1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ktrace.h" 36 #include "opt_kstack_pages.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/proc.h> 45 #include <sys/refcount.h> 46 #include <sys/sysent.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 #include <sys/filedesc.h> 51 #include <sys/tty.h> 52 #include <sys/signalvar.h> 53 #include <sys/sx.h> 54 #include <sys/user.h> 55 #include <sys/jail.h> 56 #include <sys/vnode.h> 57 #ifdef KTRACE 58 #include <sys/uio.h> 59 #include <sys/ktrace.h> 60 #endif 61 62 #include <vm/vm.h> 63 #include <vm/vm_extern.h> 64 #include <vm/pmap.h> 65 #include <vm/vm_map.h> 66 #include <vm/uma.h> 67 68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 69 MALLOC_DEFINE(M_SESSION, "session", "session header"); 70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 72 73 static void doenterpgrp(struct proc *, struct pgrp *); 74 static void orphanpg(struct pgrp *pg); 75 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 76 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 77 static void pgadjustjobc(struct pgrp *pgrp, int entering); 78 static void pgdelete(struct pgrp *); 79 static int proc_ctor(void *mem, int size, void *arg, int flags); 80 static void proc_dtor(void *mem, int size, void *arg); 81 static int proc_init(void *mem, int size, int flags); 82 static void proc_fini(void *mem, int size); 83 84 /* 85 * Other process lists 86 */ 87 struct pidhashhead *pidhashtbl; 88 u_long pidhash; 89 struct pgrphashhead *pgrphashtbl; 90 u_long pgrphash; 91 struct proclist allproc; 92 struct proclist zombproc; 93 struct sx allproc_lock; 94 struct sx proctree_lock; 95 struct mtx ppeers_lock; 96 uma_zone_t proc_zone; 97 uma_zone_t ithread_zone; 98 99 int kstack_pages = KSTACK_PAGES; 100 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 101 102 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 103 104 /* 105 * Initialize global process hashing structures. 106 */ 107 void 108 procinit() 109 { 110 111 sx_init(&allproc_lock, "allproc"); 112 sx_init(&proctree_lock, "proctree"); 113 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 114 LIST_INIT(&allproc); 115 LIST_INIT(&zombproc); 116 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 117 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 118 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 119 proc_ctor, proc_dtor, proc_init, proc_fini, 120 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 121 uihashinit(); 122 } 123 124 /* 125 * Prepare a proc for use. 126 */ 127 static int 128 proc_ctor(void *mem, int size, void *arg, int flags) 129 { 130 struct proc *p; 131 132 p = (struct proc *)mem; 133 return (0); 134 } 135 136 /* 137 * Reclaim a proc after use. 138 */ 139 static void 140 proc_dtor(void *mem, int size, void *arg) 141 { 142 struct proc *p; 143 struct thread *td; 144 145 /* INVARIANTS checks go here */ 146 p = (struct proc *)mem; 147 td = FIRST_THREAD_IN_PROC(p); 148 #ifdef INVARIANTS 149 KASSERT((p->p_numthreads == 1), 150 ("bad number of threads in exiting process")); 151 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 152 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 153 #endif 154 155 /* Dispose of an alternate kstack, if it exists. 156 * XXX What if there are more than one thread in the proc? 157 * The first thread in the proc is special and not 158 * freed, so you gotta do this here. 159 */ 160 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 161 vm_thread_dispose_altkstack(td); 162 if (p->p_ksi != NULL) 163 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 164 } 165 166 /* 167 * Initialize type-stable parts of a proc (when newly created). 168 */ 169 static int 170 proc_init(void *mem, int size, int flags) 171 { 172 struct proc *p; 173 struct thread *td; 174 175 p = (struct proc *)mem; 176 p->p_sched = (struct p_sched *)&p[1]; 177 td = thread_alloc(); 178 bzero(&p->p_mtx, sizeof(struct mtx)); 179 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 180 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 181 p->p_stats = pstats_alloc(); 182 proc_linkup(p, td); 183 sched_newproc(p, td); 184 return (0); 185 } 186 187 /* 188 * UMA should ensure that this function is never called. 189 * Freeing a proc structure would violate type stability. 190 */ 191 static void 192 proc_fini(void *mem, int size) 193 { 194 #ifdef notnow 195 struct proc *p; 196 197 p = (struct proc *)mem; 198 pstats_free(p->p_stats); 199 thread_free(FIRST_THREAD_IN_PROC(p)); 200 mtx_destroy(&p->p_mtx); 201 if (p->p_ksi != NULL) 202 ksiginfo_free(p->p_ksi); 203 #else 204 panic("proc reclaimed"); 205 #endif 206 } 207 208 /* 209 * Is p an inferior of the current process? 210 */ 211 int 212 inferior(p) 213 register struct proc *p; 214 { 215 216 sx_assert(&proctree_lock, SX_LOCKED); 217 for (; p != curproc; p = p->p_pptr) 218 if (p->p_pid == 0) 219 return (0); 220 return (1); 221 } 222 223 /* 224 * Locate a process by number; return only "live" processes -- i.e., neither 225 * zombies nor newly born but incompletely initialized processes. By not 226 * returning processes in the PRS_NEW state, we allow callers to avoid 227 * testing for that condition to avoid dereferencing p_ucred, et al. 228 */ 229 struct proc * 230 pfind(pid) 231 register pid_t pid; 232 { 233 register struct proc *p; 234 235 sx_slock(&allproc_lock); 236 LIST_FOREACH(p, PIDHASH(pid), p_hash) 237 if (p->p_pid == pid) { 238 if (p->p_state == PRS_NEW) { 239 p = NULL; 240 break; 241 } 242 PROC_LOCK(p); 243 break; 244 } 245 sx_sunlock(&allproc_lock); 246 return (p); 247 } 248 249 /* 250 * Locate a process group by number. 251 * The caller must hold proctree_lock. 252 */ 253 struct pgrp * 254 pgfind(pgid) 255 register pid_t pgid; 256 { 257 register struct pgrp *pgrp; 258 259 sx_assert(&proctree_lock, SX_LOCKED); 260 261 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 262 if (pgrp->pg_id == pgid) { 263 PGRP_LOCK(pgrp); 264 return (pgrp); 265 } 266 } 267 return (NULL); 268 } 269 270 /* 271 * Create a new process group. 272 * pgid must be equal to the pid of p. 273 * Begin a new session if required. 274 */ 275 int 276 enterpgrp(p, pgid, pgrp, sess) 277 register struct proc *p; 278 pid_t pgid; 279 struct pgrp *pgrp; 280 struct session *sess; 281 { 282 struct pgrp *pgrp2; 283 284 sx_assert(&proctree_lock, SX_XLOCKED); 285 286 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 287 KASSERT(p->p_pid == pgid, 288 ("enterpgrp: new pgrp and pid != pgid")); 289 290 pgrp2 = pgfind(pgid); 291 292 KASSERT(pgrp2 == NULL, 293 ("enterpgrp: pgrp with pgid exists")); 294 KASSERT(!SESS_LEADER(p), 295 ("enterpgrp: session leader attempted setpgrp")); 296 297 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 298 299 if (sess != NULL) { 300 /* 301 * new session 302 */ 303 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 304 mtx_lock(&Giant); /* XXX TTY */ 305 PROC_LOCK(p); 306 p->p_flag &= ~P_CONTROLT; 307 PROC_UNLOCK(p); 308 PGRP_LOCK(pgrp); 309 sess->s_leader = p; 310 sess->s_sid = p->p_pid; 311 sess->s_count = 1; 312 sess->s_ttyvp = NULL; 313 sess->s_ttyp = NULL; 314 bcopy(p->p_session->s_login, sess->s_login, 315 sizeof(sess->s_login)); 316 pgrp->pg_session = sess; 317 KASSERT(p == curproc, 318 ("enterpgrp: mksession and p != curproc")); 319 } else { 320 mtx_lock(&Giant); /* XXX TTY */ 321 pgrp->pg_session = p->p_session; 322 SESS_LOCK(pgrp->pg_session); 323 pgrp->pg_session->s_count++; 324 SESS_UNLOCK(pgrp->pg_session); 325 PGRP_LOCK(pgrp); 326 } 327 pgrp->pg_id = pgid; 328 LIST_INIT(&pgrp->pg_members); 329 330 /* 331 * As we have an exclusive lock of proctree_lock, 332 * this should not deadlock. 333 */ 334 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 335 pgrp->pg_jobc = 0; 336 SLIST_INIT(&pgrp->pg_sigiolst); 337 PGRP_UNLOCK(pgrp); 338 mtx_unlock(&Giant); /* XXX TTY */ 339 340 doenterpgrp(p, pgrp); 341 342 return (0); 343 } 344 345 /* 346 * Move p to an existing process group 347 */ 348 int 349 enterthispgrp(p, pgrp) 350 register struct proc *p; 351 struct pgrp *pgrp; 352 { 353 354 sx_assert(&proctree_lock, SX_XLOCKED); 355 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 356 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 357 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 358 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 359 KASSERT(pgrp->pg_session == p->p_session, 360 ("%s: pgrp's session %p, p->p_session %p.\n", 361 __func__, 362 pgrp->pg_session, 363 p->p_session)); 364 KASSERT(pgrp != p->p_pgrp, 365 ("%s: p belongs to pgrp.", __func__)); 366 367 doenterpgrp(p, pgrp); 368 369 return (0); 370 } 371 372 /* 373 * Move p to a process group 374 */ 375 static void 376 doenterpgrp(p, pgrp) 377 struct proc *p; 378 struct pgrp *pgrp; 379 { 380 struct pgrp *savepgrp; 381 382 sx_assert(&proctree_lock, SX_XLOCKED); 383 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 384 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 385 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 386 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 387 388 savepgrp = p->p_pgrp; 389 390 /* 391 * Adjust eligibility of affected pgrps to participate in job control. 392 * Increment eligibility counts before decrementing, otherwise we 393 * could reach 0 spuriously during the first call. 394 */ 395 fixjobc(p, pgrp, 1); 396 fixjobc(p, p->p_pgrp, 0); 397 398 mtx_lock(&Giant); /* XXX TTY */ 399 PGRP_LOCK(pgrp); 400 PGRP_LOCK(savepgrp); 401 PROC_LOCK(p); 402 LIST_REMOVE(p, p_pglist); 403 p->p_pgrp = pgrp; 404 PROC_UNLOCK(p); 405 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 406 PGRP_UNLOCK(savepgrp); 407 PGRP_UNLOCK(pgrp); 408 mtx_unlock(&Giant); /* XXX TTY */ 409 if (LIST_EMPTY(&savepgrp->pg_members)) 410 pgdelete(savepgrp); 411 } 412 413 /* 414 * remove process from process group 415 */ 416 int 417 leavepgrp(p) 418 register struct proc *p; 419 { 420 struct pgrp *savepgrp; 421 422 sx_assert(&proctree_lock, SX_XLOCKED); 423 savepgrp = p->p_pgrp; 424 mtx_lock(&Giant); /* XXX TTY */ 425 PGRP_LOCK(savepgrp); 426 PROC_LOCK(p); 427 LIST_REMOVE(p, p_pglist); 428 p->p_pgrp = NULL; 429 PROC_UNLOCK(p); 430 PGRP_UNLOCK(savepgrp); 431 mtx_unlock(&Giant); /* XXX TTY */ 432 if (LIST_EMPTY(&savepgrp->pg_members)) 433 pgdelete(savepgrp); 434 return (0); 435 } 436 437 /* 438 * delete a process group 439 */ 440 static void 441 pgdelete(pgrp) 442 register struct pgrp *pgrp; 443 { 444 struct session *savesess; 445 446 sx_assert(&proctree_lock, SX_XLOCKED); 447 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 448 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 449 450 /* 451 * Reset any sigio structures pointing to us as a result of 452 * F_SETOWN with our pgid. 453 */ 454 funsetownlst(&pgrp->pg_sigiolst); 455 456 mtx_lock(&Giant); /* XXX TTY */ 457 PGRP_LOCK(pgrp); 458 if (pgrp->pg_session->s_ttyp != NULL && 459 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 460 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 461 LIST_REMOVE(pgrp, pg_hash); 462 savesess = pgrp->pg_session; 463 SESSRELE(savesess); 464 PGRP_UNLOCK(pgrp); 465 mtx_destroy(&pgrp->pg_mtx); 466 FREE(pgrp, M_PGRP); 467 mtx_unlock(&Giant); /* XXX TTY */ 468 } 469 470 static void 471 pgadjustjobc(pgrp, entering) 472 struct pgrp *pgrp; 473 int entering; 474 { 475 476 PGRP_LOCK(pgrp); 477 if (entering) 478 pgrp->pg_jobc++; 479 else { 480 --pgrp->pg_jobc; 481 if (pgrp->pg_jobc == 0) 482 orphanpg(pgrp); 483 } 484 PGRP_UNLOCK(pgrp); 485 } 486 487 /* 488 * Adjust pgrp jobc counters when specified process changes process group. 489 * We count the number of processes in each process group that "qualify" 490 * the group for terminal job control (those with a parent in a different 491 * process group of the same session). If that count reaches zero, the 492 * process group becomes orphaned. Check both the specified process' 493 * process group and that of its children. 494 * entering == 0 => p is leaving specified group. 495 * entering == 1 => p is entering specified group. 496 */ 497 void 498 fixjobc(p, pgrp, entering) 499 register struct proc *p; 500 register struct pgrp *pgrp; 501 int entering; 502 { 503 register struct pgrp *hispgrp; 504 register struct session *mysession; 505 506 sx_assert(&proctree_lock, SX_LOCKED); 507 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 508 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 509 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 510 511 /* 512 * Check p's parent to see whether p qualifies its own process 513 * group; if so, adjust count for p's process group. 514 */ 515 mysession = pgrp->pg_session; 516 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 517 hispgrp->pg_session == mysession) 518 pgadjustjobc(pgrp, entering); 519 520 /* 521 * Check this process' children to see whether they qualify 522 * their process groups; if so, adjust counts for children's 523 * process groups. 524 */ 525 LIST_FOREACH(p, &p->p_children, p_sibling) { 526 hispgrp = p->p_pgrp; 527 if (hispgrp == pgrp || 528 hispgrp->pg_session != mysession) 529 continue; 530 PROC_LOCK(p); 531 if (p->p_state == PRS_ZOMBIE) { 532 PROC_UNLOCK(p); 533 continue; 534 } 535 PROC_UNLOCK(p); 536 pgadjustjobc(hispgrp, entering); 537 } 538 } 539 540 /* 541 * A process group has become orphaned; 542 * if there are any stopped processes in the group, 543 * hang-up all process in that group. 544 */ 545 static void 546 orphanpg(pg) 547 struct pgrp *pg; 548 { 549 register struct proc *p; 550 551 PGRP_LOCK_ASSERT(pg, MA_OWNED); 552 553 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 554 PROC_LOCK(p); 555 if (P_SHOULDSTOP(p)) { 556 PROC_UNLOCK(p); 557 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 558 PROC_LOCK(p); 559 psignal(p, SIGHUP); 560 psignal(p, SIGCONT); 561 PROC_UNLOCK(p); 562 } 563 return; 564 } 565 PROC_UNLOCK(p); 566 } 567 } 568 569 void 570 sessrele(struct session *s) 571 { 572 int i; 573 574 SESS_LOCK(s); 575 i = --s->s_count; 576 SESS_UNLOCK(s); 577 if (i == 0) { 578 if (s->s_ttyp != NULL) 579 ttyrel(s->s_ttyp); 580 mtx_destroy(&s->s_mtx); 581 FREE(s, M_SESSION); 582 } 583 } 584 585 #include "opt_ddb.h" 586 #ifdef DDB 587 #include <ddb/ddb.h> 588 589 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 590 { 591 register struct pgrp *pgrp; 592 register struct proc *p; 593 register int i; 594 595 for (i = 0; i <= pgrphash; i++) { 596 if (!LIST_EMPTY(&pgrphashtbl[i])) { 597 printf("\tindx %d\n", i); 598 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 599 printf( 600 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 601 (void *)pgrp, (long)pgrp->pg_id, 602 (void *)pgrp->pg_session, 603 pgrp->pg_session->s_count, 604 (void *)LIST_FIRST(&pgrp->pg_members)); 605 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 606 printf("\t\tpid %ld addr %p pgrp %p\n", 607 (long)p->p_pid, (void *)p, 608 (void *)p->p_pgrp); 609 } 610 } 611 } 612 } 613 } 614 #endif /* DDB */ 615 616 /* 617 * Clear kinfo_proc and fill in any information that is common 618 * to all threads in the process. 619 * Must be called with the target process locked. 620 */ 621 static void 622 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 623 { 624 struct thread *td0; 625 struct tty *tp; 626 struct session *sp; 627 struct ucred *cred; 628 struct sigacts *ps; 629 630 bzero(kp, sizeof(*kp)); 631 632 kp->ki_structsize = sizeof(*kp); 633 kp->ki_paddr = p; 634 PROC_LOCK_ASSERT(p, MA_OWNED); 635 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 636 kp->ki_args = p->p_args; 637 kp->ki_textvp = p->p_textvp; 638 #ifdef KTRACE 639 kp->ki_tracep = p->p_tracevp; 640 mtx_lock(&ktrace_mtx); 641 kp->ki_traceflag = p->p_traceflag; 642 mtx_unlock(&ktrace_mtx); 643 #endif 644 kp->ki_fd = p->p_fd; 645 kp->ki_vmspace = p->p_vmspace; 646 kp->ki_flag = p->p_flag; 647 cred = p->p_ucred; 648 if (cred) { 649 kp->ki_uid = cred->cr_uid; 650 kp->ki_ruid = cred->cr_ruid; 651 kp->ki_svuid = cred->cr_svuid; 652 /* XXX bde doesn't like KI_NGROUPS */ 653 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 654 bcopy(cred->cr_groups, kp->ki_groups, 655 kp->ki_ngroups * sizeof(gid_t)); 656 kp->ki_rgid = cred->cr_rgid; 657 kp->ki_svgid = cred->cr_svgid; 658 /* If jailed(cred), emulate the old P_JAILED flag. */ 659 if (jailed(cred)) { 660 kp->ki_flag |= P_JAILED; 661 /* If inside a jail, use 0 as a jail ID. */ 662 if (!jailed(curthread->td_ucred)) 663 kp->ki_jid = cred->cr_prison->pr_id; 664 } 665 } 666 ps = p->p_sigacts; 667 if (ps) { 668 mtx_lock(&ps->ps_mtx); 669 kp->ki_sigignore = ps->ps_sigignore; 670 kp->ki_sigcatch = ps->ps_sigcatch; 671 mtx_unlock(&ps->ps_mtx); 672 } 673 PROC_SLOCK(p); 674 if (p->p_state != PRS_NEW && 675 p->p_state != PRS_ZOMBIE && 676 p->p_vmspace != NULL) { 677 struct vmspace *vm = p->p_vmspace; 678 679 kp->ki_size = vm->vm_map.size; 680 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 681 FOREACH_THREAD_IN_PROC(p, td0) { 682 if (!TD_IS_SWAPPED(td0)) 683 kp->ki_rssize += td0->td_kstack_pages; 684 if (td0->td_altkstack_obj != NULL) 685 kp->ki_rssize += td0->td_altkstack_pages; 686 } 687 kp->ki_swrss = vm->vm_swrss; 688 kp->ki_tsize = vm->vm_tsize; 689 kp->ki_dsize = vm->vm_dsize; 690 kp->ki_ssize = vm->vm_ssize; 691 } else if (p->p_state == PRS_ZOMBIE) 692 kp->ki_stat = SZOMB; 693 if (kp->ki_flag & P_INMEM) 694 kp->ki_sflag = PS_INMEM; 695 else 696 kp->ki_sflag = 0; 697 /* Calculate legacy swtime as seconds since 'swtick'. */ 698 kp->ki_swtime = (ticks - p->p_swtick) / hz; 699 kp->ki_pid = p->p_pid; 700 kp->ki_nice = p->p_nice; 701 rufetch(p, &kp->ki_rusage); 702 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 703 PROC_SUNLOCK(p); 704 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 705 kp->ki_start = p->p_stats->p_start; 706 timevaladd(&kp->ki_start, &boottime); 707 PROC_SLOCK(p); 708 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 709 PROC_SUNLOCK(p); 710 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 711 712 /* Some callers want child-times in a single value */ 713 kp->ki_childtime = kp->ki_childstime; 714 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 715 } 716 tp = NULL; 717 if (p->p_pgrp) { 718 kp->ki_pgid = p->p_pgrp->pg_id; 719 kp->ki_jobc = p->p_pgrp->pg_jobc; 720 sp = p->p_pgrp->pg_session; 721 722 if (sp != NULL) { 723 kp->ki_sid = sp->s_sid; 724 SESS_LOCK(sp); 725 strlcpy(kp->ki_login, sp->s_login, 726 sizeof(kp->ki_login)); 727 if (sp->s_ttyvp) 728 kp->ki_kiflag |= KI_CTTY; 729 if (SESS_LEADER(p)) 730 kp->ki_kiflag |= KI_SLEADER; 731 tp = sp->s_ttyp; 732 SESS_UNLOCK(sp); 733 } 734 } 735 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 736 kp->ki_tdev = dev2udev(tp->t_dev); 737 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 738 if (tp->t_session) 739 kp->ki_tsid = tp->t_session->s_sid; 740 } else 741 kp->ki_tdev = NODEV; 742 if (p->p_comm[0] != '\0') 743 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 744 if (p->p_sysent && p->p_sysent->sv_name != NULL && 745 p->p_sysent->sv_name[0] != '\0') 746 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 747 kp->ki_siglist = p->p_siglist; 748 kp->ki_xstat = p->p_xstat; 749 kp->ki_acflag = p->p_acflag; 750 kp->ki_lock = p->p_lock; 751 if (p->p_pptr) 752 kp->ki_ppid = p->p_pptr->p_pid; 753 } 754 755 /* 756 * Fill in information that is thread specific. 757 * Must be called with p_slock locked. 758 */ 759 static void 760 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 761 { 762 struct proc *p; 763 764 p = td->td_proc; 765 PROC_SLOCK_ASSERT(p, MA_OWNED); 766 767 thread_lock(td); 768 if (td->td_wmesg != NULL) 769 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 770 else 771 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 772 if (td->td_name[0] != '\0') 773 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 774 if (TD_ON_LOCK(td)) { 775 kp->ki_kiflag |= KI_LOCKBLOCK; 776 strlcpy(kp->ki_lockname, td->td_lockname, 777 sizeof(kp->ki_lockname)); 778 } else { 779 kp->ki_kiflag &= ~KI_LOCKBLOCK; 780 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 781 } 782 783 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 784 if (TD_ON_RUNQ(td) || 785 TD_CAN_RUN(td) || 786 TD_IS_RUNNING(td)) { 787 kp->ki_stat = SRUN; 788 } else if (P_SHOULDSTOP(p)) { 789 kp->ki_stat = SSTOP; 790 } else if (TD_IS_SLEEPING(td)) { 791 kp->ki_stat = SSLEEP; 792 } else if (TD_ON_LOCK(td)) { 793 kp->ki_stat = SLOCK; 794 } else { 795 kp->ki_stat = SWAIT; 796 } 797 } else if (p->p_state == PRS_ZOMBIE) { 798 kp->ki_stat = SZOMB; 799 } else { 800 kp->ki_stat = SIDL; 801 } 802 803 /* Things in the thread */ 804 kp->ki_wchan = td->td_wchan; 805 kp->ki_pri.pri_level = td->td_priority; 806 kp->ki_pri.pri_native = td->td_base_pri; 807 kp->ki_lastcpu = td->td_lastcpu; 808 kp->ki_oncpu = td->td_oncpu; 809 kp->ki_tdflags = td->td_flags; 810 kp->ki_tid = td->td_tid; 811 kp->ki_numthreads = p->p_numthreads; 812 kp->ki_pcb = td->td_pcb; 813 kp->ki_kstack = (void *)td->td_kstack; 814 kp->ki_pctcpu = sched_pctcpu(td); 815 kp->ki_estcpu = td->td_estcpu; 816 kp->ki_slptime = (ticks - td->td_slptick) / hz; 817 kp->ki_pri.pri_class = td->td_pri_class; 818 kp->ki_pri.pri_user = td->td_user_pri; 819 820 /* We can't get this anymore but ps etc never used it anyway. */ 821 kp->ki_rqindex = 0; 822 823 SIGSETOR(kp->ki_siglist, td->td_siglist); 824 kp->ki_sigmask = td->td_sigmask; 825 thread_unlock(td); 826 } 827 828 /* 829 * Fill in a kinfo_proc structure for the specified process. 830 * Must be called with the target process locked. 831 */ 832 void 833 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 834 { 835 836 fill_kinfo_proc_only(p, kp); 837 PROC_SLOCK(p); 838 if (FIRST_THREAD_IN_PROC(p) != NULL) 839 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 840 PROC_SUNLOCK(p); 841 } 842 843 struct pstats * 844 pstats_alloc(void) 845 { 846 847 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 848 } 849 850 /* 851 * Copy parts of p_stats; zero the rest of p_stats (statistics). 852 */ 853 void 854 pstats_fork(struct pstats *src, struct pstats *dst) 855 { 856 857 bzero(&dst->pstat_startzero, 858 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 859 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 860 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 861 } 862 863 void 864 pstats_free(struct pstats *ps) 865 { 866 867 free(ps, M_SUBPROC); 868 } 869 870 /* 871 * Locate a zombie process by number 872 */ 873 struct proc * 874 zpfind(pid_t pid) 875 { 876 struct proc *p; 877 878 sx_slock(&allproc_lock); 879 LIST_FOREACH(p, &zombproc, p_list) 880 if (p->p_pid == pid) { 881 PROC_LOCK(p); 882 break; 883 } 884 sx_sunlock(&allproc_lock); 885 return (p); 886 } 887 888 #define KERN_PROC_ZOMBMASK 0x3 889 #define KERN_PROC_NOTHREADS 0x4 890 891 /* 892 * Must be called with the process locked and will return with it unlocked. 893 */ 894 static int 895 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 896 { 897 struct thread *td; 898 struct kinfo_proc kinfo_proc; 899 int error = 0; 900 struct proc *np; 901 pid_t pid = p->p_pid; 902 903 PROC_LOCK_ASSERT(p, MA_OWNED); 904 905 fill_kinfo_proc_only(p, &kinfo_proc); 906 if (flags & KERN_PROC_NOTHREADS) { 907 PROC_SLOCK(p); 908 if (FIRST_THREAD_IN_PROC(p) != NULL) 909 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), &kinfo_proc); 910 PROC_SUNLOCK(p); 911 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 912 sizeof(kinfo_proc)); 913 } else { 914 PROC_SLOCK(p); 915 if (FIRST_THREAD_IN_PROC(p) != NULL) 916 FOREACH_THREAD_IN_PROC(p, td) { 917 fill_kinfo_thread(td, &kinfo_proc); 918 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 919 sizeof(kinfo_proc)); 920 if (error) 921 break; 922 } 923 else 924 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 925 sizeof(kinfo_proc)); 926 PROC_SUNLOCK(p); 927 } 928 PROC_UNLOCK(p); 929 if (error) 930 return (error); 931 if (flags & KERN_PROC_ZOMBMASK) 932 np = zpfind(pid); 933 else { 934 if (pid == 0) 935 return (0); 936 np = pfind(pid); 937 } 938 if (np == NULL) 939 return EAGAIN; 940 if (np != p) { 941 PROC_UNLOCK(np); 942 return EAGAIN; 943 } 944 PROC_UNLOCK(np); 945 return (0); 946 } 947 948 static int 949 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 950 { 951 int *name = (int*) arg1; 952 u_int namelen = arg2; 953 struct proc *p; 954 int flags, doingzomb, oid_number; 955 int error = 0; 956 957 oid_number = oidp->oid_number; 958 if (oid_number != KERN_PROC_ALL && 959 (oid_number & KERN_PROC_INC_THREAD) == 0) 960 flags = KERN_PROC_NOTHREADS; 961 else { 962 flags = 0; 963 oid_number &= ~KERN_PROC_INC_THREAD; 964 } 965 if (oid_number == KERN_PROC_PID) { 966 if (namelen != 1) 967 return (EINVAL); 968 error = sysctl_wire_old_buffer(req, 0); 969 if (error) 970 return (error); 971 p = pfind((pid_t)name[0]); 972 if (!p) 973 return (ESRCH); 974 if ((error = p_cansee(curthread, p))) { 975 PROC_UNLOCK(p); 976 return (error); 977 } 978 error = sysctl_out_proc(p, req, flags); 979 return (error); 980 } 981 982 switch (oid_number) { 983 case KERN_PROC_ALL: 984 if (namelen != 0) 985 return (EINVAL); 986 break; 987 case KERN_PROC_PROC: 988 if (namelen != 0 && namelen != 1) 989 return (EINVAL); 990 break; 991 default: 992 if (namelen != 1) 993 return (EINVAL); 994 break; 995 } 996 997 if (!req->oldptr) { 998 /* overestimate by 5 procs */ 999 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1000 if (error) 1001 return (error); 1002 } 1003 error = sysctl_wire_old_buffer(req, 0); 1004 if (error != 0) 1005 return (error); 1006 sx_slock(&allproc_lock); 1007 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1008 if (!doingzomb) 1009 p = LIST_FIRST(&allproc); 1010 else 1011 p = LIST_FIRST(&zombproc); 1012 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1013 /* 1014 * Skip embryonic processes. 1015 */ 1016 PROC_SLOCK(p); 1017 if (p->p_state == PRS_NEW) { 1018 PROC_SUNLOCK(p); 1019 continue; 1020 } 1021 PROC_SUNLOCK(p); 1022 PROC_LOCK(p); 1023 KASSERT(p->p_ucred != NULL, 1024 ("process credential is NULL for non-NEW proc")); 1025 /* 1026 * Show a user only appropriate processes. 1027 */ 1028 if (p_cansee(curthread, p)) { 1029 PROC_UNLOCK(p); 1030 continue; 1031 } 1032 /* 1033 * TODO - make more efficient (see notes below). 1034 * do by session. 1035 */ 1036 switch (oid_number) { 1037 1038 case KERN_PROC_GID: 1039 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1040 PROC_UNLOCK(p); 1041 continue; 1042 } 1043 break; 1044 1045 case KERN_PROC_PGRP: 1046 /* could do this by traversing pgrp */ 1047 if (p->p_pgrp == NULL || 1048 p->p_pgrp->pg_id != (pid_t)name[0]) { 1049 PROC_UNLOCK(p); 1050 continue; 1051 } 1052 break; 1053 1054 case KERN_PROC_RGID: 1055 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1056 PROC_UNLOCK(p); 1057 continue; 1058 } 1059 break; 1060 1061 case KERN_PROC_SESSION: 1062 if (p->p_session == NULL || 1063 p->p_session->s_sid != (pid_t)name[0]) { 1064 PROC_UNLOCK(p); 1065 continue; 1066 } 1067 break; 1068 1069 case KERN_PROC_TTY: 1070 if ((p->p_flag & P_CONTROLT) == 0 || 1071 p->p_session == NULL) { 1072 PROC_UNLOCK(p); 1073 continue; 1074 } 1075 SESS_LOCK(p->p_session); 1076 if (p->p_session->s_ttyp == NULL || 1077 dev2udev(p->p_session->s_ttyp->t_dev) != 1078 (dev_t)name[0]) { 1079 SESS_UNLOCK(p->p_session); 1080 PROC_UNLOCK(p); 1081 continue; 1082 } 1083 SESS_UNLOCK(p->p_session); 1084 break; 1085 1086 case KERN_PROC_UID: 1087 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1088 PROC_UNLOCK(p); 1089 continue; 1090 } 1091 break; 1092 1093 case KERN_PROC_RUID: 1094 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1095 PROC_UNLOCK(p); 1096 continue; 1097 } 1098 break; 1099 1100 case KERN_PROC_PROC: 1101 break; 1102 1103 default: 1104 break; 1105 1106 } 1107 1108 error = sysctl_out_proc(p, req, flags | doingzomb); 1109 if (error) { 1110 sx_sunlock(&allproc_lock); 1111 return (error); 1112 } 1113 } 1114 } 1115 sx_sunlock(&allproc_lock); 1116 return (0); 1117 } 1118 1119 struct pargs * 1120 pargs_alloc(int len) 1121 { 1122 struct pargs *pa; 1123 1124 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1125 M_WAITOK); 1126 refcount_init(&pa->ar_ref, 1); 1127 pa->ar_length = len; 1128 return (pa); 1129 } 1130 1131 void 1132 pargs_free(struct pargs *pa) 1133 { 1134 1135 FREE(pa, M_PARGS); 1136 } 1137 1138 void 1139 pargs_hold(struct pargs *pa) 1140 { 1141 1142 if (pa == NULL) 1143 return; 1144 refcount_acquire(&pa->ar_ref); 1145 } 1146 1147 void 1148 pargs_drop(struct pargs *pa) 1149 { 1150 1151 if (pa == NULL) 1152 return; 1153 if (refcount_release(&pa->ar_ref)) 1154 pargs_free(pa); 1155 } 1156 1157 /* 1158 * This sysctl allows a process to retrieve the argument list or process 1159 * title for another process without groping around in the address space 1160 * of the other process. It also allow a process to set its own "process 1161 * title to a string of its own choice. 1162 */ 1163 static int 1164 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1165 { 1166 int *name = (int*) arg1; 1167 u_int namelen = arg2; 1168 struct pargs *newpa, *pa; 1169 struct proc *p; 1170 int error = 0; 1171 1172 if (namelen != 1) 1173 return (EINVAL); 1174 1175 p = pfind((pid_t)name[0]); 1176 if (!p) 1177 return (ESRCH); 1178 1179 if ((error = p_cansee(curthread, p)) != 0) { 1180 PROC_UNLOCK(p); 1181 return (error); 1182 } 1183 1184 if (req->newptr && curproc != p) { 1185 PROC_UNLOCK(p); 1186 return (EPERM); 1187 } 1188 1189 pa = p->p_args; 1190 pargs_hold(pa); 1191 PROC_UNLOCK(p); 1192 if (req->oldptr != NULL && pa != NULL) 1193 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1194 pargs_drop(pa); 1195 if (error != 0 || req->newptr == NULL) 1196 return (error); 1197 1198 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1199 return (ENOMEM); 1200 newpa = pargs_alloc(req->newlen); 1201 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1202 if (error != 0) { 1203 pargs_free(newpa); 1204 return (error); 1205 } 1206 PROC_LOCK(p); 1207 pa = p->p_args; 1208 p->p_args = newpa; 1209 PROC_UNLOCK(p); 1210 pargs_drop(pa); 1211 return (0); 1212 } 1213 1214 /* 1215 * This sysctl allows a process to retrieve the path of the executable for 1216 * itself or another process. 1217 */ 1218 static int 1219 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1220 { 1221 pid_t *pidp = (pid_t *)arg1; 1222 unsigned int arglen = arg2; 1223 struct proc *p; 1224 struct vnode *vp; 1225 char *retbuf, *freebuf; 1226 int error; 1227 1228 if (arglen != 1) 1229 return (EINVAL); 1230 if (*pidp == -1) { /* -1 means this process */ 1231 p = req->td->td_proc; 1232 } else { 1233 p = pfind(*pidp); 1234 if (p == NULL) 1235 return (ESRCH); 1236 if ((error = p_cansee(curthread, p)) != 0) { 1237 PROC_UNLOCK(p); 1238 return (error); 1239 } 1240 } 1241 1242 vp = p->p_textvp; 1243 vref(vp); 1244 if (*pidp != -1) 1245 PROC_UNLOCK(p); 1246 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1247 vrele(vp); 1248 if (error) 1249 return (error); 1250 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1251 free(freebuf, M_TEMP); 1252 return (error); 1253 } 1254 1255 static int 1256 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1257 { 1258 struct proc *p; 1259 char *sv_name; 1260 int *name; 1261 int namelen; 1262 int error; 1263 1264 namelen = arg2; 1265 if (namelen != 1) 1266 return (EINVAL); 1267 1268 name = (int *)arg1; 1269 if ((p = pfind((pid_t)name[0])) == NULL) 1270 return (ESRCH); 1271 if ((error = p_cansee(curthread, p))) { 1272 PROC_UNLOCK(p); 1273 return (error); 1274 } 1275 sv_name = p->p_sysent->sv_name; 1276 PROC_UNLOCK(p); 1277 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1278 } 1279 1280 1281 static SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1282 1283 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1284 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1285 1286 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1287 sysctl_kern_proc, "Process table"); 1288 1289 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1290 sysctl_kern_proc, "Process table"); 1291 1292 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1293 sysctl_kern_proc, "Process table"); 1294 1295 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1296 sysctl_kern_proc, "Process table"); 1297 1298 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1299 sysctl_kern_proc, "Process table"); 1300 1301 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1302 sysctl_kern_proc, "Process table"); 1303 1304 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1305 sysctl_kern_proc, "Process table"); 1306 1307 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1308 sysctl_kern_proc, "Process table"); 1309 1310 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1311 sysctl_kern_proc, "Return process table, no threads"); 1312 1313 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1314 CTLFLAG_RW | CTLFLAG_ANYBODY, 1315 sysctl_kern_proc_args, "Process argument list"); 1316 1317 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1318 sysctl_kern_proc_pathname, "Process executable path"); 1319 1320 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1321 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1322 1323 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1324 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1325 1326 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1327 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1328 1329 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1330 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1331 1332 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1333 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1334 1335 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1336 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1337 1338 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1339 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1340 1341 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1342 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1343 1344 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1345 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1346 1347 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1348 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1349