VM_OBJECT_LOCK(tobj); 2136 if (lobj != obj) 2137 VM_OBJECT_UNLOCK(lobj); 2138 lobj = tobj; 2139 } 2140 2141 kve->kve_start = entry->start; 2142 kve->kve_end = entry->end; 2143 kve->kve_offset = entry->offset; 2144 2145 if (entry->protection & VM_PROT_READ) 2146 kve->kve_protection |= KVME_PROT_READ; 2147 if (entry->protection & VM_PROT_WRITE) 2148 kve->kve_protection |= KVME_PROT_WRITE; 2149 if (entry->protection & VM_PROT_EXECUTE) 2150 kve->kve_protection |= KVME_PROT_EXEC; 2151 2152 if (entry->eflags & MAP_ENTRY_COW) 2153 kve->kve_flags |= KVME_FLAG_COW; 2154 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2155 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2156 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2157 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2158 2159 last_timestamp = map->timestamp; 2160 vm_map_unlock_read(map); 2161 2162 freepath = NULL; 2163 fullpath = ""; 2164 if (lobj) { 2165 vp = NULL; 2166 switch (lobj->type) { 2167 case OBJT_DEFAULT: 2168 kve->kve_type = KVME_TYPE_DEFAULT; 2169 break; 2170 case OBJT_VNODE: 2171 kve->kve_type = KVME_TYPE_VNODE; 2172 vp = lobj->handle; 2173 vref(vp); 2174 break; 2175 case OBJT_SWAP: 2176 kve->kve_type = KVME_TYPE_SWAP; 2177 break; 2178 case OBJT_DEVICE: 2179 kve->kve_type = KVME_TYPE_DEVICE; 2180 break; 2181 case OBJT_PHYS: 2182 kve->kve_type = KVME_TYPE_PHYS; 2183 break; 2184 case OBJT_DEAD: 2185 kve->kve_type = KVME_TYPE_DEAD; 2186 break; 2187 case OBJT_SG: 2188 kve->kve_type = KVME_TYPE_SG; 2189 break; 2190 default: 2191 kve->kve_type = KVME_TYPE_UNKNOWN; 2192 break; 2193 } 2194 if (lobj != obj) 2195 VM_OBJECT_UNLOCK(lobj); 2196 2197 kve->kve_ref_count = obj->ref_count; 2198 kve->kve_shadow_count = obj->shadow_count; 2199 VM_OBJECT_UNLOCK(obj); 2200 if (vp != NULL) { 2201 vn_fullpath(curthread, vp, &fullpath, 2202 &freepath); 2203 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2204 cred = curthread->td_ucred; 2205 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2206 vn_lock(vp, LK_SHARED | LK_RETRY); 2207 if (VOP_GETATTR(vp, &va, cred) == 0) { 2208 kve->kve_vn_fileid = va.va_fileid; 2209 kve->kve_vn_fsid = va.va_fsid; 2210 kve->kve_vn_mode = 2211 MAKEIMODE(va.va_type, va.va_mode); 2212 kve->kve_vn_size = va.va_size; 2213 kve->kve_vn_rdev = va.va_rdev; 2214 kve->kve_status = KF_ATTR_VALID; 2215 } 2216 vput(vp); 2217 VFS_UNLOCK_GIANT(vfslocked); 2218 } 2219 } else { 2220 kve->kve_type = KVME_TYPE_NONE; 2221 kve->kve_ref_count = 0; 2222 kve->kve_shadow_count = 0; 2223 } 2224 2225 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2226 if (freepath != NULL) 2227 free(freepath, M_TEMP); 2228 2229 /* Pack record size down */ 2230 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2231 strlen(kve->kve_path) + 1; 2232 kve->kve_structsize = roundup(kve->kve_structsize, 2233 sizeof(uint64_t)); 2234 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 2235 vm_map_lock_read(map); 2236 if (error) 2237 break; 2238 if (last_timestamp != map->timestamp) { 2239 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2240 entry = tmp_entry; 2241 } 2242 } 2243 vm_map_unlock_read(map); 2244 vmspace_free(vm); 2245 PRELE(p); 2246 free(kve, M_TEMP); 2247 return (error); 2248 } 2249 2250 #if defined(STACK) || defined(DDB) 2251 static int 2252 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2253 { 2254 struct kinfo_kstack *kkstp; 2255 int error, i, *name, numthreads; 2256 lwpid_t *lwpidarray; 2257 struct thread *td; 2258 struct stack *st; 2259 struct sbuf sb; 2260 struct proc *p; 2261 2262 name = (int *)arg1; 2263 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2264 if (error != 0) 2265 return (error); 2266 2267 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2268 st = stack_create(); 2269 2270 lwpidarray = NULL; 2271 numthreads = 0; 2272 PROC_LOCK(p); 2273 repeat: 2274 if (numthreads < p->p_numthreads) { 2275 if (lwpidarray != NULL) { 2276 free(lwpidarray, M_TEMP); 2277 lwpidarray = NULL; 2278 } 2279 numthreads = p->p_numthreads; 2280 PROC_UNLOCK(p); 2281 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2282 M_WAITOK | M_ZERO); 2283 PROC_LOCK(p); 2284 goto repeat; 2285 } 2286 i = 0; 2287 2288 /* 2289 * XXXRW: During the below loop, execve(2) and countless other sorts 2290 * of changes could have taken place. Should we check to see if the 2291 * vmspace has been replaced, or the like, in order to prevent 2292 * giving a snapshot that spans, say, execve(2), with some threads 2293 * before and some after? Among other things, the credentials could 2294 * have changed, in which case the right to extract debug info might 2295 * no longer be assured. 2296 */ 2297 FOREACH_THREAD_IN_PROC(p, td) { 2298 KASSERT(i < numthreads, 2299 ("sysctl_kern_proc_kstack: numthreads")); 2300 lwpidarray[i] = td->td_tid; 2301 i++; 2302 } 2303 numthreads = i; 2304 for (i = 0; i < numthreads; i++) { 2305 td = thread_find(p, lwpidarray[i]); 2306 if (td == NULL) { 2307 continue; 2308 } 2309 bzero(kkstp, sizeof(*kkstp)); 2310 (void)sbuf_new(&sb, kkstp->kkst_trace, 2311 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2312 thread_lock(td); 2313 kkstp->kkst_tid = td->td_tid; 2314 if (TD_IS_SWAPPED(td)) 2315 kkstp->kkst_state = KKST_STATE_SWAPPED; 2316 else if (TD_IS_RUNNING(td)) 2317 kkstp->kkst_state = KKST_STATE_RUNNING; 2318 else { 2319 kkstp->kkst_state = KKST_STATE_STACKOK; 2320 stack_save_td(st, td); 2321 } 2322 thread_unlock(td); 2323 PROC_UNLOCK(p); 2324 stack_sbuf_print(&sb, st); 2325 sbuf_finish(&sb); 2326 sbuf_delete(&sb); 2327 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2328 PROC_LOCK(p); 2329 if (error) 2330 break; 2331 } 2332 _PRELE(p); 2333 PROC_UNLOCK(p); 2334 if (lwpidarray != NULL) 2335 free(lwpidarray, M_TEMP); 2336 stack_destroy(st); 2337 free(kkstp, M_TEMP); 2338 return (error); 2339 } 2340 #endif 2341 2342 /* 2343 * This sysctl allows a process to retrieve the full list of groups from 2344 * itself or another process. 2345 */ 2346 static int 2347 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2348 { 2349 pid_t *pidp = (pid_t *)arg1; 2350 unsigned int arglen = arg2; 2351 struct proc *p; 2352 struct ucred *cred; 2353 int error; 2354 2355 if (arglen != 1) 2356 return (EINVAL); 2357 if (*pidp == -1) { /* -1 means this process */ 2358 p = req->td->td_proc; 2359 } else { 2360 error = pget(*pidp, PGET_CANSEE, &p); 2361 if (error != 0) 2362 return (error); 2363 } 2364 2365 cred = crhold(p->p_ucred); 2366 if (*pidp != -1) 2367 PROC_UNLOCK(p); 2368 2369 error = SYSCTL_OUT(req, cred->cr_groups, 2370 cred->cr_ngroups * sizeof(gid_t)); 2371 crfree(cred); 2372 return (error); 2373 } 2374 2375 /* 2376 * This sysctl allows a process to retrieve the resource limits for 2377 * another process. 2378 */ 2379 static int 2380 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2381 { 2382 int *name = (int *)arg1; 2383 u_int namelen = arg2; 2384 struct plimit *limp; 2385 struct proc *p; 2386 int error = 0; 2387 2388 if (namelen != 1) 2389 return (EINVAL); 2390 2391 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2392 if (error != 0) 2393 return (error); 2394 /* 2395 * Check the request size. We alow sizes smaller rlimit array for 2396 * backward binary compatibility: the number of resource limits may 2397 * grow. 2398 */ 2399 if (sizeof(limp->pl_rlimit) < req->oldlen) { 2400 PROC_UNLOCK(p); 2401 return (EINVAL); 2402 } 2403 2404 limp = lim_hold(p->p_limit); 2405 PROC_UNLOCK(p); 2406 error = SYSCTL_OUT(req, limp->pl_rlimit, req->oldlen); 2407 lim_free(limp); 2408 return (error); 2409 } 2410 2411 /* 2412 * This sysctl allows a process to retrieve ps_strings structure location of 2413 * another process. 2414 */ 2415 static int 2416 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2417 { 2418 int *name = (int *)arg1; 2419 u_int namelen = arg2; 2420 struct proc *p; 2421 vm_offset_t ps_strings; 2422 int error; 2423 #ifdef COMPAT_FREEBSD32 2424 uint32_t ps_strings32; 2425 #endif 2426 2427 if (namelen != 1) 2428 return (EINVAL); 2429 2430 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2431 if (error != 0) 2432 return (error); 2433 #ifdef COMPAT_FREEBSD32 2434 if ((req->flags & SCTL_MASK32) != 0) { 2435 /* 2436 * We return 0 if the 32 bit emulation request is for a 64 bit 2437 * process. 2438 */ 2439 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2440 PTROUT(p->p_sysent->sv_psstrings) : 0; 2441 PROC_UNLOCK(p); 2442 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2443 return (error); 2444 } 2445 #endif 2446 ps_strings = p->p_sysent->sv_psstrings; 2447 PROC_UNLOCK(p); 2448 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2449 return (error); 2450 } 2451 2452 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2453 2454 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2455 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2456 "Return entire process table"); 2457 2458 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2459 sysctl_kern_proc, "Process table"); 2460 2461 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2462 sysctl_kern_proc, "Process table"); 2463 2464 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2465 sysctl_kern_proc, "Process table"); 2466 2467 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2468 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2469 2470 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2471 sysctl_kern_proc, "Process table"); 2472 2473 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2474 sysctl_kern_proc, "Process table"); 2475 2476 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2477 sysctl_kern_proc, "Process table"); 2478 2479 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2480 sysctl_kern_proc, "Process table"); 2481 2482 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2483 sysctl_kern_proc, "Return process table, no threads"); 2484 2485 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2486 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2487 sysctl_kern_proc_args, "Process argument list"); 2488 2489 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, 2490 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2491 sysctl_kern_proc_env, "Process environment"); 2492 2493 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, 2494 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2495 sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2496 2497 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2498 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2499 2500 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2501 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2502 "Process syscall vector name (ABI type)"); 2503 2504 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2505 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2506 2507 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2508 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2509 2510 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2511 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2512 2513 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2514 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2515 2516 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2517 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2518 2519 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2520 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2521 2522 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2523 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2524 2525 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2526 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2527 2528 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2529 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2530 "Return process table, no threads"); 2531 2532 #ifdef COMPAT_FREEBSD7 2533 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2534 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2535 #endif 2536 2537 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2538 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2539 2540 #if defined(STACK) || defined(DDB) 2541 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2542 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2543 #endif 2544 2545 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2546 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2547 2548 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RD | 2549 CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, "Process resource limits"); 2550 2551 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, 2552 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2553 sysctl_kern_proc_ps_strings, "Process ps_strings location"); 2554