1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ddb.h" 36 #include "opt_kdtrace.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mount.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/refcount.h> 50 #include <sys/sbuf.h> 51 #include <sys/sysent.h> 52 #include <sys/sched.h> 53 #include <sys/smp.h> 54 #include <sys/stack.h> 55 #include <sys/sysctl.h> 56 #include <sys/filedesc.h> 57 #include <sys/tty.h> 58 #include <sys/signalvar.h> 59 #include <sys/sdt.h> 60 #include <sys/sx.h> 61 #include <sys/user.h> 62 #include <sys/jail.h> 63 #include <sys/vnode.h> 64 #include <sys/eventhandler.h> 65 #ifdef KTRACE 66 #include <sys/uio.h> 67 #include <sys/ktrace.h> 68 #endif 69 70 #ifdef DDB 71 #include <ddb/ddb.h> 72 #endif 73 74 #include <vm/vm.h> 75 #include <vm/vm_extern.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/uma.h> 80 81 SDT_PROVIDER_DEFINE(proc); 82 SDT_PROBE_DEFINE(proc, kernel, ctor, entry); 83 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 87 SDT_PROBE_DEFINE(proc, kernel, ctor, return); 88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 92 SDT_PROBE_DEFINE(proc, kernel, dtor, entry); 93 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 97 SDT_PROBE_DEFINE(proc, kernel, dtor, return); 98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 101 SDT_PROBE_DEFINE(proc, kernel, init, entry); 102 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 105 SDT_PROBE_DEFINE(proc, kernel, init, return); 106 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 109 110 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 111 MALLOC_DEFINE(M_SESSION, "session", "session header"); 112 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 113 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 114 115 static void doenterpgrp(struct proc *, struct pgrp *); 116 static void orphanpg(struct pgrp *pg); 117 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 118 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 119 int preferthread); 120 static void pgadjustjobc(struct pgrp *pgrp, int entering); 121 static void pgdelete(struct pgrp *); 122 static int proc_ctor(void *mem, int size, void *arg, int flags); 123 static void proc_dtor(void *mem, int size, void *arg); 124 static int proc_init(void *mem, int size, int flags); 125 static void proc_fini(void *mem, int size); 126 static void pargs_free(struct pargs *pa); 127 128 /* 129 * Other process lists 130 */ 131 struct pidhashhead *pidhashtbl; 132 u_long pidhash; 133 struct pgrphashhead *pgrphashtbl; 134 u_long pgrphash; 135 struct proclist allproc; 136 struct proclist zombproc; 137 struct sx allproc_lock; 138 struct sx proctree_lock; 139 struct mtx ppeers_lock; 140 uma_zone_t proc_zone; 141 uma_zone_t ithread_zone; 142 143 int kstack_pages = KSTACK_PAGES; 144 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 145 146 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 147 148 /* 149 * Initialize global process hashing structures. 150 */ 151 void 152 procinit() 153 { 154 155 sx_init(&allproc_lock, "allproc"); 156 sx_init(&proctree_lock, "proctree"); 157 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 158 LIST_INIT(&allproc); 159 LIST_INIT(&zombproc); 160 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 161 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 162 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 163 proc_ctor, proc_dtor, proc_init, proc_fini, 164 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 165 uihashinit(); 166 } 167 168 /* 169 * Prepare a proc for use. 170 */ 171 static int 172 proc_ctor(void *mem, int size, void *arg, int flags) 173 { 174 struct proc *p; 175 176 p = (struct proc *)mem; 177 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 178 EVENTHANDLER_INVOKE(process_ctor, p); 179 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 180 return (0); 181 } 182 183 /* 184 * Reclaim a proc after use. 185 */ 186 static void 187 proc_dtor(void *mem, int size, void *arg) 188 { 189 struct proc *p; 190 struct thread *td; 191 192 /* INVARIANTS checks go here */ 193 p = (struct proc *)mem; 194 td = FIRST_THREAD_IN_PROC(p); 195 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 196 if (td != NULL) { 197 #ifdef INVARIANTS 198 KASSERT((p->p_numthreads == 1), 199 ("bad number of threads in exiting process")); 200 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 201 #endif 202 /* Free all OSD associated to this thread. */ 203 osd_thread_exit(td); 204 205 /* Dispose of an alternate kstack, if it exists. 206 * XXX What if there are more than one thread in the proc? 207 * The first thread in the proc is special and not 208 * freed, so you gotta do this here. 209 */ 210 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 211 vm_thread_dispose_altkstack(td); 212 } 213 EVENTHANDLER_INVOKE(process_dtor, p); 214 if (p->p_ksi != NULL) 215 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 216 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 217 } 218 219 /* 220 * Initialize type-stable parts of a proc (when newly created). 221 */ 222 static int 223 proc_init(void *mem, int size, int flags) 224 { 225 struct proc *p; 226 227 p = (struct proc *)mem; 228 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 229 p->p_sched = (struct p_sched *)&p[1]; 230 bzero(&p->p_mtx, sizeof(struct mtx)); 231 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 232 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 233 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 234 EVENTHANDLER_INVOKE(process_init, p); 235 p->p_stats = pstats_alloc(); 236 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 237 return (0); 238 } 239 240 /* 241 * UMA should ensure that this function is never called. 242 * Freeing a proc structure would violate type stability. 243 */ 244 static void 245 proc_fini(void *mem, int size) 246 { 247 #ifdef notnow 248 struct proc *p; 249 250 p = (struct proc *)mem; 251 EVENTHANDLER_INVOKE(process_fini, p); 252 pstats_free(p->p_stats); 253 thread_free(FIRST_THREAD_IN_PROC(p)); 254 mtx_destroy(&p->p_mtx); 255 if (p->p_ksi != NULL) 256 ksiginfo_free(p->p_ksi); 257 #else 258 panic("proc reclaimed"); 259 #endif 260 } 261 262 /* 263 * Is p an inferior of the current process? 264 */ 265 int 266 inferior(p) 267 register struct proc *p; 268 { 269 270 sx_assert(&proctree_lock, SX_LOCKED); 271 for (; p != curproc; p = p->p_pptr) 272 if (p->p_pid == 0) 273 return (0); 274 return (1); 275 } 276 277 /* 278 * Locate a process by number; return only "live" processes -- i.e., neither 279 * zombies nor newly born but incompletely initialized processes. By not 280 * returning processes in the PRS_NEW state, we allow callers to avoid 281 * testing for that condition to avoid dereferencing p_ucred, et al. 282 */ 283 struct proc * 284 pfind(pid) 285 register pid_t pid; 286 { 287 register struct proc *p; 288 289 sx_slock(&allproc_lock); 290 LIST_FOREACH(p, PIDHASH(pid), p_hash) 291 if (p->p_pid == pid) { 292 if (p->p_state == PRS_NEW) { 293 p = NULL; 294 break; 295 } 296 PROC_LOCK(p); 297 break; 298 } 299 sx_sunlock(&allproc_lock); 300 return (p); 301 } 302 303 /* 304 * Locate a process group by number. 305 * The caller must hold proctree_lock. 306 */ 307 struct pgrp * 308 pgfind(pgid) 309 register pid_t pgid; 310 { 311 register struct pgrp *pgrp; 312 313 sx_assert(&proctree_lock, SX_LOCKED); 314 315 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 316 if (pgrp->pg_id == pgid) { 317 PGRP_LOCK(pgrp); 318 return (pgrp); 319 } 320 } 321 return (NULL); 322 } 323 324 /* 325 * Create a new process group. 326 * pgid must be equal to the pid of p. 327 * Begin a new session if required. 328 */ 329 int 330 enterpgrp(p, pgid, pgrp, sess) 331 register struct proc *p; 332 pid_t pgid; 333 struct pgrp *pgrp; 334 struct session *sess; 335 { 336 struct pgrp *pgrp2; 337 338 sx_assert(&proctree_lock, SX_XLOCKED); 339 340 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 341 KASSERT(p->p_pid == pgid, 342 ("enterpgrp: new pgrp and pid != pgid")); 343 344 pgrp2 = pgfind(pgid); 345 346 KASSERT(pgrp2 == NULL, 347 ("enterpgrp: pgrp with pgid exists")); 348 KASSERT(!SESS_LEADER(p), 349 ("enterpgrp: session leader attempted setpgrp")); 350 351 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 352 353 if (sess != NULL) { 354 /* 355 * new session 356 */ 357 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 358 PROC_LOCK(p); 359 p->p_flag &= ~P_CONTROLT; 360 PROC_UNLOCK(p); 361 PGRP_LOCK(pgrp); 362 sess->s_leader = p; 363 sess->s_sid = p->p_pid; 364 refcount_init(&sess->s_count, 1); 365 sess->s_ttyvp = NULL; 366 sess->s_ttyp = NULL; 367 bcopy(p->p_session->s_login, sess->s_login, 368 sizeof(sess->s_login)); 369 pgrp->pg_session = sess; 370 KASSERT(p == curproc, 371 ("enterpgrp: mksession and p != curproc")); 372 } else { 373 pgrp->pg_session = p->p_session; 374 sess_hold(pgrp->pg_session); 375 PGRP_LOCK(pgrp); 376 } 377 pgrp->pg_id = pgid; 378 LIST_INIT(&pgrp->pg_members); 379 380 /* 381 * As we have an exclusive lock of proctree_lock, 382 * this should not deadlock. 383 */ 384 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 385 pgrp->pg_jobc = 0; 386 SLIST_INIT(&pgrp->pg_sigiolst); 387 PGRP_UNLOCK(pgrp); 388 389 doenterpgrp(p, pgrp); 390 391 return (0); 392 } 393 394 /* 395 * Move p to an existing process group 396 */ 397 int 398 enterthispgrp(p, pgrp) 399 register struct proc *p; 400 struct pgrp *pgrp; 401 { 402 403 sx_assert(&proctree_lock, SX_XLOCKED); 404 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 405 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 406 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 407 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 408 KASSERT(pgrp->pg_session == p->p_session, 409 ("%s: pgrp's session %p, p->p_session %p.\n", 410 __func__, 411 pgrp->pg_session, 412 p->p_session)); 413 KASSERT(pgrp != p->p_pgrp, 414 ("%s: p belongs to pgrp.", __func__)); 415 416 doenterpgrp(p, pgrp); 417 418 return (0); 419 } 420 421 /* 422 * Move p to a process group 423 */ 424 static void 425 doenterpgrp(p, pgrp) 426 struct proc *p; 427 struct pgrp *pgrp; 428 { 429 struct pgrp *savepgrp; 430 431 sx_assert(&proctree_lock, SX_XLOCKED); 432 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 433 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 434 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 435 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 436 437 savepgrp = p->p_pgrp; 438 439 /* 440 * Adjust eligibility of affected pgrps to participate in job control. 441 * Increment eligibility counts before decrementing, otherwise we 442 * could reach 0 spuriously during the first call. 443 */ 444 fixjobc(p, pgrp, 1); 445 fixjobc(p, p->p_pgrp, 0); 446 447 PGRP_LOCK(pgrp); 448 PGRP_LOCK(savepgrp); 449 PROC_LOCK(p); 450 LIST_REMOVE(p, p_pglist); 451 p->p_pgrp = pgrp; 452 PROC_UNLOCK(p); 453 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 454 PGRP_UNLOCK(savepgrp); 455 PGRP_UNLOCK(pgrp); 456 if (LIST_EMPTY(&savepgrp->pg_members)) 457 pgdelete(savepgrp); 458 } 459 460 /* 461 * remove process from process group 462 */ 463 int 464 leavepgrp(p) 465 register struct proc *p; 466 { 467 struct pgrp *savepgrp; 468 469 sx_assert(&proctree_lock, SX_XLOCKED); 470 savepgrp = p->p_pgrp; 471 PGRP_LOCK(savepgrp); 472 PROC_LOCK(p); 473 LIST_REMOVE(p, p_pglist); 474 p->p_pgrp = NULL; 475 PROC_UNLOCK(p); 476 PGRP_UNLOCK(savepgrp); 477 if (LIST_EMPTY(&savepgrp->pg_members)) 478 pgdelete(savepgrp); 479 return (0); 480 } 481 482 /* 483 * delete a process group 484 */ 485 static void 486 pgdelete(pgrp) 487 register struct pgrp *pgrp; 488 { 489 struct session *savesess; 490 struct tty *tp; 491 492 sx_assert(&proctree_lock, SX_XLOCKED); 493 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 494 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 495 496 /* 497 * Reset any sigio structures pointing to us as a result of 498 * F_SETOWN with our pgid. 499 */ 500 funsetownlst(&pgrp->pg_sigiolst); 501 502 PGRP_LOCK(pgrp); 503 tp = pgrp->pg_session->s_ttyp; 504 LIST_REMOVE(pgrp, pg_hash); 505 savesess = pgrp->pg_session; 506 PGRP_UNLOCK(pgrp); 507 508 /* Remove the reference to the pgrp before deallocating it. */ 509 if (tp != NULL) { 510 tty_lock(tp); 511 tty_rel_pgrp(tp, pgrp); 512 } 513 514 mtx_destroy(&pgrp->pg_mtx); 515 free(pgrp, M_PGRP); 516 sess_release(savesess); 517 } 518 519 static void 520 pgadjustjobc(pgrp, entering) 521 struct pgrp *pgrp; 522 int entering; 523 { 524 525 PGRP_LOCK(pgrp); 526 if (entering) 527 pgrp->pg_jobc++; 528 else { 529 --pgrp->pg_jobc; 530 if (pgrp->pg_jobc == 0) 531 orphanpg(pgrp); 532 } 533 PGRP_UNLOCK(pgrp); 534 } 535 536 /* 537 * Adjust pgrp jobc counters when specified process changes process group. 538 * We count the number of processes in each process group that "qualify" 539 * the group for terminal job control (those with a parent in a different 540 * process group of the same session). If that count reaches zero, the 541 * process group becomes orphaned. Check both the specified process' 542 * process group and that of its children. 543 * entering == 0 => p is leaving specified group. 544 * entering == 1 => p is entering specified group. 545 */ 546 void 547 fixjobc(p, pgrp, entering) 548 register struct proc *p; 549 register struct pgrp *pgrp; 550 int entering; 551 { 552 register struct pgrp *hispgrp; 553 register struct session *mysession; 554 555 sx_assert(&proctree_lock, SX_LOCKED); 556 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 557 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 558 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 559 560 /* 561 * Check p's parent to see whether p qualifies its own process 562 * group; if so, adjust count for p's process group. 563 */ 564 mysession = pgrp->pg_session; 565 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 566 hispgrp->pg_session == mysession) 567 pgadjustjobc(pgrp, entering); 568 569 /* 570 * Check this process' children to see whether they qualify 571 * their process groups; if so, adjust counts for children's 572 * process groups. 573 */ 574 LIST_FOREACH(p, &p->p_children, p_sibling) { 575 hispgrp = p->p_pgrp; 576 if (hispgrp == pgrp || 577 hispgrp->pg_session != mysession) 578 continue; 579 PROC_LOCK(p); 580 if (p->p_state == PRS_ZOMBIE) { 581 PROC_UNLOCK(p); 582 continue; 583 } 584 PROC_UNLOCK(p); 585 pgadjustjobc(hispgrp, entering); 586 } 587 } 588 589 /* 590 * A process group has become orphaned; 591 * if there are any stopped processes in the group, 592 * hang-up all process in that group. 593 */ 594 static void 595 orphanpg(pg) 596 struct pgrp *pg; 597 { 598 register struct proc *p; 599 600 PGRP_LOCK_ASSERT(pg, MA_OWNED); 601 602 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 603 PROC_LOCK(p); 604 if (P_SHOULDSTOP(p)) { 605 PROC_UNLOCK(p); 606 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 607 PROC_LOCK(p); 608 psignal(p, SIGHUP); 609 psignal(p, SIGCONT); 610 PROC_UNLOCK(p); 611 } 612 return; 613 } 614 PROC_UNLOCK(p); 615 } 616 } 617 618 void 619 sess_hold(struct session *s) 620 { 621 622 refcount_acquire(&s->s_count); 623 } 624 625 void 626 sess_release(struct session *s) 627 { 628 629 if (refcount_release(&s->s_count)) { 630 if (s->s_ttyp != NULL) { 631 tty_lock(s->s_ttyp); 632 tty_rel_sess(s->s_ttyp, s); 633 } 634 mtx_destroy(&s->s_mtx); 635 free(s, M_SESSION); 636 } 637 } 638 639 #include "opt_ddb.h" 640 #ifdef DDB 641 #include <ddb/ddb.h> 642 643 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 644 { 645 register struct pgrp *pgrp; 646 register struct proc *p; 647 register int i; 648 649 for (i = 0; i <= pgrphash; i++) { 650 if (!LIST_EMPTY(&pgrphashtbl[i])) { 651 printf("\tindx %d\n", i); 652 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 653 printf( 654 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 655 (void *)pgrp, (long)pgrp->pg_id, 656 (void *)pgrp->pg_session, 657 pgrp->pg_session->s_count, 658 (void *)LIST_FIRST(&pgrp->pg_members)); 659 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 660 printf("\t\tpid %ld addr %p pgrp %p\n", 661 (long)p->p_pid, (void *)p, 662 (void *)p->p_pgrp); 663 } 664 } 665 } 666 } 667 } 668 #endif /* DDB */ 669 670 /* 671 * Clear kinfo_proc and fill in any information that is common 672 * to all threads in the process. 673 * Must be called with the target process locked. 674 */ 675 static void 676 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 677 { 678 struct thread *td0; 679 struct tty *tp; 680 struct session *sp; 681 struct ucred *cred; 682 struct sigacts *ps; 683 684 PROC_LOCK_ASSERT(p, MA_OWNED); 685 bzero(kp, sizeof(*kp)); 686 687 kp->ki_structsize = sizeof(*kp); 688 kp->ki_paddr = p; 689 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 690 kp->ki_args = p->p_args; 691 kp->ki_textvp = p->p_textvp; 692 #ifdef KTRACE 693 kp->ki_tracep = p->p_tracevp; 694 mtx_lock(&ktrace_mtx); 695 kp->ki_traceflag = p->p_traceflag; 696 mtx_unlock(&ktrace_mtx); 697 #endif 698 kp->ki_fd = p->p_fd; 699 kp->ki_vmspace = p->p_vmspace; 700 kp->ki_flag = p->p_flag; 701 cred = p->p_ucred; 702 if (cred) { 703 kp->ki_uid = cred->cr_uid; 704 kp->ki_ruid = cred->cr_ruid; 705 kp->ki_svuid = cred->cr_svuid; 706 /* XXX bde doesn't like KI_NGROUPS */ 707 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 708 bcopy(cred->cr_groups, kp->ki_groups, 709 kp->ki_ngroups * sizeof(gid_t)); 710 kp->ki_rgid = cred->cr_rgid; 711 kp->ki_svgid = cred->cr_svgid; 712 /* If jailed(cred), emulate the old P_JAILED flag. */ 713 if (jailed(cred)) { 714 kp->ki_flag |= P_JAILED; 715 /* If inside a jail, use 0 as a jail ID. */ 716 if (!jailed(curthread->td_ucred)) 717 kp->ki_jid = cred->cr_prison->pr_id; 718 } 719 } 720 ps = p->p_sigacts; 721 if (ps) { 722 mtx_lock(&ps->ps_mtx); 723 kp->ki_sigignore = ps->ps_sigignore; 724 kp->ki_sigcatch = ps->ps_sigcatch; 725 mtx_unlock(&ps->ps_mtx); 726 } 727 PROC_SLOCK(p); 728 if (p->p_state != PRS_NEW && 729 p->p_state != PRS_ZOMBIE && 730 p->p_vmspace != NULL) { 731 struct vmspace *vm = p->p_vmspace; 732 733 kp->ki_size = vm->vm_map.size; 734 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 735 FOREACH_THREAD_IN_PROC(p, td0) { 736 if (!TD_IS_SWAPPED(td0)) 737 kp->ki_rssize += td0->td_kstack_pages; 738 if (td0->td_altkstack_obj != NULL) 739 kp->ki_rssize += td0->td_altkstack_pages; 740 } 741 kp->ki_swrss = vm->vm_swrss; 742 kp->ki_tsize = vm->vm_tsize; 743 kp->ki_dsize = vm->vm_dsize; 744 kp->ki_ssize = vm->vm_ssize; 745 } else if (p->p_state == PRS_ZOMBIE) 746 kp->ki_stat = SZOMB; 747 if (kp->ki_flag & P_INMEM) 748 kp->ki_sflag = PS_INMEM; 749 else 750 kp->ki_sflag = 0; 751 /* Calculate legacy swtime as seconds since 'swtick'. */ 752 kp->ki_swtime = (ticks - p->p_swtick) / hz; 753 kp->ki_pid = p->p_pid; 754 kp->ki_nice = p->p_nice; 755 rufetch(p, &kp->ki_rusage); 756 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 757 PROC_SUNLOCK(p); 758 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 759 kp->ki_start = p->p_stats->p_start; 760 timevaladd(&kp->ki_start, &boottime); 761 PROC_SLOCK(p); 762 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 763 PROC_SUNLOCK(p); 764 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 765 766 /* Some callers want child-times in a single value */ 767 kp->ki_childtime = kp->ki_childstime; 768 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 769 } 770 tp = NULL; 771 if (p->p_pgrp) { 772 kp->ki_pgid = p->p_pgrp->pg_id; 773 kp->ki_jobc = p->p_pgrp->pg_jobc; 774 sp = p->p_pgrp->pg_session; 775 776 if (sp != NULL) { 777 kp->ki_sid = sp->s_sid; 778 SESS_LOCK(sp); 779 strlcpy(kp->ki_login, sp->s_login, 780 sizeof(kp->ki_login)); 781 if (sp->s_ttyvp) 782 kp->ki_kiflag |= KI_CTTY; 783 if (SESS_LEADER(p)) 784 kp->ki_kiflag |= KI_SLEADER; 785 /* XXX proctree_lock */ 786 tp = sp->s_ttyp; 787 SESS_UNLOCK(sp); 788 } 789 } 790 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 791 kp->ki_tdev = tty_udev(tp); 792 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 793 if (tp->t_session) 794 kp->ki_tsid = tp->t_session->s_sid; 795 } else 796 kp->ki_tdev = NODEV; 797 if (p->p_comm[0] != '\0') 798 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 799 if (p->p_sysent && p->p_sysent->sv_name != NULL && 800 p->p_sysent->sv_name[0] != '\0') 801 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 802 kp->ki_siglist = p->p_siglist; 803 kp->ki_xstat = p->p_xstat; 804 kp->ki_acflag = p->p_acflag; 805 kp->ki_lock = p->p_lock; 806 if (p->p_pptr) 807 kp->ki_ppid = p->p_pptr->p_pid; 808 } 809 810 /* 811 * Fill in information that is thread specific. Must be called with p_slock 812 * locked. If 'preferthread' is set, overwrite certain process-related 813 * fields that are maintained for both threads and processes. 814 */ 815 static void 816 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 817 { 818 struct proc *p; 819 820 p = td->td_proc; 821 PROC_LOCK_ASSERT(p, MA_OWNED); 822 823 thread_lock(td); 824 if (td->td_wmesg != NULL) 825 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 826 else 827 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 828 if (td->td_name[0] != '\0') 829 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 830 if (TD_ON_LOCK(td)) { 831 kp->ki_kiflag |= KI_LOCKBLOCK; 832 strlcpy(kp->ki_lockname, td->td_lockname, 833 sizeof(kp->ki_lockname)); 834 } else { 835 kp->ki_kiflag &= ~KI_LOCKBLOCK; 836 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 837 } 838 839 if (p->p_state == PRS_NORMAL) { /* approximate. */ 840 if (TD_ON_RUNQ(td) || 841 TD_CAN_RUN(td) || 842 TD_IS_RUNNING(td)) { 843 kp->ki_stat = SRUN; 844 } else if (P_SHOULDSTOP(p)) { 845 kp->ki_stat = SSTOP; 846 } else if (TD_IS_SLEEPING(td)) { 847 kp->ki_stat = SSLEEP; 848 } else if (TD_ON_LOCK(td)) { 849 kp->ki_stat = SLOCK; 850 } else { 851 kp->ki_stat = SWAIT; 852 } 853 } else if (p->p_state == PRS_ZOMBIE) { 854 kp->ki_stat = SZOMB; 855 } else { 856 kp->ki_stat = SIDL; 857 } 858 859 /* Things in the thread */ 860 kp->ki_wchan = td->td_wchan; 861 kp->ki_pri.pri_level = td->td_priority; 862 kp->ki_pri.pri_native = td->td_base_pri; 863 kp->ki_lastcpu = td->td_lastcpu; 864 kp->ki_oncpu = td->td_oncpu; 865 kp->ki_tdflags = td->td_flags; 866 kp->ki_tid = td->td_tid; 867 kp->ki_numthreads = p->p_numthreads; 868 kp->ki_pcb = td->td_pcb; 869 kp->ki_kstack = (void *)td->td_kstack; 870 kp->ki_pctcpu = sched_pctcpu(td); 871 kp->ki_estcpu = td->td_estcpu; 872 kp->ki_slptime = (ticks - td->td_slptick) / hz; 873 kp->ki_pri.pri_class = td->td_pri_class; 874 kp->ki_pri.pri_user = td->td_user_pri; 875 876 if (preferthread) 877 kp->ki_runtime = cputick2usec(td->td_runtime); 878 879 /* We can't get this anymore but ps etc never used it anyway. */ 880 kp->ki_rqindex = 0; 881 882 SIGSETOR(kp->ki_siglist, td->td_siglist); 883 kp->ki_sigmask = td->td_sigmask; 884 thread_unlock(td); 885 } 886 887 /* 888 * Fill in a kinfo_proc structure for the specified process. 889 * Must be called with the target process locked. 890 */ 891 void 892 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 893 { 894 895 fill_kinfo_proc_only(p, kp); 896 if (FIRST_THREAD_IN_PROC(p) != NULL) 897 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 898 } 899 900 struct pstats * 901 pstats_alloc(void) 902 { 903 904 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 905 } 906 907 /* 908 * Copy parts of p_stats; zero the rest of p_stats (statistics). 909 */ 910 void 911 pstats_fork(struct pstats *src, struct pstats *dst) 912 { 913 914 bzero(&dst->pstat_startzero, 915 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 916 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 917 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 918 } 919 920 void 921 pstats_free(struct pstats *ps) 922 { 923 924 free(ps, M_SUBPROC); 925 } 926 927 /* 928 * Locate a zombie process by number 929 */ 930 struct proc * 931 zpfind(pid_t pid) 932 { 933 struct proc *p; 934 935 sx_slock(&allproc_lock); 936 LIST_FOREACH(p, &zombproc, p_list) 937 if (p->p_pid == pid) { 938 PROC_LOCK(p); 939 break; 940 } 941 sx_sunlock(&allproc_lock); 942 return (p); 943 } 944 945 #define KERN_PROC_ZOMBMASK 0x3 946 #define KERN_PROC_NOTHREADS 0x4 947 948 /* 949 * Must be called with the process locked and will return with it unlocked. 950 */ 951 static int 952 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 953 { 954 struct thread *td; 955 struct kinfo_proc kinfo_proc; 956 int error = 0; 957 struct proc *np; 958 pid_t pid = p->p_pid; 959 960 PROC_LOCK_ASSERT(p, MA_OWNED); 961 962 fill_kinfo_proc_only(p, &kinfo_proc); 963 if (flags & KERN_PROC_NOTHREADS) { 964 if (FIRST_THREAD_IN_PROC(p) != NULL) 965 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), 966 &kinfo_proc, 0); 967 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 968 sizeof(kinfo_proc)); 969 } else { 970 if (FIRST_THREAD_IN_PROC(p) != NULL) 971 FOREACH_THREAD_IN_PROC(p, td) { 972 fill_kinfo_thread(td, &kinfo_proc, 1); 973 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 974 sizeof(kinfo_proc)); 975 if (error) 976 break; 977 } 978 else 979 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 980 sizeof(kinfo_proc)); 981 } 982 PROC_UNLOCK(p); 983 if (error) 984 return (error); 985 if (flags & KERN_PROC_ZOMBMASK) 986 np = zpfind(pid); 987 else { 988 if (pid == 0) 989 return (0); 990 np = pfind(pid); 991 } 992 if (np == NULL) 993 return (ESRCH); 994 if (np != p) { 995 PROC_UNLOCK(np); 996 return (ESRCH); 997 } 998 PROC_UNLOCK(np); 999 return (0); 1000 } 1001 1002 static int 1003 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1004 { 1005 int *name = (int*) arg1; 1006 u_int namelen = arg2; 1007 struct proc *p; 1008 int flags, doingzomb, oid_number; 1009 int error = 0; 1010 1011 oid_number = oidp->oid_number; 1012 if (oid_number != KERN_PROC_ALL && 1013 (oid_number & KERN_PROC_INC_THREAD) == 0) 1014 flags = KERN_PROC_NOTHREADS; 1015 else { 1016 flags = 0; 1017 oid_number &= ~KERN_PROC_INC_THREAD; 1018 } 1019 if (oid_number == KERN_PROC_PID) { 1020 if (namelen != 1) 1021 return (EINVAL); 1022 error = sysctl_wire_old_buffer(req, 0); 1023 if (error) 1024 return (error); 1025 p = pfind((pid_t)name[0]); 1026 if (!p) 1027 return (ESRCH); 1028 if ((error = p_cansee(curthread, p))) { 1029 PROC_UNLOCK(p); 1030 return (error); 1031 } 1032 error = sysctl_out_proc(p, req, flags); 1033 return (error); 1034 } 1035 1036 switch (oid_number) { 1037 case KERN_PROC_ALL: 1038 if (namelen != 0) 1039 return (EINVAL); 1040 break; 1041 case KERN_PROC_PROC: 1042 if (namelen != 0 && namelen != 1) 1043 return (EINVAL); 1044 break; 1045 default: 1046 if (namelen != 1) 1047 return (EINVAL); 1048 break; 1049 } 1050 1051 if (!req->oldptr) { 1052 /* overestimate by 5 procs */ 1053 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1054 if (error) 1055 return (error); 1056 } 1057 error = sysctl_wire_old_buffer(req, 0); 1058 if (error != 0) 1059 return (error); 1060 sx_slock(&allproc_lock); 1061 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1062 if (!doingzomb) 1063 p = LIST_FIRST(&allproc); 1064 else 1065 p = LIST_FIRST(&zombproc); 1066 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1067 /* 1068 * Skip embryonic processes. 1069 */ 1070 PROC_SLOCK(p); 1071 if (p->p_state == PRS_NEW) { 1072 PROC_SUNLOCK(p); 1073 continue; 1074 } 1075 PROC_SUNLOCK(p); 1076 PROC_LOCK(p); 1077 KASSERT(p->p_ucred != NULL, 1078 ("process credential is NULL for non-NEW proc")); 1079 /* 1080 * Show a user only appropriate processes. 1081 */ 1082 if (p_cansee(curthread, p)) { 1083 PROC_UNLOCK(p); 1084 continue; 1085 } 1086 /* 1087 * TODO - make more efficient (see notes below). 1088 * do by session. 1089 */ 1090 switch (oid_number) { 1091 1092 case KERN_PROC_GID: 1093 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1094 PROC_UNLOCK(p); 1095 continue; 1096 } 1097 break; 1098 1099 case KERN_PROC_PGRP: 1100 /* could do this by traversing pgrp */ 1101 if (p->p_pgrp == NULL || 1102 p->p_pgrp->pg_id != (pid_t)name[0]) { 1103 PROC_UNLOCK(p); 1104 continue; 1105 } 1106 break; 1107 1108 case KERN_PROC_RGID: 1109 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1110 PROC_UNLOCK(p); 1111 continue; 1112 } 1113 break; 1114 1115 case KERN_PROC_SESSION: 1116 if (p->p_session == NULL || 1117 p->p_session->s_sid != (pid_t)name[0]) { 1118 PROC_UNLOCK(p); 1119 continue; 1120 } 1121 break; 1122 1123 case KERN_PROC_TTY: 1124 if ((p->p_flag & P_CONTROLT) == 0 || 1125 p->p_session == NULL) { 1126 PROC_UNLOCK(p); 1127 continue; 1128 } 1129 /* XXX proctree_lock */ 1130 SESS_LOCK(p->p_session); 1131 if (p->p_session->s_ttyp == NULL || 1132 tty_udev(p->p_session->s_ttyp) != 1133 (dev_t)name[0]) { 1134 SESS_UNLOCK(p->p_session); 1135 PROC_UNLOCK(p); 1136 continue; 1137 } 1138 SESS_UNLOCK(p->p_session); 1139 break; 1140 1141 case KERN_PROC_UID: 1142 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1143 PROC_UNLOCK(p); 1144 continue; 1145 } 1146 break; 1147 1148 case KERN_PROC_RUID: 1149 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1150 PROC_UNLOCK(p); 1151 continue; 1152 } 1153 break; 1154 1155 case KERN_PROC_PROC: 1156 break; 1157 1158 default: 1159 break; 1160 1161 } 1162 1163 error = sysctl_out_proc(p, req, flags | doingzomb); 1164 if (error) { 1165 sx_sunlock(&allproc_lock); 1166 return (error); 1167 } 1168 } 1169 } 1170 sx_sunlock(&allproc_lock); 1171 return (0); 1172 } 1173 1174 struct pargs * 1175 pargs_alloc(int len) 1176 { 1177 struct pargs *pa; 1178 1179 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1180 M_WAITOK); 1181 refcount_init(&pa->ar_ref, 1); 1182 pa->ar_length = len; 1183 return (pa); 1184 } 1185 1186 static void 1187 pargs_free(struct pargs *pa) 1188 { 1189 1190 free(pa, M_PARGS); 1191 } 1192 1193 void 1194 pargs_hold(struct pargs *pa) 1195 { 1196 1197 if (pa == NULL) 1198 return; 1199 refcount_acquire(&pa->ar_ref); 1200 } 1201 1202 void 1203 pargs_drop(struct pargs *pa) 1204 { 1205 1206 if (pa == NULL) 1207 return; 1208 if (refcount_release(&pa->ar_ref)) 1209 pargs_free(pa); 1210 } 1211 1212 /* 1213 * This sysctl allows a process to retrieve the argument list or process 1214 * title for another process without groping around in the address space 1215 * of the other process. It also allow a process to set its own "process 1216 * title to a string of its own choice. 1217 */ 1218 static int 1219 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1220 { 1221 int *name = (int*) arg1; 1222 u_int namelen = arg2; 1223 struct pargs *newpa, *pa; 1224 struct proc *p; 1225 int error = 0; 1226 1227 if (namelen != 1) 1228 return (EINVAL); 1229 1230 p = pfind((pid_t)name[0]); 1231 if (!p) 1232 return (ESRCH); 1233 1234 if ((error = p_cansee(curthread, p)) != 0) { 1235 PROC_UNLOCK(p); 1236 return (error); 1237 } 1238 1239 if (req->newptr && curproc != p) { 1240 PROC_UNLOCK(p); 1241 return (EPERM); 1242 } 1243 1244 pa = p->p_args; 1245 pargs_hold(pa); 1246 PROC_UNLOCK(p); 1247 if (req->oldptr != NULL && pa != NULL) 1248 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1249 pargs_drop(pa); 1250 if (error != 0 || req->newptr == NULL) 1251 return (error); 1252 1253 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1254 return (ENOMEM); 1255 newpa = pargs_alloc(req->newlen); 1256 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1257 if (error != 0) { 1258 pargs_free(newpa); 1259 return (error); 1260 } 1261 PROC_LOCK(p); 1262 pa = p->p_args; 1263 p->p_args = newpa; 1264 PROC_UNLOCK(p); 1265 pargs_drop(pa); 1266 return (0); 1267 } 1268 1269 /* 1270 * This sysctl allows a process to retrieve the path of the executable for 1271 * itself or another process. 1272 */ 1273 static int 1274 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1275 { 1276 pid_t *pidp = (pid_t *)arg1; 1277 unsigned int arglen = arg2; 1278 struct proc *p; 1279 struct vnode *vp; 1280 char *retbuf, *freebuf; 1281 int error; 1282 1283 if (arglen != 1) 1284 return (EINVAL); 1285 if (*pidp == -1) { /* -1 means this process */ 1286 p = req->td->td_proc; 1287 } else { 1288 p = pfind(*pidp); 1289 if (p == NULL) 1290 return (ESRCH); 1291 if ((error = p_cansee(curthread, p)) != 0) { 1292 PROC_UNLOCK(p); 1293 return (error); 1294 } 1295 } 1296 1297 vp = p->p_textvp; 1298 if (vp == NULL) { 1299 if (*pidp != -1) 1300 PROC_UNLOCK(p); 1301 return (0); 1302 } 1303 vref(vp); 1304 if (*pidp != -1) 1305 PROC_UNLOCK(p); 1306 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1307 vrele(vp); 1308 if (error) 1309 return (error); 1310 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1311 free(freebuf, M_TEMP); 1312 return (error); 1313 } 1314 1315 static int 1316 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1317 { 1318 struct proc *p; 1319 char *sv_name; 1320 int *name; 1321 int namelen; 1322 int error; 1323 1324 namelen = arg2; 1325 if (namelen != 1) 1326 return (EINVAL); 1327 1328 name = (int *)arg1; 1329 if ((p = pfind((pid_t)name[0])) == NULL) 1330 return (ESRCH); 1331 if ((error = p_cansee(curthread, p))) { 1332 PROC_UNLOCK(p); 1333 return (error); 1334 } 1335 sv_name = p->p_sysent->sv_name; 1336 PROC_UNLOCK(p); 1337 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1338 } 1339 1340 static int 1341 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1342 { 1343 vm_map_entry_t entry, tmp_entry; 1344 unsigned int last_timestamp; 1345 char *fullpath, *freepath; 1346 struct kinfo_vmentry *kve; 1347 struct vattr va; 1348 struct ucred *cred; 1349 int error, *name; 1350 struct vnode *vp; 1351 struct proc *p; 1352 vm_map_t map; 1353 1354 name = (int *)arg1; 1355 if ((p = pfind((pid_t)name[0])) == NULL) 1356 return (ESRCH); 1357 if (p->p_flag & P_WEXIT) { 1358 PROC_UNLOCK(p); 1359 return (ESRCH); 1360 } 1361 if ((error = p_candebug(curthread, p))) { 1362 PROC_UNLOCK(p); 1363 return (error); 1364 } 1365 _PHOLD(p); 1366 PROC_UNLOCK(p); 1367 1368 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1369 1370 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1371 vm_map_lock_read(map); 1372 for (entry = map->header.next; entry != &map->header; 1373 entry = entry->next) { 1374 vm_object_t obj, tobj, lobj; 1375 vm_offset_t addr; 1376 int vfslocked; 1377 1378 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1379 continue; 1380 1381 bzero(kve, sizeof(*kve)); 1382 kve->kve_structsize = sizeof(*kve); 1383 1384 kve->kve_private_resident = 0; 1385 obj = entry->object.vm_object; 1386 if (obj != NULL) { 1387 VM_OBJECT_LOCK(obj); 1388 if (obj->shadow_count == 1) 1389 kve->kve_private_resident = 1390 obj->resident_page_count; 1391 } 1392 kve->kve_resident = 0; 1393 addr = entry->start; 1394 while (addr < entry->end) { 1395 if (pmap_extract(map->pmap, addr)) 1396 kve->kve_resident++; 1397 addr += PAGE_SIZE; 1398 } 1399 1400 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1401 if (tobj != obj) 1402 VM_OBJECT_LOCK(tobj); 1403 if (lobj != obj) 1404 VM_OBJECT_UNLOCK(lobj); 1405 lobj = tobj; 1406 } 1407 1408 kve->kve_fileid = 0; 1409 kve->kve_fsid = 0; 1410 freepath = NULL; 1411 fullpath = ""; 1412 if (lobj) { 1413 vp = NULL; 1414 switch(lobj->type) { 1415 case OBJT_DEFAULT: 1416 kve->kve_type = KVME_TYPE_DEFAULT; 1417 break; 1418 case OBJT_VNODE: 1419 kve->kve_type = KVME_TYPE_VNODE; 1420 vp = lobj->handle; 1421 vref(vp); 1422 break; 1423 case OBJT_SWAP: 1424 kve->kve_type = KVME_TYPE_SWAP; 1425 break; 1426 case OBJT_DEVICE: 1427 kve->kve_type = KVME_TYPE_DEVICE; 1428 break; 1429 case OBJT_PHYS: 1430 kve->kve_type = KVME_TYPE_PHYS; 1431 break; 1432 case OBJT_DEAD: 1433 kve->kve_type = KVME_TYPE_DEAD; 1434 break; 1435 default: 1436 kve->kve_type = KVME_TYPE_UNKNOWN; 1437 break; 1438 } 1439 if (lobj != obj) 1440 VM_OBJECT_UNLOCK(lobj); 1441 1442 kve->kve_ref_count = obj->ref_count; 1443 kve->kve_shadow_count = obj->shadow_count; 1444 VM_OBJECT_UNLOCK(obj); 1445 if (vp != NULL) { 1446 vn_fullpath(curthread, vp, &fullpath, 1447 &freepath); 1448 cred = curthread->td_ucred; 1449 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1450 vn_lock(vp, LK_SHARED | LK_RETRY); 1451 if (VOP_GETATTR(vp, &va, cred) == 0) { 1452 kve->kve_fileid = va.va_fileid; 1453 kve->kve_fsid = va.va_fsid; 1454 } 1455 vput(vp); 1456 VFS_UNLOCK_GIANT(vfslocked); 1457 } 1458 } else { 1459 kve->kve_type = KVME_TYPE_NONE; 1460 kve->kve_ref_count = 0; 1461 kve->kve_shadow_count = 0; 1462 } 1463 1464 kve->kve_start = (void*)entry->start; 1465 kve->kve_end = (void*)entry->end; 1466 kve->kve_offset = (off_t)entry->offset; 1467 1468 if (entry->protection & VM_PROT_READ) 1469 kve->kve_protection |= KVME_PROT_READ; 1470 if (entry->protection & VM_PROT_WRITE) 1471 kve->kve_protection |= KVME_PROT_WRITE; 1472 if (entry->protection & VM_PROT_EXECUTE) 1473 kve->kve_protection |= KVME_PROT_EXEC; 1474 1475 if (entry->eflags & MAP_ENTRY_COW) 1476 kve->kve_flags |= KVME_FLAG_COW; 1477 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1478 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1479 1480 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1481 if (freepath != NULL) 1482 free(freepath, M_TEMP); 1483 1484 last_timestamp = map->timestamp; 1485 vm_map_unlock_read(map); 1486 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1487 vm_map_lock_read(map); 1488 if (error) 1489 break; 1490 if (last_timestamp + 1 != map->timestamp) { 1491 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1492 entry = tmp_entry; 1493 } 1494 } 1495 vm_map_unlock_read(map); 1496 PRELE(p); 1497 free(kve, M_TEMP); 1498 return (error); 1499 } 1500 1501 #if defined(STACK) || defined(DDB) 1502 static int 1503 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1504 { 1505 struct kinfo_kstack *kkstp; 1506 int error, i, *name, numthreads; 1507 lwpid_t *lwpidarray; 1508 struct thread *td; 1509 struct stack *st; 1510 struct sbuf sb; 1511 struct proc *p; 1512 1513 name = (int *)arg1; 1514 if ((p = pfind((pid_t)name[0])) == NULL) 1515 return (ESRCH); 1516 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1517 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1518 PROC_UNLOCK(p); 1519 return (ESRCH); 1520 } 1521 if ((error = p_candebug(curthread, p))) { 1522 PROC_UNLOCK(p); 1523 return (error); 1524 } 1525 _PHOLD(p); 1526 PROC_UNLOCK(p); 1527 1528 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1529 st = stack_create(); 1530 1531 lwpidarray = NULL; 1532 numthreads = 0; 1533 PROC_LOCK(p); 1534 repeat: 1535 if (numthreads < p->p_numthreads) { 1536 if (lwpidarray != NULL) { 1537 free(lwpidarray, M_TEMP); 1538 lwpidarray = NULL; 1539 } 1540 numthreads = p->p_numthreads; 1541 PROC_UNLOCK(p); 1542 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1543 M_WAITOK | M_ZERO); 1544 PROC_LOCK(p); 1545 goto repeat; 1546 } 1547 i = 0; 1548 1549 /* 1550 * XXXRW: During the below loop, execve(2) and countless other sorts 1551 * of changes could have taken place. Should we check to see if the 1552 * vmspace has been replaced, or the like, in order to prevent 1553 * giving a snapshot that spans, say, execve(2), with some threads 1554 * before and some after? Among other things, the credentials could 1555 * have changed, in which case the right to extract debug info might 1556 * no longer be assured. 1557 */ 1558 FOREACH_THREAD_IN_PROC(p, td) { 1559 KASSERT(i < numthreads, 1560 ("sysctl_kern_proc_kstack: numthreads")); 1561 lwpidarray[i] = td->td_tid; 1562 i++; 1563 } 1564 numthreads = i; 1565 for (i = 0; i < numthreads; i++) { 1566 td = thread_find(p, lwpidarray[i]); 1567 if (td == NULL) { 1568 continue; 1569 } 1570 bzero(kkstp, sizeof(*kkstp)); 1571 (void)sbuf_new(&sb, kkstp->kkst_trace, 1572 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1573 thread_lock(td); 1574 kkstp->kkst_tid = td->td_tid; 1575 if (TD_IS_SWAPPED(td)) 1576 kkstp->kkst_state = KKST_STATE_SWAPPED; 1577 else if (TD_IS_RUNNING(td)) 1578 kkstp->kkst_state = KKST_STATE_RUNNING; 1579 else { 1580 kkstp->kkst_state = KKST_STATE_STACKOK; 1581 stack_save_td(st, td); 1582 } 1583 thread_unlock(td); 1584 PROC_UNLOCK(p); 1585 stack_sbuf_print(&sb, st); 1586 sbuf_finish(&sb); 1587 sbuf_delete(&sb); 1588 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1589 PROC_LOCK(p); 1590 if (error) 1591 break; 1592 } 1593 _PRELE(p); 1594 PROC_UNLOCK(p); 1595 if (lwpidarray != NULL) 1596 free(lwpidarray, M_TEMP); 1597 stack_destroy(st); 1598 free(kkstp, M_TEMP); 1599 return (error); 1600 } 1601 #endif 1602 1603 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1604 1605 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1606 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1607 1608 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1609 sysctl_kern_proc, "Process table"); 1610 1611 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1612 sysctl_kern_proc, "Process table"); 1613 1614 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1615 sysctl_kern_proc, "Process table"); 1616 1617 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1618 sysctl_kern_proc, "Process table"); 1619 1620 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1621 sysctl_kern_proc, "Process table"); 1622 1623 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1624 sysctl_kern_proc, "Process table"); 1625 1626 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1627 sysctl_kern_proc, "Process table"); 1628 1629 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1630 sysctl_kern_proc, "Process table"); 1631 1632 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1633 sysctl_kern_proc, "Return process table, no threads"); 1634 1635 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1636 CTLFLAG_RW | CTLFLAG_ANYBODY, 1637 sysctl_kern_proc_args, "Process argument list"); 1638 1639 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1640 sysctl_kern_proc_pathname, "Process executable path"); 1641 1642 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1643 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1644 1645 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1646 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1647 1648 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1649 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1650 1651 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1652 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1653 1654 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1655 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1656 1657 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1658 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1659 1660 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1661 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1662 1663 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1664 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1665 1666 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1667 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1668 1669 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1670 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1671 1672 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD, 1673 sysctl_kern_proc_vmmap, "Process vm map entries"); 1674 1675 #if defined(STACK) || defined(DDB) 1676 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD, 1677 sysctl_kern_proc_kstack, "Process kernel stacks"); 1678 #endif 1679