1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_compat.h" 38 #include "opt_ddb.h" 39 #include "opt_ktrace.h" 40 #include "opt_kstack_pages.h" 41 #include "opt_stack.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/elf.h> 46 #include <sys/eventhandler.h> 47 #include <sys/exec.h> 48 #include <sys/jail.h> 49 #include <sys/kernel.h> 50 #include <sys/limits.h> 51 #include <sys/lock.h> 52 #include <sys/loginclass.h> 53 #include <sys/malloc.h> 54 #include <sys/mman.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/smp.h> 66 #include <sys/stack.h> 67 #include <sys/stat.h> 68 #include <sys/sysctl.h> 69 #include <sys/filedesc.h> 70 #include <sys/tty.h> 71 #include <sys/signalvar.h> 72 #include <sys/sdt.h> 73 #include <sys/sx.h> 74 #include <sys/user.h> 75 #include <sys/vnode.h> 76 #include <sys/wait.h> 77 78 #ifdef DDB 79 #include <ddb/ddb.h> 80 #endif 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/vm_extern.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #ifdef COMPAT_FREEBSD32 92 #include <compat/freebsd32/freebsd32.h> 93 #include <compat/freebsd32/freebsd32_util.h> 94 #endif 95 96 SDT_PROVIDER_DEFINE(proc); 97 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 100 "int"); 101 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 102 "struct thread *"); 103 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 104 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 105 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 106 107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 108 MALLOC_DEFINE(M_SESSION, "session", "session header"); 109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 111 112 static void doenterpgrp(struct proc *, struct pgrp *); 113 static void orphanpg(struct pgrp *pg); 114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 117 int preferthread); 118 static void pgadjustjobc(struct pgrp *pgrp, int entering); 119 static void pgdelete(struct pgrp *); 120 static int proc_ctor(void *mem, int size, void *arg, int flags); 121 static void proc_dtor(void *mem, int size, void *arg); 122 static int proc_init(void *mem, int size, int flags); 123 static void proc_fini(void *mem, int size); 124 static void pargs_free(struct pargs *pa); 125 static struct proc *zpfind_locked(pid_t pid); 126 127 /* 128 * Other process lists 129 */ 130 struct pidhashhead *pidhashtbl; 131 u_long pidhash; 132 struct pgrphashhead *pgrphashtbl; 133 u_long pgrphash; 134 struct proclist allproc; 135 struct proclist zombproc; 136 struct sx __exclusive_cache_line allproc_lock; 137 struct sx __exclusive_cache_line proctree_lock; 138 struct mtx __exclusive_cache_line ppeers_lock; 139 uma_zone_t proc_zone; 140 141 /* 142 * The offset of various fields in struct proc and struct thread. 143 * These are used by kernel debuggers to enumerate kernel threads and 144 * processes. 145 */ 146 const int proc_off_p_pid = offsetof(struct proc, p_pid); 147 const int proc_off_p_comm = offsetof(struct proc, p_comm); 148 const int proc_off_p_list = offsetof(struct proc, p_list); 149 const int proc_off_p_threads = offsetof(struct proc, p_threads); 150 const int thread_off_td_tid = offsetof(struct thread, td_tid); 151 const int thread_off_td_name = offsetof(struct thread, td_name); 152 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 153 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 154 const int thread_off_td_plist = offsetof(struct thread, td_plist); 155 156 EVENTHANDLER_LIST_DEFINE(process_ctor); 157 EVENTHANDLER_LIST_DEFINE(process_dtor); 158 EVENTHANDLER_LIST_DEFINE(process_init); 159 EVENTHANDLER_LIST_DEFINE(process_fini); 160 EVENTHANDLER_LIST_DEFINE(process_exit); 161 EVENTHANDLER_LIST_DEFINE(process_fork); 162 EVENTHANDLER_LIST_DEFINE(process_exec); 163 164 EVENTHANDLER_LIST_DECLARE(thread_ctor); 165 EVENTHANDLER_LIST_DECLARE(thread_dtor); 166 167 int kstack_pages = KSTACK_PAGES; 168 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 169 "Kernel stack size in pages"); 170 static int vmmap_skip_res_cnt = 0; 171 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 172 &vmmap_skip_res_cnt, 0, 173 "Skip calculation of the pages resident count in kern.proc.vmmap"); 174 175 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 176 #ifdef COMPAT_FREEBSD32 177 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 178 #endif 179 180 /* 181 * Initialize global process hashing structures. 182 */ 183 void 184 procinit(void) 185 { 186 187 sx_init(&allproc_lock, "allproc"); 188 sx_init(&proctree_lock, "proctree"); 189 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 190 LIST_INIT(&allproc); 191 LIST_INIT(&zombproc); 192 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 193 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 194 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 195 proc_ctor, proc_dtor, proc_init, proc_fini, 196 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 197 uihashinit(); 198 } 199 200 /* 201 * Prepare a proc for use. 202 */ 203 static int 204 proc_ctor(void *mem, int size, void *arg, int flags) 205 { 206 struct proc *p; 207 struct thread *td; 208 209 p = (struct proc *)mem; 210 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 211 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 212 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 213 td = FIRST_THREAD_IN_PROC(p); 214 if (td != NULL) { 215 /* Make sure all thread constructors are executed */ 216 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 217 } 218 return (0); 219 } 220 221 /* 222 * Reclaim a proc after use. 223 */ 224 static void 225 proc_dtor(void *mem, int size, void *arg) 226 { 227 struct proc *p; 228 struct thread *td; 229 230 /* INVARIANTS checks go here */ 231 p = (struct proc *)mem; 232 td = FIRST_THREAD_IN_PROC(p); 233 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 234 if (td != NULL) { 235 #ifdef INVARIANTS 236 KASSERT((p->p_numthreads == 1), 237 ("bad number of threads in exiting process")); 238 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 239 #endif 240 /* Free all OSD associated to this thread. */ 241 osd_thread_exit(td); 242 td_softdep_cleanup(td); 243 MPASS(td->td_su == NULL); 244 245 /* Make sure all thread destructors are executed */ 246 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 247 } 248 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 249 if (p->p_ksi != NULL) 250 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 251 SDT_PROBE3(proc, , dtor, return, p, size, arg); 252 } 253 254 /* 255 * Initialize type-stable parts of a proc (when newly created). 256 */ 257 static int 258 proc_init(void *mem, int size, int flags) 259 { 260 struct proc *p; 261 262 p = (struct proc *)mem; 263 SDT_PROBE3(proc, , init, entry, p, size, flags); 264 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 265 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 266 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 267 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 268 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 269 cv_init(&p->p_pwait, "ppwait"); 270 cv_init(&p->p_dbgwait, "dbgwait"); 271 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 272 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 273 p->p_stats = pstats_alloc(); 274 p->p_pgrp = NULL; 275 SDT_PROBE3(proc, , init, return, p, size, flags); 276 return (0); 277 } 278 279 /* 280 * UMA should ensure that this function is never called. 281 * Freeing a proc structure would violate type stability. 282 */ 283 static void 284 proc_fini(void *mem, int size) 285 { 286 #ifdef notnow 287 struct proc *p; 288 289 p = (struct proc *)mem; 290 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 291 pstats_free(p->p_stats); 292 thread_free(FIRST_THREAD_IN_PROC(p)); 293 mtx_destroy(&p->p_mtx); 294 if (p->p_ksi != NULL) 295 ksiginfo_free(p->p_ksi); 296 #else 297 panic("proc reclaimed"); 298 #endif 299 } 300 301 /* 302 * Is p an inferior of the current process? 303 */ 304 int 305 inferior(struct proc *p) 306 { 307 308 sx_assert(&proctree_lock, SX_LOCKED); 309 PROC_LOCK_ASSERT(p, MA_OWNED); 310 for (; p != curproc; p = proc_realparent(p)) { 311 if (p->p_pid == 0) 312 return (0); 313 } 314 return (1); 315 } 316 317 struct proc * 318 pfind_locked(pid_t pid) 319 { 320 struct proc *p; 321 322 sx_assert(&allproc_lock, SX_LOCKED); 323 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 324 if (p->p_pid == pid) { 325 PROC_LOCK(p); 326 if (p->p_state == PRS_NEW) { 327 PROC_UNLOCK(p); 328 p = NULL; 329 } 330 break; 331 } 332 } 333 return (p); 334 } 335 336 /* 337 * Locate a process by number; return only "live" processes -- i.e., neither 338 * zombies nor newly born but incompletely initialized processes. By not 339 * returning processes in the PRS_NEW state, we allow callers to avoid 340 * testing for that condition to avoid dereferencing p_ucred, et al. 341 */ 342 struct proc * 343 pfind(pid_t pid) 344 { 345 struct proc *p; 346 347 p = curproc; 348 if (p->p_pid == pid) { 349 PROC_LOCK(p); 350 return (p); 351 } 352 sx_slock(&allproc_lock); 353 p = pfind_locked(pid); 354 sx_sunlock(&allproc_lock); 355 return (p); 356 } 357 358 /* 359 * Same as pfind but allow zombies. 360 */ 361 struct proc * 362 pfind_any(pid_t pid) 363 { 364 struct proc *p; 365 366 sx_slock(&allproc_lock); 367 p = pfind_locked(pid); 368 if (p == NULL) 369 p = zpfind_locked(pid); 370 sx_sunlock(&allproc_lock); 371 372 return (p); 373 } 374 375 static struct proc * 376 pfind_tid_locked(pid_t tid) 377 { 378 struct proc *p; 379 struct thread *td; 380 381 sx_assert(&allproc_lock, SX_LOCKED); 382 FOREACH_PROC_IN_SYSTEM(p) { 383 PROC_LOCK(p); 384 if (p->p_state == PRS_NEW) { 385 PROC_UNLOCK(p); 386 continue; 387 } 388 FOREACH_THREAD_IN_PROC(p, td) { 389 if (td->td_tid == tid) 390 goto found; 391 } 392 PROC_UNLOCK(p); 393 } 394 found: 395 return (p); 396 } 397 398 /* 399 * Locate a process group by number. 400 * The caller must hold proctree_lock. 401 */ 402 struct pgrp * 403 pgfind(pid_t pgid) 404 { 405 struct pgrp *pgrp; 406 407 sx_assert(&proctree_lock, SX_LOCKED); 408 409 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 410 if (pgrp->pg_id == pgid) { 411 PGRP_LOCK(pgrp); 412 return (pgrp); 413 } 414 } 415 return (NULL); 416 } 417 418 /* 419 * Locate process and do additional manipulations, depending on flags. 420 */ 421 int 422 pget(pid_t pid, int flags, struct proc **pp) 423 { 424 struct proc *p; 425 int error; 426 427 p = curproc; 428 if (p->p_pid == pid) { 429 PROC_LOCK(p); 430 } else { 431 sx_slock(&allproc_lock); 432 if (pid <= PID_MAX) { 433 p = pfind_locked(pid); 434 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 435 p = zpfind_locked(pid); 436 } else if ((flags & PGET_NOTID) == 0) { 437 p = pfind_tid_locked(pid); 438 } else { 439 p = NULL; 440 } 441 sx_sunlock(&allproc_lock); 442 if (p == NULL) 443 return (ESRCH); 444 if ((flags & PGET_CANSEE) != 0) { 445 error = p_cansee(curthread, p); 446 if (error != 0) 447 goto errout; 448 } 449 } 450 if ((flags & PGET_CANDEBUG) != 0) { 451 error = p_candebug(curthread, p); 452 if (error != 0) 453 goto errout; 454 } 455 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 456 error = EPERM; 457 goto errout; 458 } 459 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 460 error = ESRCH; 461 goto errout; 462 } 463 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 464 /* 465 * XXXRW: Not clear ESRCH is the right error during proc 466 * execve(). 467 */ 468 error = ESRCH; 469 goto errout; 470 } 471 if ((flags & PGET_HOLD) != 0) { 472 _PHOLD(p); 473 PROC_UNLOCK(p); 474 } 475 *pp = p; 476 return (0); 477 errout: 478 PROC_UNLOCK(p); 479 return (error); 480 } 481 482 /* 483 * Create a new process group. 484 * pgid must be equal to the pid of p. 485 * Begin a new session if required. 486 */ 487 int 488 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 489 { 490 491 sx_assert(&proctree_lock, SX_XLOCKED); 492 493 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 494 KASSERT(p->p_pid == pgid, 495 ("enterpgrp: new pgrp and pid != pgid")); 496 KASSERT(pgfind(pgid) == NULL, 497 ("enterpgrp: pgrp with pgid exists")); 498 KASSERT(!SESS_LEADER(p), 499 ("enterpgrp: session leader attempted setpgrp")); 500 501 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 502 503 if (sess != NULL) { 504 /* 505 * new session 506 */ 507 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 508 PROC_LOCK(p); 509 p->p_flag &= ~P_CONTROLT; 510 PROC_UNLOCK(p); 511 PGRP_LOCK(pgrp); 512 sess->s_leader = p; 513 sess->s_sid = p->p_pid; 514 refcount_init(&sess->s_count, 1); 515 sess->s_ttyvp = NULL; 516 sess->s_ttydp = NULL; 517 sess->s_ttyp = NULL; 518 bcopy(p->p_session->s_login, sess->s_login, 519 sizeof(sess->s_login)); 520 pgrp->pg_session = sess; 521 KASSERT(p == curproc, 522 ("enterpgrp: mksession and p != curproc")); 523 } else { 524 pgrp->pg_session = p->p_session; 525 sess_hold(pgrp->pg_session); 526 PGRP_LOCK(pgrp); 527 } 528 pgrp->pg_id = pgid; 529 LIST_INIT(&pgrp->pg_members); 530 531 /* 532 * As we have an exclusive lock of proctree_lock, 533 * this should not deadlock. 534 */ 535 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 536 pgrp->pg_jobc = 0; 537 SLIST_INIT(&pgrp->pg_sigiolst); 538 PGRP_UNLOCK(pgrp); 539 540 doenterpgrp(p, pgrp); 541 542 return (0); 543 } 544 545 /* 546 * Move p to an existing process group 547 */ 548 int 549 enterthispgrp(struct proc *p, struct pgrp *pgrp) 550 { 551 552 sx_assert(&proctree_lock, SX_XLOCKED); 553 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 554 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 555 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 556 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 557 KASSERT(pgrp->pg_session == p->p_session, 558 ("%s: pgrp's session %p, p->p_session %p.\n", 559 __func__, 560 pgrp->pg_session, 561 p->p_session)); 562 KASSERT(pgrp != p->p_pgrp, 563 ("%s: p belongs to pgrp.", __func__)); 564 565 doenterpgrp(p, pgrp); 566 567 return (0); 568 } 569 570 /* 571 * Move p to a process group 572 */ 573 static void 574 doenterpgrp(struct proc *p, struct pgrp *pgrp) 575 { 576 struct pgrp *savepgrp; 577 578 sx_assert(&proctree_lock, SX_XLOCKED); 579 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 580 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 581 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 582 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 583 584 savepgrp = p->p_pgrp; 585 586 /* 587 * Adjust eligibility of affected pgrps to participate in job control. 588 * Increment eligibility counts before decrementing, otherwise we 589 * could reach 0 spuriously during the first call. 590 */ 591 fixjobc(p, pgrp, 1); 592 fixjobc(p, p->p_pgrp, 0); 593 594 PGRP_LOCK(pgrp); 595 PGRP_LOCK(savepgrp); 596 PROC_LOCK(p); 597 LIST_REMOVE(p, p_pglist); 598 p->p_pgrp = pgrp; 599 PROC_UNLOCK(p); 600 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 601 PGRP_UNLOCK(savepgrp); 602 PGRP_UNLOCK(pgrp); 603 if (LIST_EMPTY(&savepgrp->pg_members)) 604 pgdelete(savepgrp); 605 } 606 607 /* 608 * remove process from process group 609 */ 610 int 611 leavepgrp(struct proc *p) 612 { 613 struct pgrp *savepgrp; 614 615 sx_assert(&proctree_lock, SX_XLOCKED); 616 savepgrp = p->p_pgrp; 617 PGRP_LOCK(savepgrp); 618 PROC_LOCK(p); 619 LIST_REMOVE(p, p_pglist); 620 p->p_pgrp = NULL; 621 PROC_UNLOCK(p); 622 PGRP_UNLOCK(savepgrp); 623 if (LIST_EMPTY(&savepgrp->pg_members)) 624 pgdelete(savepgrp); 625 return (0); 626 } 627 628 /* 629 * delete a process group 630 */ 631 static void 632 pgdelete(struct pgrp *pgrp) 633 { 634 struct session *savesess; 635 struct tty *tp; 636 637 sx_assert(&proctree_lock, SX_XLOCKED); 638 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 639 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 640 641 /* 642 * Reset any sigio structures pointing to us as a result of 643 * F_SETOWN with our pgid. 644 */ 645 funsetownlst(&pgrp->pg_sigiolst); 646 647 PGRP_LOCK(pgrp); 648 tp = pgrp->pg_session->s_ttyp; 649 LIST_REMOVE(pgrp, pg_hash); 650 savesess = pgrp->pg_session; 651 PGRP_UNLOCK(pgrp); 652 653 /* Remove the reference to the pgrp before deallocating it. */ 654 if (tp != NULL) { 655 tty_lock(tp); 656 tty_rel_pgrp(tp, pgrp); 657 } 658 659 mtx_destroy(&pgrp->pg_mtx); 660 free(pgrp, M_PGRP); 661 sess_release(savesess); 662 } 663 664 static void 665 pgadjustjobc(struct pgrp *pgrp, int entering) 666 { 667 668 PGRP_LOCK(pgrp); 669 if (entering) 670 pgrp->pg_jobc++; 671 else { 672 --pgrp->pg_jobc; 673 if (pgrp->pg_jobc == 0) 674 orphanpg(pgrp); 675 } 676 PGRP_UNLOCK(pgrp); 677 } 678 679 /* 680 * Adjust pgrp jobc counters when specified process changes process group. 681 * We count the number of processes in each process group that "qualify" 682 * the group for terminal job control (those with a parent in a different 683 * process group of the same session). If that count reaches zero, the 684 * process group becomes orphaned. Check both the specified process' 685 * process group and that of its children. 686 * entering == 0 => p is leaving specified group. 687 * entering == 1 => p is entering specified group. 688 */ 689 void 690 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 691 { 692 struct pgrp *hispgrp; 693 struct session *mysession; 694 struct proc *q; 695 696 sx_assert(&proctree_lock, SX_LOCKED); 697 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 698 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 699 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 700 701 /* 702 * Check p's parent to see whether p qualifies its own process 703 * group; if so, adjust count for p's process group. 704 */ 705 mysession = pgrp->pg_session; 706 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 707 hispgrp->pg_session == mysession) 708 pgadjustjobc(pgrp, entering); 709 710 /* 711 * Check this process' children to see whether they qualify 712 * their process groups; if so, adjust counts for children's 713 * process groups. 714 */ 715 LIST_FOREACH(q, &p->p_children, p_sibling) { 716 hispgrp = q->p_pgrp; 717 if (hispgrp == pgrp || 718 hispgrp->pg_session != mysession) 719 continue; 720 if (q->p_state == PRS_ZOMBIE) 721 continue; 722 pgadjustjobc(hispgrp, entering); 723 } 724 } 725 726 void 727 killjobc(void) 728 { 729 struct session *sp; 730 struct tty *tp; 731 struct proc *p; 732 struct vnode *ttyvp; 733 734 p = curproc; 735 MPASS(p->p_flag & P_WEXIT); 736 /* 737 * Do a quick check to see if there is anything to do with the 738 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 739 */ 740 PROC_LOCK(p); 741 if (!SESS_LEADER(p) && 742 (p->p_pgrp == p->p_pptr->p_pgrp) && 743 LIST_EMPTY(&p->p_children)) { 744 PROC_UNLOCK(p); 745 return; 746 } 747 PROC_UNLOCK(p); 748 749 sx_xlock(&proctree_lock); 750 if (SESS_LEADER(p)) { 751 sp = p->p_session; 752 753 /* 754 * s_ttyp is not zero'd; we use this to indicate that 755 * the session once had a controlling terminal. (for 756 * logging and informational purposes) 757 */ 758 SESS_LOCK(sp); 759 ttyvp = sp->s_ttyvp; 760 tp = sp->s_ttyp; 761 sp->s_ttyvp = NULL; 762 sp->s_ttydp = NULL; 763 sp->s_leader = NULL; 764 SESS_UNLOCK(sp); 765 766 /* 767 * Signal foreground pgrp and revoke access to 768 * controlling terminal if it has not been revoked 769 * already. 770 * 771 * Because the TTY may have been revoked in the mean 772 * time and could already have a new session associated 773 * with it, make sure we don't send a SIGHUP to a 774 * foreground process group that does not belong to this 775 * session. 776 */ 777 778 if (tp != NULL) { 779 tty_lock(tp); 780 if (tp->t_session == sp) 781 tty_signal_pgrp(tp, SIGHUP); 782 tty_unlock(tp); 783 } 784 785 if (ttyvp != NULL) { 786 sx_xunlock(&proctree_lock); 787 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 788 VOP_REVOKE(ttyvp, REVOKEALL); 789 VOP_UNLOCK(ttyvp, 0); 790 } 791 vrele(ttyvp); 792 sx_xlock(&proctree_lock); 793 } 794 } 795 fixjobc(p, p->p_pgrp, 0); 796 sx_xunlock(&proctree_lock); 797 } 798 799 /* 800 * A process group has become orphaned; 801 * if there are any stopped processes in the group, 802 * hang-up all process in that group. 803 */ 804 static void 805 orphanpg(struct pgrp *pg) 806 { 807 struct proc *p; 808 809 PGRP_LOCK_ASSERT(pg, MA_OWNED); 810 811 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 812 PROC_LOCK(p); 813 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 814 PROC_UNLOCK(p); 815 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 816 PROC_LOCK(p); 817 kern_psignal(p, SIGHUP); 818 kern_psignal(p, SIGCONT); 819 PROC_UNLOCK(p); 820 } 821 return; 822 } 823 PROC_UNLOCK(p); 824 } 825 } 826 827 void 828 sess_hold(struct session *s) 829 { 830 831 refcount_acquire(&s->s_count); 832 } 833 834 void 835 sess_release(struct session *s) 836 { 837 838 if (refcount_release(&s->s_count)) { 839 if (s->s_ttyp != NULL) { 840 tty_lock(s->s_ttyp); 841 tty_rel_sess(s->s_ttyp, s); 842 } 843 mtx_destroy(&s->s_mtx); 844 free(s, M_SESSION); 845 } 846 } 847 848 #ifdef DDB 849 850 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 851 { 852 struct pgrp *pgrp; 853 struct proc *p; 854 int i; 855 856 for (i = 0; i <= pgrphash; i++) { 857 if (!LIST_EMPTY(&pgrphashtbl[i])) { 858 printf("\tindx %d\n", i); 859 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 860 printf( 861 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 862 (void *)pgrp, (long)pgrp->pg_id, 863 (void *)pgrp->pg_session, 864 pgrp->pg_session->s_count, 865 (void *)LIST_FIRST(&pgrp->pg_members)); 866 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 867 printf("\t\tpid %ld addr %p pgrp %p\n", 868 (long)p->p_pid, (void *)p, 869 (void *)p->p_pgrp); 870 } 871 } 872 } 873 } 874 } 875 #endif /* DDB */ 876 877 /* 878 * Calculate the kinfo_proc members which contain process-wide 879 * informations. 880 * Must be called with the target process locked. 881 */ 882 static void 883 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 884 { 885 struct thread *td; 886 887 PROC_LOCK_ASSERT(p, MA_OWNED); 888 889 kp->ki_estcpu = 0; 890 kp->ki_pctcpu = 0; 891 FOREACH_THREAD_IN_PROC(p, td) { 892 thread_lock(td); 893 kp->ki_pctcpu += sched_pctcpu(td); 894 kp->ki_estcpu += sched_estcpu(td); 895 thread_unlock(td); 896 } 897 } 898 899 /* 900 * Clear kinfo_proc and fill in any information that is common 901 * to all threads in the process. 902 * Must be called with the target process locked. 903 */ 904 static void 905 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 906 { 907 struct thread *td0; 908 struct tty *tp; 909 struct session *sp; 910 struct ucred *cred; 911 struct sigacts *ps; 912 struct timeval boottime; 913 914 /* For proc_realparent. */ 915 sx_assert(&proctree_lock, SX_LOCKED); 916 PROC_LOCK_ASSERT(p, MA_OWNED); 917 bzero(kp, sizeof(*kp)); 918 919 kp->ki_structsize = sizeof(*kp); 920 kp->ki_paddr = p; 921 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 922 kp->ki_args = p->p_args; 923 kp->ki_textvp = p->p_textvp; 924 #ifdef KTRACE 925 kp->ki_tracep = p->p_tracevp; 926 kp->ki_traceflag = p->p_traceflag; 927 #endif 928 kp->ki_fd = p->p_fd; 929 kp->ki_vmspace = p->p_vmspace; 930 kp->ki_flag = p->p_flag; 931 kp->ki_flag2 = p->p_flag2; 932 cred = p->p_ucred; 933 if (cred) { 934 kp->ki_uid = cred->cr_uid; 935 kp->ki_ruid = cred->cr_ruid; 936 kp->ki_svuid = cred->cr_svuid; 937 kp->ki_cr_flags = 0; 938 if (cred->cr_flags & CRED_FLAG_CAPMODE) 939 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 940 /* XXX bde doesn't like KI_NGROUPS */ 941 if (cred->cr_ngroups > KI_NGROUPS) { 942 kp->ki_ngroups = KI_NGROUPS; 943 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 944 } else 945 kp->ki_ngroups = cred->cr_ngroups; 946 bcopy(cred->cr_groups, kp->ki_groups, 947 kp->ki_ngroups * sizeof(gid_t)); 948 kp->ki_rgid = cred->cr_rgid; 949 kp->ki_svgid = cred->cr_svgid; 950 /* If jailed(cred), emulate the old P_JAILED flag. */ 951 if (jailed(cred)) { 952 kp->ki_flag |= P_JAILED; 953 /* If inside the jail, use 0 as a jail ID. */ 954 if (cred->cr_prison != curthread->td_ucred->cr_prison) 955 kp->ki_jid = cred->cr_prison->pr_id; 956 } 957 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 958 sizeof(kp->ki_loginclass)); 959 } 960 ps = p->p_sigacts; 961 if (ps) { 962 mtx_lock(&ps->ps_mtx); 963 kp->ki_sigignore = ps->ps_sigignore; 964 kp->ki_sigcatch = ps->ps_sigcatch; 965 mtx_unlock(&ps->ps_mtx); 966 } 967 if (p->p_state != PRS_NEW && 968 p->p_state != PRS_ZOMBIE && 969 p->p_vmspace != NULL) { 970 struct vmspace *vm = p->p_vmspace; 971 972 kp->ki_size = vm->vm_map.size; 973 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 974 FOREACH_THREAD_IN_PROC(p, td0) { 975 if (!TD_IS_SWAPPED(td0)) 976 kp->ki_rssize += td0->td_kstack_pages; 977 } 978 kp->ki_swrss = vm->vm_swrss; 979 kp->ki_tsize = vm->vm_tsize; 980 kp->ki_dsize = vm->vm_dsize; 981 kp->ki_ssize = vm->vm_ssize; 982 } else if (p->p_state == PRS_ZOMBIE) 983 kp->ki_stat = SZOMB; 984 if (kp->ki_flag & P_INMEM) 985 kp->ki_sflag = PS_INMEM; 986 else 987 kp->ki_sflag = 0; 988 /* Calculate legacy swtime as seconds since 'swtick'. */ 989 kp->ki_swtime = (ticks - p->p_swtick) / hz; 990 kp->ki_pid = p->p_pid; 991 kp->ki_nice = p->p_nice; 992 kp->ki_fibnum = p->p_fibnum; 993 kp->ki_start = p->p_stats->p_start; 994 getboottime(&boottime); 995 timevaladd(&kp->ki_start, &boottime); 996 PROC_STATLOCK(p); 997 rufetch(p, &kp->ki_rusage); 998 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 999 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1000 PROC_STATUNLOCK(p); 1001 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1002 /* Some callers want child times in a single value. */ 1003 kp->ki_childtime = kp->ki_childstime; 1004 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1005 1006 FOREACH_THREAD_IN_PROC(p, td0) 1007 kp->ki_cow += td0->td_cow; 1008 1009 tp = NULL; 1010 if (p->p_pgrp) { 1011 kp->ki_pgid = p->p_pgrp->pg_id; 1012 kp->ki_jobc = p->p_pgrp->pg_jobc; 1013 sp = p->p_pgrp->pg_session; 1014 1015 if (sp != NULL) { 1016 kp->ki_sid = sp->s_sid; 1017 SESS_LOCK(sp); 1018 strlcpy(kp->ki_login, sp->s_login, 1019 sizeof(kp->ki_login)); 1020 if (sp->s_ttyvp) 1021 kp->ki_kiflag |= KI_CTTY; 1022 if (SESS_LEADER(p)) 1023 kp->ki_kiflag |= KI_SLEADER; 1024 /* XXX proctree_lock */ 1025 tp = sp->s_ttyp; 1026 SESS_UNLOCK(sp); 1027 } 1028 } 1029 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1030 kp->ki_tdev = tty_udev(tp); 1031 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1032 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1033 if (tp->t_session) 1034 kp->ki_tsid = tp->t_session->s_sid; 1035 } else { 1036 kp->ki_tdev = NODEV; 1037 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1038 } 1039 if (p->p_comm[0] != '\0') 1040 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1041 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1042 p->p_sysent->sv_name[0] != '\0') 1043 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1044 kp->ki_siglist = p->p_siglist; 1045 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1046 kp->ki_acflag = p->p_acflag; 1047 kp->ki_lock = p->p_lock; 1048 if (p->p_pptr) { 1049 kp->ki_ppid = proc_realparent(p)->p_pid; 1050 if (p->p_flag & P_TRACED) 1051 kp->ki_tracer = p->p_pptr->p_pid; 1052 } 1053 } 1054 1055 /* 1056 * Fill in information that is thread specific. Must be called with 1057 * target process locked. If 'preferthread' is set, overwrite certain 1058 * process-related fields that are maintained for both threads and 1059 * processes. 1060 */ 1061 static void 1062 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1063 { 1064 struct proc *p; 1065 1066 p = td->td_proc; 1067 kp->ki_tdaddr = td; 1068 PROC_LOCK_ASSERT(p, MA_OWNED); 1069 1070 if (preferthread) 1071 PROC_STATLOCK(p); 1072 thread_lock(td); 1073 if (td->td_wmesg != NULL) 1074 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1075 else 1076 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1077 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1078 sizeof(kp->ki_tdname)) { 1079 strlcpy(kp->ki_moretdname, 1080 td->td_name + sizeof(kp->ki_tdname) - 1, 1081 sizeof(kp->ki_moretdname)); 1082 } else { 1083 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1084 } 1085 if (TD_ON_LOCK(td)) { 1086 kp->ki_kiflag |= KI_LOCKBLOCK; 1087 strlcpy(kp->ki_lockname, td->td_lockname, 1088 sizeof(kp->ki_lockname)); 1089 } else { 1090 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1091 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1092 } 1093 1094 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1095 if (TD_ON_RUNQ(td) || 1096 TD_CAN_RUN(td) || 1097 TD_IS_RUNNING(td)) { 1098 kp->ki_stat = SRUN; 1099 } else if (P_SHOULDSTOP(p)) { 1100 kp->ki_stat = SSTOP; 1101 } else if (TD_IS_SLEEPING(td)) { 1102 kp->ki_stat = SSLEEP; 1103 } else if (TD_ON_LOCK(td)) { 1104 kp->ki_stat = SLOCK; 1105 } else { 1106 kp->ki_stat = SWAIT; 1107 } 1108 } else if (p->p_state == PRS_ZOMBIE) { 1109 kp->ki_stat = SZOMB; 1110 } else { 1111 kp->ki_stat = SIDL; 1112 } 1113 1114 /* Things in the thread */ 1115 kp->ki_wchan = td->td_wchan; 1116 kp->ki_pri.pri_level = td->td_priority; 1117 kp->ki_pri.pri_native = td->td_base_pri; 1118 1119 /* 1120 * Note: legacy fields; clamp at the old NOCPU value and/or 1121 * the maximum u_char CPU value. 1122 */ 1123 if (td->td_lastcpu == NOCPU) 1124 kp->ki_lastcpu_old = NOCPU_OLD; 1125 else if (td->td_lastcpu > MAXCPU_OLD) 1126 kp->ki_lastcpu_old = MAXCPU_OLD; 1127 else 1128 kp->ki_lastcpu_old = td->td_lastcpu; 1129 1130 if (td->td_oncpu == NOCPU) 1131 kp->ki_oncpu_old = NOCPU_OLD; 1132 else if (td->td_oncpu > MAXCPU_OLD) 1133 kp->ki_oncpu_old = MAXCPU_OLD; 1134 else 1135 kp->ki_oncpu_old = td->td_oncpu; 1136 1137 kp->ki_lastcpu = td->td_lastcpu; 1138 kp->ki_oncpu = td->td_oncpu; 1139 kp->ki_tdflags = td->td_flags; 1140 kp->ki_tid = td->td_tid; 1141 kp->ki_numthreads = p->p_numthreads; 1142 kp->ki_pcb = td->td_pcb; 1143 kp->ki_kstack = (void *)td->td_kstack; 1144 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1145 kp->ki_pri.pri_class = td->td_pri_class; 1146 kp->ki_pri.pri_user = td->td_user_pri; 1147 1148 if (preferthread) { 1149 rufetchtd(td, &kp->ki_rusage); 1150 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1151 kp->ki_pctcpu = sched_pctcpu(td); 1152 kp->ki_estcpu = sched_estcpu(td); 1153 kp->ki_cow = td->td_cow; 1154 } 1155 1156 /* We can't get this anymore but ps etc never used it anyway. */ 1157 kp->ki_rqindex = 0; 1158 1159 if (preferthread) 1160 kp->ki_siglist = td->td_siglist; 1161 kp->ki_sigmask = td->td_sigmask; 1162 thread_unlock(td); 1163 if (preferthread) 1164 PROC_STATUNLOCK(p); 1165 } 1166 1167 /* 1168 * Fill in a kinfo_proc structure for the specified process. 1169 * Must be called with the target process locked. 1170 */ 1171 void 1172 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1173 { 1174 1175 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1176 1177 fill_kinfo_proc_only(p, kp); 1178 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1179 fill_kinfo_aggregate(p, kp); 1180 } 1181 1182 struct pstats * 1183 pstats_alloc(void) 1184 { 1185 1186 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1187 } 1188 1189 /* 1190 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1191 */ 1192 void 1193 pstats_fork(struct pstats *src, struct pstats *dst) 1194 { 1195 1196 bzero(&dst->pstat_startzero, 1197 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1198 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1199 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1200 } 1201 1202 void 1203 pstats_free(struct pstats *ps) 1204 { 1205 1206 free(ps, M_SUBPROC); 1207 } 1208 1209 static struct proc * 1210 zpfind_locked(pid_t pid) 1211 { 1212 struct proc *p; 1213 1214 sx_assert(&allproc_lock, SX_LOCKED); 1215 LIST_FOREACH(p, &zombproc, p_list) { 1216 if (p->p_pid == pid) { 1217 PROC_LOCK(p); 1218 break; 1219 } 1220 } 1221 return (p); 1222 } 1223 1224 /* 1225 * Locate a zombie process by number 1226 */ 1227 struct proc * 1228 zpfind(pid_t pid) 1229 { 1230 struct proc *p; 1231 1232 sx_slock(&allproc_lock); 1233 p = zpfind_locked(pid); 1234 sx_sunlock(&allproc_lock); 1235 return (p); 1236 } 1237 1238 #ifdef COMPAT_FREEBSD32 1239 1240 /* 1241 * This function is typically used to copy out the kernel address, so 1242 * it can be replaced by assignment of zero. 1243 */ 1244 static inline uint32_t 1245 ptr32_trim(void *ptr) 1246 { 1247 uintptr_t uptr; 1248 1249 uptr = (uintptr_t)ptr; 1250 return ((uptr > UINT_MAX) ? 0 : uptr); 1251 } 1252 1253 #define PTRTRIM_CP(src,dst,fld) \ 1254 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1255 1256 static void 1257 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1258 { 1259 int i; 1260 1261 bzero(ki32, sizeof(struct kinfo_proc32)); 1262 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1263 CP(*ki, *ki32, ki_layout); 1264 PTRTRIM_CP(*ki, *ki32, ki_args); 1265 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1266 PTRTRIM_CP(*ki, *ki32, ki_addr); 1267 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1268 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1269 PTRTRIM_CP(*ki, *ki32, ki_fd); 1270 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1271 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1272 CP(*ki, *ki32, ki_pid); 1273 CP(*ki, *ki32, ki_ppid); 1274 CP(*ki, *ki32, ki_pgid); 1275 CP(*ki, *ki32, ki_tpgid); 1276 CP(*ki, *ki32, ki_sid); 1277 CP(*ki, *ki32, ki_tsid); 1278 CP(*ki, *ki32, ki_jobc); 1279 CP(*ki, *ki32, ki_tdev); 1280 CP(*ki, *ki32, ki_tdev_freebsd11); 1281 CP(*ki, *ki32, ki_siglist); 1282 CP(*ki, *ki32, ki_sigmask); 1283 CP(*ki, *ki32, ki_sigignore); 1284 CP(*ki, *ki32, ki_sigcatch); 1285 CP(*ki, *ki32, ki_uid); 1286 CP(*ki, *ki32, ki_ruid); 1287 CP(*ki, *ki32, ki_svuid); 1288 CP(*ki, *ki32, ki_rgid); 1289 CP(*ki, *ki32, ki_svgid); 1290 CP(*ki, *ki32, ki_ngroups); 1291 for (i = 0; i < KI_NGROUPS; i++) 1292 CP(*ki, *ki32, ki_groups[i]); 1293 CP(*ki, *ki32, ki_size); 1294 CP(*ki, *ki32, ki_rssize); 1295 CP(*ki, *ki32, ki_swrss); 1296 CP(*ki, *ki32, ki_tsize); 1297 CP(*ki, *ki32, ki_dsize); 1298 CP(*ki, *ki32, ki_ssize); 1299 CP(*ki, *ki32, ki_xstat); 1300 CP(*ki, *ki32, ki_acflag); 1301 CP(*ki, *ki32, ki_pctcpu); 1302 CP(*ki, *ki32, ki_estcpu); 1303 CP(*ki, *ki32, ki_slptime); 1304 CP(*ki, *ki32, ki_swtime); 1305 CP(*ki, *ki32, ki_cow); 1306 CP(*ki, *ki32, ki_runtime); 1307 TV_CP(*ki, *ki32, ki_start); 1308 TV_CP(*ki, *ki32, ki_childtime); 1309 CP(*ki, *ki32, ki_flag); 1310 CP(*ki, *ki32, ki_kiflag); 1311 CP(*ki, *ki32, ki_traceflag); 1312 CP(*ki, *ki32, ki_stat); 1313 CP(*ki, *ki32, ki_nice); 1314 CP(*ki, *ki32, ki_lock); 1315 CP(*ki, *ki32, ki_rqindex); 1316 CP(*ki, *ki32, ki_oncpu); 1317 CP(*ki, *ki32, ki_lastcpu); 1318 1319 /* XXX TODO: wrap cpu value as appropriate */ 1320 CP(*ki, *ki32, ki_oncpu_old); 1321 CP(*ki, *ki32, ki_lastcpu_old); 1322 1323 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1324 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1325 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1326 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1327 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1328 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1329 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1330 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1331 CP(*ki, *ki32, ki_tracer); 1332 CP(*ki, *ki32, ki_flag2); 1333 CP(*ki, *ki32, ki_fibnum); 1334 CP(*ki, *ki32, ki_cr_flags); 1335 CP(*ki, *ki32, ki_jid); 1336 CP(*ki, *ki32, ki_numthreads); 1337 CP(*ki, *ki32, ki_tid); 1338 CP(*ki, *ki32, ki_pri); 1339 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1340 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1341 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1342 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1343 PTRTRIM_CP(*ki, *ki32, ki_udata); 1344 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1345 CP(*ki, *ki32, ki_sflag); 1346 CP(*ki, *ki32, ki_tdflags); 1347 } 1348 #endif 1349 1350 int 1351 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1352 { 1353 struct thread *td; 1354 struct kinfo_proc ki; 1355 #ifdef COMPAT_FREEBSD32 1356 struct kinfo_proc32 ki32; 1357 #endif 1358 int error; 1359 1360 PROC_LOCK_ASSERT(p, MA_OWNED); 1361 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1362 1363 error = 0; 1364 fill_kinfo_proc(p, &ki); 1365 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1366 #ifdef COMPAT_FREEBSD32 1367 if ((flags & KERN_PROC_MASK32) != 0) { 1368 freebsd32_kinfo_proc_out(&ki, &ki32); 1369 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1370 error = ENOMEM; 1371 } else 1372 #endif 1373 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1374 error = ENOMEM; 1375 } else { 1376 FOREACH_THREAD_IN_PROC(p, td) { 1377 fill_kinfo_thread(td, &ki, 1); 1378 #ifdef COMPAT_FREEBSD32 1379 if ((flags & KERN_PROC_MASK32) != 0) { 1380 freebsd32_kinfo_proc_out(&ki, &ki32); 1381 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1382 error = ENOMEM; 1383 } else 1384 #endif 1385 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1386 error = ENOMEM; 1387 if (error != 0) 1388 break; 1389 } 1390 } 1391 PROC_UNLOCK(p); 1392 return (error); 1393 } 1394 1395 static int 1396 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1397 { 1398 struct sbuf sb; 1399 struct kinfo_proc ki; 1400 int error, error2; 1401 1402 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1403 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1404 error = kern_proc_out(p, &sb, flags); 1405 error2 = sbuf_finish(&sb); 1406 sbuf_delete(&sb); 1407 if (error != 0) 1408 return (error); 1409 else if (error2 != 0) 1410 return (error2); 1411 return (0); 1412 } 1413 1414 static int 1415 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1416 { 1417 int *name = (int *)arg1; 1418 u_int namelen = arg2; 1419 struct proc *p; 1420 int flags, doingzomb, oid_number; 1421 int error = 0; 1422 1423 oid_number = oidp->oid_number; 1424 if (oid_number != KERN_PROC_ALL && 1425 (oid_number & KERN_PROC_INC_THREAD) == 0) 1426 flags = KERN_PROC_NOTHREADS; 1427 else { 1428 flags = 0; 1429 oid_number &= ~KERN_PROC_INC_THREAD; 1430 } 1431 #ifdef COMPAT_FREEBSD32 1432 if (req->flags & SCTL_MASK32) 1433 flags |= KERN_PROC_MASK32; 1434 #endif 1435 if (oid_number == KERN_PROC_PID) { 1436 if (namelen != 1) 1437 return (EINVAL); 1438 error = sysctl_wire_old_buffer(req, 0); 1439 if (error) 1440 return (error); 1441 sx_slock(&proctree_lock); 1442 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1443 if (error == 0) 1444 error = sysctl_out_proc(p, req, flags); 1445 sx_sunlock(&proctree_lock); 1446 return (error); 1447 } 1448 1449 switch (oid_number) { 1450 case KERN_PROC_ALL: 1451 if (namelen != 0) 1452 return (EINVAL); 1453 break; 1454 case KERN_PROC_PROC: 1455 if (namelen != 0 && namelen != 1) 1456 return (EINVAL); 1457 break; 1458 default: 1459 if (namelen != 1) 1460 return (EINVAL); 1461 break; 1462 } 1463 1464 if (!req->oldptr) { 1465 /* overestimate by 5 procs */ 1466 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1467 if (error) 1468 return (error); 1469 } 1470 error = sysctl_wire_old_buffer(req, 0); 1471 if (error != 0) 1472 return (error); 1473 sx_slock(&proctree_lock); 1474 sx_slock(&allproc_lock); 1475 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1476 if (!doingzomb) 1477 p = LIST_FIRST(&allproc); 1478 else 1479 p = LIST_FIRST(&zombproc); 1480 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1481 /* 1482 * Skip embryonic processes. 1483 */ 1484 if (p->p_state == PRS_NEW) 1485 continue; 1486 PROC_LOCK(p); 1487 KASSERT(p->p_ucred != NULL, 1488 ("process credential is NULL for non-NEW proc")); 1489 /* 1490 * Show a user only appropriate processes. 1491 */ 1492 if (p_cansee(curthread, p)) { 1493 PROC_UNLOCK(p); 1494 continue; 1495 } 1496 /* 1497 * TODO - make more efficient (see notes below). 1498 * do by session. 1499 */ 1500 switch (oid_number) { 1501 1502 case KERN_PROC_GID: 1503 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1504 PROC_UNLOCK(p); 1505 continue; 1506 } 1507 break; 1508 1509 case KERN_PROC_PGRP: 1510 /* could do this by traversing pgrp */ 1511 if (p->p_pgrp == NULL || 1512 p->p_pgrp->pg_id != (pid_t)name[0]) { 1513 PROC_UNLOCK(p); 1514 continue; 1515 } 1516 break; 1517 1518 case KERN_PROC_RGID: 1519 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1520 PROC_UNLOCK(p); 1521 continue; 1522 } 1523 break; 1524 1525 case KERN_PROC_SESSION: 1526 if (p->p_session == NULL || 1527 p->p_session->s_sid != (pid_t)name[0]) { 1528 PROC_UNLOCK(p); 1529 continue; 1530 } 1531 break; 1532 1533 case KERN_PROC_TTY: 1534 if ((p->p_flag & P_CONTROLT) == 0 || 1535 p->p_session == NULL) { 1536 PROC_UNLOCK(p); 1537 continue; 1538 } 1539 /* XXX proctree_lock */ 1540 SESS_LOCK(p->p_session); 1541 if (p->p_session->s_ttyp == NULL || 1542 tty_udev(p->p_session->s_ttyp) != 1543 (dev_t)name[0]) { 1544 SESS_UNLOCK(p->p_session); 1545 PROC_UNLOCK(p); 1546 continue; 1547 } 1548 SESS_UNLOCK(p->p_session); 1549 break; 1550 1551 case KERN_PROC_UID: 1552 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1553 PROC_UNLOCK(p); 1554 continue; 1555 } 1556 break; 1557 1558 case KERN_PROC_RUID: 1559 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1560 PROC_UNLOCK(p); 1561 continue; 1562 } 1563 break; 1564 1565 case KERN_PROC_PROC: 1566 break; 1567 1568 default: 1569 break; 1570 1571 } 1572 1573 error = sysctl_out_proc(p, req, flags); 1574 if (error) { 1575 sx_sunlock(&allproc_lock); 1576 sx_sunlock(&proctree_lock); 1577 return (error); 1578 } 1579 } 1580 } 1581 sx_sunlock(&allproc_lock); 1582 sx_sunlock(&proctree_lock); 1583 return (0); 1584 } 1585 1586 struct pargs * 1587 pargs_alloc(int len) 1588 { 1589 struct pargs *pa; 1590 1591 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1592 M_WAITOK); 1593 refcount_init(&pa->ar_ref, 1); 1594 pa->ar_length = len; 1595 return (pa); 1596 } 1597 1598 static void 1599 pargs_free(struct pargs *pa) 1600 { 1601 1602 free(pa, M_PARGS); 1603 } 1604 1605 void 1606 pargs_hold(struct pargs *pa) 1607 { 1608 1609 if (pa == NULL) 1610 return; 1611 refcount_acquire(&pa->ar_ref); 1612 } 1613 1614 void 1615 pargs_drop(struct pargs *pa) 1616 { 1617 1618 if (pa == NULL) 1619 return; 1620 if (refcount_release(&pa->ar_ref)) 1621 pargs_free(pa); 1622 } 1623 1624 static int 1625 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1626 size_t len) 1627 { 1628 ssize_t n; 1629 1630 /* 1631 * This may return a short read if the string is shorter than the chunk 1632 * and is aligned at the end of the page, and the following page is not 1633 * mapped. 1634 */ 1635 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1636 if (n <= 0) 1637 return (ENOMEM); 1638 return (0); 1639 } 1640 1641 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1642 1643 enum proc_vector_type { 1644 PROC_ARG, 1645 PROC_ENV, 1646 PROC_AUX, 1647 }; 1648 1649 #ifdef COMPAT_FREEBSD32 1650 static int 1651 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1652 size_t *vsizep, enum proc_vector_type type) 1653 { 1654 struct freebsd32_ps_strings pss; 1655 Elf32_Auxinfo aux; 1656 vm_offset_t vptr, ptr; 1657 uint32_t *proc_vector32; 1658 char **proc_vector; 1659 size_t vsize, size; 1660 int i, error; 1661 1662 error = 0; 1663 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1664 sizeof(pss)) != sizeof(pss)) 1665 return (ENOMEM); 1666 switch (type) { 1667 case PROC_ARG: 1668 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1669 vsize = pss.ps_nargvstr; 1670 if (vsize > ARG_MAX) 1671 return (ENOEXEC); 1672 size = vsize * sizeof(int32_t); 1673 break; 1674 case PROC_ENV: 1675 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1676 vsize = pss.ps_nenvstr; 1677 if (vsize > ARG_MAX) 1678 return (ENOEXEC); 1679 size = vsize * sizeof(int32_t); 1680 break; 1681 case PROC_AUX: 1682 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1683 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1684 if (vptr % 4 != 0) 1685 return (ENOEXEC); 1686 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1687 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1688 sizeof(aux)) 1689 return (ENOMEM); 1690 if (aux.a_type == AT_NULL) 1691 break; 1692 ptr += sizeof(aux); 1693 } 1694 if (aux.a_type != AT_NULL) 1695 return (ENOEXEC); 1696 vsize = i + 1; 1697 size = vsize * sizeof(aux); 1698 break; 1699 default: 1700 KASSERT(0, ("Wrong proc vector type: %d", type)); 1701 return (EINVAL); 1702 } 1703 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1704 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1705 error = ENOMEM; 1706 goto done; 1707 } 1708 if (type == PROC_AUX) { 1709 *proc_vectorp = (char **)proc_vector32; 1710 *vsizep = vsize; 1711 return (0); 1712 } 1713 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1714 for (i = 0; i < (int)vsize; i++) 1715 proc_vector[i] = PTRIN(proc_vector32[i]); 1716 *proc_vectorp = proc_vector; 1717 *vsizep = vsize; 1718 done: 1719 free(proc_vector32, M_TEMP); 1720 return (error); 1721 } 1722 #endif 1723 1724 static int 1725 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1726 size_t *vsizep, enum proc_vector_type type) 1727 { 1728 struct ps_strings pss; 1729 Elf_Auxinfo aux; 1730 vm_offset_t vptr, ptr; 1731 char **proc_vector; 1732 size_t vsize, size; 1733 int i; 1734 1735 #ifdef COMPAT_FREEBSD32 1736 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1737 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1738 #endif 1739 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1740 sizeof(pss)) != sizeof(pss)) 1741 return (ENOMEM); 1742 switch (type) { 1743 case PROC_ARG: 1744 vptr = (vm_offset_t)pss.ps_argvstr; 1745 vsize = pss.ps_nargvstr; 1746 if (vsize > ARG_MAX) 1747 return (ENOEXEC); 1748 size = vsize * sizeof(char *); 1749 break; 1750 case PROC_ENV: 1751 vptr = (vm_offset_t)pss.ps_envstr; 1752 vsize = pss.ps_nenvstr; 1753 if (vsize > ARG_MAX) 1754 return (ENOEXEC); 1755 size = vsize * sizeof(char *); 1756 break; 1757 case PROC_AUX: 1758 /* 1759 * The aux array is just above env array on the stack. Check 1760 * that the address is naturally aligned. 1761 */ 1762 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1763 * sizeof(char *); 1764 #if __ELF_WORD_SIZE == 64 1765 if (vptr % sizeof(uint64_t) != 0) 1766 #else 1767 if (vptr % sizeof(uint32_t) != 0) 1768 #endif 1769 return (ENOEXEC); 1770 /* 1771 * We count the array size reading the aux vectors from the 1772 * stack until AT_NULL vector is returned. So (to keep the code 1773 * simple) we read the process stack twice: the first time here 1774 * to find the size and the second time when copying the vectors 1775 * to the allocated proc_vector. 1776 */ 1777 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1778 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1779 sizeof(aux)) 1780 return (ENOMEM); 1781 if (aux.a_type == AT_NULL) 1782 break; 1783 ptr += sizeof(aux); 1784 } 1785 /* 1786 * If the PROC_AUXV_MAX entries are iterated over, and we have 1787 * not reached AT_NULL, it is most likely we are reading wrong 1788 * data: either the process doesn't have auxv array or data has 1789 * been modified. Return the error in this case. 1790 */ 1791 if (aux.a_type != AT_NULL) 1792 return (ENOEXEC); 1793 vsize = i + 1; 1794 size = vsize * sizeof(aux); 1795 break; 1796 default: 1797 KASSERT(0, ("Wrong proc vector type: %d", type)); 1798 return (EINVAL); /* In case we are built without INVARIANTS. */ 1799 } 1800 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1801 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1802 free(proc_vector, M_TEMP); 1803 return (ENOMEM); 1804 } 1805 *proc_vectorp = proc_vector; 1806 *vsizep = vsize; 1807 1808 return (0); 1809 } 1810 1811 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1812 1813 static int 1814 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1815 enum proc_vector_type type) 1816 { 1817 size_t done, len, nchr, vsize; 1818 int error, i; 1819 char **proc_vector, *sptr; 1820 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1821 1822 PROC_ASSERT_HELD(p); 1823 1824 /* 1825 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1826 */ 1827 nchr = 2 * (PATH_MAX + ARG_MAX); 1828 1829 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1830 if (error != 0) 1831 return (error); 1832 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1833 /* 1834 * The program may have scribbled into its argv array, e.g. to 1835 * remove some arguments. If that has happened, break out 1836 * before trying to read from NULL. 1837 */ 1838 if (proc_vector[i] == NULL) 1839 break; 1840 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1841 error = proc_read_string(td, p, sptr, pss_string, 1842 sizeof(pss_string)); 1843 if (error != 0) 1844 goto done; 1845 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1846 if (done + len >= nchr) 1847 len = nchr - done - 1; 1848 sbuf_bcat(sb, pss_string, len); 1849 if (len != GET_PS_STRINGS_CHUNK_SZ) 1850 break; 1851 done += GET_PS_STRINGS_CHUNK_SZ; 1852 } 1853 sbuf_bcat(sb, "", 1); 1854 done += len + 1; 1855 } 1856 done: 1857 free(proc_vector, M_TEMP); 1858 return (error); 1859 } 1860 1861 int 1862 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1863 { 1864 1865 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1866 } 1867 1868 int 1869 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1870 { 1871 1872 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1873 } 1874 1875 int 1876 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1877 { 1878 size_t vsize, size; 1879 char **auxv; 1880 int error; 1881 1882 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1883 if (error == 0) { 1884 #ifdef COMPAT_FREEBSD32 1885 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1886 size = vsize * sizeof(Elf32_Auxinfo); 1887 else 1888 #endif 1889 size = vsize * sizeof(Elf_Auxinfo); 1890 if (sbuf_bcat(sb, auxv, size) != 0) 1891 error = ENOMEM; 1892 free(auxv, M_TEMP); 1893 } 1894 return (error); 1895 } 1896 1897 /* 1898 * This sysctl allows a process to retrieve the argument list or process 1899 * title for another process without groping around in the address space 1900 * of the other process. It also allow a process to set its own "process 1901 * title to a string of its own choice. 1902 */ 1903 static int 1904 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1905 { 1906 int *name = (int *)arg1; 1907 u_int namelen = arg2; 1908 struct pargs *newpa, *pa; 1909 struct proc *p; 1910 struct sbuf sb; 1911 int flags, error = 0, error2; 1912 pid_t pid; 1913 1914 if (namelen != 1) 1915 return (EINVAL); 1916 1917 pid = (pid_t)name[0]; 1918 /* 1919 * If the query is for this process and it is single-threaded, there 1920 * is nobody to modify pargs, thus we can just read. 1921 */ 1922 p = curproc; 1923 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL) { 1924 if ((pa = p->p_args) != NULL) 1925 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1926 return (error); 1927 } 1928 1929 flags = PGET_CANSEE; 1930 if (req->newptr != NULL) 1931 flags |= PGET_ISCURRENT; 1932 error = pget(pid, flags, &p); 1933 if (error) 1934 return (error); 1935 1936 pa = p->p_args; 1937 if (pa != NULL) { 1938 pargs_hold(pa); 1939 PROC_UNLOCK(p); 1940 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1941 pargs_drop(pa); 1942 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1943 _PHOLD(p); 1944 PROC_UNLOCK(p); 1945 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1946 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1947 error = proc_getargv(curthread, p, &sb); 1948 error2 = sbuf_finish(&sb); 1949 PRELE(p); 1950 sbuf_delete(&sb); 1951 if (error == 0 && error2 != 0) 1952 error = error2; 1953 } else { 1954 PROC_UNLOCK(p); 1955 } 1956 if (error != 0 || req->newptr == NULL) 1957 return (error); 1958 1959 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 1960 return (ENOMEM); 1961 newpa = pargs_alloc(req->newlen); 1962 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1963 if (error != 0) { 1964 pargs_free(newpa); 1965 return (error); 1966 } 1967 PROC_LOCK(p); 1968 pa = p->p_args; 1969 p->p_args = newpa; 1970 PROC_UNLOCK(p); 1971 pargs_drop(pa); 1972 return (0); 1973 } 1974 1975 /* 1976 * This sysctl allows a process to retrieve environment of another process. 1977 */ 1978 static int 1979 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1980 { 1981 int *name = (int *)arg1; 1982 u_int namelen = arg2; 1983 struct proc *p; 1984 struct sbuf sb; 1985 int error, error2; 1986 1987 if (namelen != 1) 1988 return (EINVAL); 1989 1990 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1991 if (error != 0) 1992 return (error); 1993 if ((p->p_flag & P_SYSTEM) != 0) { 1994 PRELE(p); 1995 return (0); 1996 } 1997 1998 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1999 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2000 error = proc_getenvv(curthread, p, &sb); 2001 error2 = sbuf_finish(&sb); 2002 PRELE(p); 2003 sbuf_delete(&sb); 2004 return (error != 0 ? error : error2); 2005 } 2006 2007 /* 2008 * This sysctl allows a process to retrieve ELF auxiliary vector of 2009 * another process. 2010 */ 2011 static int 2012 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2013 { 2014 int *name = (int *)arg1; 2015 u_int namelen = arg2; 2016 struct proc *p; 2017 struct sbuf sb; 2018 int error, error2; 2019 2020 if (namelen != 1) 2021 return (EINVAL); 2022 2023 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2024 if (error != 0) 2025 return (error); 2026 if ((p->p_flag & P_SYSTEM) != 0) { 2027 PRELE(p); 2028 return (0); 2029 } 2030 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2031 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2032 error = proc_getauxv(curthread, p, &sb); 2033 error2 = sbuf_finish(&sb); 2034 PRELE(p); 2035 sbuf_delete(&sb); 2036 return (error != 0 ? error : error2); 2037 } 2038 2039 /* 2040 * This sysctl allows a process to retrieve the path of the executable for 2041 * itself or another process. 2042 */ 2043 static int 2044 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2045 { 2046 pid_t *pidp = (pid_t *)arg1; 2047 unsigned int arglen = arg2; 2048 struct proc *p; 2049 struct vnode *vp; 2050 char *retbuf, *freebuf; 2051 int error; 2052 2053 if (arglen != 1) 2054 return (EINVAL); 2055 if (*pidp == -1) { /* -1 means this process */ 2056 p = req->td->td_proc; 2057 } else { 2058 error = pget(*pidp, PGET_CANSEE, &p); 2059 if (error != 0) 2060 return (error); 2061 } 2062 2063 vp = p->p_textvp; 2064 if (vp == NULL) { 2065 if (*pidp != -1) 2066 PROC_UNLOCK(p); 2067 return (0); 2068 } 2069 vref(vp); 2070 if (*pidp != -1) 2071 PROC_UNLOCK(p); 2072 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2073 vrele(vp); 2074 if (error) 2075 return (error); 2076 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2077 free(freebuf, M_TEMP); 2078 return (error); 2079 } 2080 2081 static int 2082 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2083 { 2084 struct proc *p; 2085 char *sv_name; 2086 int *name; 2087 int namelen; 2088 int error; 2089 2090 namelen = arg2; 2091 if (namelen != 1) 2092 return (EINVAL); 2093 2094 name = (int *)arg1; 2095 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2096 if (error != 0) 2097 return (error); 2098 sv_name = p->p_sysent->sv_name; 2099 PROC_UNLOCK(p); 2100 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2101 } 2102 2103 #ifdef KINFO_OVMENTRY_SIZE 2104 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2105 #endif 2106 2107 #ifdef COMPAT_FREEBSD7 2108 static int 2109 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2110 { 2111 vm_map_entry_t entry, tmp_entry; 2112 unsigned int last_timestamp; 2113 char *fullpath, *freepath; 2114 struct kinfo_ovmentry *kve; 2115 struct vattr va; 2116 struct ucred *cred; 2117 int error, *name; 2118 struct vnode *vp; 2119 struct proc *p; 2120 vm_map_t map; 2121 struct vmspace *vm; 2122 2123 name = (int *)arg1; 2124 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2125 if (error != 0) 2126 return (error); 2127 vm = vmspace_acquire_ref(p); 2128 if (vm == NULL) { 2129 PRELE(p); 2130 return (ESRCH); 2131 } 2132 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2133 2134 map = &vm->vm_map; 2135 vm_map_lock_read(map); 2136 for (entry = map->header.next; entry != &map->header; 2137 entry = entry->next) { 2138 vm_object_t obj, tobj, lobj; 2139 vm_offset_t addr; 2140 2141 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2142 continue; 2143 2144 bzero(kve, sizeof(*kve)); 2145 kve->kve_structsize = sizeof(*kve); 2146 2147 kve->kve_private_resident = 0; 2148 obj = entry->object.vm_object; 2149 if (obj != NULL) { 2150 VM_OBJECT_RLOCK(obj); 2151 if (obj->shadow_count == 1) 2152 kve->kve_private_resident = 2153 obj->resident_page_count; 2154 } 2155 kve->kve_resident = 0; 2156 addr = entry->start; 2157 while (addr < entry->end) { 2158 if (pmap_extract(map->pmap, addr)) 2159 kve->kve_resident++; 2160 addr += PAGE_SIZE; 2161 } 2162 2163 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2164 if (tobj != obj) 2165 VM_OBJECT_RLOCK(tobj); 2166 if (lobj != obj) 2167 VM_OBJECT_RUNLOCK(lobj); 2168 lobj = tobj; 2169 } 2170 2171 kve->kve_start = (void*)entry->start; 2172 kve->kve_end = (void*)entry->end; 2173 kve->kve_offset = (off_t)entry->offset; 2174 2175 if (entry->protection & VM_PROT_READ) 2176 kve->kve_protection |= KVME_PROT_READ; 2177 if (entry->protection & VM_PROT_WRITE) 2178 kve->kve_protection |= KVME_PROT_WRITE; 2179 if (entry->protection & VM_PROT_EXECUTE) 2180 kve->kve_protection |= KVME_PROT_EXEC; 2181 2182 if (entry->eflags & MAP_ENTRY_COW) 2183 kve->kve_flags |= KVME_FLAG_COW; 2184 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2185 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2186 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2187 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2188 2189 last_timestamp = map->timestamp; 2190 vm_map_unlock_read(map); 2191 2192 kve->kve_fileid = 0; 2193 kve->kve_fsid = 0; 2194 freepath = NULL; 2195 fullpath = ""; 2196 if (lobj) { 2197 vp = NULL; 2198 switch (lobj->type) { 2199 case OBJT_DEFAULT: 2200 kve->kve_type = KVME_TYPE_DEFAULT; 2201 break; 2202 case OBJT_VNODE: 2203 kve->kve_type = KVME_TYPE_VNODE; 2204 vp = lobj->handle; 2205 vref(vp); 2206 break; 2207 case OBJT_SWAP: 2208 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2209 kve->kve_type = KVME_TYPE_VNODE; 2210 if ((lobj->flags & OBJ_TMPFS) != 0) { 2211 vp = lobj->un_pager.swp.swp_tmpfs; 2212 vref(vp); 2213 } 2214 } else { 2215 kve->kve_type = KVME_TYPE_SWAP; 2216 } 2217 break; 2218 case OBJT_DEVICE: 2219 kve->kve_type = KVME_TYPE_DEVICE; 2220 break; 2221 case OBJT_PHYS: 2222 kve->kve_type = KVME_TYPE_PHYS; 2223 break; 2224 case OBJT_DEAD: 2225 kve->kve_type = KVME_TYPE_DEAD; 2226 break; 2227 case OBJT_SG: 2228 kve->kve_type = KVME_TYPE_SG; 2229 break; 2230 default: 2231 kve->kve_type = KVME_TYPE_UNKNOWN; 2232 break; 2233 } 2234 if (lobj != obj) 2235 VM_OBJECT_RUNLOCK(lobj); 2236 2237 kve->kve_ref_count = obj->ref_count; 2238 kve->kve_shadow_count = obj->shadow_count; 2239 VM_OBJECT_RUNLOCK(obj); 2240 if (vp != NULL) { 2241 vn_fullpath(curthread, vp, &fullpath, 2242 &freepath); 2243 cred = curthread->td_ucred; 2244 vn_lock(vp, LK_SHARED | LK_RETRY); 2245 if (VOP_GETATTR(vp, &va, cred) == 0) { 2246 kve->kve_fileid = va.va_fileid; 2247 /* truncate */ 2248 kve->kve_fsid = va.va_fsid; 2249 } 2250 vput(vp); 2251 } 2252 } else { 2253 kve->kve_type = KVME_TYPE_NONE; 2254 kve->kve_ref_count = 0; 2255 kve->kve_shadow_count = 0; 2256 } 2257 2258 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2259 if (freepath != NULL) 2260 free(freepath, M_TEMP); 2261 2262 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2263 vm_map_lock_read(map); 2264 if (error) 2265 break; 2266 if (last_timestamp != map->timestamp) { 2267 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2268 entry = tmp_entry; 2269 } 2270 } 2271 vm_map_unlock_read(map); 2272 vmspace_free(vm); 2273 PRELE(p); 2274 free(kve, M_TEMP); 2275 return (error); 2276 } 2277 #endif /* COMPAT_FREEBSD7 */ 2278 2279 #ifdef KINFO_VMENTRY_SIZE 2280 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2281 #endif 2282 2283 static void 2284 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2285 struct kinfo_vmentry *kve) 2286 { 2287 vm_object_t obj, tobj; 2288 vm_page_t m, m_adv; 2289 vm_offset_t addr; 2290 vm_paddr_t locked_pa; 2291 vm_pindex_t pi, pi_adv, pindex; 2292 2293 locked_pa = 0; 2294 obj = entry->object.vm_object; 2295 addr = entry->start; 2296 m_adv = NULL; 2297 pi = OFF_TO_IDX(entry->offset); 2298 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2299 if (m_adv != NULL) { 2300 m = m_adv; 2301 } else { 2302 pi_adv = atop(entry->end - addr); 2303 pindex = pi; 2304 for (tobj = obj;; tobj = tobj->backing_object) { 2305 m = vm_page_find_least(tobj, pindex); 2306 if (m != NULL) { 2307 if (m->pindex == pindex) 2308 break; 2309 if (pi_adv > m->pindex - pindex) { 2310 pi_adv = m->pindex - pindex; 2311 m_adv = m; 2312 } 2313 } 2314 if (tobj->backing_object == NULL) 2315 goto next; 2316 pindex += OFF_TO_IDX(tobj-> 2317 backing_object_offset); 2318 } 2319 } 2320 m_adv = NULL; 2321 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2322 (addr & (pagesizes[1] - 1)) == 0 && 2323 (pmap_mincore(map->pmap, addr, &locked_pa) & 2324 MINCORE_SUPER) != 0) { 2325 kve->kve_flags |= KVME_FLAG_SUPER; 2326 pi_adv = atop(pagesizes[1]); 2327 } else { 2328 /* 2329 * We do not test the found page on validity. 2330 * Either the page is busy and being paged in, 2331 * or it was invalidated. The first case 2332 * should be counted as resident, the second 2333 * is not so clear; we do account both. 2334 */ 2335 pi_adv = 1; 2336 } 2337 kve->kve_resident += pi_adv; 2338 next:; 2339 } 2340 PA_UNLOCK_COND(locked_pa); 2341 } 2342 2343 /* 2344 * Must be called with the process locked and will return unlocked. 2345 */ 2346 int 2347 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2348 { 2349 vm_map_entry_t entry, tmp_entry; 2350 struct vattr va; 2351 vm_map_t map; 2352 vm_object_t obj, tobj, lobj; 2353 char *fullpath, *freepath; 2354 struct kinfo_vmentry *kve; 2355 struct ucred *cred; 2356 struct vnode *vp; 2357 struct vmspace *vm; 2358 vm_offset_t addr; 2359 unsigned int last_timestamp; 2360 int error; 2361 2362 PROC_LOCK_ASSERT(p, MA_OWNED); 2363 2364 _PHOLD(p); 2365 PROC_UNLOCK(p); 2366 vm = vmspace_acquire_ref(p); 2367 if (vm == NULL) { 2368 PRELE(p); 2369 return (ESRCH); 2370 } 2371 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2372 2373 error = 0; 2374 map = &vm->vm_map; 2375 vm_map_lock_read(map); 2376 for (entry = map->header.next; entry != &map->header; 2377 entry = entry->next) { 2378 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2379 continue; 2380 2381 addr = entry->end; 2382 bzero(kve, sizeof(*kve)); 2383 obj = entry->object.vm_object; 2384 if (obj != NULL) { 2385 for (tobj = obj; tobj != NULL; 2386 tobj = tobj->backing_object) { 2387 VM_OBJECT_RLOCK(tobj); 2388 lobj = tobj; 2389 } 2390 if (obj->backing_object == NULL) 2391 kve->kve_private_resident = 2392 obj->resident_page_count; 2393 if (!vmmap_skip_res_cnt) 2394 kern_proc_vmmap_resident(map, entry, kve); 2395 for (tobj = obj; tobj != NULL; 2396 tobj = tobj->backing_object) { 2397 if (tobj != obj && tobj != lobj) 2398 VM_OBJECT_RUNLOCK(tobj); 2399 } 2400 } else { 2401 lobj = NULL; 2402 } 2403 2404 kve->kve_start = entry->start; 2405 kve->kve_end = entry->end; 2406 kve->kve_offset = entry->offset; 2407 2408 if (entry->protection & VM_PROT_READ) 2409 kve->kve_protection |= KVME_PROT_READ; 2410 if (entry->protection & VM_PROT_WRITE) 2411 kve->kve_protection |= KVME_PROT_WRITE; 2412 if (entry->protection & VM_PROT_EXECUTE) 2413 kve->kve_protection |= KVME_PROT_EXEC; 2414 2415 if (entry->eflags & MAP_ENTRY_COW) 2416 kve->kve_flags |= KVME_FLAG_COW; 2417 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2418 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2419 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2420 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2421 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2422 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2423 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2424 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2425 2426 last_timestamp = map->timestamp; 2427 vm_map_unlock_read(map); 2428 2429 freepath = NULL; 2430 fullpath = ""; 2431 if (lobj != NULL) { 2432 vp = NULL; 2433 switch (lobj->type) { 2434 case OBJT_DEFAULT: 2435 kve->kve_type = KVME_TYPE_DEFAULT; 2436 break; 2437 case OBJT_VNODE: 2438 kve->kve_type = KVME_TYPE_VNODE; 2439 vp = lobj->handle; 2440 vref(vp); 2441 break; 2442 case OBJT_SWAP: 2443 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2444 kve->kve_type = KVME_TYPE_VNODE; 2445 if ((lobj->flags & OBJ_TMPFS) != 0) { 2446 vp = lobj->un_pager.swp.swp_tmpfs; 2447 vref(vp); 2448 } 2449 } else { 2450 kve->kve_type = KVME_TYPE_SWAP; 2451 } 2452 break; 2453 case OBJT_DEVICE: 2454 kve->kve_type = KVME_TYPE_DEVICE; 2455 break; 2456 case OBJT_PHYS: 2457 kve->kve_type = KVME_TYPE_PHYS; 2458 break; 2459 case OBJT_DEAD: 2460 kve->kve_type = KVME_TYPE_DEAD; 2461 break; 2462 case OBJT_SG: 2463 kve->kve_type = KVME_TYPE_SG; 2464 break; 2465 case OBJT_MGTDEVICE: 2466 kve->kve_type = KVME_TYPE_MGTDEVICE; 2467 break; 2468 default: 2469 kve->kve_type = KVME_TYPE_UNKNOWN; 2470 break; 2471 } 2472 if (lobj != obj) 2473 VM_OBJECT_RUNLOCK(lobj); 2474 2475 kve->kve_ref_count = obj->ref_count; 2476 kve->kve_shadow_count = obj->shadow_count; 2477 VM_OBJECT_RUNLOCK(obj); 2478 if (vp != NULL) { 2479 vn_fullpath(curthread, vp, &fullpath, 2480 &freepath); 2481 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2482 cred = curthread->td_ucred; 2483 vn_lock(vp, LK_SHARED | LK_RETRY); 2484 if (VOP_GETATTR(vp, &va, cred) == 0) { 2485 kve->kve_vn_fileid = va.va_fileid; 2486 kve->kve_vn_fsid = va.va_fsid; 2487 kve->kve_vn_fsid_freebsd11 = 2488 kve->kve_vn_fsid; /* truncate */ 2489 kve->kve_vn_mode = 2490 MAKEIMODE(va.va_type, va.va_mode); 2491 kve->kve_vn_size = va.va_size; 2492 kve->kve_vn_rdev = va.va_rdev; 2493 kve->kve_vn_rdev_freebsd11 = 2494 kve->kve_vn_rdev; /* truncate */ 2495 kve->kve_status = KF_ATTR_VALID; 2496 } 2497 vput(vp); 2498 } 2499 } else { 2500 kve->kve_type = KVME_TYPE_NONE; 2501 kve->kve_ref_count = 0; 2502 kve->kve_shadow_count = 0; 2503 } 2504 2505 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2506 if (freepath != NULL) 2507 free(freepath, M_TEMP); 2508 2509 /* Pack record size down */ 2510 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2511 kve->kve_structsize = 2512 offsetof(struct kinfo_vmentry, kve_path) + 2513 strlen(kve->kve_path) + 1; 2514 else 2515 kve->kve_structsize = sizeof(*kve); 2516 kve->kve_structsize = roundup(kve->kve_structsize, 2517 sizeof(uint64_t)); 2518 2519 /* Halt filling and truncate rather than exceeding maxlen */ 2520 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2521 error = 0; 2522 vm_map_lock_read(map); 2523 break; 2524 } else if (maxlen != -1) 2525 maxlen -= kve->kve_structsize; 2526 2527 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2528 error = ENOMEM; 2529 vm_map_lock_read(map); 2530 if (error != 0) 2531 break; 2532 if (last_timestamp != map->timestamp) { 2533 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2534 entry = tmp_entry; 2535 } 2536 } 2537 vm_map_unlock_read(map); 2538 vmspace_free(vm); 2539 PRELE(p); 2540 free(kve, M_TEMP); 2541 return (error); 2542 } 2543 2544 static int 2545 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2546 { 2547 struct proc *p; 2548 struct sbuf sb; 2549 int error, error2, *name; 2550 2551 name = (int *)arg1; 2552 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2553 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2554 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2555 if (error != 0) { 2556 sbuf_delete(&sb); 2557 return (error); 2558 } 2559 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2560 error2 = sbuf_finish(&sb); 2561 sbuf_delete(&sb); 2562 return (error != 0 ? error : error2); 2563 } 2564 2565 #if defined(STACK) || defined(DDB) 2566 static int 2567 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2568 { 2569 struct kinfo_kstack *kkstp; 2570 int error, i, *name, numthreads; 2571 lwpid_t *lwpidarray; 2572 struct thread *td; 2573 struct stack *st; 2574 struct sbuf sb; 2575 struct proc *p; 2576 2577 name = (int *)arg1; 2578 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2579 if (error != 0) 2580 return (error); 2581 2582 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2583 st = stack_create(M_WAITOK); 2584 2585 lwpidarray = NULL; 2586 PROC_LOCK(p); 2587 do { 2588 if (lwpidarray != NULL) { 2589 free(lwpidarray, M_TEMP); 2590 lwpidarray = NULL; 2591 } 2592 numthreads = p->p_numthreads; 2593 PROC_UNLOCK(p); 2594 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2595 M_WAITOK | M_ZERO); 2596 PROC_LOCK(p); 2597 } while (numthreads < p->p_numthreads); 2598 2599 /* 2600 * XXXRW: During the below loop, execve(2) and countless other sorts 2601 * of changes could have taken place. Should we check to see if the 2602 * vmspace has been replaced, or the like, in order to prevent 2603 * giving a snapshot that spans, say, execve(2), with some threads 2604 * before and some after? Among other things, the credentials could 2605 * have changed, in which case the right to extract debug info might 2606 * no longer be assured. 2607 */ 2608 i = 0; 2609 FOREACH_THREAD_IN_PROC(p, td) { 2610 KASSERT(i < numthreads, 2611 ("sysctl_kern_proc_kstack: numthreads")); 2612 lwpidarray[i] = td->td_tid; 2613 i++; 2614 } 2615 numthreads = i; 2616 for (i = 0; i < numthreads; i++) { 2617 td = thread_find(p, lwpidarray[i]); 2618 if (td == NULL) { 2619 continue; 2620 } 2621 bzero(kkstp, sizeof(*kkstp)); 2622 (void)sbuf_new(&sb, kkstp->kkst_trace, 2623 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2624 thread_lock(td); 2625 kkstp->kkst_tid = td->td_tid; 2626 if (TD_IS_SWAPPED(td)) { 2627 kkstp->kkst_state = KKST_STATE_SWAPPED; 2628 } else if (TD_IS_RUNNING(td)) { 2629 if (stack_save_td_running(st, td) == 0) 2630 kkstp->kkst_state = KKST_STATE_STACKOK; 2631 else 2632 kkstp->kkst_state = KKST_STATE_RUNNING; 2633 } else { 2634 kkstp->kkst_state = KKST_STATE_STACKOK; 2635 stack_save_td(st, td); 2636 } 2637 thread_unlock(td); 2638 PROC_UNLOCK(p); 2639 stack_sbuf_print(&sb, st); 2640 sbuf_finish(&sb); 2641 sbuf_delete(&sb); 2642 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2643 PROC_LOCK(p); 2644 if (error) 2645 break; 2646 } 2647 _PRELE(p); 2648 PROC_UNLOCK(p); 2649 if (lwpidarray != NULL) 2650 free(lwpidarray, M_TEMP); 2651 stack_destroy(st); 2652 free(kkstp, M_TEMP); 2653 return (error); 2654 } 2655 #endif 2656 2657 /* 2658 * This sysctl allows a process to retrieve the full list of groups from 2659 * itself or another process. 2660 */ 2661 static int 2662 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2663 { 2664 pid_t *pidp = (pid_t *)arg1; 2665 unsigned int arglen = arg2; 2666 struct proc *p; 2667 struct ucred *cred; 2668 int error; 2669 2670 if (arglen != 1) 2671 return (EINVAL); 2672 if (*pidp == -1) { /* -1 means this process */ 2673 p = req->td->td_proc; 2674 PROC_LOCK(p); 2675 } else { 2676 error = pget(*pidp, PGET_CANSEE, &p); 2677 if (error != 0) 2678 return (error); 2679 } 2680 2681 cred = crhold(p->p_ucred); 2682 PROC_UNLOCK(p); 2683 2684 error = SYSCTL_OUT(req, cred->cr_groups, 2685 cred->cr_ngroups * sizeof(gid_t)); 2686 crfree(cred); 2687 return (error); 2688 } 2689 2690 /* 2691 * This sysctl allows a process to retrieve or/and set the resource limit for 2692 * another process. 2693 */ 2694 static int 2695 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2696 { 2697 int *name = (int *)arg1; 2698 u_int namelen = arg2; 2699 struct rlimit rlim; 2700 struct proc *p; 2701 u_int which; 2702 int flags, error; 2703 2704 if (namelen != 2) 2705 return (EINVAL); 2706 2707 which = (u_int)name[1]; 2708 if (which >= RLIM_NLIMITS) 2709 return (EINVAL); 2710 2711 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2712 return (EINVAL); 2713 2714 flags = PGET_HOLD | PGET_NOTWEXIT; 2715 if (req->newptr != NULL) 2716 flags |= PGET_CANDEBUG; 2717 else 2718 flags |= PGET_CANSEE; 2719 error = pget((pid_t)name[0], flags, &p); 2720 if (error != 0) 2721 return (error); 2722 2723 /* 2724 * Retrieve limit. 2725 */ 2726 if (req->oldptr != NULL) { 2727 PROC_LOCK(p); 2728 lim_rlimit_proc(p, which, &rlim); 2729 PROC_UNLOCK(p); 2730 } 2731 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2732 if (error != 0) 2733 goto errout; 2734 2735 /* 2736 * Set limit. 2737 */ 2738 if (req->newptr != NULL) { 2739 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2740 if (error == 0) 2741 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2742 } 2743 2744 errout: 2745 PRELE(p); 2746 return (error); 2747 } 2748 2749 /* 2750 * This sysctl allows a process to retrieve ps_strings structure location of 2751 * another process. 2752 */ 2753 static int 2754 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2755 { 2756 int *name = (int *)arg1; 2757 u_int namelen = arg2; 2758 struct proc *p; 2759 vm_offset_t ps_strings; 2760 int error; 2761 #ifdef COMPAT_FREEBSD32 2762 uint32_t ps_strings32; 2763 #endif 2764 2765 if (namelen != 1) 2766 return (EINVAL); 2767 2768 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2769 if (error != 0) 2770 return (error); 2771 #ifdef COMPAT_FREEBSD32 2772 if ((req->flags & SCTL_MASK32) != 0) { 2773 /* 2774 * We return 0 if the 32 bit emulation request is for a 64 bit 2775 * process. 2776 */ 2777 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2778 PTROUT(p->p_sysent->sv_psstrings) : 0; 2779 PROC_UNLOCK(p); 2780 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2781 return (error); 2782 } 2783 #endif 2784 ps_strings = p->p_sysent->sv_psstrings; 2785 PROC_UNLOCK(p); 2786 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2787 return (error); 2788 } 2789 2790 /* 2791 * This sysctl allows a process to retrieve umask of another process. 2792 */ 2793 static int 2794 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2795 { 2796 int *name = (int *)arg1; 2797 u_int namelen = arg2; 2798 struct proc *p; 2799 int error; 2800 u_short fd_cmask; 2801 pid_t pid; 2802 2803 if (namelen != 1) 2804 return (EINVAL); 2805 2806 pid = (pid_t)name[0]; 2807 p = curproc; 2808 if (pid == p->p_pid || pid == 0) { 2809 fd_cmask = p->p_fd->fd_cmask; 2810 goto out; 2811 } 2812 2813 error = pget(pid, PGET_WANTREAD, &p); 2814 if (error != 0) 2815 return (error); 2816 2817 fd_cmask = p->p_fd->fd_cmask; 2818 PRELE(p); 2819 out: 2820 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2821 return (error); 2822 } 2823 2824 /* 2825 * This sysctl allows a process to set and retrieve binary osreldate of 2826 * another process. 2827 */ 2828 static int 2829 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2830 { 2831 int *name = (int *)arg1; 2832 u_int namelen = arg2; 2833 struct proc *p; 2834 int flags, error, osrel; 2835 2836 if (namelen != 1) 2837 return (EINVAL); 2838 2839 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2840 return (EINVAL); 2841 2842 flags = PGET_HOLD | PGET_NOTWEXIT; 2843 if (req->newptr != NULL) 2844 flags |= PGET_CANDEBUG; 2845 else 2846 flags |= PGET_CANSEE; 2847 error = pget((pid_t)name[0], flags, &p); 2848 if (error != 0) 2849 return (error); 2850 2851 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2852 if (error != 0) 2853 goto errout; 2854 2855 if (req->newptr != NULL) { 2856 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2857 if (error != 0) 2858 goto errout; 2859 if (osrel < 0) { 2860 error = EINVAL; 2861 goto errout; 2862 } 2863 p->p_osrel = osrel; 2864 } 2865 errout: 2866 PRELE(p); 2867 return (error); 2868 } 2869 2870 static int 2871 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2872 { 2873 int *name = (int *)arg1; 2874 u_int namelen = arg2; 2875 struct proc *p; 2876 struct kinfo_sigtramp kst; 2877 const struct sysentvec *sv; 2878 int error; 2879 #ifdef COMPAT_FREEBSD32 2880 struct kinfo_sigtramp32 kst32; 2881 #endif 2882 2883 if (namelen != 1) 2884 return (EINVAL); 2885 2886 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2887 if (error != 0) 2888 return (error); 2889 sv = p->p_sysent; 2890 #ifdef COMPAT_FREEBSD32 2891 if ((req->flags & SCTL_MASK32) != 0) { 2892 bzero(&kst32, sizeof(kst32)); 2893 if (SV_PROC_FLAG(p, SV_ILP32)) { 2894 if (sv->sv_sigcode_base != 0) { 2895 kst32.ksigtramp_start = sv->sv_sigcode_base; 2896 kst32.ksigtramp_end = sv->sv_sigcode_base + 2897 *sv->sv_szsigcode; 2898 } else { 2899 kst32.ksigtramp_start = sv->sv_psstrings - 2900 *sv->sv_szsigcode; 2901 kst32.ksigtramp_end = sv->sv_psstrings; 2902 } 2903 } 2904 PROC_UNLOCK(p); 2905 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2906 return (error); 2907 } 2908 #endif 2909 bzero(&kst, sizeof(kst)); 2910 if (sv->sv_sigcode_base != 0) { 2911 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2912 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2913 *sv->sv_szsigcode; 2914 } else { 2915 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2916 *sv->sv_szsigcode; 2917 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2918 } 2919 PROC_UNLOCK(p); 2920 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2921 return (error); 2922 } 2923 2924 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2925 2926 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2927 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2928 "Return entire process table"); 2929 2930 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2931 sysctl_kern_proc, "Process table"); 2932 2933 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2934 sysctl_kern_proc, "Process table"); 2935 2936 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2937 sysctl_kern_proc, "Process table"); 2938 2939 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2940 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2941 2942 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2943 sysctl_kern_proc, "Process table"); 2944 2945 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2946 sysctl_kern_proc, "Process table"); 2947 2948 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2949 sysctl_kern_proc, "Process table"); 2950 2951 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2952 sysctl_kern_proc, "Process table"); 2953 2954 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2955 sysctl_kern_proc, "Return process table, no threads"); 2956 2957 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2958 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2959 sysctl_kern_proc_args, "Process argument list"); 2960 2961 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2962 sysctl_kern_proc_env, "Process environment"); 2963 2964 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2965 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2966 2967 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2968 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2969 2970 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2971 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2972 "Process syscall vector name (ABI type)"); 2973 2974 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2975 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2976 2977 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2978 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2979 2980 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2981 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2982 2983 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2984 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2985 2986 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2987 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2988 2989 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2990 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2991 2992 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2993 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2994 2995 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2996 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2997 2998 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2999 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3000 "Return process table, no threads"); 3001 3002 #ifdef COMPAT_FREEBSD7 3003 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3004 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3005 #endif 3006 3007 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3008 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3009 3010 #if defined(STACK) || defined(DDB) 3011 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3012 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3013 #endif 3014 3015 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3016 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3017 3018 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3019 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3020 "Process resource limits"); 3021 3022 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3023 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3024 "Process ps_strings location"); 3025 3026 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3027 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3028 3029 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3030 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3031 "Process binary osreldate"); 3032 3033 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3034 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3035 "Process signal trampoline location"); 3036 3037 int allproc_gen; 3038 3039 /* 3040 * stop_all_proc() purpose is to stop all process which have usermode, 3041 * except current process for obvious reasons. This makes it somewhat 3042 * unreliable when invoked from multithreaded process. The service 3043 * must not be user-callable anyway. 3044 */ 3045 void 3046 stop_all_proc(void) 3047 { 3048 struct proc *cp, *p; 3049 int r, gen; 3050 bool restart, seen_stopped, seen_exiting, stopped_some; 3051 3052 cp = curproc; 3053 allproc_loop: 3054 sx_xlock(&allproc_lock); 3055 gen = allproc_gen; 3056 seen_exiting = seen_stopped = stopped_some = restart = false; 3057 LIST_REMOVE(cp, p_list); 3058 LIST_INSERT_HEAD(&allproc, cp, p_list); 3059 for (;;) { 3060 p = LIST_NEXT(cp, p_list); 3061 if (p == NULL) 3062 break; 3063 LIST_REMOVE(cp, p_list); 3064 LIST_INSERT_AFTER(p, cp, p_list); 3065 PROC_LOCK(p); 3066 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3067 PROC_UNLOCK(p); 3068 continue; 3069 } 3070 if ((p->p_flag & P_WEXIT) != 0) { 3071 seen_exiting = true; 3072 PROC_UNLOCK(p); 3073 continue; 3074 } 3075 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3076 /* 3077 * Stopped processes are tolerated when there 3078 * are no other processes which might continue 3079 * them. P_STOPPED_SINGLE but not 3080 * P_TOTAL_STOP process still has at least one 3081 * thread running. 3082 */ 3083 seen_stopped = true; 3084 PROC_UNLOCK(p); 3085 continue; 3086 } 3087 _PHOLD(p); 3088 sx_xunlock(&allproc_lock); 3089 r = thread_single(p, SINGLE_ALLPROC); 3090 if (r != 0) 3091 restart = true; 3092 else 3093 stopped_some = true; 3094 _PRELE(p); 3095 PROC_UNLOCK(p); 3096 sx_xlock(&allproc_lock); 3097 } 3098 /* Catch forked children we did not see in iteration. */ 3099 if (gen != allproc_gen) 3100 restart = true; 3101 sx_xunlock(&allproc_lock); 3102 if (restart || stopped_some || seen_exiting || seen_stopped) { 3103 kern_yield(PRI_USER); 3104 goto allproc_loop; 3105 } 3106 } 3107 3108 void 3109 resume_all_proc(void) 3110 { 3111 struct proc *cp, *p; 3112 3113 cp = curproc; 3114 sx_xlock(&allproc_lock); 3115 LIST_REMOVE(cp, p_list); 3116 LIST_INSERT_HEAD(&allproc, cp, p_list); 3117 for (;;) { 3118 p = LIST_NEXT(cp, p_list); 3119 if (p == NULL) 3120 break; 3121 LIST_REMOVE(cp, p_list); 3122 LIST_INSERT_AFTER(p, cp, p_list); 3123 PROC_LOCK(p); 3124 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3125 sx_xunlock(&allproc_lock); 3126 _PHOLD(p); 3127 thread_single_end(p, SINGLE_ALLPROC); 3128 _PRELE(p); 3129 PROC_UNLOCK(p); 3130 sx_xlock(&allproc_lock); 3131 } else { 3132 PROC_UNLOCK(p); 3133 } 3134 } 3135 sx_xunlock(&allproc_lock); 3136 } 3137 3138 /* #define TOTAL_STOP_DEBUG 1 */ 3139 #ifdef TOTAL_STOP_DEBUG 3140 volatile static int ap_resume; 3141 #include <sys/mount.h> 3142 3143 static int 3144 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3145 { 3146 int error, val; 3147 3148 val = 0; 3149 ap_resume = 0; 3150 error = sysctl_handle_int(oidp, &val, 0, req); 3151 if (error != 0 || req->newptr == NULL) 3152 return (error); 3153 if (val != 0) { 3154 stop_all_proc(); 3155 syncer_suspend(); 3156 while (ap_resume == 0) 3157 ; 3158 syncer_resume(); 3159 resume_all_proc(); 3160 } 3161 return (0); 3162 } 3163 3164 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3165 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3166 sysctl_debug_stop_all_proc, "I", 3167 ""); 3168 #endif 3169