1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/eventhandler.h> 46 #include <sys/exec.h> 47 #include <sys/jail.h> 48 #include <sys/kernel.h> 49 #include <sys/limits.h> 50 #include <sys/lock.h> 51 #include <sys/loginclass.h> 52 #include <sys/malloc.h> 53 #include <sys/mman.h> 54 #include <sys/mount.h> 55 #include <sys/mutex.h> 56 #include <sys/proc.h> 57 #include <sys/ptrace.h> 58 #include <sys/refcount.h> 59 #include <sys/resourcevar.h> 60 #include <sys/rwlock.h> 61 #include <sys/sbuf.h> 62 #include <sys/sysent.h> 63 #include <sys/sched.h> 64 #include <sys/smp.h> 65 #include <sys/stack.h> 66 #include <sys/stat.h> 67 #include <sys/sysctl.h> 68 #include <sys/filedesc.h> 69 #include <sys/tty.h> 70 #include <sys/signalvar.h> 71 #include <sys/sdt.h> 72 #include <sys/sx.h> 73 #include <sys/user.h> 74 #include <sys/vnode.h> 75 #include <sys/wait.h> 76 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #endif 80 81 #include <vm/vm.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_extern.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/uma.h> 89 90 #ifdef COMPAT_FREEBSD32 91 #include <compat/freebsd32/freebsd32.h> 92 #include <compat/freebsd32/freebsd32_util.h> 93 #endif 94 95 SDT_PROVIDER_DEFINE(proc); 96 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 97 "int"); 98 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 99 "int"); 100 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 101 "struct thread *"); 102 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 103 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 104 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 105 106 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 107 MALLOC_DEFINE(M_SESSION, "session", "session header"); 108 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 109 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 110 111 static void doenterpgrp(struct proc *, struct pgrp *); 112 static void orphanpg(struct pgrp *pg); 113 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 116 int preferthread); 117 static void pgadjustjobc(struct pgrp *pgrp, int entering); 118 static void pgdelete(struct pgrp *); 119 static int proc_ctor(void *mem, int size, void *arg, int flags); 120 static void proc_dtor(void *mem, int size, void *arg); 121 static int proc_init(void *mem, int size, int flags); 122 static void proc_fini(void *mem, int size); 123 static void pargs_free(struct pargs *pa); 124 static struct proc *zpfind_locked(pid_t pid); 125 126 /* 127 * Other process lists 128 */ 129 struct pidhashhead *pidhashtbl; 130 u_long pidhash; 131 struct pgrphashhead *pgrphashtbl; 132 u_long pgrphash; 133 struct proclist allproc; 134 struct proclist zombproc; 135 struct sx __exclusive_cache_line allproc_lock; 136 struct sx __exclusive_cache_line proctree_lock; 137 struct mtx __exclusive_cache_line ppeers_lock; 138 uma_zone_t proc_zone; 139 140 /* 141 * The offset of various fields in struct proc and struct thread. 142 * These are used by kernel debuggers to enumerate kernel threads and 143 * processes. 144 */ 145 const int proc_off_p_pid = offsetof(struct proc, p_pid); 146 const int proc_off_p_comm = offsetof(struct proc, p_comm); 147 const int proc_off_p_list = offsetof(struct proc, p_list); 148 const int proc_off_p_threads = offsetof(struct proc, p_threads); 149 const int thread_off_td_tid = offsetof(struct thread, td_tid); 150 const int thread_off_td_name = offsetof(struct thread, td_name); 151 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 152 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 153 const int thread_off_td_plist = offsetof(struct thread, td_plist); 154 155 EVENTHANDLER_LIST_DEFINE(process_ctor); 156 EVENTHANDLER_LIST_DEFINE(process_dtor); 157 EVENTHANDLER_LIST_DEFINE(process_init); 158 EVENTHANDLER_LIST_DEFINE(process_fini); 159 EVENTHANDLER_LIST_DEFINE(process_exit); 160 EVENTHANDLER_LIST_DEFINE(process_fork); 161 EVENTHANDLER_LIST_DEFINE(process_exec); 162 163 EVENTHANDLER_LIST_DECLARE(thread_ctor); 164 EVENTHANDLER_LIST_DECLARE(thread_dtor); 165 166 int kstack_pages = KSTACK_PAGES; 167 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 168 "Kernel stack size in pages"); 169 static int vmmap_skip_res_cnt = 0; 170 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 171 &vmmap_skip_res_cnt, 0, 172 "Skip calculation of the pages resident count in kern.proc.vmmap"); 173 174 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 175 #ifdef COMPAT_FREEBSD32 176 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 177 #endif 178 179 /* 180 * Initialize global process hashing structures. 181 */ 182 void 183 procinit(void) 184 { 185 186 sx_init(&allproc_lock, "allproc"); 187 sx_init(&proctree_lock, "proctree"); 188 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 189 LIST_INIT(&allproc); 190 LIST_INIT(&zombproc); 191 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 192 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 193 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 194 proc_ctor, proc_dtor, proc_init, proc_fini, 195 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uihashinit(); 197 } 198 199 /* 200 * Prepare a proc for use. 201 */ 202 static int 203 proc_ctor(void *mem, int size, void *arg, int flags) 204 { 205 struct proc *p; 206 struct thread *td; 207 208 p = (struct proc *)mem; 209 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 210 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 211 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 212 td = FIRST_THREAD_IN_PROC(p); 213 if (td != NULL) { 214 /* Make sure all thread constructors are executed */ 215 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 216 } 217 return (0); 218 } 219 220 /* 221 * Reclaim a proc after use. 222 */ 223 static void 224 proc_dtor(void *mem, int size, void *arg) 225 { 226 struct proc *p; 227 struct thread *td; 228 229 /* INVARIANTS checks go here */ 230 p = (struct proc *)mem; 231 td = FIRST_THREAD_IN_PROC(p); 232 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 233 if (td != NULL) { 234 #ifdef INVARIANTS 235 KASSERT((p->p_numthreads == 1), 236 ("bad number of threads in exiting process")); 237 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 238 #endif 239 /* Free all OSD associated to this thread. */ 240 osd_thread_exit(td); 241 td_softdep_cleanup(td); 242 MPASS(td->td_su == NULL); 243 244 /* Make sure all thread destructors are executed */ 245 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 246 } 247 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 248 if (p->p_ksi != NULL) 249 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 250 SDT_PROBE3(proc, , dtor, return, p, size, arg); 251 } 252 253 /* 254 * Initialize type-stable parts of a proc (when newly created). 255 */ 256 static int 257 proc_init(void *mem, int size, int flags) 258 { 259 struct proc *p; 260 261 p = (struct proc *)mem; 262 SDT_PROBE3(proc, , init, entry, p, size, flags); 263 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 264 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 265 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 266 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 267 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 268 cv_init(&p->p_pwait, "ppwait"); 269 cv_init(&p->p_dbgwait, "dbgwait"); 270 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 271 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 272 p->p_stats = pstats_alloc(); 273 p->p_pgrp = NULL; 274 SDT_PROBE3(proc, , init, return, p, size, flags); 275 return (0); 276 } 277 278 /* 279 * UMA should ensure that this function is never called. 280 * Freeing a proc structure would violate type stability. 281 */ 282 static void 283 proc_fini(void *mem, int size) 284 { 285 #ifdef notnow 286 struct proc *p; 287 288 p = (struct proc *)mem; 289 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 290 pstats_free(p->p_stats); 291 thread_free(FIRST_THREAD_IN_PROC(p)); 292 mtx_destroy(&p->p_mtx); 293 if (p->p_ksi != NULL) 294 ksiginfo_free(p->p_ksi); 295 #else 296 panic("proc reclaimed"); 297 #endif 298 } 299 300 /* 301 * Is p an inferior of the current process? 302 */ 303 int 304 inferior(struct proc *p) 305 { 306 307 sx_assert(&proctree_lock, SX_LOCKED); 308 PROC_LOCK_ASSERT(p, MA_OWNED); 309 for (; p != curproc; p = proc_realparent(p)) { 310 if (p->p_pid == 0) 311 return (0); 312 } 313 return (1); 314 } 315 316 struct proc * 317 pfind_locked(pid_t pid) 318 { 319 struct proc *p; 320 321 sx_assert(&allproc_lock, SX_LOCKED); 322 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 323 if (p->p_pid == pid) { 324 PROC_LOCK(p); 325 if (p->p_state == PRS_NEW) { 326 PROC_UNLOCK(p); 327 p = NULL; 328 } 329 break; 330 } 331 } 332 return (p); 333 } 334 335 /* 336 * Locate a process by number; return only "live" processes -- i.e., neither 337 * zombies nor newly born but incompletely initialized processes. By not 338 * returning processes in the PRS_NEW state, we allow callers to avoid 339 * testing for that condition to avoid dereferencing p_ucred, et al. 340 */ 341 struct proc * 342 pfind(pid_t pid) 343 { 344 struct proc *p; 345 346 p = curproc; 347 if (p->p_pid == pid) { 348 PROC_LOCK(p); 349 return (p); 350 } 351 sx_slock(&allproc_lock); 352 p = pfind_locked(pid); 353 sx_sunlock(&allproc_lock); 354 return (p); 355 } 356 357 /* 358 * Same as pfind but allow zombies. 359 */ 360 struct proc * 361 pfind_any(pid_t pid) 362 { 363 struct proc *p; 364 365 sx_slock(&allproc_lock); 366 p = pfind_locked(pid); 367 if (p == NULL) 368 p = zpfind_locked(pid); 369 sx_sunlock(&allproc_lock); 370 371 return (p); 372 } 373 374 static struct proc * 375 pfind_tid_locked(pid_t tid) 376 { 377 struct proc *p; 378 struct thread *td; 379 380 sx_assert(&allproc_lock, SX_LOCKED); 381 FOREACH_PROC_IN_SYSTEM(p) { 382 PROC_LOCK(p); 383 if (p->p_state == PRS_NEW) { 384 PROC_UNLOCK(p); 385 continue; 386 } 387 FOREACH_THREAD_IN_PROC(p, td) { 388 if (td->td_tid == tid) 389 goto found; 390 } 391 PROC_UNLOCK(p); 392 } 393 found: 394 return (p); 395 } 396 397 /* 398 * Locate a process group by number. 399 * The caller must hold proctree_lock. 400 */ 401 struct pgrp * 402 pgfind(pid_t pgid) 403 { 404 struct pgrp *pgrp; 405 406 sx_assert(&proctree_lock, SX_LOCKED); 407 408 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 409 if (pgrp->pg_id == pgid) { 410 PGRP_LOCK(pgrp); 411 return (pgrp); 412 } 413 } 414 return (NULL); 415 } 416 417 /* 418 * Locate process and do additional manipulations, depending on flags. 419 */ 420 int 421 pget(pid_t pid, int flags, struct proc **pp) 422 { 423 struct proc *p; 424 int error; 425 426 p = curproc; 427 if (p->p_pid == pid) { 428 PROC_LOCK(p); 429 } else { 430 sx_slock(&allproc_lock); 431 if (pid <= PID_MAX) { 432 p = pfind_locked(pid); 433 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 434 p = zpfind_locked(pid); 435 } else if ((flags & PGET_NOTID) == 0) { 436 p = pfind_tid_locked(pid); 437 } else { 438 p = NULL; 439 } 440 sx_sunlock(&allproc_lock); 441 if (p == NULL) 442 return (ESRCH); 443 if ((flags & PGET_CANSEE) != 0) { 444 error = p_cansee(curthread, p); 445 if (error != 0) 446 goto errout; 447 } 448 } 449 if ((flags & PGET_CANDEBUG) != 0) { 450 error = p_candebug(curthread, p); 451 if (error != 0) 452 goto errout; 453 } 454 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 455 error = EPERM; 456 goto errout; 457 } 458 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 459 error = ESRCH; 460 goto errout; 461 } 462 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 463 /* 464 * XXXRW: Not clear ESRCH is the right error during proc 465 * execve(). 466 */ 467 error = ESRCH; 468 goto errout; 469 } 470 if ((flags & PGET_HOLD) != 0) { 471 _PHOLD(p); 472 PROC_UNLOCK(p); 473 } 474 *pp = p; 475 return (0); 476 errout: 477 PROC_UNLOCK(p); 478 return (error); 479 } 480 481 /* 482 * Create a new process group. 483 * pgid must be equal to the pid of p. 484 * Begin a new session if required. 485 */ 486 int 487 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 488 { 489 490 sx_assert(&proctree_lock, SX_XLOCKED); 491 492 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 493 KASSERT(p->p_pid == pgid, 494 ("enterpgrp: new pgrp and pid != pgid")); 495 KASSERT(pgfind(pgid) == NULL, 496 ("enterpgrp: pgrp with pgid exists")); 497 KASSERT(!SESS_LEADER(p), 498 ("enterpgrp: session leader attempted setpgrp")); 499 500 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 501 502 if (sess != NULL) { 503 /* 504 * new session 505 */ 506 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 507 PROC_LOCK(p); 508 p->p_flag &= ~P_CONTROLT; 509 PROC_UNLOCK(p); 510 PGRP_LOCK(pgrp); 511 sess->s_leader = p; 512 sess->s_sid = p->p_pid; 513 refcount_init(&sess->s_count, 1); 514 sess->s_ttyvp = NULL; 515 sess->s_ttydp = NULL; 516 sess->s_ttyp = NULL; 517 bcopy(p->p_session->s_login, sess->s_login, 518 sizeof(sess->s_login)); 519 pgrp->pg_session = sess; 520 KASSERT(p == curproc, 521 ("enterpgrp: mksession and p != curproc")); 522 } else { 523 pgrp->pg_session = p->p_session; 524 sess_hold(pgrp->pg_session); 525 PGRP_LOCK(pgrp); 526 } 527 pgrp->pg_id = pgid; 528 LIST_INIT(&pgrp->pg_members); 529 530 /* 531 * As we have an exclusive lock of proctree_lock, 532 * this should not deadlock. 533 */ 534 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 535 pgrp->pg_jobc = 0; 536 SLIST_INIT(&pgrp->pg_sigiolst); 537 PGRP_UNLOCK(pgrp); 538 539 doenterpgrp(p, pgrp); 540 541 return (0); 542 } 543 544 /* 545 * Move p to an existing process group 546 */ 547 int 548 enterthispgrp(struct proc *p, struct pgrp *pgrp) 549 { 550 551 sx_assert(&proctree_lock, SX_XLOCKED); 552 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 553 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 554 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 555 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 556 KASSERT(pgrp->pg_session == p->p_session, 557 ("%s: pgrp's session %p, p->p_session %p.\n", 558 __func__, 559 pgrp->pg_session, 560 p->p_session)); 561 KASSERT(pgrp != p->p_pgrp, 562 ("%s: p belongs to pgrp.", __func__)); 563 564 doenterpgrp(p, pgrp); 565 566 return (0); 567 } 568 569 /* 570 * Move p to a process group 571 */ 572 static void 573 doenterpgrp(struct proc *p, struct pgrp *pgrp) 574 { 575 struct pgrp *savepgrp; 576 577 sx_assert(&proctree_lock, SX_XLOCKED); 578 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 579 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 580 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 581 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 582 583 savepgrp = p->p_pgrp; 584 585 /* 586 * Adjust eligibility of affected pgrps to participate in job control. 587 * Increment eligibility counts before decrementing, otherwise we 588 * could reach 0 spuriously during the first call. 589 */ 590 fixjobc(p, pgrp, 1); 591 fixjobc(p, p->p_pgrp, 0); 592 593 PGRP_LOCK(pgrp); 594 PGRP_LOCK(savepgrp); 595 PROC_LOCK(p); 596 LIST_REMOVE(p, p_pglist); 597 p->p_pgrp = pgrp; 598 PROC_UNLOCK(p); 599 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 600 PGRP_UNLOCK(savepgrp); 601 PGRP_UNLOCK(pgrp); 602 if (LIST_EMPTY(&savepgrp->pg_members)) 603 pgdelete(savepgrp); 604 } 605 606 /* 607 * remove process from process group 608 */ 609 int 610 leavepgrp(struct proc *p) 611 { 612 struct pgrp *savepgrp; 613 614 sx_assert(&proctree_lock, SX_XLOCKED); 615 savepgrp = p->p_pgrp; 616 PGRP_LOCK(savepgrp); 617 PROC_LOCK(p); 618 LIST_REMOVE(p, p_pglist); 619 p->p_pgrp = NULL; 620 PROC_UNLOCK(p); 621 PGRP_UNLOCK(savepgrp); 622 if (LIST_EMPTY(&savepgrp->pg_members)) 623 pgdelete(savepgrp); 624 return (0); 625 } 626 627 /* 628 * delete a process group 629 */ 630 static void 631 pgdelete(struct pgrp *pgrp) 632 { 633 struct session *savesess; 634 struct tty *tp; 635 636 sx_assert(&proctree_lock, SX_XLOCKED); 637 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 638 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 639 640 /* 641 * Reset any sigio structures pointing to us as a result of 642 * F_SETOWN with our pgid. 643 */ 644 funsetownlst(&pgrp->pg_sigiolst); 645 646 PGRP_LOCK(pgrp); 647 tp = pgrp->pg_session->s_ttyp; 648 LIST_REMOVE(pgrp, pg_hash); 649 savesess = pgrp->pg_session; 650 PGRP_UNLOCK(pgrp); 651 652 /* Remove the reference to the pgrp before deallocating it. */ 653 if (tp != NULL) { 654 tty_lock(tp); 655 tty_rel_pgrp(tp, pgrp); 656 } 657 658 mtx_destroy(&pgrp->pg_mtx); 659 free(pgrp, M_PGRP); 660 sess_release(savesess); 661 } 662 663 static void 664 pgadjustjobc(struct pgrp *pgrp, int entering) 665 { 666 667 PGRP_LOCK(pgrp); 668 if (entering) 669 pgrp->pg_jobc++; 670 else { 671 --pgrp->pg_jobc; 672 if (pgrp->pg_jobc == 0) 673 orphanpg(pgrp); 674 } 675 PGRP_UNLOCK(pgrp); 676 } 677 678 /* 679 * Adjust pgrp jobc counters when specified process changes process group. 680 * We count the number of processes in each process group that "qualify" 681 * the group for terminal job control (those with a parent in a different 682 * process group of the same session). If that count reaches zero, the 683 * process group becomes orphaned. Check both the specified process' 684 * process group and that of its children. 685 * entering == 0 => p is leaving specified group. 686 * entering == 1 => p is entering specified group. 687 */ 688 void 689 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 690 { 691 struct pgrp *hispgrp; 692 struct session *mysession; 693 struct proc *q; 694 695 sx_assert(&proctree_lock, SX_LOCKED); 696 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 697 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 698 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 699 700 /* 701 * Check p's parent to see whether p qualifies its own process 702 * group; if so, adjust count for p's process group. 703 */ 704 mysession = pgrp->pg_session; 705 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 706 hispgrp->pg_session == mysession) 707 pgadjustjobc(pgrp, entering); 708 709 /* 710 * Check this process' children to see whether they qualify 711 * their process groups; if so, adjust counts for children's 712 * process groups. 713 */ 714 LIST_FOREACH(q, &p->p_children, p_sibling) { 715 hispgrp = q->p_pgrp; 716 if (hispgrp == pgrp || 717 hispgrp->pg_session != mysession) 718 continue; 719 if (q->p_state == PRS_ZOMBIE) 720 continue; 721 pgadjustjobc(hispgrp, entering); 722 } 723 } 724 725 void 726 killjobc(void) 727 { 728 struct session *sp; 729 struct tty *tp; 730 struct proc *p; 731 struct vnode *ttyvp; 732 733 p = curproc; 734 MPASS(p->p_flag & P_WEXIT); 735 /* 736 * Do a quick check to see if there is anything to do with the 737 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 738 */ 739 PROC_LOCK(p); 740 if (!SESS_LEADER(p) && 741 (p->p_pgrp == p->p_pptr->p_pgrp) && 742 LIST_EMPTY(&p->p_children)) { 743 PROC_UNLOCK(p); 744 return; 745 } 746 PROC_UNLOCK(p); 747 748 sx_xlock(&proctree_lock); 749 if (SESS_LEADER(p)) { 750 sp = p->p_session; 751 752 /* 753 * s_ttyp is not zero'd; we use this to indicate that 754 * the session once had a controlling terminal. (for 755 * logging and informational purposes) 756 */ 757 SESS_LOCK(sp); 758 ttyvp = sp->s_ttyvp; 759 tp = sp->s_ttyp; 760 sp->s_ttyvp = NULL; 761 sp->s_ttydp = NULL; 762 sp->s_leader = NULL; 763 SESS_UNLOCK(sp); 764 765 /* 766 * Signal foreground pgrp and revoke access to 767 * controlling terminal if it has not been revoked 768 * already. 769 * 770 * Because the TTY may have been revoked in the mean 771 * time and could already have a new session associated 772 * with it, make sure we don't send a SIGHUP to a 773 * foreground process group that does not belong to this 774 * session. 775 */ 776 777 if (tp != NULL) { 778 tty_lock(tp); 779 if (tp->t_session == sp) 780 tty_signal_pgrp(tp, SIGHUP); 781 tty_unlock(tp); 782 } 783 784 if (ttyvp != NULL) { 785 sx_xunlock(&proctree_lock); 786 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 787 VOP_REVOKE(ttyvp, REVOKEALL); 788 VOP_UNLOCK(ttyvp, 0); 789 } 790 vrele(ttyvp); 791 sx_xlock(&proctree_lock); 792 } 793 } 794 fixjobc(p, p->p_pgrp, 0); 795 sx_xunlock(&proctree_lock); 796 } 797 798 /* 799 * A process group has become orphaned; 800 * if there are any stopped processes in the group, 801 * hang-up all process in that group. 802 */ 803 static void 804 orphanpg(struct pgrp *pg) 805 { 806 struct proc *p; 807 808 PGRP_LOCK_ASSERT(pg, MA_OWNED); 809 810 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 811 PROC_LOCK(p); 812 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 813 PROC_UNLOCK(p); 814 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 815 PROC_LOCK(p); 816 kern_psignal(p, SIGHUP); 817 kern_psignal(p, SIGCONT); 818 PROC_UNLOCK(p); 819 } 820 return; 821 } 822 PROC_UNLOCK(p); 823 } 824 } 825 826 void 827 sess_hold(struct session *s) 828 { 829 830 refcount_acquire(&s->s_count); 831 } 832 833 void 834 sess_release(struct session *s) 835 { 836 837 if (refcount_release(&s->s_count)) { 838 if (s->s_ttyp != NULL) { 839 tty_lock(s->s_ttyp); 840 tty_rel_sess(s->s_ttyp, s); 841 } 842 mtx_destroy(&s->s_mtx); 843 free(s, M_SESSION); 844 } 845 } 846 847 #ifdef DDB 848 849 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 850 { 851 struct pgrp *pgrp; 852 struct proc *p; 853 int i; 854 855 for (i = 0; i <= pgrphash; i++) { 856 if (!LIST_EMPTY(&pgrphashtbl[i])) { 857 printf("\tindx %d\n", i); 858 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 859 printf( 860 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 861 (void *)pgrp, (long)pgrp->pg_id, 862 (void *)pgrp->pg_session, 863 pgrp->pg_session->s_count, 864 (void *)LIST_FIRST(&pgrp->pg_members)); 865 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 866 printf("\t\tpid %ld addr %p pgrp %p\n", 867 (long)p->p_pid, (void *)p, 868 (void *)p->p_pgrp); 869 } 870 } 871 } 872 } 873 } 874 #endif /* DDB */ 875 876 /* 877 * Calculate the kinfo_proc members which contain process-wide 878 * informations. 879 * Must be called with the target process locked. 880 */ 881 static void 882 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 883 { 884 struct thread *td; 885 886 PROC_LOCK_ASSERT(p, MA_OWNED); 887 888 kp->ki_estcpu = 0; 889 kp->ki_pctcpu = 0; 890 FOREACH_THREAD_IN_PROC(p, td) { 891 thread_lock(td); 892 kp->ki_pctcpu += sched_pctcpu(td); 893 kp->ki_estcpu += sched_estcpu(td); 894 thread_unlock(td); 895 } 896 } 897 898 /* 899 * Clear kinfo_proc and fill in any information that is common 900 * to all threads in the process. 901 * Must be called with the target process locked. 902 */ 903 static void 904 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 905 { 906 struct thread *td0; 907 struct tty *tp; 908 struct session *sp; 909 struct ucred *cred; 910 struct sigacts *ps; 911 struct timeval boottime; 912 913 /* For proc_realparent. */ 914 sx_assert(&proctree_lock, SX_LOCKED); 915 PROC_LOCK_ASSERT(p, MA_OWNED); 916 bzero(kp, sizeof(*kp)); 917 918 kp->ki_structsize = sizeof(*kp); 919 kp->ki_paddr = p; 920 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 921 kp->ki_args = p->p_args; 922 kp->ki_textvp = p->p_textvp; 923 #ifdef KTRACE 924 kp->ki_tracep = p->p_tracevp; 925 kp->ki_traceflag = p->p_traceflag; 926 #endif 927 kp->ki_fd = p->p_fd; 928 kp->ki_vmspace = p->p_vmspace; 929 kp->ki_flag = p->p_flag; 930 kp->ki_flag2 = p->p_flag2; 931 cred = p->p_ucred; 932 if (cred) { 933 kp->ki_uid = cred->cr_uid; 934 kp->ki_ruid = cred->cr_ruid; 935 kp->ki_svuid = cred->cr_svuid; 936 kp->ki_cr_flags = 0; 937 if (cred->cr_flags & CRED_FLAG_CAPMODE) 938 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 939 /* XXX bde doesn't like KI_NGROUPS */ 940 if (cred->cr_ngroups > KI_NGROUPS) { 941 kp->ki_ngroups = KI_NGROUPS; 942 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 943 } else 944 kp->ki_ngroups = cred->cr_ngroups; 945 bcopy(cred->cr_groups, kp->ki_groups, 946 kp->ki_ngroups * sizeof(gid_t)); 947 kp->ki_rgid = cred->cr_rgid; 948 kp->ki_svgid = cred->cr_svgid; 949 /* If jailed(cred), emulate the old P_JAILED flag. */ 950 if (jailed(cred)) { 951 kp->ki_flag |= P_JAILED; 952 /* If inside the jail, use 0 as a jail ID. */ 953 if (cred->cr_prison != curthread->td_ucred->cr_prison) 954 kp->ki_jid = cred->cr_prison->pr_id; 955 } 956 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 957 sizeof(kp->ki_loginclass)); 958 } 959 ps = p->p_sigacts; 960 if (ps) { 961 mtx_lock(&ps->ps_mtx); 962 kp->ki_sigignore = ps->ps_sigignore; 963 kp->ki_sigcatch = ps->ps_sigcatch; 964 mtx_unlock(&ps->ps_mtx); 965 } 966 if (p->p_state != PRS_NEW && 967 p->p_state != PRS_ZOMBIE && 968 p->p_vmspace != NULL) { 969 struct vmspace *vm = p->p_vmspace; 970 971 kp->ki_size = vm->vm_map.size; 972 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 973 FOREACH_THREAD_IN_PROC(p, td0) { 974 if (!TD_IS_SWAPPED(td0)) 975 kp->ki_rssize += td0->td_kstack_pages; 976 } 977 kp->ki_swrss = vm->vm_swrss; 978 kp->ki_tsize = vm->vm_tsize; 979 kp->ki_dsize = vm->vm_dsize; 980 kp->ki_ssize = vm->vm_ssize; 981 } else if (p->p_state == PRS_ZOMBIE) 982 kp->ki_stat = SZOMB; 983 if (kp->ki_flag & P_INMEM) 984 kp->ki_sflag = PS_INMEM; 985 else 986 kp->ki_sflag = 0; 987 /* Calculate legacy swtime as seconds since 'swtick'. */ 988 kp->ki_swtime = (ticks - p->p_swtick) / hz; 989 kp->ki_pid = p->p_pid; 990 kp->ki_nice = p->p_nice; 991 kp->ki_fibnum = p->p_fibnum; 992 kp->ki_start = p->p_stats->p_start; 993 getboottime(&boottime); 994 timevaladd(&kp->ki_start, &boottime); 995 PROC_STATLOCK(p); 996 rufetch(p, &kp->ki_rusage); 997 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 998 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 999 PROC_STATUNLOCK(p); 1000 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1001 /* Some callers want child times in a single value. */ 1002 kp->ki_childtime = kp->ki_childstime; 1003 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1004 1005 FOREACH_THREAD_IN_PROC(p, td0) 1006 kp->ki_cow += td0->td_cow; 1007 1008 tp = NULL; 1009 if (p->p_pgrp) { 1010 kp->ki_pgid = p->p_pgrp->pg_id; 1011 kp->ki_jobc = p->p_pgrp->pg_jobc; 1012 sp = p->p_pgrp->pg_session; 1013 1014 if (sp != NULL) { 1015 kp->ki_sid = sp->s_sid; 1016 SESS_LOCK(sp); 1017 strlcpy(kp->ki_login, sp->s_login, 1018 sizeof(kp->ki_login)); 1019 if (sp->s_ttyvp) 1020 kp->ki_kiflag |= KI_CTTY; 1021 if (SESS_LEADER(p)) 1022 kp->ki_kiflag |= KI_SLEADER; 1023 /* XXX proctree_lock */ 1024 tp = sp->s_ttyp; 1025 SESS_UNLOCK(sp); 1026 } 1027 } 1028 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1029 kp->ki_tdev = tty_udev(tp); 1030 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1031 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1032 if (tp->t_session) 1033 kp->ki_tsid = tp->t_session->s_sid; 1034 } else { 1035 kp->ki_tdev = NODEV; 1036 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1037 } 1038 if (p->p_comm[0] != '\0') 1039 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1040 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1041 p->p_sysent->sv_name[0] != '\0') 1042 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1043 kp->ki_siglist = p->p_siglist; 1044 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1045 kp->ki_acflag = p->p_acflag; 1046 kp->ki_lock = p->p_lock; 1047 if (p->p_pptr) { 1048 kp->ki_ppid = proc_realparent(p)->p_pid; 1049 if (p->p_flag & P_TRACED) 1050 kp->ki_tracer = p->p_pptr->p_pid; 1051 } 1052 } 1053 1054 /* 1055 * Fill in information that is thread specific. Must be called with 1056 * target process locked. If 'preferthread' is set, overwrite certain 1057 * process-related fields that are maintained for both threads and 1058 * processes. 1059 */ 1060 static void 1061 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1062 { 1063 struct proc *p; 1064 1065 p = td->td_proc; 1066 kp->ki_tdaddr = td; 1067 PROC_LOCK_ASSERT(p, MA_OWNED); 1068 1069 if (preferthread) 1070 PROC_STATLOCK(p); 1071 thread_lock(td); 1072 if (td->td_wmesg != NULL) 1073 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1074 else 1075 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1076 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1077 sizeof(kp->ki_tdname)) { 1078 strlcpy(kp->ki_moretdname, 1079 td->td_name + sizeof(kp->ki_tdname) - 1, 1080 sizeof(kp->ki_moretdname)); 1081 } else { 1082 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1083 } 1084 if (TD_ON_LOCK(td)) { 1085 kp->ki_kiflag |= KI_LOCKBLOCK; 1086 strlcpy(kp->ki_lockname, td->td_lockname, 1087 sizeof(kp->ki_lockname)); 1088 } else { 1089 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1090 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1091 } 1092 1093 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1094 if (TD_ON_RUNQ(td) || 1095 TD_CAN_RUN(td) || 1096 TD_IS_RUNNING(td)) { 1097 kp->ki_stat = SRUN; 1098 } else if (P_SHOULDSTOP(p)) { 1099 kp->ki_stat = SSTOP; 1100 } else if (TD_IS_SLEEPING(td)) { 1101 kp->ki_stat = SSLEEP; 1102 } else if (TD_ON_LOCK(td)) { 1103 kp->ki_stat = SLOCK; 1104 } else { 1105 kp->ki_stat = SWAIT; 1106 } 1107 } else if (p->p_state == PRS_ZOMBIE) { 1108 kp->ki_stat = SZOMB; 1109 } else { 1110 kp->ki_stat = SIDL; 1111 } 1112 1113 /* Things in the thread */ 1114 kp->ki_wchan = td->td_wchan; 1115 kp->ki_pri.pri_level = td->td_priority; 1116 kp->ki_pri.pri_native = td->td_base_pri; 1117 1118 /* 1119 * Note: legacy fields; clamp at the old NOCPU value and/or 1120 * the maximum u_char CPU value. 1121 */ 1122 if (td->td_lastcpu == NOCPU) 1123 kp->ki_lastcpu_old = NOCPU_OLD; 1124 else if (td->td_lastcpu > MAXCPU_OLD) 1125 kp->ki_lastcpu_old = MAXCPU_OLD; 1126 else 1127 kp->ki_lastcpu_old = td->td_lastcpu; 1128 1129 if (td->td_oncpu == NOCPU) 1130 kp->ki_oncpu_old = NOCPU_OLD; 1131 else if (td->td_oncpu > MAXCPU_OLD) 1132 kp->ki_oncpu_old = MAXCPU_OLD; 1133 else 1134 kp->ki_oncpu_old = td->td_oncpu; 1135 1136 kp->ki_lastcpu = td->td_lastcpu; 1137 kp->ki_oncpu = td->td_oncpu; 1138 kp->ki_tdflags = td->td_flags; 1139 kp->ki_tid = td->td_tid; 1140 kp->ki_numthreads = p->p_numthreads; 1141 kp->ki_pcb = td->td_pcb; 1142 kp->ki_kstack = (void *)td->td_kstack; 1143 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1144 kp->ki_pri.pri_class = td->td_pri_class; 1145 kp->ki_pri.pri_user = td->td_user_pri; 1146 1147 if (preferthread) { 1148 rufetchtd(td, &kp->ki_rusage); 1149 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1150 kp->ki_pctcpu = sched_pctcpu(td); 1151 kp->ki_estcpu = sched_estcpu(td); 1152 kp->ki_cow = td->td_cow; 1153 } 1154 1155 /* We can't get this anymore but ps etc never used it anyway. */ 1156 kp->ki_rqindex = 0; 1157 1158 if (preferthread) 1159 kp->ki_siglist = td->td_siglist; 1160 kp->ki_sigmask = td->td_sigmask; 1161 thread_unlock(td); 1162 if (preferthread) 1163 PROC_STATUNLOCK(p); 1164 } 1165 1166 /* 1167 * Fill in a kinfo_proc structure for the specified process. 1168 * Must be called with the target process locked. 1169 */ 1170 void 1171 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1172 { 1173 1174 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1175 1176 fill_kinfo_proc_only(p, kp); 1177 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1178 fill_kinfo_aggregate(p, kp); 1179 } 1180 1181 struct pstats * 1182 pstats_alloc(void) 1183 { 1184 1185 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1186 } 1187 1188 /* 1189 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1190 */ 1191 void 1192 pstats_fork(struct pstats *src, struct pstats *dst) 1193 { 1194 1195 bzero(&dst->pstat_startzero, 1196 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1197 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1198 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1199 } 1200 1201 void 1202 pstats_free(struct pstats *ps) 1203 { 1204 1205 free(ps, M_SUBPROC); 1206 } 1207 1208 static struct proc * 1209 zpfind_locked(pid_t pid) 1210 { 1211 struct proc *p; 1212 1213 sx_assert(&allproc_lock, SX_LOCKED); 1214 LIST_FOREACH(p, &zombproc, p_list) { 1215 if (p->p_pid == pid) { 1216 PROC_LOCK(p); 1217 break; 1218 } 1219 } 1220 return (p); 1221 } 1222 1223 /* 1224 * Locate a zombie process by number 1225 */ 1226 struct proc * 1227 zpfind(pid_t pid) 1228 { 1229 struct proc *p; 1230 1231 sx_slock(&allproc_lock); 1232 p = zpfind_locked(pid); 1233 sx_sunlock(&allproc_lock); 1234 return (p); 1235 } 1236 1237 #ifdef COMPAT_FREEBSD32 1238 1239 /* 1240 * This function is typically used to copy out the kernel address, so 1241 * it can be replaced by assignment of zero. 1242 */ 1243 static inline uint32_t 1244 ptr32_trim(void *ptr) 1245 { 1246 uintptr_t uptr; 1247 1248 uptr = (uintptr_t)ptr; 1249 return ((uptr > UINT_MAX) ? 0 : uptr); 1250 } 1251 1252 #define PTRTRIM_CP(src,dst,fld) \ 1253 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1254 1255 static void 1256 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1257 { 1258 int i; 1259 1260 bzero(ki32, sizeof(struct kinfo_proc32)); 1261 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1262 CP(*ki, *ki32, ki_layout); 1263 PTRTRIM_CP(*ki, *ki32, ki_args); 1264 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1265 PTRTRIM_CP(*ki, *ki32, ki_addr); 1266 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1267 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1268 PTRTRIM_CP(*ki, *ki32, ki_fd); 1269 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1270 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1271 CP(*ki, *ki32, ki_pid); 1272 CP(*ki, *ki32, ki_ppid); 1273 CP(*ki, *ki32, ki_pgid); 1274 CP(*ki, *ki32, ki_tpgid); 1275 CP(*ki, *ki32, ki_sid); 1276 CP(*ki, *ki32, ki_tsid); 1277 CP(*ki, *ki32, ki_jobc); 1278 CP(*ki, *ki32, ki_tdev); 1279 CP(*ki, *ki32, ki_tdev_freebsd11); 1280 CP(*ki, *ki32, ki_siglist); 1281 CP(*ki, *ki32, ki_sigmask); 1282 CP(*ki, *ki32, ki_sigignore); 1283 CP(*ki, *ki32, ki_sigcatch); 1284 CP(*ki, *ki32, ki_uid); 1285 CP(*ki, *ki32, ki_ruid); 1286 CP(*ki, *ki32, ki_svuid); 1287 CP(*ki, *ki32, ki_rgid); 1288 CP(*ki, *ki32, ki_svgid); 1289 CP(*ki, *ki32, ki_ngroups); 1290 for (i = 0; i < KI_NGROUPS; i++) 1291 CP(*ki, *ki32, ki_groups[i]); 1292 CP(*ki, *ki32, ki_size); 1293 CP(*ki, *ki32, ki_rssize); 1294 CP(*ki, *ki32, ki_swrss); 1295 CP(*ki, *ki32, ki_tsize); 1296 CP(*ki, *ki32, ki_dsize); 1297 CP(*ki, *ki32, ki_ssize); 1298 CP(*ki, *ki32, ki_xstat); 1299 CP(*ki, *ki32, ki_acflag); 1300 CP(*ki, *ki32, ki_pctcpu); 1301 CP(*ki, *ki32, ki_estcpu); 1302 CP(*ki, *ki32, ki_slptime); 1303 CP(*ki, *ki32, ki_swtime); 1304 CP(*ki, *ki32, ki_cow); 1305 CP(*ki, *ki32, ki_runtime); 1306 TV_CP(*ki, *ki32, ki_start); 1307 TV_CP(*ki, *ki32, ki_childtime); 1308 CP(*ki, *ki32, ki_flag); 1309 CP(*ki, *ki32, ki_kiflag); 1310 CP(*ki, *ki32, ki_traceflag); 1311 CP(*ki, *ki32, ki_stat); 1312 CP(*ki, *ki32, ki_nice); 1313 CP(*ki, *ki32, ki_lock); 1314 CP(*ki, *ki32, ki_rqindex); 1315 CP(*ki, *ki32, ki_oncpu); 1316 CP(*ki, *ki32, ki_lastcpu); 1317 1318 /* XXX TODO: wrap cpu value as appropriate */ 1319 CP(*ki, *ki32, ki_oncpu_old); 1320 CP(*ki, *ki32, ki_lastcpu_old); 1321 1322 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1323 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1324 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1325 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1326 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1327 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1328 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1329 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1330 CP(*ki, *ki32, ki_tracer); 1331 CP(*ki, *ki32, ki_flag2); 1332 CP(*ki, *ki32, ki_fibnum); 1333 CP(*ki, *ki32, ki_cr_flags); 1334 CP(*ki, *ki32, ki_jid); 1335 CP(*ki, *ki32, ki_numthreads); 1336 CP(*ki, *ki32, ki_tid); 1337 CP(*ki, *ki32, ki_pri); 1338 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1339 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1340 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1341 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1342 PTRTRIM_CP(*ki, *ki32, ki_udata); 1343 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1344 CP(*ki, *ki32, ki_sflag); 1345 CP(*ki, *ki32, ki_tdflags); 1346 } 1347 #endif 1348 1349 static ssize_t 1350 kern_proc_out_size(struct proc *p, int flags) 1351 { 1352 ssize_t size = 0; 1353 1354 PROC_LOCK_ASSERT(p, MA_OWNED); 1355 1356 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1357 #ifdef COMPAT_FREEBSD32 1358 if ((flags & KERN_PROC_MASK32) != 0) { 1359 size += sizeof(struct kinfo_proc32); 1360 } else 1361 #endif 1362 size += sizeof(struct kinfo_proc); 1363 } else { 1364 #ifdef COMPAT_FREEBSD32 1365 if ((flags & KERN_PROC_MASK32) != 0) 1366 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1367 else 1368 #endif 1369 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1370 } 1371 PROC_UNLOCK(p); 1372 return (size); 1373 } 1374 1375 int 1376 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1377 { 1378 struct thread *td; 1379 struct kinfo_proc ki; 1380 #ifdef COMPAT_FREEBSD32 1381 struct kinfo_proc32 ki32; 1382 #endif 1383 int error; 1384 1385 PROC_LOCK_ASSERT(p, MA_OWNED); 1386 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1387 1388 error = 0; 1389 fill_kinfo_proc(p, &ki); 1390 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1391 #ifdef COMPAT_FREEBSD32 1392 if ((flags & KERN_PROC_MASK32) != 0) { 1393 freebsd32_kinfo_proc_out(&ki, &ki32); 1394 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1395 error = ENOMEM; 1396 } else 1397 #endif 1398 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1399 error = ENOMEM; 1400 } else { 1401 FOREACH_THREAD_IN_PROC(p, td) { 1402 fill_kinfo_thread(td, &ki, 1); 1403 #ifdef COMPAT_FREEBSD32 1404 if ((flags & KERN_PROC_MASK32) != 0) { 1405 freebsd32_kinfo_proc_out(&ki, &ki32); 1406 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1407 error = ENOMEM; 1408 } else 1409 #endif 1410 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1411 error = ENOMEM; 1412 if (error != 0) 1413 break; 1414 } 1415 } 1416 PROC_UNLOCK(p); 1417 return (error); 1418 } 1419 1420 static int 1421 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1422 { 1423 struct sbuf sb; 1424 struct kinfo_proc ki; 1425 int error, error2; 1426 1427 if (req->oldptr == NULL) 1428 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1429 1430 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1431 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1432 error = kern_proc_out(p, &sb, flags); 1433 error2 = sbuf_finish(&sb); 1434 sbuf_delete(&sb); 1435 if (error != 0) 1436 return (error); 1437 else if (error2 != 0) 1438 return (error2); 1439 return (0); 1440 } 1441 1442 static int 1443 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1444 { 1445 int *name = (int *)arg1; 1446 u_int namelen = arg2; 1447 struct proc *p; 1448 int flags, doingzomb, oid_number; 1449 int error = 0; 1450 1451 oid_number = oidp->oid_number; 1452 if (oid_number != KERN_PROC_ALL && 1453 (oid_number & KERN_PROC_INC_THREAD) == 0) 1454 flags = KERN_PROC_NOTHREADS; 1455 else { 1456 flags = 0; 1457 oid_number &= ~KERN_PROC_INC_THREAD; 1458 } 1459 #ifdef COMPAT_FREEBSD32 1460 if (req->flags & SCTL_MASK32) 1461 flags |= KERN_PROC_MASK32; 1462 #endif 1463 if (oid_number == KERN_PROC_PID) { 1464 if (namelen != 1) 1465 return (EINVAL); 1466 error = sysctl_wire_old_buffer(req, 0); 1467 if (error) 1468 return (error); 1469 sx_slock(&proctree_lock); 1470 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1471 if (error == 0) 1472 error = sysctl_out_proc(p, req, flags); 1473 sx_sunlock(&proctree_lock); 1474 return (error); 1475 } 1476 1477 switch (oid_number) { 1478 case KERN_PROC_ALL: 1479 if (namelen != 0) 1480 return (EINVAL); 1481 break; 1482 case KERN_PROC_PROC: 1483 if (namelen != 0 && namelen != 1) 1484 return (EINVAL); 1485 break; 1486 default: 1487 if (namelen != 1) 1488 return (EINVAL); 1489 break; 1490 } 1491 1492 if (req->oldptr == NULL) { 1493 /* overestimate by 5 procs */ 1494 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1495 if (error) 1496 return (error); 1497 } else { 1498 error = sysctl_wire_old_buffer(req, 0); 1499 if (error != 0) 1500 return (error); 1501 /* 1502 * This lock is only needed to safely grab the parent of a 1503 * traced process. Only grab it if we are producing any 1504 * data to begin with. 1505 */ 1506 sx_slock(&proctree_lock); 1507 } 1508 sx_slock(&allproc_lock); 1509 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1510 if (!doingzomb) 1511 p = LIST_FIRST(&allproc); 1512 else 1513 p = LIST_FIRST(&zombproc); 1514 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1515 /* 1516 * Skip embryonic processes. 1517 */ 1518 if (p->p_state == PRS_NEW) 1519 continue; 1520 PROC_LOCK(p); 1521 KASSERT(p->p_ucred != NULL, 1522 ("process credential is NULL for non-NEW proc")); 1523 /* 1524 * Show a user only appropriate processes. 1525 */ 1526 if (p_cansee(curthread, p)) { 1527 PROC_UNLOCK(p); 1528 continue; 1529 } 1530 /* 1531 * TODO - make more efficient (see notes below). 1532 * do by session. 1533 */ 1534 switch (oid_number) { 1535 1536 case KERN_PROC_GID: 1537 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1538 PROC_UNLOCK(p); 1539 continue; 1540 } 1541 break; 1542 1543 case KERN_PROC_PGRP: 1544 /* could do this by traversing pgrp */ 1545 if (p->p_pgrp == NULL || 1546 p->p_pgrp->pg_id != (pid_t)name[0]) { 1547 PROC_UNLOCK(p); 1548 continue; 1549 } 1550 break; 1551 1552 case KERN_PROC_RGID: 1553 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1554 PROC_UNLOCK(p); 1555 continue; 1556 } 1557 break; 1558 1559 case KERN_PROC_SESSION: 1560 if (p->p_session == NULL || 1561 p->p_session->s_sid != (pid_t)name[0]) { 1562 PROC_UNLOCK(p); 1563 continue; 1564 } 1565 break; 1566 1567 case KERN_PROC_TTY: 1568 if ((p->p_flag & P_CONTROLT) == 0 || 1569 p->p_session == NULL) { 1570 PROC_UNLOCK(p); 1571 continue; 1572 } 1573 /* XXX proctree_lock */ 1574 SESS_LOCK(p->p_session); 1575 if (p->p_session->s_ttyp == NULL || 1576 tty_udev(p->p_session->s_ttyp) != 1577 (dev_t)name[0]) { 1578 SESS_UNLOCK(p->p_session); 1579 PROC_UNLOCK(p); 1580 continue; 1581 } 1582 SESS_UNLOCK(p->p_session); 1583 break; 1584 1585 case KERN_PROC_UID: 1586 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1587 PROC_UNLOCK(p); 1588 continue; 1589 } 1590 break; 1591 1592 case KERN_PROC_RUID: 1593 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1594 PROC_UNLOCK(p); 1595 continue; 1596 } 1597 break; 1598 1599 case KERN_PROC_PROC: 1600 break; 1601 1602 default: 1603 break; 1604 1605 } 1606 1607 error = sysctl_out_proc(p, req, flags); 1608 if (error) 1609 goto out; 1610 } 1611 } 1612 out: 1613 sx_sunlock(&allproc_lock); 1614 if (req->oldptr != NULL) 1615 sx_sunlock(&proctree_lock); 1616 return (error); 1617 } 1618 1619 struct pargs * 1620 pargs_alloc(int len) 1621 { 1622 struct pargs *pa; 1623 1624 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1625 M_WAITOK); 1626 refcount_init(&pa->ar_ref, 1); 1627 pa->ar_length = len; 1628 return (pa); 1629 } 1630 1631 static void 1632 pargs_free(struct pargs *pa) 1633 { 1634 1635 free(pa, M_PARGS); 1636 } 1637 1638 void 1639 pargs_hold(struct pargs *pa) 1640 { 1641 1642 if (pa == NULL) 1643 return; 1644 refcount_acquire(&pa->ar_ref); 1645 } 1646 1647 void 1648 pargs_drop(struct pargs *pa) 1649 { 1650 1651 if (pa == NULL) 1652 return; 1653 if (refcount_release(&pa->ar_ref)) 1654 pargs_free(pa); 1655 } 1656 1657 static int 1658 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1659 size_t len) 1660 { 1661 ssize_t n; 1662 1663 /* 1664 * This may return a short read if the string is shorter than the chunk 1665 * and is aligned at the end of the page, and the following page is not 1666 * mapped. 1667 */ 1668 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1669 if (n <= 0) 1670 return (ENOMEM); 1671 return (0); 1672 } 1673 1674 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1675 1676 enum proc_vector_type { 1677 PROC_ARG, 1678 PROC_ENV, 1679 PROC_AUX, 1680 }; 1681 1682 #ifdef COMPAT_FREEBSD32 1683 static int 1684 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1685 size_t *vsizep, enum proc_vector_type type) 1686 { 1687 struct freebsd32_ps_strings pss; 1688 Elf32_Auxinfo aux; 1689 vm_offset_t vptr, ptr; 1690 uint32_t *proc_vector32; 1691 char **proc_vector; 1692 size_t vsize, size; 1693 int i, error; 1694 1695 error = 0; 1696 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1697 sizeof(pss)) != sizeof(pss)) 1698 return (ENOMEM); 1699 switch (type) { 1700 case PROC_ARG: 1701 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1702 vsize = pss.ps_nargvstr; 1703 if (vsize > ARG_MAX) 1704 return (ENOEXEC); 1705 size = vsize * sizeof(int32_t); 1706 break; 1707 case PROC_ENV: 1708 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1709 vsize = pss.ps_nenvstr; 1710 if (vsize > ARG_MAX) 1711 return (ENOEXEC); 1712 size = vsize * sizeof(int32_t); 1713 break; 1714 case PROC_AUX: 1715 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1716 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1717 if (vptr % 4 != 0) 1718 return (ENOEXEC); 1719 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1720 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1721 sizeof(aux)) 1722 return (ENOMEM); 1723 if (aux.a_type == AT_NULL) 1724 break; 1725 ptr += sizeof(aux); 1726 } 1727 if (aux.a_type != AT_NULL) 1728 return (ENOEXEC); 1729 vsize = i + 1; 1730 size = vsize * sizeof(aux); 1731 break; 1732 default: 1733 KASSERT(0, ("Wrong proc vector type: %d", type)); 1734 return (EINVAL); 1735 } 1736 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1737 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1738 error = ENOMEM; 1739 goto done; 1740 } 1741 if (type == PROC_AUX) { 1742 *proc_vectorp = (char **)proc_vector32; 1743 *vsizep = vsize; 1744 return (0); 1745 } 1746 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1747 for (i = 0; i < (int)vsize; i++) 1748 proc_vector[i] = PTRIN(proc_vector32[i]); 1749 *proc_vectorp = proc_vector; 1750 *vsizep = vsize; 1751 done: 1752 free(proc_vector32, M_TEMP); 1753 return (error); 1754 } 1755 #endif 1756 1757 static int 1758 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1759 size_t *vsizep, enum proc_vector_type type) 1760 { 1761 struct ps_strings pss; 1762 Elf_Auxinfo aux; 1763 vm_offset_t vptr, ptr; 1764 char **proc_vector; 1765 size_t vsize, size; 1766 int i; 1767 1768 #ifdef COMPAT_FREEBSD32 1769 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1770 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1771 #endif 1772 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1773 sizeof(pss)) != sizeof(pss)) 1774 return (ENOMEM); 1775 switch (type) { 1776 case PROC_ARG: 1777 vptr = (vm_offset_t)pss.ps_argvstr; 1778 vsize = pss.ps_nargvstr; 1779 if (vsize > ARG_MAX) 1780 return (ENOEXEC); 1781 size = vsize * sizeof(char *); 1782 break; 1783 case PROC_ENV: 1784 vptr = (vm_offset_t)pss.ps_envstr; 1785 vsize = pss.ps_nenvstr; 1786 if (vsize > ARG_MAX) 1787 return (ENOEXEC); 1788 size = vsize * sizeof(char *); 1789 break; 1790 case PROC_AUX: 1791 /* 1792 * The aux array is just above env array on the stack. Check 1793 * that the address is naturally aligned. 1794 */ 1795 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1796 * sizeof(char *); 1797 #if __ELF_WORD_SIZE == 64 1798 if (vptr % sizeof(uint64_t) != 0) 1799 #else 1800 if (vptr % sizeof(uint32_t) != 0) 1801 #endif 1802 return (ENOEXEC); 1803 /* 1804 * We count the array size reading the aux vectors from the 1805 * stack until AT_NULL vector is returned. So (to keep the code 1806 * simple) we read the process stack twice: the first time here 1807 * to find the size and the second time when copying the vectors 1808 * to the allocated proc_vector. 1809 */ 1810 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1811 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1812 sizeof(aux)) 1813 return (ENOMEM); 1814 if (aux.a_type == AT_NULL) 1815 break; 1816 ptr += sizeof(aux); 1817 } 1818 /* 1819 * If the PROC_AUXV_MAX entries are iterated over, and we have 1820 * not reached AT_NULL, it is most likely we are reading wrong 1821 * data: either the process doesn't have auxv array or data has 1822 * been modified. Return the error in this case. 1823 */ 1824 if (aux.a_type != AT_NULL) 1825 return (ENOEXEC); 1826 vsize = i + 1; 1827 size = vsize * sizeof(aux); 1828 break; 1829 default: 1830 KASSERT(0, ("Wrong proc vector type: %d", type)); 1831 return (EINVAL); /* In case we are built without INVARIANTS. */ 1832 } 1833 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1834 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1835 free(proc_vector, M_TEMP); 1836 return (ENOMEM); 1837 } 1838 *proc_vectorp = proc_vector; 1839 *vsizep = vsize; 1840 1841 return (0); 1842 } 1843 1844 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1845 1846 static int 1847 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1848 enum proc_vector_type type) 1849 { 1850 size_t done, len, nchr, vsize; 1851 int error, i; 1852 char **proc_vector, *sptr; 1853 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1854 1855 PROC_ASSERT_HELD(p); 1856 1857 /* 1858 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1859 */ 1860 nchr = 2 * (PATH_MAX + ARG_MAX); 1861 1862 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1863 if (error != 0) 1864 return (error); 1865 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1866 /* 1867 * The program may have scribbled into its argv array, e.g. to 1868 * remove some arguments. If that has happened, break out 1869 * before trying to read from NULL. 1870 */ 1871 if (proc_vector[i] == NULL) 1872 break; 1873 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1874 error = proc_read_string(td, p, sptr, pss_string, 1875 sizeof(pss_string)); 1876 if (error != 0) 1877 goto done; 1878 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1879 if (done + len >= nchr) 1880 len = nchr - done - 1; 1881 sbuf_bcat(sb, pss_string, len); 1882 if (len != GET_PS_STRINGS_CHUNK_SZ) 1883 break; 1884 done += GET_PS_STRINGS_CHUNK_SZ; 1885 } 1886 sbuf_bcat(sb, "", 1); 1887 done += len + 1; 1888 } 1889 done: 1890 free(proc_vector, M_TEMP); 1891 return (error); 1892 } 1893 1894 int 1895 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1896 { 1897 1898 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1899 } 1900 1901 int 1902 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1903 { 1904 1905 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1906 } 1907 1908 int 1909 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1910 { 1911 size_t vsize, size; 1912 char **auxv; 1913 int error; 1914 1915 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1916 if (error == 0) { 1917 #ifdef COMPAT_FREEBSD32 1918 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1919 size = vsize * sizeof(Elf32_Auxinfo); 1920 else 1921 #endif 1922 size = vsize * sizeof(Elf_Auxinfo); 1923 if (sbuf_bcat(sb, auxv, size) != 0) 1924 error = ENOMEM; 1925 free(auxv, M_TEMP); 1926 } 1927 return (error); 1928 } 1929 1930 /* 1931 * This sysctl allows a process to retrieve the argument list or process 1932 * title for another process without groping around in the address space 1933 * of the other process. It also allow a process to set its own "process 1934 * title to a string of its own choice. 1935 */ 1936 static int 1937 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1938 { 1939 int *name = (int *)arg1; 1940 u_int namelen = arg2; 1941 struct pargs *newpa, *pa; 1942 struct proc *p; 1943 struct sbuf sb; 1944 int flags, error = 0, error2; 1945 pid_t pid; 1946 1947 if (namelen != 1) 1948 return (EINVAL); 1949 1950 pid = (pid_t)name[0]; 1951 /* 1952 * If the query is for this process and it is single-threaded, there 1953 * is nobody to modify pargs, thus we can just read. 1954 */ 1955 p = curproc; 1956 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 1957 (pa = p->p_args) != NULL) 1958 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 1959 1960 flags = PGET_CANSEE; 1961 if (req->newptr != NULL) 1962 flags |= PGET_ISCURRENT; 1963 error = pget(pid, flags, &p); 1964 if (error) 1965 return (error); 1966 1967 pa = p->p_args; 1968 if (pa != NULL) { 1969 pargs_hold(pa); 1970 PROC_UNLOCK(p); 1971 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1972 pargs_drop(pa); 1973 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1974 _PHOLD(p); 1975 PROC_UNLOCK(p); 1976 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1977 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1978 error = proc_getargv(curthread, p, &sb); 1979 error2 = sbuf_finish(&sb); 1980 PRELE(p); 1981 sbuf_delete(&sb); 1982 if (error == 0 && error2 != 0) 1983 error = error2; 1984 } else { 1985 PROC_UNLOCK(p); 1986 } 1987 if (error != 0 || req->newptr == NULL) 1988 return (error); 1989 1990 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 1991 return (ENOMEM); 1992 newpa = pargs_alloc(req->newlen); 1993 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1994 if (error != 0) { 1995 pargs_free(newpa); 1996 return (error); 1997 } 1998 PROC_LOCK(p); 1999 pa = p->p_args; 2000 p->p_args = newpa; 2001 PROC_UNLOCK(p); 2002 pargs_drop(pa); 2003 return (0); 2004 } 2005 2006 /* 2007 * This sysctl allows a process to retrieve environment of another process. 2008 */ 2009 static int 2010 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2011 { 2012 int *name = (int *)arg1; 2013 u_int namelen = arg2; 2014 struct proc *p; 2015 struct sbuf sb; 2016 int error, error2; 2017 2018 if (namelen != 1) 2019 return (EINVAL); 2020 2021 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2022 if (error != 0) 2023 return (error); 2024 if ((p->p_flag & P_SYSTEM) != 0) { 2025 PRELE(p); 2026 return (0); 2027 } 2028 2029 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2030 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2031 error = proc_getenvv(curthread, p, &sb); 2032 error2 = sbuf_finish(&sb); 2033 PRELE(p); 2034 sbuf_delete(&sb); 2035 return (error != 0 ? error : error2); 2036 } 2037 2038 /* 2039 * This sysctl allows a process to retrieve ELF auxiliary vector of 2040 * another process. 2041 */ 2042 static int 2043 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2044 { 2045 int *name = (int *)arg1; 2046 u_int namelen = arg2; 2047 struct proc *p; 2048 struct sbuf sb; 2049 int error, error2; 2050 2051 if (namelen != 1) 2052 return (EINVAL); 2053 2054 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2055 if (error != 0) 2056 return (error); 2057 if ((p->p_flag & P_SYSTEM) != 0) { 2058 PRELE(p); 2059 return (0); 2060 } 2061 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2062 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2063 error = proc_getauxv(curthread, p, &sb); 2064 error2 = sbuf_finish(&sb); 2065 PRELE(p); 2066 sbuf_delete(&sb); 2067 return (error != 0 ? error : error2); 2068 } 2069 2070 /* 2071 * This sysctl allows a process to retrieve the path of the executable for 2072 * itself or another process. 2073 */ 2074 static int 2075 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2076 { 2077 pid_t *pidp = (pid_t *)arg1; 2078 unsigned int arglen = arg2; 2079 struct proc *p; 2080 struct vnode *vp; 2081 char *retbuf, *freebuf; 2082 int error; 2083 2084 if (arglen != 1) 2085 return (EINVAL); 2086 if (*pidp == -1) { /* -1 means this process */ 2087 p = req->td->td_proc; 2088 } else { 2089 error = pget(*pidp, PGET_CANSEE, &p); 2090 if (error != 0) 2091 return (error); 2092 } 2093 2094 vp = p->p_textvp; 2095 if (vp == NULL) { 2096 if (*pidp != -1) 2097 PROC_UNLOCK(p); 2098 return (0); 2099 } 2100 vref(vp); 2101 if (*pidp != -1) 2102 PROC_UNLOCK(p); 2103 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2104 vrele(vp); 2105 if (error) 2106 return (error); 2107 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2108 free(freebuf, M_TEMP); 2109 return (error); 2110 } 2111 2112 static int 2113 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2114 { 2115 struct proc *p; 2116 char *sv_name; 2117 int *name; 2118 int namelen; 2119 int error; 2120 2121 namelen = arg2; 2122 if (namelen != 1) 2123 return (EINVAL); 2124 2125 name = (int *)arg1; 2126 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2127 if (error != 0) 2128 return (error); 2129 sv_name = p->p_sysent->sv_name; 2130 PROC_UNLOCK(p); 2131 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2132 } 2133 2134 #ifdef KINFO_OVMENTRY_SIZE 2135 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2136 #endif 2137 2138 #ifdef COMPAT_FREEBSD7 2139 static int 2140 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2141 { 2142 vm_map_entry_t entry, tmp_entry; 2143 unsigned int last_timestamp; 2144 char *fullpath, *freepath; 2145 struct kinfo_ovmentry *kve; 2146 struct vattr va; 2147 struct ucred *cred; 2148 int error, *name; 2149 struct vnode *vp; 2150 struct proc *p; 2151 vm_map_t map; 2152 struct vmspace *vm; 2153 2154 name = (int *)arg1; 2155 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2156 if (error != 0) 2157 return (error); 2158 vm = vmspace_acquire_ref(p); 2159 if (vm == NULL) { 2160 PRELE(p); 2161 return (ESRCH); 2162 } 2163 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2164 2165 map = &vm->vm_map; 2166 vm_map_lock_read(map); 2167 for (entry = map->header.next; entry != &map->header; 2168 entry = entry->next) { 2169 vm_object_t obj, tobj, lobj; 2170 vm_offset_t addr; 2171 2172 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2173 continue; 2174 2175 bzero(kve, sizeof(*kve)); 2176 kve->kve_structsize = sizeof(*kve); 2177 2178 kve->kve_private_resident = 0; 2179 obj = entry->object.vm_object; 2180 if (obj != NULL) { 2181 VM_OBJECT_RLOCK(obj); 2182 if (obj->shadow_count == 1) 2183 kve->kve_private_resident = 2184 obj->resident_page_count; 2185 } 2186 kve->kve_resident = 0; 2187 addr = entry->start; 2188 while (addr < entry->end) { 2189 if (pmap_extract(map->pmap, addr)) 2190 kve->kve_resident++; 2191 addr += PAGE_SIZE; 2192 } 2193 2194 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2195 if (tobj != obj) { 2196 VM_OBJECT_RLOCK(tobj); 2197 kve->kve_offset += tobj->backing_object_offset; 2198 } 2199 if (lobj != obj) 2200 VM_OBJECT_RUNLOCK(lobj); 2201 lobj = tobj; 2202 } 2203 2204 kve->kve_start = (void*)entry->start; 2205 kve->kve_end = (void*)entry->end; 2206 kve->kve_offset += (off_t)entry->offset; 2207 2208 if (entry->protection & VM_PROT_READ) 2209 kve->kve_protection |= KVME_PROT_READ; 2210 if (entry->protection & VM_PROT_WRITE) 2211 kve->kve_protection |= KVME_PROT_WRITE; 2212 if (entry->protection & VM_PROT_EXECUTE) 2213 kve->kve_protection |= KVME_PROT_EXEC; 2214 2215 if (entry->eflags & MAP_ENTRY_COW) 2216 kve->kve_flags |= KVME_FLAG_COW; 2217 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2218 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2219 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2220 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2221 2222 last_timestamp = map->timestamp; 2223 vm_map_unlock_read(map); 2224 2225 kve->kve_fileid = 0; 2226 kve->kve_fsid = 0; 2227 freepath = NULL; 2228 fullpath = ""; 2229 if (lobj) { 2230 vp = NULL; 2231 switch (lobj->type) { 2232 case OBJT_DEFAULT: 2233 kve->kve_type = KVME_TYPE_DEFAULT; 2234 break; 2235 case OBJT_VNODE: 2236 kve->kve_type = KVME_TYPE_VNODE; 2237 vp = lobj->handle; 2238 vref(vp); 2239 break; 2240 case OBJT_SWAP: 2241 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2242 kve->kve_type = KVME_TYPE_VNODE; 2243 if ((lobj->flags & OBJ_TMPFS) != 0) { 2244 vp = lobj->un_pager.swp.swp_tmpfs; 2245 vref(vp); 2246 } 2247 } else { 2248 kve->kve_type = KVME_TYPE_SWAP; 2249 } 2250 break; 2251 case OBJT_DEVICE: 2252 kve->kve_type = KVME_TYPE_DEVICE; 2253 break; 2254 case OBJT_PHYS: 2255 kve->kve_type = KVME_TYPE_PHYS; 2256 break; 2257 case OBJT_DEAD: 2258 kve->kve_type = KVME_TYPE_DEAD; 2259 break; 2260 case OBJT_SG: 2261 kve->kve_type = KVME_TYPE_SG; 2262 break; 2263 default: 2264 kve->kve_type = KVME_TYPE_UNKNOWN; 2265 break; 2266 } 2267 if (lobj != obj) 2268 VM_OBJECT_RUNLOCK(lobj); 2269 2270 kve->kve_ref_count = obj->ref_count; 2271 kve->kve_shadow_count = obj->shadow_count; 2272 VM_OBJECT_RUNLOCK(obj); 2273 if (vp != NULL) { 2274 vn_fullpath(curthread, vp, &fullpath, 2275 &freepath); 2276 cred = curthread->td_ucred; 2277 vn_lock(vp, LK_SHARED | LK_RETRY); 2278 if (VOP_GETATTR(vp, &va, cred) == 0) { 2279 kve->kve_fileid = va.va_fileid; 2280 /* truncate */ 2281 kve->kve_fsid = va.va_fsid; 2282 } 2283 vput(vp); 2284 } 2285 } else { 2286 kve->kve_type = KVME_TYPE_NONE; 2287 kve->kve_ref_count = 0; 2288 kve->kve_shadow_count = 0; 2289 } 2290 2291 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2292 if (freepath != NULL) 2293 free(freepath, M_TEMP); 2294 2295 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2296 vm_map_lock_read(map); 2297 if (error) 2298 break; 2299 if (last_timestamp != map->timestamp) { 2300 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2301 entry = tmp_entry; 2302 } 2303 } 2304 vm_map_unlock_read(map); 2305 vmspace_free(vm); 2306 PRELE(p); 2307 free(kve, M_TEMP); 2308 return (error); 2309 } 2310 #endif /* COMPAT_FREEBSD7 */ 2311 2312 #ifdef KINFO_VMENTRY_SIZE 2313 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2314 #endif 2315 2316 void 2317 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2318 int *resident_count, bool *super) 2319 { 2320 vm_object_t obj, tobj; 2321 vm_page_t m, m_adv; 2322 vm_offset_t addr; 2323 vm_paddr_t locked_pa; 2324 vm_pindex_t pi, pi_adv, pindex; 2325 2326 *super = false; 2327 *resident_count = 0; 2328 if (vmmap_skip_res_cnt) 2329 return; 2330 2331 locked_pa = 0; 2332 obj = entry->object.vm_object; 2333 addr = entry->start; 2334 m_adv = NULL; 2335 pi = OFF_TO_IDX(entry->offset); 2336 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2337 if (m_adv != NULL) { 2338 m = m_adv; 2339 } else { 2340 pi_adv = atop(entry->end - addr); 2341 pindex = pi; 2342 for (tobj = obj;; tobj = tobj->backing_object) { 2343 m = vm_page_find_least(tobj, pindex); 2344 if (m != NULL) { 2345 if (m->pindex == pindex) 2346 break; 2347 if (pi_adv > m->pindex - pindex) { 2348 pi_adv = m->pindex - pindex; 2349 m_adv = m; 2350 } 2351 } 2352 if (tobj->backing_object == NULL) 2353 goto next; 2354 pindex += OFF_TO_IDX(tobj-> 2355 backing_object_offset); 2356 } 2357 } 2358 m_adv = NULL; 2359 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2360 (addr & (pagesizes[1] - 1)) == 0 && 2361 (pmap_mincore(map->pmap, addr, &locked_pa) & 2362 MINCORE_SUPER) != 0) { 2363 *super = true; 2364 pi_adv = atop(pagesizes[1]); 2365 } else { 2366 /* 2367 * We do not test the found page on validity. 2368 * Either the page is busy and being paged in, 2369 * or it was invalidated. The first case 2370 * should be counted as resident, the second 2371 * is not so clear; we do account both. 2372 */ 2373 pi_adv = 1; 2374 } 2375 *resident_count += pi_adv; 2376 next:; 2377 } 2378 PA_UNLOCK_COND(locked_pa); 2379 } 2380 2381 /* 2382 * Must be called with the process locked and will return unlocked. 2383 */ 2384 int 2385 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2386 { 2387 vm_map_entry_t entry, tmp_entry; 2388 struct vattr va; 2389 vm_map_t map; 2390 vm_object_t obj, tobj, lobj; 2391 char *fullpath, *freepath; 2392 struct kinfo_vmentry *kve; 2393 struct ucred *cred; 2394 struct vnode *vp; 2395 struct vmspace *vm; 2396 vm_offset_t addr; 2397 unsigned int last_timestamp; 2398 int error; 2399 bool super; 2400 2401 PROC_LOCK_ASSERT(p, MA_OWNED); 2402 2403 _PHOLD(p); 2404 PROC_UNLOCK(p); 2405 vm = vmspace_acquire_ref(p); 2406 if (vm == NULL) { 2407 PRELE(p); 2408 return (ESRCH); 2409 } 2410 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2411 2412 error = 0; 2413 map = &vm->vm_map; 2414 vm_map_lock_read(map); 2415 for (entry = map->header.next; entry != &map->header; 2416 entry = entry->next) { 2417 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2418 continue; 2419 2420 addr = entry->end; 2421 bzero(kve, sizeof(*kve)); 2422 obj = entry->object.vm_object; 2423 if (obj != NULL) { 2424 for (tobj = obj; tobj != NULL; 2425 tobj = tobj->backing_object) { 2426 VM_OBJECT_RLOCK(tobj); 2427 kve->kve_offset += tobj->backing_object_offset; 2428 lobj = tobj; 2429 } 2430 if (obj->backing_object == NULL) 2431 kve->kve_private_resident = 2432 obj->resident_page_count; 2433 kern_proc_vmmap_resident(map, entry, 2434 &kve->kve_resident, &super); 2435 if (super) 2436 kve->kve_flags |= KVME_FLAG_SUPER; 2437 for (tobj = obj; tobj != NULL; 2438 tobj = tobj->backing_object) { 2439 if (tobj != obj && tobj != lobj) 2440 VM_OBJECT_RUNLOCK(tobj); 2441 } 2442 } else { 2443 lobj = NULL; 2444 } 2445 2446 kve->kve_start = entry->start; 2447 kve->kve_end = entry->end; 2448 kve->kve_offset += entry->offset; 2449 2450 if (entry->protection & VM_PROT_READ) 2451 kve->kve_protection |= KVME_PROT_READ; 2452 if (entry->protection & VM_PROT_WRITE) 2453 kve->kve_protection |= KVME_PROT_WRITE; 2454 if (entry->protection & VM_PROT_EXECUTE) 2455 kve->kve_protection |= KVME_PROT_EXEC; 2456 2457 if (entry->eflags & MAP_ENTRY_COW) 2458 kve->kve_flags |= KVME_FLAG_COW; 2459 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2460 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2461 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2462 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2463 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2464 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2465 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2466 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2467 2468 last_timestamp = map->timestamp; 2469 vm_map_unlock_read(map); 2470 2471 freepath = NULL; 2472 fullpath = ""; 2473 if (lobj != NULL) { 2474 vp = NULL; 2475 switch (lobj->type) { 2476 case OBJT_DEFAULT: 2477 kve->kve_type = KVME_TYPE_DEFAULT; 2478 break; 2479 case OBJT_VNODE: 2480 kve->kve_type = KVME_TYPE_VNODE; 2481 vp = lobj->handle; 2482 vref(vp); 2483 break; 2484 case OBJT_SWAP: 2485 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2486 kve->kve_type = KVME_TYPE_VNODE; 2487 if ((lobj->flags & OBJ_TMPFS) != 0) { 2488 vp = lobj->un_pager.swp.swp_tmpfs; 2489 vref(vp); 2490 } 2491 } else { 2492 kve->kve_type = KVME_TYPE_SWAP; 2493 } 2494 break; 2495 case OBJT_DEVICE: 2496 kve->kve_type = KVME_TYPE_DEVICE; 2497 break; 2498 case OBJT_PHYS: 2499 kve->kve_type = KVME_TYPE_PHYS; 2500 break; 2501 case OBJT_DEAD: 2502 kve->kve_type = KVME_TYPE_DEAD; 2503 break; 2504 case OBJT_SG: 2505 kve->kve_type = KVME_TYPE_SG; 2506 break; 2507 case OBJT_MGTDEVICE: 2508 kve->kve_type = KVME_TYPE_MGTDEVICE; 2509 break; 2510 default: 2511 kve->kve_type = KVME_TYPE_UNKNOWN; 2512 break; 2513 } 2514 if (lobj != obj) 2515 VM_OBJECT_RUNLOCK(lobj); 2516 2517 kve->kve_ref_count = obj->ref_count; 2518 kve->kve_shadow_count = obj->shadow_count; 2519 VM_OBJECT_RUNLOCK(obj); 2520 if (vp != NULL) { 2521 vn_fullpath(curthread, vp, &fullpath, 2522 &freepath); 2523 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2524 cred = curthread->td_ucred; 2525 vn_lock(vp, LK_SHARED | LK_RETRY); 2526 if (VOP_GETATTR(vp, &va, cred) == 0) { 2527 kve->kve_vn_fileid = va.va_fileid; 2528 kve->kve_vn_fsid = va.va_fsid; 2529 kve->kve_vn_fsid_freebsd11 = 2530 kve->kve_vn_fsid; /* truncate */ 2531 kve->kve_vn_mode = 2532 MAKEIMODE(va.va_type, va.va_mode); 2533 kve->kve_vn_size = va.va_size; 2534 kve->kve_vn_rdev = va.va_rdev; 2535 kve->kve_vn_rdev_freebsd11 = 2536 kve->kve_vn_rdev; /* truncate */ 2537 kve->kve_status = KF_ATTR_VALID; 2538 } 2539 vput(vp); 2540 } 2541 } else { 2542 kve->kve_type = KVME_TYPE_NONE; 2543 kve->kve_ref_count = 0; 2544 kve->kve_shadow_count = 0; 2545 } 2546 2547 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2548 if (freepath != NULL) 2549 free(freepath, M_TEMP); 2550 2551 /* Pack record size down */ 2552 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2553 kve->kve_structsize = 2554 offsetof(struct kinfo_vmentry, kve_path) + 2555 strlen(kve->kve_path) + 1; 2556 else 2557 kve->kve_structsize = sizeof(*kve); 2558 kve->kve_structsize = roundup(kve->kve_structsize, 2559 sizeof(uint64_t)); 2560 2561 /* Halt filling and truncate rather than exceeding maxlen */ 2562 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2563 error = 0; 2564 vm_map_lock_read(map); 2565 break; 2566 } else if (maxlen != -1) 2567 maxlen -= kve->kve_structsize; 2568 2569 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2570 error = ENOMEM; 2571 vm_map_lock_read(map); 2572 if (error != 0) 2573 break; 2574 if (last_timestamp != map->timestamp) { 2575 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2576 entry = tmp_entry; 2577 } 2578 } 2579 vm_map_unlock_read(map); 2580 vmspace_free(vm); 2581 PRELE(p); 2582 free(kve, M_TEMP); 2583 return (error); 2584 } 2585 2586 static int 2587 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2588 { 2589 struct proc *p; 2590 struct sbuf sb; 2591 int error, error2, *name; 2592 2593 name = (int *)arg1; 2594 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2595 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2596 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2597 if (error != 0) { 2598 sbuf_delete(&sb); 2599 return (error); 2600 } 2601 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2602 error2 = sbuf_finish(&sb); 2603 sbuf_delete(&sb); 2604 return (error != 0 ? error : error2); 2605 } 2606 2607 #if defined(STACK) || defined(DDB) 2608 static int 2609 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2610 { 2611 struct kinfo_kstack *kkstp; 2612 int error, i, *name, numthreads; 2613 lwpid_t *lwpidarray; 2614 struct thread *td; 2615 struct stack *st; 2616 struct sbuf sb; 2617 struct proc *p; 2618 2619 name = (int *)arg1; 2620 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2621 if (error != 0) 2622 return (error); 2623 2624 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2625 st = stack_create(M_WAITOK); 2626 2627 lwpidarray = NULL; 2628 PROC_LOCK(p); 2629 do { 2630 if (lwpidarray != NULL) { 2631 free(lwpidarray, M_TEMP); 2632 lwpidarray = NULL; 2633 } 2634 numthreads = p->p_numthreads; 2635 PROC_UNLOCK(p); 2636 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2637 M_WAITOK | M_ZERO); 2638 PROC_LOCK(p); 2639 } while (numthreads < p->p_numthreads); 2640 2641 /* 2642 * XXXRW: During the below loop, execve(2) and countless other sorts 2643 * of changes could have taken place. Should we check to see if the 2644 * vmspace has been replaced, or the like, in order to prevent 2645 * giving a snapshot that spans, say, execve(2), with some threads 2646 * before and some after? Among other things, the credentials could 2647 * have changed, in which case the right to extract debug info might 2648 * no longer be assured. 2649 */ 2650 i = 0; 2651 FOREACH_THREAD_IN_PROC(p, td) { 2652 KASSERT(i < numthreads, 2653 ("sysctl_kern_proc_kstack: numthreads")); 2654 lwpidarray[i] = td->td_tid; 2655 i++; 2656 } 2657 numthreads = i; 2658 for (i = 0; i < numthreads; i++) { 2659 td = thread_find(p, lwpidarray[i]); 2660 if (td == NULL) { 2661 continue; 2662 } 2663 bzero(kkstp, sizeof(*kkstp)); 2664 (void)sbuf_new(&sb, kkstp->kkst_trace, 2665 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2666 thread_lock(td); 2667 kkstp->kkst_tid = td->td_tid; 2668 if (TD_IS_SWAPPED(td)) { 2669 kkstp->kkst_state = KKST_STATE_SWAPPED; 2670 } else if (TD_IS_RUNNING(td)) { 2671 if (stack_save_td_running(st, td) == 0) 2672 kkstp->kkst_state = KKST_STATE_STACKOK; 2673 else 2674 kkstp->kkst_state = KKST_STATE_RUNNING; 2675 } else { 2676 kkstp->kkst_state = KKST_STATE_STACKOK; 2677 stack_save_td(st, td); 2678 } 2679 thread_unlock(td); 2680 PROC_UNLOCK(p); 2681 stack_sbuf_print(&sb, st); 2682 sbuf_finish(&sb); 2683 sbuf_delete(&sb); 2684 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2685 PROC_LOCK(p); 2686 if (error) 2687 break; 2688 } 2689 _PRELE(p); 2690 PROC_UNLOCK(p); 2691 if (lwpidarray != NULL) 2692 free(lwpidarray, M_TEMP); 2693 stack_destroy(st); 2694 free(kkstp, M_TEMP); 2695 return (error); 2696 } 2697 #endif 2698 2699 /* 2700 * This sysctl allows a process to retrieve the full list of groups from 2701 * itself or another process. 2702 */ 2703 static int 2704 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2705 { 2706 pid_t *pidp = (pid_t *)arg1; 2707 unsigned int arglen = arg2; 2708 struct proc *p; 2709 struct ucred *cred; 2710 int error; 2711 2712 if (arglen != 1) 2713 return (EINVAL); 2714 if (*pidp == -1) { /* -1 means this process */ 2715 p = req->td->td_proc; 2716 PROC_LOCK(p); 2717 } else { 2718 error = pget(*pidp, PGET_CANSEE, &p); 2719 if (error != 0) 2720 return (error); 2721 } 2722 2723 cred = crhold(p->p_ucred); 2724 PROC_UNLOCK(p); 2725 2726 error = SYSCTL_OUT(req, cred->cr_groups, 2727 cred->cr_ngroups * sizeof(gid_t)); 2728 crfree(cred); 2729 return (error); 2730 } 2731 2732 /* 2733 * This sysctl allows a process to retrieve or/and set the resource limit for 2734 * another process. 2735 */ 2736 static int 2737 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2738 { 2739 int *name = (int *)arg1; 2740 u_int namelen = arg2; 2741 struct rlimit rlim; 2742 struct proc *p; 2743 u_int which; 2744 int flags, error; 2745 2746 if (namelen != 2) 2747 return (EINVAL); 2748 2749 which = (u_int)name[1]; 2750 if (which >= RLIM_NLIMITS) 2751 return (EINVAL); 2752 2753 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2754 return (EINVAL); 2755 2756 flags = PGET_HOLD | PGET_NOTWEXIT; 2757 if (req->newptr != NULL) 2758 flags |= PGET_CANDEBUG; 2759 else 2760 flags |= PGET_CANSEE; 2761 error = pget((pid_t)name[0], flags, &p); 2762 if (error != 0) 2763 return (error); 2764 2765 /* 2766 * Retrieve limit. 2767 */ 2768 if (req->oldptr != NULL) { 2769 PROC_LOCK(p); 2770 lim_rlimit_proc(p, which, &rlim); 2771 PROC_UNLOCK(p); 2772 } 2773 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2774 if (error != 0) 2775 goto errout; 2776 2777 /* 2778 * Set limit. 2779 */ 2780 if (req->newptr != NULL) { 2781 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2782 if (error == 0) 2783 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2784 } 2785 2786 errout: 2787 PRELE(p); 2788 return (error); 2789 } 2790 2791 /* 2792 * This sysctl allows a process to retrieve ps_strings structure location of 2793 * another process. 2794 */ 2795 static int 2796 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2797 { 2798 int *name = (int *)arg1; 2799 u_int namelen = arg2; 2800 struct proc *p; 2801 vm_offset_t ps_strings; 2802 int error; 2803 #ifdef COMPAT_FREEBSD32 2804 uint32_t ps_strings32; 2805 #endif 2806 2807 if (namelen != 1) 2808 return (EINVAL); 2809 2810 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2811 if (error != 0) 2812 return (error); 2813 #ifdef COMPAT_FREEBSD32 2814 if ((req->flags & SCTL_MASK32) != 0) { 2815 /* 2816 * We return 0 if the 32 bit emulation request is for a 64 bit 2817 * process. 2818 */ 2819 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2820 PTROUT(p->p_sysent->sv_psstrings) : 0; 2821 PROC_UNLOCK(p); 2822 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2823 return (error); 2824 } 2825 #endif 2826 ps_strings = p->p_sysent->sv_psstrings; 2827 PROC_UNLOCK(p); 2828 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2829 return (error); 2830 } 2831 2832 /* 2833 * This sysctl allows a process to retrieve umask of another process. 2834 */ 2835 static int 2836 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2837 { 2838 int *name = (int *)arg1; 2839 u_int namelen = arg2; 2840 struct proc *p; 2841 int error; 2842 u_short fd_cmask; 2843 pid_t pid; 2844 2845 if (namelen != 1) 2846 return (EINVAL); 2847 2848 pid = (pid_t)name[0]; 2849 p = curproc; 2850 if (pid == p->p_pid || pid == 0) { 2851 fd_cmask = p->p_fd->fd_cmask; 2852 goto out; 2853 } 2854 2855 error = pget(pid, PGET_WANTREAD, &p); 2856 if (error != 0) 2857 return (error); 2858 2859 fd_cmask = p->p_fd->fd_cmask; 2860 PRELE(p); 2861 out: 2862 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2863 return (error); 2864 } 2865 2866 /* 2867 * This sysctl allows a process to set and retrieve binary osreldate of 2868 * another process. 2869 */ 2870 static int 2871 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2872 { 2873 int *name = (int *)arg1; 2874 u_int namelen = arg2; 2875 struct proc *p; 2876 int flags, error, osrel; 2877 2878 if (namelen != 1) 2879 return (EINVAL); 2880 2881 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2882 return (EINVAL); 2883 2884 flags = PGET_HOLD | PGET_NOTWEXIT; 2885 if (req->newptr != NULL) 2886 flags |= PGET_CANDEBUG; 2887 else 2888 flags |= PGET_CANSEE; 2889 error = pget((pid_t)name[0], flags, &p); 2890 if (error != 0) 2891 return (error); 2892 2893 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2894 if (error != 0) 2895 goto errout; 2896 2897 if (req->newptr != NULL) { 2898 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2899 if (error != 0) 2900 goto errout; 2901 if (osrel < 0) { 2902 error = EINVAL; 2903 goto errout; 2904 } 2905 p->p_osrel = osrel; 2906 } 2907 errout: 2908 PRELE(p); 2909 return (error); 2910 } 2911 2912 static int 2913 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2914 { 2915 int *name = (int *)arg1; 2916 u_int namelen = arg2; 2917 struct proc *p; 2918 struct kinfo_sigtramp kst; 2919 const struct sysentvec *sv; 2920 int error; 2921 #ifdef COMPAT_FREEBSD32 2922 struct kinfo_sigtramp32 kst32; 2923 #endif 2924 2925 if (namelen != 1) 2926 return (EINVAL); 2927 2928 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2929 if (error != 0) 2930 return (error); 2931 sv = p->p_sysent; 2932 #ifdef COMPAT_FREEBSD32 2933 if ((req->flags & SCTL_MASK32) != 0) { 2934 bzero(&kst32, sizeof(kst32)); 2935 if (SV_PROC_FLAG(p, SV_ILP32)) { 2936 if (sv->sv_sigcode_base != 0) { 2937 kst32.ksigtramp_start = sv->sv_sigcode_base; 2938 kst32.ksigtramp_end = sv->sv_sigcode_base + 2939 *sv->sv_szsigcode; 2940 } else { 2941 kst32.ksigtramp_start = sv->sv_psstrings - 2942 *sv->sv_szsigcode; 2943 kst32.ksigtramp_end = sv->sv_psstrings; 2944 } 2945 } 2946 PROC_UNLOCK(p); 2947 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2948 return (error); 2949 } 2950 #endif 2951 bzero(&kst, sizeof(kst)); 2952 if (sv->sv_sigcode_base != 0) { 2953 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2954 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2955 *sv->sv_szsigcode; 2956 } else { 2957 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2958 *sv->sv_szsigcode; 2959 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2960 } 2961 PROC_UNLOCK(p); 2962 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2963 return (error); 2964 } 2965 2966 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2967 2968 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2969 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2970 "Return entire process table"); 2971 2972 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2973 sysctl_kern_proc, "Process table"); 2974 2975 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2976 sysctl_kern_proc, "Process table"); 2977 2978 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2979 sysctl_kern_proc, "Process table"); 2980 2981 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2982 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2983 2984 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2985 sysctl_kern_proc, "Process table"); 2986 2987 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2988 sysctl_kern_proc, "Process table"); 2989 2990 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2991 sysctl_kern_proc, "Process table"); 2992 2993 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2994 sysctl_kern_proc, "Process table"); 2995 2996 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2997 sysctl_kern_proc, "Return process table, no threads"); 2998 2999 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3000 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3001 sysctl_kern_proc_args, "Process argument list"); 3002 3003 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3004 sysctl_kern_proc_env, "Process environment"); 3005 3006 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3007 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3008 3009 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3010 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3011 3012 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3013 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3014 "Process syscall vector name (ABI type)"); 3015 3016 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3017 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3018 3019 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3020 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3021 3022 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3023 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3024 3025 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3026 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3027 3028 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3029 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3030 3031 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3032 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3033 3034 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3035 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3036 3037 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3038 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3039 3040 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3041 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3042 "Return process table, no threads"); 3043 3044 #ifdef COMPAT_FREEBSD7 3045 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3046 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3047 #endif 3048 3049 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3050 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3051 3052 #if defined(STACK) || defined(DDB) 3053 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3054 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3055 #endif 3056 3057 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3058 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3059 3060 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3061 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3062 "Process resource limits"); 3063 3064 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3065 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3066 "Process ps_strings location"); 3067 3068 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3069 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3070 3071 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3072 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3073 "Process binary osreldate"); 3074 3075 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3076 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3077 "Process signal trampoline location"); 3078 3079 int allproc_gen; 3080 3081 /* 3082 * stop_all_proc() purpose is to stop all process which have usermode, 3083 * except current process for obvious reasons. This makes it somewhat 3084 * unreliable when invoked from multithreaded process. The service 3085 * must not be user-callable anyway. 3086 */ 3087 void 3088 stop_all_proc(void) 3089 { 3090 struct proc *cp, *p; 3091 int r, gen; 3092 bool restart, seen_stopped, seen_exiting, stopped_some; 3093 3094 cp = curproc; 3095 allproc_loop: 3096 sx_xlock(&allproc_lock); 3097 gen = allproc_gen; 3098 seen_exiting = seen_stopped = stopped_some = restart = false; 3099 LIST_REMOVE(cp, p_list); 3100 LIST_INSERT_HEAD(&allproc, cp, p_list); 3101 for (;;) { 3102 p = LIST_NEXT(cp, p_list); 3103 if (p == NULL) 3104 break; 3105 LIST_REMOVE(cp, p_list); 3106 LIST_INSERT_AFTER(p, cp, p_list); 3107 PROC_LOCK(p); 3108 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3109 PROC_UNLOCK(p); 3110 continue; 3111 } 3112 if ((p->p_flag & P_WEXIT) != 0) { 3113 seen_exiting = true; 3114 PROC_UNLOCK(p); 3115 continue; 3116 } 3117 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3118 /* 3119 * Stopped processes are tolerated when there 3120 * are no other processes which might continue 3121 * them. P_STOPPED_SINGLE but not 3122 * P_TOTAL_STOP process still has at least one 3123 * thread running. 3124 */ 3125 seen_stopped = true; 3126 PROC_UNLOCK(p); 3127 continue; 3128 } 3129 _PHOLD(p); 3130 sx_xunlock(&allproc_lock); 3131 r = thread_single(p, SINGLE_ALLPROC); 3132 if (r != 0) 3133 restart = true; 3134 else 3135 stopped_some = true; 3136 _PRELE(p); 3137 PROC_UNLOCK(p); 3138 sx_xlock(&allproc_lock); 3139 } 3140 /* Catch forked children we did not see in iteration. */ 3141 if (gen != allproc_gen) 3142 restart = true; 3143 sx_xunlock(&allproc_lock); 3144 if (restart || stopped_some || seen_exiting || seen_stopped) { 3145 kern_yield(PRI_USER); 3146 goto allproc_loop; 3147 } 3148 } 3149 3150 void 3151 resume_all_proc(void) 3152 { 3153 struct proc *cp, *p; 3154 3155 cp = curproc; 3156 sx_xlock(&allproc_lock); 3157 again: 3158 LIST_REMOVE(cp, p_list); 3159 LIST_INSERT_HEAD(&allproc, cp, p_list); 3160 for (;;) { 3161 p = LIST_NEXT(cp, p_list); 3162 if (p == NULL) 3163 break; 3164 LIST_REMOVE(cp, p_list); 3165 LIST_INSERT_AFTER(p, cp, p_list); 3166 PROC_LOCK(p); 3167 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3168 sx_xunlock(&allproc_lock); 3169 _PHOLD(p); 3170 thread_single_end(p, SINGLE_ALLPROC); 3171 _PRELE(p); 3172 PROC_UNLOCK(p); 3173 sx_xlock(&allproc_lock); 3174 } else { 3175 PROC_UNLOCK(p); 3176 } 3177 } 3178 /* Did the loop above missed any stopped process ? */ 3179 LIST_FOREACH(p, &allproc, p_list) { 3180 /* No need for proc lock. */ 3181 if ((p->p_flag & P_TOTAL_STOP) != 0) 3182 goto again; 3183 } 3184 sx_xunlock(&allproc_lock); 3185 } 3186 3187 /* #define TOTAL_STOP_DEBUG 1 */ 3188 #ifdef TOTAL_STOP_DEBUG 3189 volatile static int ap_resume; 3190 #include <sys/mount.h> 3191 3192 static int 3193 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3194 { 3195 int error, val; 3196 3197 val = 0; 3198 ap_resume = 0; 3199 error = sysctl_handle_int(oidp, &val, 0, req); 3200 if (error != 0 || req->newptr == NULL) 3201 return (error); 3202 if (val != 0) { 3203 stop_all_proc(); 3204 syncer_suspend(); 3205 while (ap_resume == 0) 3206 ; 3207 syncer_resume(); 3208 resume_all_proc(); 3209 } 3210 return (0); 3211 } 3212 3213 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3214 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3215 sysctl_debug_stop_all_proc, "I", 3216 ""); 3217 #endif 3218