1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_extern.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/uma.h> 86 87 #ifdef COMPAT_FREEBSD32 88 #include <compat/freebsd32/freebsd32.h> 89 #include <compat/freebsd32/freebsd32_util.h> 90 #endif 91 92 SDT_PROVIDER_DEFINE(proc); 93 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 98 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 99 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 100 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 102 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 103 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 104 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 108 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 109 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 110 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 111 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 112 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 113 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 114 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 115 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 116 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 117 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 118 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 119 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 120 121 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 122 MALLOC_DEFINE(M_SESSION, "session", "session header"); 123 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 124 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 125 126 static void doenterpgrp(struct proc *, struct pgrp *); 127 static void orphanpg(struct pgrp *pg); 128 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 129 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 130 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 131 int preferthread); 132 static void pgadjustjobc(struct pgrp *pgrp, int entering); 133 static void pgdelete(struct pgrp *); 134 static int proc_ctor(void *mem, int size, void *arg, int flags); 135 static void proc_dtor(void *mem, int size, void *arg); 136 static int proc_init(void *mem, int size, int flags); 137 static void proc_fini(void *mem, int size); 138 static void pargs_free(struct pargs *pa); 139 140 /* 141 * Other process lists 142 */ 143 struct pidhashhead *pidhashtbl; 144 u_long pidhash; 145 struct pgrphashhead *pgrphashtbl; 146 u_long pgrphash; 147 struct proclist allproc; 148 struct proclist zombproc; 149 struct sx allproc_lock; 150 struct sx proctree_lock; 151 struct mtx ppeers_lock; 152 uma_zone_t proc_zone; 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 158 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 159 #ifdef COMPAT_FREEBSD32 160 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 161 #endif 162 163 /* 164 * Initialize global process hashing structures. 165 */ 166 void 167 procinit() 168 { 169 170 sx_init(&allproc_lock, "allproc"); 171 sx_init(&proctree_lock, "proctree"); 172 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 173 LIST_INIT(&allproc); 174 LIST_INIT(&zombproc); 175 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 176 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 177 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 178 proc_ctor, proc_dtor, proc_init, proc_fini, 179 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 180 uihashinit(); 181 } 182 183 /* 184 * Prepare a proc for use. 185 */ 186 static int 187 proc_ctor(void *mem, int size, void *arg, int flags) 188 { 189 struct proc *p; 190 191 p = (struct proc *)mem; 192 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 193 EVENTHANDLER_INVOKE(process_ctor, p); 194 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 195 return (0); 196 } 197 198 /* 199 * Reclaim a proc after use. 200 */ 201 static void 202 proc_dtor(void *mem, int size, void *arg) 203 { 204 struct proc *p; 205 struct thread *td; 206 207 /* INVARIANTS checks go here */ 208 p = (struct proc *)mem; 209 td = FIRST_THREAD_IN_PROC(p); 210 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 211 if (td != NULL) { 212 #ifdef INVARIANTS 213 KASSERT((p->p_numthreads == 1), 214 ("bad number of threads in exiting process")); 215 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 216 #endif 217 /* Free all OSD associated to this thread. */ 218 osd_thread_exit(td); 219 } 220 EVENTHANDLER_INVOKE(process_dtor, p); 221 if (p->p_ksi != NULL) 222 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 223 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 224 } 225 226 /* 227 * Initialize type-stable parts of a proc (when newly created). 228 */ 229 static int 230 proc_init(void *mem, int size, int flags) 231 { 232 struct proc *p; 233 234 p = (struct proc *)mem; 235 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 236 p->p_sched = (struct p_sched *)&p[1]; 237 bzero(&p->p_mtx, sizeof(struct mtx)); 238 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 239 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 240 cv_init(&p->p_pwait, "ppwait"); 241 cv_init(&p->p_dbgwait, "dbgwait"); 242 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 243 EVENTHANDLER_INVOKE(process_init, p); 244 p->p_stats = pstats_alloc(); 245 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 246 return (0); 247 } 248 249 /* 250 * UMA should ensure that this function is never called. 251 * Freeing a proc structure would violate type stability. 252 */ 253 static void 254 proc_fini(void *mem, int size) 255 { 256 #ifdef notnow 257 struct proc *p; 258 259 p = (struct proc *)mem; 260 EVENTHANDLER_INVOKE(process_fini, p); 261 pstats_free(p->p_stats); 262 thread_free(FIRST_THREAD_IN_PROC(p)); 263 mtx_destroy(&p->p_mtx); 264 if (p->p_ksi != NULL) 265 ksiginfo_free(p->p_ksi); 266 #else 267 panic("proc reclaimed"); 268 #endif 269 } 270 271 /* 272 * Is p an inferior of the current process? 273 */ 274 int 275 inferior(p) 276 register struct proc *p; 277 { 278 279 sx_assert(&proctree_lock, SX_LOCKED); 280 for (; p != curproc; p = p->p_pptr) 281 if (p->p_pid == 0) 282 return (0); 283 return (1); 284 } 285 286 /* 287 * Locate a process by number; return only "live" processes -- i.e., neither 288 * zombies nor newly born but incompletely initialized processes. By not 289 * returning processes in the PRS_NEW state, we allow callers to avoid 290 * testing for that condition to avoid dereferencing p_ucred, et al. 291 */ 292 struct proc * 293 pfind(pid) 294 register pid_t pid; 295 { 296 register struct proc *p; 297 298 sx_slock(&allproc_lock); 299 LIST_FOREACH(p, PIDHASH(pid), p_hash) 300 if (p->p_pid == pid) { 301 PROC_LOCK(p); 302 if (p->p_state == PRS_NEW) { 303 PROC_UNLOCK(p); 304 p = NULL; 305 } 306 break; 307 } 308 sx_sunlock(&allproc_lock); 309 return (p); 310 } 311 312 static struct proc * 313 pfind_tid(pid_t tid) 314 { 315 struct proc *p; 316 struct thread *td; 317 318 sx_slock(&allproc_lock); 319 FOREACH_PROC_IN_SYSTEM(p) { 320 PROC_LOCK(p); 321 if (p->p_state == PRS_NEW) { 322 PROC_UNLOCK(p); 323 continue; 324 } 325 FOREACH_THREAD_IN_PROC(p, td) { 326 if (td->td_tid == tid) 327 goto found; 328 } 329 PROC_UNLOCK(p); 330 } 331 found: 332 sx_sunlock(&allproc_lock); 333 return (p); 334 } 335 336 /* 337 * Locate a process group by number. 338 * The caller must hold proctree_lock. 339 */ 340 struct pgrp * 341 pgfind(pgid) 342 register pid_t pgid; 343 { 344 register struct pgrp *pgrp; 345 346 sx_assert(&proctree_lock, SX_LOCKED); 347 348 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 349 if (pgrp->pg_id == pgid) { 350 PGRP_LOCK(pgrp); 351 return (pgrp); 352 } 353 } 354 return (NULL); 355 } 356 357 /* 358 * Locate process and do additional manipulations, depending on flags. 359 */ 360 int 361 pget(pid_t pid, int flags, struct proc **pp) 362 { 363 struct proc *p; 364 int error; 365 366 if (pid <= PID_MAX) 367 p = pfind(pid); 368 else if ((flags & PGET_NOTID) == 0) 369 p = pfind_tid(pid); 370 else 371 p = NULL; 372 if (p == NULL) 373 return (ESRCH); 374 if ((flags & PGET_CANSEE) != 0) { 375 error = p_cansee(curthread, p); 376 if (error != 0) 377 goto errout; 378 } 379 if ((flags & PGET_CANDEBUG) != 0) { 380 error = p_candebug(curthread, p); 381 if (error != 0) 382 goto errout; 383 } 384 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 385 error = EPERM; 386 goto errout; 387 } 388 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 389 error = ESRCH; 390 goto errout; 391 } 392 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 393 /* 394 * XXXRW: Not clear ESRCH is the right error during proc 395 * execve(). 396 */ 397 error = ESRCH; 398 goto errout; 399 } 400 if ((flags & PGET_HOLD) != 0) { 401 _PHOLD(p); 402 PROC_UNLOCK(p); 403 } 404 *pp = p; 405 return (0); 406 errout: 407 PROC_UNLOCK(p); 408 return (error); 409 } 410 411 /* 412 * Create a new process group. 413 * pgid must be equal to the pid of p. 414 * Begin a new session if required. 415 */ 416 int 417 enterpgrp(p, pgid, pgrp, sess) 418 register struct proc *p; 419 pid_t pgid; 420 struct pgrp *pgrp; 421 struct session *sess; 422 { 423 struct pgrp *pgrp2; 424 425 sx_assert(&proctree_lock, SX_XLOCKED); 426 427 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 428 KASSERT(p->p_pid == pgid, 429 ("enterpgrp: new pgrp and pid != pgid")); 430 431 pgrp2 = pgfind(pgid); 432 433 KASSERT(pgrp2 == NULL, 434 ("enterpgrp: pgrp with pgid exists")); 435 KASSERT(!SESS_LEADER(p), 436 ("enterpgrp: session leader attempted setpgrp")); 437 438 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 439 440 if (sess != NULL) { 441 /* 442 * new session 443 */ 444 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 445 PROC_LOCK(p); 446 p->p_flag &= ~P_CONTROLT; 447 PROC_UNLOCK(p); 448 PGRP_LOCK(pgrp); 449 sess->s_leader = p; 450 sess->s_sid = p->p_pid; 451 refcount_init(&sess->s_count, 1); 452 sess->s_ttyvp = NULL; 453 sess->s_ttydp = NULL; 454 sess->s_ttyp = NULL; 455 bcopy(p->p_session->s_login, sess->s_login, 456 sizeof(sess->s_login)); 457 pgrp->pg_session = sess; 458 KASSERT(p == curproc, 459 ("enterpgrp: mksession and p != curproc")); 460 } else { 461 pgrp->pg_session = p->p_session; 462 sess_hold(pgrp->pg_session); 463 PGRP_LOCK(pgrp); 464 } 465 pgrp->pg_id = pgid; 466 LIST_INIT(&pgrp->pg_members); 467 468 /* 469 * As we have an exclusive lock of proctree_lock, 470 * this should not deadlock. 471 */ 472 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 473 pgrp->pg_jobc = 0; 474 SLIST_INIT(&pgrp->pg_sigiolst); 475 PGRP_UNLOCK(pgrp); 476 477 doenterpgrp(p, pgrp); 478 479 return (0); 480 } 481 482 /* 483 * Move p to an existing process group 484 */ 485 int 486 enterthispgrp(p, pgrp) 487 register struct proc *p; 488 struct pgrp *pgrp; 489 { 490 491 sx_assert(&proctree_lock, SX_XLOCKED); 492 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 493 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 494 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 495 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 496 KASSERT(pgrp->pg_session == p->p_session, 497 ("%s: pgrp's session %p, p->p_session %p.\n", 498 __func__, 499 pgrp->pg_session, 500 p->p_session)); 501 KASSERT(pgrp != p->p_pgrp, 502 ("%s: p belongs to pgrp.", __func__)); 503 504 doenterpgrp(p, pgrp); 505 506 return (0); 507 } 508 509 /* 510 * Move p to a process group 511 */ 512 static void 513 doenterpgrp(p, pgrp) 514 struct proc *p; 515 struct pgrp *pgrp; 516 { 517 struct pgrp *savepgrp; 518 519 sx_assert(&proctree_lock, SX_XLOCKED); 520 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 521 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 522 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 523 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 524 525 savepgrp = p->p_pgrp; 526 527 /* 528 * Adjust eligibility of affected pgrps to participate in job control. 529 * Increment eligibility counts before decrementing, otherwise we 530 * could reach 0 spuriously during the first call. 531 */ 532 fixjobc(p, pgrp, 1); 533 fixjobc(p, p->p_pgrp, 0); 534 535 PGRP_LOCK(pgrp); 536 PGRP_LOCK(savepgrp); 537 PROC_LOCK(p); 538 LIST_REMOVE(p, p_pglist); 539 p->p_pgrp = pgrp; 540 PROC_UNLOCK(p); 541 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 542 PGRP_UNLOCK(savepgrp); 543 PGRP_UNLOCK(pgrp); 544 if (LIST_EMPTY(&savepgrp->pg_members)) 545 pgdelete(savepgrp); 546 } 547 548 /* 549 * remove process from process group 550 */ 551 int 552 leavepgrp(p) 553 register struct proc *p; 554 { 555 struct pgrp *savepgrp; 556 557 sx_assert(&proctree_lock, SX_XLOCKED); 558 savepgrp = p->p_pgrp; 559 PGRP_LOCK(savepgrp); 560 PROC_LOCK(p); 561 LIST_REMOVE(p, p_pglist); 562 p->p_pgrp = NULL; 563 PROC_UNLOCK(p); 564 PGRP_UNLOCK(savepgrp); 565 if (LIST_EMPTY(&savepgrp->pg_members)) 566 pgdelete(savepgrp); 567 return (0); 568 } 569 570 /* 571 * delete a process group 572 */ 573 static void 574 pgdelete(pgrp) 575 register struct pgrp *pgrp; 576 { 577 struct session *savesess; 578 struct tty *tp; 579 580 sx_assert(&proctree_lock, SX_XLOCKED); 581 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 582 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 583 584 /* 585 * Reset any sigio structures pointing to us as a result of 586 * F_SETOWN with our pgid. 587 */ 588 funsetownlst(&pgrp->pg_sigiolst); 589 590 PGRP_LOCK(pgrp); 591 tp = pgrp->pg_session->s_ttyp; 592 LIST_REMOVE(pgrp, pg_hash); 593 savesess = pgrp->pg_session; 594 PGRP_UNLOCK(pgrp); 595 596 /* Remove the reference to the pgrp before deallocating it. */ 597 if (tp != NULL) { 598 tty_lock(tp); 599 tty_rel_pgrp(tp, pgrp); 600 } 601 602 mtx_destroy(&pgrp->pg_mtx); 603 free(pgrp, M_PGRP); 604 sess_release(savesess); 605 } 606 607 static void 608 pgadjustjobc(pgrp, entering) 609 struct pgrp *pgrp; 610 int entering; 611 { 612 613 PGRP_LOCK(pgrp); 614 if (entering) 615 pgrp->pg_jobc++; 616 else { 617 --pgrp->pg_jobc; 618 if (pgrp->pg_jobc == 0) 619 orphanpg(pgrp); 620 } 621 PGRP_UNLOCK(pgrp); 622 } 623 624 /* 625 * Adjust pgrp jobc counters when specified process changes process group. 626 * We count the number of processes in each process group that "qualify" 627 * the group for terminal job control (those with a parent in a different 628 * process group of the same session). If that count reaches zero, the 629 * process group becomes orphaned. Check both the specified process' 630 * process group and that of its children. 631 * entering == 0 => p is leaving specified group. 632 * entering == 1 => p is entering specified group. 633 */ 634 void 635 fixjobc(p, pgrp, entering) 636 register struct proc *p; 637 register struct pgrp *pgrp; 638 int entering; 639 { 640 register struct pgrp *hispgrp; 641 register struct session *mysession; 642 643 sx_assert(&proctree_lock, SX_LOCKED); 644 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 645 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 646 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 647 648 /* 649 * Check p's parent to see whether p qualifies its own process 650 * group; if so, adjust count for p's process group. 651 */ 652 mysession = pgrp->pg_session; 653 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 654 hispgrp->pg_session == mysession) 655 pgadjustjobc(pgrp, entering); 656 657 /* 658 * Check this process' children to see whether they qualify 659 * their process groups; if so, adjust counts for children's 660 * process groups. 661 */ 662 LIST_FOREACH(p, &p->p_children, p_sibling) { 663 hispgrp = p->p_pgrp; 664 if (hispgrp == pgrp || 665 hispgrp->pg_session != mysession) 666 continue; 667 PROC_LOCK(p); 668 if (p->p_state == PRS_ZOMBIE) { 669 PROC_UNLOCK(p); 670 continue; 671 } 672 PROC_UNLOCK(p); 673 pgadjustjobc(hispgrp, entering); 674 } 675 } 676 677 /* 678 * A process group has become orphaned; 679 * if there are any stopped processes in the group, 680 * hang-up all process in that group. 681 */ 682 static void 683 orphanpg(pg) 684 struct pgrp *pg; 685 { 686 register struct proc *p; 687 688 PGRP_LOCK_ASSERT(pg, MA_OWNED); 689 690 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 691 PROC_LOCK(p); 692 if (P_SHOULDSTOP(p)) { 693 PROC_UNLOCK(p); 694 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 695 PROC_LOCK(p); 696 kern_psignal(p, SIGHUP); 697 kern_psignal(p, SIGCONT); 698 PROC_UNLOCK(p); 699 } 700 return; 701 } 702 PROC_UNLOCK(p); 703 } 704 } 705 706 void 707 sess_hold(struct session *s) 708 { 709 710 refcount_acquire(&s->s_count); 711 } 712 713 void 714 sess_release(struct session *s) 715 { 716 717 if (refcount_release(&s->s_count)) { 718 if (s->s_ttyp != NULL) { 719 tty_lock(s->s_ttyp); 720 tty_rel_sess(s->s_ttyp, s); 721 } 722 mtx_destroy(&s->s_mtx); 723 free(s, M_SESSION); 724 } 725 } 726 727 #include "opt_ddb.h" 728 #ifdef DDB 729 #include <ddb/ddb.h> 730 731 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 732 { 733 register struct pgrp *pgrp; 734 register struct proc *p; 735 register int i; 736 737 for (i = 0; i <= pgrphash; i++) { 738 if (!LIST_EMPTY(&pgrphashtbl[i])) { 739 printf("\tindx %d\n", i); 740 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 741 printf( 742 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 743 (void *)pgrp, (long)pgrp->pg_id, 744 (void *)pgrp->pg_session, 745 pgrp->pg_session->s_count, 746 (void *)LIST_FIRST(&pgrp->pg_members)); 747 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 748 printf("\t\tpid %ld addr %p pgrp %p\n", 749 (long)p->p_pid, (void *)p, 750 (void *)p->p_pgrp); 751 } 752 } 753 } 754 } 755 } 756 #endif /* DDB */ 757 758 /* 759 * Calculate the kinfo_proc members which contain process-wide 760 * informations. 761 * Must be called with the target process locked. 762 */ 763 static void 764 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 765 { 766 struct thread *td; 767 768 PROC_LOCK_ASSERT(p, MA_OWNED); 769 770 kp->ki_estcpu = 0; 771 kp->ki_pctcpu = 0; 772 FOREACH_THREAD_IN_PROC(p, td) { 773 thread_lock(td); 774 kp->ki_pctcpu += sched_pctcpu(td); 775 kp->ki_estcpu += td->td_estcpu; 776 thread_unlock(td); 777 } 778 } 779 780 /* 781 * Clear kinfo_proc and fill in any information that is common 782 * to all threads in the process. 783 * Must be called with the target process locked. 784 */ 785 static void 786 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 787 { 788 struct thread *td0; 789 struct tty *tp; 790 struct session *sp; 791 struct ucred *cred; 792 struct sigacts *ps; 793 794 PROC_LOCK_ASSERT(p, MA_OWNED); 795 bzero(kp, sizeof(*kp)); 796 797 kp->ki_structsize = sizeof(*kp); 798 kp->ki_paddr = p; 799 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 800 kp->ki_args = p->p_args; 801 kp->ki_textvp = p->p_textvp; 802 #ifdef KTRACE 803 kp->ki_tracep = p->p_tracevp; 804 kp->ki_traceflag = p->p_traceflag; 805 #endif 806 kp->ki_fd = p->p_fd; 807 kp->ki_vmspace = p->p_vmspace; 808 kp->ki_flag = p->p_flag; 809 cred = p->p_ucred; 810 if (cred) { 811 kp->ki_uid = cred->cr_uid; 812 kp->ki_ruid = cred->cr_ruid; 813 kp->ki_svuid = cred->cr_svuid; 814 kp->ki_cr_flags = 0; 815 if (cred->cr_flags & CRED_FLAG_CAPMODE) 816 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 817 /* XXX bde doesn't like KI_NGROUPS */ 818 if (cred->cr_ngroups > KI_NGROUPS) { 819 kp->ki_ngroups = KI_NGROUPS; 820 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 821 } else 822 kp->ki_ngroups = cred->cr_ngroups; 823 bcopy(cred->cr_groups, kp->ki_groups, 824 kp->ki_ngroups * sizeof(gid_t)); 825 kp->ki_rgid = cred->cr_rgid; 826 kp->ki_svgid = cred->cr_svgid; 827 /* If jailed(cred), emulate the old P_JAILED flag. */ 828 if (jailed(cred)) { 829 kp->ki_flag |= P_JAILED; 830 /* If inside the jail, use 0 as a jail ID. */ 831 if (cred->cr_prison != curthread->td_ucred->cr_prison) 832 kp->ki_jid = cred->cr_prison->pr_id; 833 } 834 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 835 sizeof(kp->ki_loginclass)); 836 } 837 ps = p->p_sigacts; 838 if (ps) { 839 mtx_lock(&ps->ps_mtx); 840 kp->ki_sigignore = ps->ps_sigignore; 841 kp->ki_sigcatch = ps->ps_sigcatch; 842 mtx_unlock(&ps->ps_mtx); 843 } 844 if (p->p_state != PRS_NEW && 845 p->p_state != PRS_ZOMBIE && 846 p->p_vmspace != NULL) { 847 struct vmspace *vm = p->p_vmspace; 848 849 kp->ki_size = vm->vm_map.size; 850 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 851 FOREACH_THREAD_IN_PROC(p, td0) { 852 if (!TD_IS_SWAPPED(td0)) 853 kp->ki_rssize += td0->td_kstack_pages; 854 } 855 kp->ki_swrss = vm->vm_swrss; 856 kp->ki_tsize = vm->vm_tsize; 857 kp->ki_dsize = vm->vm_dsize; 858 kp->ki_ssize = vm->vm_ssize; 859 } else if (p->p_state == PRS_ZOMBIE) 860 kp->ki_stat = SZOMB; 861 if (kp->ki_flag & P_INMEM) 862 kp->ki_sflag = PS_INMEM; 863 else 864 kp->ki_sflag = 0; 865 /* Calculate legacy swtime as seconds since 'swtick'. */ 866 kp->ki_swtime = (ticks - p->p_swtick) / hz; 867 kp->ki_pid = p->p_pid; 868 kp->ki_nice = p->p_nice; 869 kp->ki_start = p->p_stats->p_start; 870 timevaladd(&kp->ki_start, &boottime); 871 PROC_SLOCK(p); 872 rufetch(p, &kp->ki_rusage); 873 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 874 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 875 PROC_SUNLOCK(p); 876 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 877 /* Some callers want child times in a single value. */ 878 kp->ki_childtime = kp->ki_childstime; 879 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 880 881 FOREACH_THREAD_IN_PROC(p, td0) 882 kp->ki_cow += td0->td_cow; 883 884 tp = NULL; 885 if (p->p_pgrp) { 886 kp->ki_pgid = p->p_pgrp->pg_id; 887 kp->ki_jobc = p->p_pgrp->pg_jobc; 888 sp = p->p_pgrp->pg_session; 889 890 if (sp != NULL) { 891 kp->ki_sid = sp->s_sid; 892 SESS_LOCK(sp); 893 strlcpy(kp->ki_login, sp->s_login, 894 sizeof(kp->ki_login)); 895 if (sp->s_ttyvp) 896 kp->ki_kiflag |= KI_CTTY; 897 if (SESS_LEADER(p)) 898 kp->ki_kiflag |= KI_SLEADER; 899 /* XXX proctree_lock */ 900 tp = sp->s_ttyp; 901 SESS_UNLOCK(sp); 902 } 903 } 904 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 905 kp->ki_tdev = tty_udev(tp); 906 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 907 if (tp->t_session) 908 kp->ki_tsid = tp->t_session->s_sid; 909 } else 910 kp->ki_tdev = NODEV; 911 if (p->p_comm[0] != '\0') 912 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 913 if (p->p_sysent && p->p_sysent->sv_name != NULL && 914 p->p_sysent->sv_name[0] != '\0') 915 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 916 kp->ki_siglist = p->p_siglist; 917 kp->ki_xstat = p->p_xstat; 918 kp->ki_acflag = p->p_acflag; 919 kp->ki_lock = p->p_lock; 920 if (p->p_pptr) 921 kp->ki_ppid = p->p_pptr->p_pid; 922 } 923 924 /* 925 * Fill in information that is thread specific. Must be called with 926 * target process locked. If 'preferthread' is set, overwrite certain 927 * process-related fields that are maintained for both threads and 928 * processes. 929 */ 930 static void 931 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 932 { 933 struct proc *p; 934 935 p = td->td_proc; 936 kp->ki_tdaddr = td; 937 PROC_LOCK_ASSERT(p, MA_OWNED); 938 939 if (preferthread) 940 PROC_SLOCK(p); 941 thread_lock(td); 942 if (td->td_wmesg != NULL) 943 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 944 else 945 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 946 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 947 if (TD_ON_LOCK(td)) { 948 kp->ki_kiflag |= KI_LOCKBLOCK; 949 strlcpy(kp->ki_lockname, td->td_lockname, 950 sizeof(kp->ki_lockname)); 951 } else { 952 kp->ki_kiflag &= ~KI_LOCKBLOCK; 953 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 954 } 955 956 if (p->p_state == PRS_NORMAL) { /* approximate. */ 957 if (TD_ON_RUNQ(td) || 958 TD_CAN_RUN(td) || 959 TD_IS_RUNNING(td)) { 960 kp->ki_stat = SRUN; 961 } else if (P_SHOULDSTOP(p)) { 962 kp->ki_stat = SSTOP; 963 } else if (TD_IS_SLEEPING(td)) { 964 kp->ki_stat = SSLEEP; 965 } else if (TD_ON_LOCK(td)) { 966 kp->ki_stat = SLOCK; 967 } else { 968 kp->ki_stat = SWAIT; 969 } 970 } else if (p->p_state == PRS_ZOMBIE) { 971 kp->ki_stat = SZOMB; 972 } else { 973 kp->ki_stat = SIDL; 974 } 975 976 /* Things in the thread */ 977 kp->ki_wchan = td->td_wchan; 978 kp->ki_pri.pri_level = td->td_priority; 979 kp->ki_pri.pri_native = td->td_base_pri; 980 kp->ki_lastcpu = td->td_lastcpu; 981 kp->ki_oncpu = td->td_oncpu; 982 kp->ki_tdflags = td->td_flags; 983 kp->ki_tid = td->td_tid; 984 kp->ki_numthreads = p->p_numthreads; 985 kp->ki_pcb = td->td_pcb; 986 kp->ki_kstack = (void *)td->td_kstack; 987 kp->ki_slptime = (ticks - td->td_slptick) / hz; 988 kp->ki_pri.pri_class = td->td_pri_class; 989 kp->ki_pri.pri_user = td->td_user_pri; 990 991 if (preferthread) { 992 rufetchtd(td, &kp->ki_rusage); 993 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 994 kp->ki_pctcpu = sched_pctcpu(td); 995 kp->ki_estcpu = td->td_estcpu; 996 kp->ki_cow = td->td_cow; 997 } 998 999 /* We can't get this anymore but ps etc never used it anyway. */ 1000 kp->ki_rqindex = 0; 1001 1002 if (preferthread) 1003 kp->ki_siglist = td->td_siglist; 1004 kp->ki_sigmask = td->td_sigmask; 1005 thread_unlock(td); 1006 if (preferthread) 1007 PROC_SUNLOCK(p); 1008 } 1009 1010 /* 1011 * Fill in a kinfo_proc structure for the specified process. 1012 * Must be called with the target process locked. 1013 */ 1014 void 1015 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1016 { 1017 1018 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1019 1020 fill_kinfo_proc_only(p, kp); 1021 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1022 fill_kinfo_aggregate(p, kp); 1023 } 1024 1025 struct pstats * 1026 pstats_alloc(void) 1027 { 1028 1029 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1030 } 1031 1032 /* 1033 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1034 */ 1035 void 1036 pstats_fork(struct pstats *src, struct pstats *dst) 1037 { 1038 1039 bzero(&dst->pstat_startzero, 1040 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1041 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1042 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1043 } 1044 1045 void 1046 pstats_free(struct pstats *ps) 1047 { 1048 1049 free(ps, M_SUBPROC); 1050 } 1051 1052 /* 1053 * Locate a zombie process by number 1054 */ 1055 struct proc * 1056 zpfind(pid_t pid) 1057 { 1058 struct proc *p; 1059 1060 sx_slock(&allproc_lock); 1061 LIST_FOREACH(p, &zombproc, p_list) 1062 if (p->p_pid == pid) { 1063 PROC_LOCK(p); 1064 break; 1065 } 1066 sx_sunlock(&allproc_lock); 1067 return (p); 1068 } 1069 1070 #define KERN_PROC_ZOMBMASK 0x3 1071 #define KERN_PROC_NOTHREADS 0x4 1072 1073 #ifdef COMPAT_FREEBSD32 1074 1075 /* 1076 * This function is typically used to copy out the kernel address, so 1077 * it can be replaced by assignment of zero. 1078 */ 1079 static inline uint32_t 1080 ptr32_trim(void *ptr) 1081 { 1082 uintptr_t uptr; 1083 1084 uptr = (uintptr_t)ptr; 1085 return ((uptr > UINT_MAX) ? 0 : uptr); 1086 } 1087 1088 #define PTRTRIM_CP(src,dst,fld) \ 1089 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1090 1091 static void 1092 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1093 { 1094 int i; 1095 1096 bzero(ki32, sizeof(struct kinfo_proc32)); 1097 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1098 CP(*ki, *ki32, ki_layout); 1099 PTRTRIM_CP(*ki, *ki32, ki_args); 1100 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1101 PTRTRIM_CP(*ki, *ki32, ki_addr); 1102 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1103 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1104 PTRTRIM_CP(*ki, *ki32, ki_fd); 1105 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1106 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1107 CP(*ki, *ki32, ki_pid); 1108 CP(*ki, *ki32, ki_ppid); 1109 CP(*ki, *ki32, ki_pgid); 1110 CP(*ki, *ki32, ki_tpgid); 1111 CP(*ki, *ki32, ki_sid); 1112 CP(*ki, *ki32, ki_tsid); 1113 CP(*ki, *ki32, ki_jobc); 1114 CP(*ki, *ki32, ki_tdev); 1115 CP(*ki, *ki32, ki_siglist); 1116 CP(*ki, *ki32, ki_sigmask); 1117 CP(*ki, *ki32, ki_sigignore); 1118 CP(*ki, *ki32, ki_sigcatch); 1119 CP(*ki, *ki32, ki_uid); 1120 CP(*ki, *ki32, ki_ruid); 1121 CP(*ki, *ki32, ki_svuid); 1122 CP(*ki, *ki32, ki_rgid); 1123 CP(*ki, *ki32, ki_svgid); 1124 CP(*ki, *ki32, ki_ngroups); 1125 for (i = 0; i < KI_NGROUPS; i++) 1126 CP(*ki, *ki32, ki_groups[i]); 1127 CP(*ki, *ki32, ki_size); 1128 CP(*ki, *ki32, ki_rssize); 1129 CP(*ki, *ki32, ki_swrss); 1130 CP(*ki, *ki32, ki_tsize); 1131 CP(*ki, *ki32, ki_dsize); 1132 CP(*ki, *ki32, ki_ssize); 1133 CP(*ki, *ki32, ki_xstat); 1134 CP(*ki, *ki32, ki_acflag); 1135 CP(*ki, *ki32, ki_pctcpu); 1136 CP(*ki, *ki32, ki_estcpu); 1137 CP(*ki, *ki32, ki_slptime); 1138 CP(*ki, *ki32, ki_swtime); 1139 CP(*ki, *ki32, ki_cow); 1140 CP(*ki, *ki32, ki_runtime); 1141 TV_CP(*ki, *ki32, ki_start); 1142 TV_CP(*ki, *ki32, ki_childtime); 1143 CP(*ki, *ki32, ki_flag); 1144 CP(*ki, *ki32, ki_kiflag); 1145 CP(*ki, *ki32, ki_traceflag); 1146 CP(*ki, *ki32, ki_stat); 1147 CP(*ki, *ki32, ki_nice); 1148 CP(*ki, *ki32, ki_lock); 1149 CP(*ki, *ki32, ki_rqindex); 1150 CP(*ki, *ki32, ki_oncpu); 1151 CP(*ki, *ki32, ki_lastcpu); 1152 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1153 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1154 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1155 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1156 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1157 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1158 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1159 CP(*ki, *ki32, ki_cr_flags); 1160 CP(*ki, *ki32, ki_jid); 1161 CP(*ki, *ki32, ki_numthreads); 1162 CP(*ki, *ki32, ki_tid); 1163 CP(*ki, *ki32, ki_pri); 1164 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1165 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1166 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1167 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1168 PTRTRIM_CP(*ki, *ki32, ki_udata); 1169 CP(*ki, *ki32, ki_sflag); 1170 CP(*ki, *ki32, ki_tdflags); 1171 } 1172 1173 static int 1174 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1175 { 1176 struct kinfo_proc32 ki32; 1177 int error; 1178 1179 if (req->flags & SCTL_MASK32) { 1180 freebsd32_kinfo_proc_out(ki, &ki32); 1181 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1182 } else 1183 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1184 return (error); 1185 } 1186 #else 1187 static int 1188 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1189 { 1190 1191 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1192 } 1193 #endif 1194 1195 /* 1196 * Must be called with the process locked and will return with it unlocked. 1197 */ 1198 static int 1199 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1200 { 1201 struct thread *td; 1202 struct kinfo_proc kinfo_proc; 1203 int error = 0; 1204 struct proc *np; 1205 pid_t pid = p->p_pid; 1206 1207 PROC_LOCK_ASSERT(p, MA_OWNED); 1208 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1209 1210 fill_kinfo_proc(p, &kinfo_proc); 1211 if (flags & KERN_PROC_NOTHREADS) 1212 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1213 else { 1214 FOREACH_THREAD_IN_PROC(p, td) { 1215 fill_kinfo_thread(td, &kinfo_proc, 1); 1216 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1217 if (error) 1218 break; 1219 } 1220 } 1221 PROC_UNLOCK(p); 1222 if (error) 1223 return (error); 1224 if (flags & KERN_PROC_ZOMBMASK) 1225 np = zpfind(pid); 1226 else { 1227 if (pid == 0) 1228 return (0); 1229 np = pfind(pid); 1230 } 1231 if (np == NULL) 1232 return (ESRCH); 1233 if (np != p) { 1234 PROC_UNLOCK(np); 1235 return (ESRCH); 1236 } 1237 PROC_UNLOCK(np); 1238 return (0); 1239 } 1240 1241 static int 1242 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1243 { 1244 int *name = (int *)arg1; 1245 u_int namelen = arg2; 1246 struct proc *p; 1247 int flags, doingzomb, oid_number; 1248 int error = 0; 1249 1250 oid_number = oidp->oid_number; 1251 if (oid_number != KERN_PROC_ALL && 1252 (oid_number & KERN_PROC_INC_THREAD) == 0) 1253 flags = KERN_PROC_NOTHREADS; 1254 else { 1255 flags = 0; 1256 oid_number &= ~KERN_PROC_INC_THREAD; 1257 } 1258 if (oid_number == KERN_PROC_PID) { 1259 if (namelen != 1) 1260 return (EINVAL); 1261 error = sysctl_wire_old_buffer(req, 0); 1262 if (error) 1263 return (error); 1264 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1265 if (error != 0) 1266 return (error); 1267 error = sysctl_out_proc(p, req, flags); 1268 return (error); 1269 } 1270 1271 switch (oid_number) { 1272 case KERN_PROC_ALL: 1273 if (namelen != 0) 1274 return (EINVAL); 1275 break; 1276 case KERN_PROC_PROC: 1277 if (namelen != 0 && namelen != 1) 1278 return (EINVAL); 1279 break; 1280 default: 1281 if (namelen != 1) 1282 return (EINVAL); 1283 break; 1284 } 1285 1286 if (!req->oldptr) { 1287 /* overestimate by 5 procs */ 1288 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1289 if (error) 1290 return (error); 1291 } 1292 error = sysctl_wire_old_buffer(req, 0); 1293 if (error != 0) 1294 return (error); 1295 sx_slock(&allproc_lock); 1296 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1297 if (!doingzomb) 1298 p = LIST_FIRST(&allproc); 1299 else 1300 p = LIST_FIRST(&zombproc); 1301 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1302 /* 1303 * Skip embryonic processes. 1304 */ 1305 PROC_LOCK(p); 1306 if (p->p_state == PRS_NEW) { 1307 PROC_UNLOCK(p); 1308 continue; 1309 } 1310 KASSERT(p->p_ucred != NULL, 1311 ("process credential is NULL for non-NEW proc")); 1312 /* 1313 * Show a user only appropriate processes. 1314 */ 1315 if (p_cansee(curthread, p)) { 1316 PROC_UNLOCK(p); 1317 continue; 1318 } 1319 /* 1320 * TODO - make more efficient (see notes below). 1321 * do by session. 1322 */ 1323 switch (oid_number) { 1324 1325 case KERN_PROC_GID: 1326 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1327 PROC_UNLOCK(p); 1328 continue; 1329 } 1330 break; 1331 1332 case KERN_PROC_PGRP: 1333 /* could do this by traversing pgrp */ 1334 if (p->p_pgrp == NULL || 1335 p->p_pgrp->pg_id != (pid_t)name[0]) { 1336 PROC_UNLOCK(p); 1337 continue; 1338 } 1339 break; 1340 1341 case KERN_PROC_RGID: 1342 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1343 PROC_UNLOCK(p); 1344 continue; 1345 } 1346 break; 1347 1348 case KERN_PROC_SESSION: 1349 if (p->p_session == NULL || 1350 p->p_session->s_sid != (pid_t)name[0]) { 1351 PROC_UNLOCK(p); 1352 continue; 1353 } 1354 break; 1355 1356 case KERN_PROC_TTY: 1357 if ((p->p_flag & P_CONTROLT) == 0 || 1358 p->p_session == NULL) { 1359 PROC_UNLOCK(p); 1360 continue; 1361 } 1362 /* XXX proctree_lock */ 1363 SESS_LOCK(p->p_session); 1364 if (p->p_session->s_ttyp == NULL || 1365 tty_udev(p->p_session->s_ttyp) != 1366 (dev_t)name[0]) { 1367 SESS_UNLOCK(p->p_session); 1368 PROC_UNLOCK(p); 1369 continue; 1370 } 1371 SESS_UNLOCK(p->p_session); 1372 break; 1373 1374 case KERN_PROC_UID: 1375 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1376 PROC_UNLOCK(p); 1377 continue; 1378 } 1379 break; 1380 1381 case KERN_PROC_RUID: 1382 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1383 PROC_UNLOCK(p); 1384 continue; 1385 } 1386 break; 1387 1388 case KERN_PROC_PROC: 1389 break; 1390 1391 default: 1392 break; 1393 1394 } 1395 1396 error = sysctl_out_proc(p, req, flags | doingzomb); 1397 if (error) { 1398 sx_sunlock(&allproc_lock); 1399 return (error); 1400 } 1401 } 1402 } 1403 sx_sunlock(&allproc_lock); 1404 return (0); 1405 } 1406 1407 struct pargs * 1408 pargs_alloc(int len) 1409 { 1410 struct pargs *pa; 1411 1412 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1413 M_WAITOK); 1414 refcount_init(&pa->ar_ref, 1); 1415 pa->ar_length = len; 1416 return (pa); 1417 } 1418 1419 static void 1420 pargs_free(struct pargs *pa) 1421 { 1422 1423 free(pa, M_PARGS); 1424 } 1425 1426 void 1427 pargs_hold(struct pargs *pa) 1428 { 1429 1430 if (pa == NULL) 1431 return; 1432 refcount_acquire(&pa->ar_ref); 1433 } 1434 1435 void 1436 pargs_drop(struct pargs *pa) 1437 { 1438 1439 if (pa == NULL) 1440 return; 1441 if (refcount_release(&pa->ar_ref)) 1442 pargs_free(pa); 1443 } 1444 1445 static int 1446 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1447 size_t len) 1448 { 1449 struct iovec iov; 1450 struct uio uio; 1451 1452 iov.iov_base = (caddr_t)buf; 1453 iov.iov_len = len; 1454 uio.uio_iov = &iov; 1455 uio.uio_iovcnt = 1; 1456 uio.uio_offset = offset; 1457 uio.uio_resid = (ssize_t)len; 1458 uio.uio_segflg = UIO_SYSSPACE; 1459 uio.uio_rw = UIO_READ; 1460 uio.uio_td = td; 1461 1462 return (proc_rwmem(p, &uio)); 1463 } 1464 1465 static int 1466 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1467 size_t len) 1468 { 1469 size_t i; 1470 int error; 1471 1472 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1473 /* 1474 * Reading the chunk may validly return EFAULT if the string is shorter 1475 * than the chunk and is aligned at the end of the page, assuming the 1476 * next page is not mapped. So if EFAULT is returned do a fallback to 1477 * one byte read loop. 1478 */ 1479 if (error == EFAULT) { 1480 for (i = 0; i < len; i++, buf++, sptr++) { 1481 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1482 if (error != 0) 1483 return (error); 1484 if (*buf == '\0') 1485 break; 1486 } 1487 error = 0; 1488 } 1489 return (error); 1490 } 1491 1492 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1493 1494 enum proc_vector_type { 1495 PROC_ARG, 1496 PROC_ENV, 1497 PROC_AUX, 1498 }; 1499 1500 #ifdef COMPAT_FREEBSD32 1501 static int 1502 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1503 size_t *vsizep, enum proc_vector_type type) 1504 { 1505 struct freebsd32_ps_strings pss; 1506 Elf32_Auxinfo aux; 1507 vm_offset_t vptr, ptr; 1508 uint32_t *proc_vector32; 1509 char **proc_vector; 1510 size_t vsize, size; 1511 int i, error; 1512 1513 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1514 &pss, sizeof(pss)); 1515 if (error != 0) 1516 return (error); 1517 switch (type) { 1518 case PROC_ARG: 1519 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1520 vsize = pss.ps_nargvstr; 1521 if (vsize > ARG_MAX) 1522 return (ENOEXEC); 1523 size = vsize * sizeof(int32_t); 1524 break; 1525 case PROC_ENV: 1526 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1527 vsize = pss.ps_nenvstr; 1528 if (vsize > ARG_MAX) 1529 return (ENOEXEC); 1530 size = vsize * sizeof(int32_t); 1531 break; 1532 case PROC_AUX: 1533 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1534 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1535 if (vptr % 4 != 0) 1536 return (ENOEXEC); 1537 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1538 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1539 if (error != 0) 1540 return (error); 1541 if (aux.a_type == AT_NULL) 1542 break; 1543 ptr += sizeof(aux); 1544 } 1545 if (aux.a_type != AT_NULL) 1546 return (ENOEXEC); 1547 vsize = i + 1; 1548 size = vsize * sizeof(aux); 1549 break; 1550 default: 1551 KASSERT(0, ("Wrong proc vector type: %d", type)); 1552 return (EINVAL); 1553 } 1554 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1555 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1556 if (error != 0) 1557 goto done; 1558 if (type == PROC_AUX) { 1559 *proc_vectorp = (char **)proc_vector32; 1560 *vsizep = vsize; 1561 return (0); 1562 } 1563 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1564 for (i = 0; i < (int)vsize; i++) 1565 proc_vector[i] = PTRIN(proc_vector32[i]); 1566 *proc_vectorp = proc_vector; 1567 *vsizep = vsize; 1568 done: 1569 free(proc_vector32, M_TEMP); 1570 return (error); 1571 } 1572 #endif 1573 1574 static int 1575 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1576 size_t *vsizep, enum proc_vector_type type) 1577 { 1578 struct ps_strings pss; 1579 Elf_Auxinfo aux; 1580 vm_offset_t vptr, ptr; 1581 char **proc_vector; 1582 size_t vsize, size; 1583 int error, i; 1584 1585 #ifdef COMPAT_FREEBSD32 1586 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1587 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1588 #endif 1589 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1590 &pss, sizeof(pss)); 1591 if (error != 0) 1592 return (error); 1593 switch (type) { 1594 case PROC_ARG: 1595 vptr = (vm_offset_t)pss.ps_argvstr; 1596 vsize = pss.ps_nargvstr; 1597 if (vsize > ARG_MAX) 1598 return (ENOEXEC); 1599 size = vsize * sizeof(char *); 1600 break; 1601 case PROC_ENV: 1602 vptr = (vm_offset_t)pss.ps_envstr; 1603 vsize = pss.ps_nenvstr; 1604 if (vsize > ARG_MAX) 1605 return (ENOEXEC); 1606 size = vsize * sizeof(char *); 1607 break; 1608 case PROC_AUX: 1609 /* 1610 * The aux array is just above env array on the stack. Check 1611 * that the address is naturally aligned. 1612 */ 1613 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1614 * sizeof(char *); 1615 #if __ELF_WORD_SIZE == 64 1616 if (vptr % sizeof(uint64_t) != 0) 1617 #else 1618 if (vptr % sizeof(uint32_t) != 0) 1619 #endif 1620 return (ENOEXEC); 1621 /* 1622 * We count the array size reading the aux vectors from the 1623 * stack until AT_NULL vector is returned. So (to keep the code 1624 * simple) we read the process stack twice: the first time here 1625 * to find the size and the second time when copying the vectors 1626 * to the allocated proc_vector. 1627 */ 1628 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1629 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1630 if (error != 0) 1631 return (error); 1632 if (aux.a_type == AT_NULL) 1633 break; 1634 ptr += sizeof(aux); 1635 } 1636 /* 1637 * If the PROC_AUXV_MAX entries are iterated over, and we have 1638 * not reached AT_NULL, it is most likely we are reading wrong 1639 * data: either the process doesn't have auxv array or data has 1640 * been modified. Return the error in this case. 1641 */ 1642 if (aux.a_type != AT_NULL) 1643 return (ENOEXEC); 1644 vsize = i + 1; 1645 size = vsize * sizeof(aux); 1646 break; 1647 default: 1648 KASSERT(0, ("Wrong proc vector type: %d", type)); 1649 return (EINVAL); /* In case we are built without INVARIANTS. */ 1650 } 1651 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1652 if (proc_vector == NULL) 1653 return (ENOMEM); 1654 error = proc_read_mem(td, p, vptr, proc_vector, size); 1655 if (error != 0) { 1656 free(proc_vector, M_TEMP); 1657 return (error); 1658 } 1659 *proc_vectorp = proc_vector; 1660 *vsizep = vsize; 1661 1662 return (0); 1663 } 1664 1665 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1666 1667 static int 1668 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1669 enum proc_vector_type type) 1670 { 1671 size_t done, len, nchr, vsize; 1672 int error, i; 1673 char **proc_vector, *sptr; 1674 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1675 1676 PROC_ASSERT_HELD(p); 1677 1678 /* 1679 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1680 */ 1681 nchr = 2 * (PATH_MAX + ARG_MAX); 1682 1683 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1684 if (error != 0) 1685 return (error); 1686 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1687 /* 1688 * The program may have scribbled into its argv array, e.g. to 1689 * remove some arguments. If that has happened, break out 1690 * before trying to read from NULL. 1691 */ 1692 if (proc_vector[i] == NULL) 1693 break; 1694 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1695 error = proc_read_string(td, p, sptr, pss_string, 1696 sizeof(pss_string)); 1697 if (error != 0) 1698 goto done; 1699 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1700 if (done + len >= nchr) 1701 len = nchr - done - 1; 1702 sbuf_bcat(sb, pss_string, len); 1703 if (len != GET_PS_STRINGS_CHUNK_SZ) 1704 break; 1705 done += GET_PS_STRINGS_CHUNK_SZ; 1706 } 1707 sbuf_bcat(sb, "", 1); 1708 done += len + 1; 1709 } 1710 done: 1711 free(proc_vector, M_TEMP); 1712 return (error); 1713 } 1714 1715 int 1716 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1717 { 1718 1719 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1720 } 1721 1722 int 1723 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1724 { 1725 1726 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1727 } 1728 1729 /* 1730 * This sysctl allows a process to retrieve the argument list or process 1731 * title for another process without groping around in the address space 1732 * of the other process. It also allow a process to set its own "process 1733 * title to a string of its own choice. 1734 */ 1735 static int 1736 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1737 { 1738 int *name = (int *)arg1; 1739 u_int namelen = arg2; 1740 struct pargs *newpa, *pa; 1741 struct proc *p; 1742 struct sbuf sb; 1743 int flags, error = 0, error2; 1744 1745 if (namelen != 1) 1746 return (EINVAL); 1747 1748 flags = PGET_CANSEE; 1749 if (req->newptr != NULL) 1750 flags |= PGET_ISCURRENT; 1751 error = pget((pid_t)name[0], flags, &p); 1752 if (error) 1753 return (error); 1754 1755 pa = p->p_args; 1756 if (pa != NULL) { 1757 pargs_hold(pa); 1758 PROC_UNLOCK(p); 1759 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1760 pargs_drop(pa); 1761 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1762 _PHOLD(p); 1763 PROC_UNLOCK(p); 1764 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1765 error = proc_getargv(curthread, p, &sb); 1766 error2 = sbuf_finish(&sb); 1767 PRELE(p); 1768 sbuf_delete(&sb); 1769 if (error == 0 && error2 != 0) 1770 error = error2; 1771 } else { 1772 PROC_UNLOCK(p); 1773 } 1774 if (error != 0 || req->newptr == NULL) 1775 return (error); 1776 1777 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1778 return (ENOMEM); 1779 newpa = pargs_alloc(req->newlen); 1780 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1781 if (error != 0) { 1782 pargs_free(newpa); 1783 return (error); 1784 } 1785 PROC_LOCK(p); 1786 pa = p->p_args; 1787 p->p_args = newpa; 1788 PROC_UNLOCK(p); 1789 pargs_drop(pa); 1790 return (0); 1791 } 1792 1793 /* 1794 * This sysctl allows a process to retrieve environment of another process. 1795 */ 1796 static int 1797 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1798 { 1799 int *name = (int *)arg1; 1800 u_int namelen = arg2; 1801 struct proc *p; 1802 struct sbuf sb; 1803 int error, error2; 1804 1805 if (namelen != 1) 1806 return (EINVAL); 1807 1808 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1809 if (error != 0) 1810 return (error); 1811 if ((p->p_flag & P_SYSTEM) != 0) { 1812 PRELE(p); 1813 return (0); 1814 } 1815 1816 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1817 error = proc_getenvv(curthread, p, &sb); 1818 error2 = sbuf_finish(&sb); 1819 PRELE(p); 1820 sbuf_delete(&sb); 1821 return (error != 0 ? error : error2); 1822 } 1823 1824 /* 1825 * This sysctl allows a process to retrieve ELF auxiliary vector of 1826 * another process. 1827 */ 1828 static int 1829 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1830 { 1831 int *name = (int *)arg1; 1832 u_int namelen = arg2; 1833 struct proc *p; 1834 size_t vsize, size; 1835 char **auxv; 1836 int error; 1837 1838 if (namelen != 1) 1839 return (EINVAL); 1840 1841 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1842 if (error != 0) 1843 return (error); 1844 if ((p->p_flag & P_SYSTEM) != 0) { 1845 PRELE(p); 1846 return (0); 1847 } 1848 error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX); 1849 if (error == 0) { 1850 #ifdef COMPAT_FREEBSD32 1851 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1852 size = vsize * sizeof(Elf32_Auxinfo); 1853 else 1854 #endif 1855 size = vsize * sizeof(Elf_Auxinfo); 1856 PRELE(p); 1857 error = SYSCTL_OUT(req, auxv, size); 1858 free(auxv, M_TEMP); 1859 } else { 1860 PRELE(p); 1861 } 1862 return (error); 1863 } 1864 1865 /* 1866 * This sysctl allows a process to retrieve the path of the executable for 1867 * itself or another process. 1868 */ 1869 static int 1870 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1871 { 1872 pid_t *pidp = (pid_t *)arg1; 1873 unsigned int arglen = arg2; 1874 struct proc *p; 1875 struct vnode *vp; 1876 char *retbuf, *freebuf; 1877 int error, vfslocked; 1878 1879 if (arglen != 1) 1880 return (EINVAL); 1881 if (*pidp == -1) { /* -1 means this process */ 1882 p = req->td->td_proc; 1883 } else { 1884 error = pget(*pidp, PGET_CANSEE, &p); 1885 if (error != 0) 1886 return (error); 1887 } 1888 1889 vp = p->p_textvp; 1890 if (vp == NULL) { 1891 if (*pidp != -1) 1892 PROC_UNLOCK(p); 1893 return (0); 1894 } 1895 vref(vp); 1896 if (*pidp != -1) 1897 PROC_UNLOCK(p); 1898 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1899 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1900 vrele(vp); 1901 VFS_UNLOCK_GIANT(vfslocked); 1902 if (error) 1903 return (error); 1904 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1905 free(freebuf, M_TEMP); 1906 return (error); 1907 } 1908 1909 static int 1910 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1911 { 1912 struct proc *p; 1913 char *sv_name; 1914 int *name; 1915 int namelen; 1916 int error; 1917 1918 namelen = arg2; 1919 if (namelen != 1) 1920 return (EINVAL); 1921 1922 name = (int *)arg1; 1923 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1924 if (error != 0) 1925 return (error); 1926 sv_name = p->p_sysent->sv_name; 1927 PROC_UNLOCK(p); 1928 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1929 } 1930 1931 #ifdef KINFO_OVMENTRY_SIZE 1932 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1933 #endif 1934 1935 #ifdef COMPAT_FREEBSD7 1936 static int 1937 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1938 { 1939 vm_map_entry_t entry, tmp_entry; 1940 unsigned int last_timestamp; 1941 char *fullpath, *freepath; 1942 struct kinfo_ovmentry *kve; 1943 struct vattr va; 1944 struct ucred *cred; 1945 int error, *name; 1946 struct vnode *vp; 1947 struct proc *p; 1948 vm_map_t map; 1949 struct vmspace *vm; 1950 1951 name = (int *)arg1; 1952 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1953 if (error != 0) 1954 return (error); 1955 vm = vmspace_acquire_ref(p); 1956 if (vm == NULL) { 1957 PRELE(p); 1958 return (ESRCH); 1959 } 1960 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1961 1962 map = &vm->vm_map; 1963 vm_map_lock_read(map); 1964 for (entry = map->header.next; entry != &map->header; 1965 entry = entry->next) { 1966 vm_object_t obj, tobj, lobj; 1967 vm_offset_t addr; 1968 int vfslocked; 1969 1970 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1971 continue; 1972 1973 bzero(kve, sizeof(*kve)); 1974 kve->kve_structsize = sizeof(*kve); 1975 1976 kve->kve_private_resident = 0; 1977 obj = entry->object.vm_object; 1978 if (obj != NULL) { 1979 VM_OBJECT_LOCK(obj); 1980 if (obj->shadow_count == 1) 1981 kve->kve_private_resident = 1982 obj->resident_page_count; 1983 } 1984 kve->kve_resident = 0; 1985 addr = entry->start; 1986 while (addr < entry->end) { 1987 if (pmap_extract(map->pmap, addr)) 1988 kve->kve_resident++; 1989 addr += PAGE_SIZE; 1990 } 1991 1992 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1993 if (tobj != obj) 1994 VM_OBJECT_LOCK(tobj); 1995 if (lobj != obj) 1996 VM_OBJECT_UNLOCK(lobj); 1997 lobj = tobj; 1998 } 1999 2000 kve->kve_start = (void*)entry->start; 2001 kve->kve_end = (void*)entry->end; 2002 kve->kve_offset = (off_t)entry->offset; 2003 2004 if (entry->protection & VM_PROT_READ) 2005 kve->kve_protection |= KVME_PROT_READ; 2006 if (entry->protection & VM_PROT_WRITE) 2007 kve->kve_protection |= KVME_PROT_WRITE; 2008 if (entry->protection & VM_PROT_EXECUTE) 2009 kve->kve_protection |= KVME_PROT_EXEC; 2010 2011 if (entry->eflags & MAP_ENTRY_COW) 2012 kve->kve_flags |= KVME_FLAG_COW; 2013 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2014 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2015 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2016 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2017 2018 last_timestamp = map->timestamp; 2019 vm_map_unlock_read(map); 2020 2021 kve->kve_fileid = 0; 2022 kve->kve_fsid = 0; 2023 freepath = NULL; 2024 fullpath = ""; 2025 if (lobj) { 2026 vp = NULL; 2027 switch (lobj->type) { 2028 case OBJT_DEFAULT: 2029 kve->kve_type = KVME_TYPE_DEFAULT; 2030 break; 2031 case OBJT_VNODE: 2032 kve->kve_type = KVME_TYPE_VNODE; 2033 vp = lobj->handle; 2034 vref(vp); 2035 break; 2036 case OBJT_SWAP: 2037 kve->kve_type = KVME_TYPE_SWAP; 2038 break; 2039 case OBJT_DEVICE: 2040 kve->kve_type = KVME_TYPE_DEVICE; 2041 break; 2042 case OBJT_PHYS: 2043 kve->kve_type = KVME_TYPE_PHYS; 2044 break; 2045 case OBJT_DEAD: 2046 kve->kve_type = KVME_TYPE_DEAD; 2047 break; 2048 case OBJT_SG: 2049 kve->kve_type = KVME_TYPE_SG; 2050 break; 2051 default: 2052 kve->kve_type = KVME_TYPE_UNKNOWN; 2053 break; 2054 } 2055 if (lobj != obj) 2056 VM_OBJECT_UNLOCK(lobj); 2057 2058 kve->kve_ref_count = obj->ref_count; 2059 kve->kve_shadow_count = obj->shadow_count; 2060 VM_OBJECT_UNLOCK(obj); 2061 if (vp != NULL) { 2062 vn_fullpath(curthread, vp, &fullpath, 2063 &freepath); 2064 cred = curthread->td_ucred; 2065 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2066 vn_lock(vp, LK_SHARED | LK_RETRY); 2067 if (VOP_GETATTR(vp, &va, cred) == 0) { 2068 kve->kve_fileid = va.va_fileid; 2069 kve->kve_fsid = va.va_fsid; 2070 } 2071 vput(vp); 2072 VFS_UNLOCK_GIANT(vfslocked); 2073 } 2074 } else { 2075 kve->kve_type = KVME_TYPE_NONE; 2076 kve->kve_ref_count = 0; 2077 kve->kve_shadow_count = 0; 2078 } 2079 2080 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2081 if (freepath != NULL) 2082 free(freepath, M_TEMP); 2083 2084 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2085 vm_map_lock_read(map); 2086 if (error) 2087 break; 2088 if (last_timestamp != map->timestamp) { 2089 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2090 entry = tmp_entry; 2091 } 2092 } 2093 vm_map_unlock_read(map); 2094 vmspace_free(vm); 2095 PRELE(p); 2096 free(kve, M_TEMP); 2097 return (error); 2098 } 2099 #endif /* COMPAT_FREEBSD7 */ 2100 2101 #ifdef KINFO_VMENTRY_SIZE 2102 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2103 #endif 2104 2105 static int 2106 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2107 { 2108 vm_map_entry_t entry, tmp_entry; 2109 unsigned int last_timestamp; 2110 char *fullpath, *freepath; 2111 struct kinfo_vmentry *kve; 2112 struct vattr va; 2113 struct ucred *cred; 2114 int error, *name; 2115 struct vnode *vp; 2116 struct proc *p; 2117 struct vmspace *vm; 2118 vm_map_t map; 2119 2120 name = (int *)arg1; 2121 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2122 if (error != 0) 2123 return (error); 2124 vm = vmspace_acquire_ref(p); 2125 if (vm == NULL) { 2126 PRELE(p); 2127 return (ESRCH); 2128 } 2129 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2130 2131 map = &vm->vm_map; 2132 vm_map_lock_read(map); 2133 for (entry = map->header.next; entry != &map->header; 2134 entry = entry->next) { 2135 vm_object_t obj, tobj, lobj; 2136 vm_offset_t addr; 2137 vm_paddr_t locked_pa; 2138 int vfslocked, mincoreinfo; 2139 2140 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2141 continue; 2142 2143 bzero(kve, sizeof(*kve)); 2144 2145 kve->kve_private_resident = 0; 2146 obj = entry->object.vm_object; 2147 if (obj != NULL) { 2148 VM_OBJECT_LOCK(obj); 2149 if (obj->shadow_count == 1) 2150 kve->kve_private_resident = 2151 obj->resident_page_count; 2152 } 2153 kve->kve_resident = 0; 2154 addr = entry->start; 2155 while (addr < entry->end) { 2156 locked_pa = 0; 2157 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2158 if (locked_pa != 0) 2159 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2160 if (mincoreinfo & MINCORE_INCORE) 2161 kve->kve_resident++; 2162 if (mincoreinfo & MINCORE_SUPER) 2163 kve->kve_flags |= KVME_FLAG_SUPER; 2164 addr += PAGE_SIZE; 2165 } 2166 2167 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2168 if (tobj != obj) 2169 VM_OBJECT_LOCK(tobj); 2170 if (lobj != obj) 2171 VM_OBJECT_UNLOCK(lobj); 2172 lobj = tobj; 2173 } 2174 2175 kve->kve_start = entry->start; 2176 kve->kve_end = entry->end; 2177 kve->kve_offset = entry->offset; 2178 2179 if (entry->protection & VM_PROT_READ) 2180 kve->kve_protection |= KVME_PROT_READ; 2181 if (entry->protection & VM_PROT_WRITE) 2182 kve->kve_protection |= KVME_PROT_WRITE; 2183 if (entry->protection & VM_PROT_EXECUTE) 2184 kve->kve_protection |= KVME_PROT_EXEC; 2185 2186 if (entry->eflags & MAP_ENTRY_COW) 2187 kve->kve_flags |= KVME_FLAG_COW; 2188 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2189 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2190 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2191 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2192 2193 last_timestamp = map->timestamp; 2194 vm_map_unlock_read(map); 2195 2196 freepath = NULL; 2197 fullpath = ""; 2198 if (lobj) { 2199 vp = NULL; 2200 switch (lobj->type) { 2201 case OBJT_DEFAULT: 2202 kve->kve_type = KVME_TYPE_DEFAULT; 2203 break; 2204 case OBJT_VNODE: 2205 kve->kve_type = KVME_TYPE_VNODE; 2206 vp = lobj->handle; 2207 vref(vp); 2208 break; 2209 case OBJT_SWAP: 2210 kve->kve_type = KVME_TYPE_SWAP; 2211 break; 2212 case OBJT_DEVICE: 2213 kve->kve_type = KVME_TYPE_DEVICE; 2214 break; 2215 case OBJT_PHYS: 2216 kve->kve_type = KVME_TYPE_PHYS; 2217 break; 2218 case OBJT_DEAD: 2219 kve->kve_type = KVME_TYPE_DEAD; 2220 break; 2221 case OBJT_SG: 2222 kve->kve_type = KVME_TYPE_SG; 2223 break; 2224 default: 2225 kve->kve_type = KVME_TYPE_UNKNOWN; 2226 break; 2227 } 2228 if (lobj != obj) 2229 VM_OBJECT_UNLOCK(lobj); 2230 2231 kve->kve_ref_count = obj->ref_count; 2232 kve->kve_shadow_count = obj->shadow_count; 2233 VM_OBJECT_UNLOCK(obj); 2234 if (vp != NULL) { 2235 vn_fullpath(curthread, vp, &fullpath, 2236 &freepath); 2237 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2238 cred = curthread->td_ucred; 2239 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2240 vn_lock(vp, LK_SHARED | LK_RETRY); 2241 if (VOP_GETATTR(vp, &va, cred) == 0) { 2242 kve->kve_vn_fileid = va.va_fileid; 2243 kve->kve_vn_fsid = va.va_fsid; 2244 kve->kve_vn_mode = 2245 MAKEIMODE(va.va_type, va.va_mode); 2246 kve->kve_vn_size = va.va_size; 2247 kve->kve_vn_rdev = va.va_rdev; 2248 kve->kve_status = KF_ATTR_VALID; 2249 } 2250 vput(vp); 2251 VFS_UNLOCK_GIANT(vfslocked); 2252 } 2253 } else { 2254 kve->kve_type = KVME_TYPE_NONE; 2255 kve->kve_ref_count = 0; 2256 kve->kve_shadow_count = 0; 2257 } 2258 2259 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2260 if (freepath != NULL) 2261 free(freepath, M_TEMP); 2262 2263 /* Pack record size down */ 2264 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2265 strlen(kve->kve_path) + 1; 2266 kve->kve_structsize = roundup(kve->kve_structsize, 2267 sizeof(uint64_t)); 2268 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 2269 vm_map_lock_read(map); 2270 if (error) 2271 break; 2272 if (last_timestamp != map->timestamp) { 2273 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2274 entry = tmp_entry; 2275 } 2276 } 2277 vm_map_unlock_read(map); 2278 vmspace_free(vm); 2279 PRELE(p); 2280 free(kve, M_TEMP); 2281 return (error); 2282 } 2283 2284 #if defined(STACK) || defined(DDB) 2285 static int 2286 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2287 { 2288 struct kinfo_kstack *kkstp; 2289 int error, i, *name, numthreads; 2290 lwpid_t *lwpidarray; 2291 struct thread *td; 2292 struct stack *st; 2293 struct sbuf sb; 2294 struct proc *p; 2295 2296 name = (int *)arg1; 2297 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2298 if (error != 0) 2299 return (error); 2300 2301 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2302 st = stack_create(); 2303 2304 lwpidarray = NULL; 2305 numthreads = 0; 2306 PROC_LOCK(p); 2307 repeat: 2308 if (numthreads < p->p_numthreads) { 2309 if (lwpidarray != NULL) { 2310 free(lwpidarray, M_TEMP); 2311 lwpidarray = NULL; 2312 } 2313 numthreads = p->p_numthreads; 2314 PROC_UNLOCK(p); 2315 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2316 M_WAITOK | M_ZERO); 2317 PROC_LOCK(p); 2318 goto repeat; 2319 } 2320 i = 0; 2321 2322 /* 2323 * XXXRW: During the below loop, execve(2) and countless other sorts 2324 * of changes could have taken place. Should we check to see if the 2325 * vmspace has been replaced, or the like, in order to prevent 2326 * giving a snapshot that spans, say, execve(2), with some threads 2327 * before and some after? Among other things, the credentials could 2328 * have changed, in which case the right to extract debug info might 2329 * no longer be assured. 2330 */ 2331 FOREACH_THREAD_IN_PROC(p, td) { 2332 KASSERT(i < numthreads, 2333 ("sysctl_kern_proc_kstack: numthreads")); 2334 lwpidarray[i] = td->td_tid; 2335 i++; 2336 } 2337 numthreads = i; 2338 for (i = 0; i < numthreads; i++) { 2339 td = thread_find(p, lwpidarray[i]); 2340 if (td == NULL) { 2341 continue; 2342 } 2343 bzero(kkstp, sizeof(*kkstp)); 2344 (void)sbuf_new(&sb, kkstp->kkst_trace, 2345 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2346 thread_lock(td); 2347 kkstp->kkst_tid = td->td_tid; 2348 if (TD_IS_SWAPPED(td)) 2349 kkstp->kkst_state = KKST_STATE_SWAPPED; 2350 else if (TD_IS_RUNNING(td)) 2351 kkstp->kkst_state = KKST_STATE_RUNNING; 2352 else { 2353 kkstp->kkst_state = KKST_STATE_STACKOK; 2354 stack_save_td(st, td); 2355 } 2356 thread_unlock(td); 2357 PROC_UNLOCK(p); 2358 stack_sbuf_print(&sb, st); 2359 sbuf_finish(&sb); 2360 sbuf_delete(&sb); 2361 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2362 PROC_LOCK(p); 2363 if (error) 2364 break; 2365 } 2366 _PRELE(p); 2367 PROC_UNLOCK(p); 2368 if (lwpidarray != NULL) 2369 free(lwpidarray, M_TEMP); 2370 stack_destroy(st); 2371 free(kkstp, M_TEMP); 2372 return (error); 2373 } 2374 #endif 2375 2376 /* 2377 * This sysctl allows a process to retrieve the full list of groups from 2378 * itself or another process. 2379 */ 2380 static int 2381 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2382 { 2383 pid_t *pidp = (pid_t *)arg1; 2384 unsigned int arglen = arg2; 2385 struct proc *p; 2386 struct ucred *cred; 2387 int error; 2388 2389 if (arglen != 1) 2390 return (EINVAL); 2391 if (*pidp == -1) { /* -1 means this process */ 2392 p = req->td->td_proc; 2393 } else { 2394 error = pget(*pidp, PGET_CANSEE, &p); 2395 if (error != 0) 2396 return (error); 2397 } 2398 2399 cred = crhold(p->p_ucred); 2400 if (*pidp != -1) 2401 PROC_UNLOCK(p); 2402 2403 error = SYSCTL_OUT(req, cred->cr_groups, 2404 cred->cr_ngroups * sizeof(gid_t)); 2405 crfree(cred); 2406 return (error); 2407 } 2408 2409 /* 2410 * This sysctl allows a process to retrieve or/and set the resource limit for 2411 * another process. 2412 */ 2413 static int 2414 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2415 { 2416 int *name = (int *)arg1; 2417 u_int namelen = arg2; 2418 struct rlimit rlim; 2419 struct proc *p; 2420 u_int which; 2421 int flags, error; 2422 2423 if (namelen != 2) 2424 return (EINVAL); 2425 2426 which = (u_int)name[1]; 2427 if (which >= RLIM_NLIMITS) 2428 return (EINVAL); 2429 2430 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2431 return (EINVAL); 2432 2433 flags = PGET_HOLD | PGET_NOTWEXIT; 2434 if (req->newptr != NULL) 2435 flags |= PGET_CANDEBUG; 2436 else 2437 flags |= PGET_CANSEE; 2438 error = pget((pid_t)name[0], flags, &p); 2439 if (error != 0) 2440 return (error); 2441 2442 /* 2443 * Retrieve limit. 2444 */ 2445 if (req->oldptr != NULL) { 2446 PROC_LOCK(p); 2447 lim_rlimit(p, which, &rlim); 2448 PROC_UNLOCK(p); 2449 } 2450 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2451 if (error != 0) 2452 goto errout; 2453 2454 /* 2455 * Set limit. 2456 */ 2457 if (req->newptr != NULL) { 2458 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2459 if (error == 0) 2460 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2461 } 2462 2463 errout: 2464 PRELE(p); 2465 return (error); 2466 } 2467 2468 /* 2469 * This sysctl allows a process to retrieve ps_strings structure location of 2470 * another process. 2471 */ 2472 static int 2473 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2474 { 2475 int *name = (int *)arg1; 2476 u_int namelen = arg2; 2477 struct proc *p; 2478 vm_offset_t ps_strings; 2479 int error; 2480 #ifdef COMPAT_FREEBSD32 2481 uint32_t ps_strings32; 2482 #endif 2483 2484 if (namelen != 1) 2485 return (EINVAL); 2486 2487 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2488 if (error != 0) 2489 return (error); 2490 #ifdef COMPAT_FREEBSD32 2491 if ((req->flags & SCTL_MASK32) != 0) { 2492 /* 2493 * We return 0 if the 32 bit emulation request is for a 64 bit 2494 * process. 2495 */ 2496 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2497 PTROUT(p->p_sysent->sv_psstrings) : 0; 2498 PROC_UNLOCK(p); 2499 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2500 return (error); 2501 } 2502 #endif 2503 ps_strings = p->p_sysent->sv_psstrings; 2504 PROC_UNLOCK(p); 2505 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2506 return (error); 2507 } 2508 2509 /* 2510 * This sysctl allows a process to retrieve umask of another process. 2511 */ 2512 static int 2513 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2514 { 2515 int *name = (int *)arg1; 2516 u_int namelen = arg2; 2517 struct proc *p; 2518 int error; 2519 u_short fd_cmask; 2520 2521 if (namelen != 1) 2522 return (EINVAL); 2523 2524 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2525 if (error != 0) 2526 return (error); 2527 2528 FILEDESC_SLOCK(p->p_fd); 2529 fd_cmask = p->p_fd->fd_cmask; 2530 FILEDESC_SUNLOCK(p->p_fd); 2531 PRELE(p); 2532 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2533 return (error); 2534 } 2535 2536 /* 2537 * This sysctl allows a process to set and retrieve binary osreldate of 2538 * another process. 2539 */ 2540 static int 2541 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2542 { 2543 int *name = (int *)arg1; 2544 u_int namelen = arg2; 2545 struct proc *p; 2546 int flags, error, osrel; 2547 2548 if (namelen != 1) 2549 return (EINVAL); 2550 2551 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2552 return (EINVAL); 2553 2554 flags = PGET_HOLD | PGET_NOTWEXIT; 2555 if (req->newptr != NULL) 2556 flags |= PGET_CANDEBUG; 2557 else 2558 flags |= PGET_CANSEE; 2559 error = pget((pid_t)name[0], flags, &p); 2560 if (error != 0) 2561 return (error); 2562 2563 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2564 if (error != 0) 2565 goto errout; 2566 2567 if (req->newptr != NULL) { 2568 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2569 if (error != 0) 2570 goto errout; 2571 if (osrel < 0) { 2572 error = EINVAL; 2573 goto errout; 2574 } 2575 p->p_osrel = osrel; 2576 } 2577 errout: 2578 PRELE(p); 2579 return (error); 2580 } 2581 2582 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2583 2584 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2585 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2586 "Return entire process table"); 2587 2588 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2589 sysctl_kern_proc, "Process table"); 2590 2591 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2592 sysctl_kern_proc, "Process table"); 2593 2594 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2595 sysctl_kern_proc, "Process table"); 2596 2597 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2598 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2599 2600 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2601 sysctl_kern_proc, "Process table"); 2602 2603 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2604 sysctl_kern_proc, "Process table"); 2605 2606 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2607 sysctl_kern_proc, "Process table"); 2608 2609 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2610 sysctl_kern_proc, "Process table"); 2611 2612 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2613 sysctl_kern_proc, "Return process table, no threads"); 2614 2615 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2616 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2617 sysctl_kern_proc_args, "Process argument list"); 2618 2619 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2620 sysctl_kern_proc_env, "Process environment"); 2621 2622 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2623 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2624 2625 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2626 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2627 2628 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2629 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2630 "Process syscall vector name (ABI type)"); 2631 2632 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2633 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2634 2635 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2636 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2637 2638 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2639 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2640 2641 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2642 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2643 2644 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2645 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2646 2647 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2648 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2649 2650 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2651 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2652 2653 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2654 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2655 2656 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2657 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2658 "Return process table, no threads"); 2659 2660 #ifdef COMPAT_FREEBSD7 2661 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2662 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2663 #endif 2664 2665 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2666 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2667 2668 #if defined(STACK) || defined(DDB) 2669 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2670 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2671 #endif 2672 2673 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2674 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2675 2676 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2677 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2678 "Process resource limits"); 2679 2680 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2681 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2682 "Process ps_strings location"); 2683 2684 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2685 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2686 2687 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2688 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2689 "Process binary osreldate"); 2690