1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/rwlock.h> 59 #include <sys/sbuf.h> 60 #include <sys/sysent.h> 61 #include <sys/sched.h> 62 #include <sys/smp.h> 63 #include <sys/stack.h> 64 #include <sys/stat.h> 65 #include <sys/sysctl.h> 66 #include <sys/filedesc.h> 67 #include <sys/tty.h> 68 #include <sys/signalvar.h> 69 #include <sys/sdt.h> 70 #include <sys/sx.h> 71 #include <sys/user.h> 72 #include <sys/jail.h> 73 #include <sys/vnode.h> 74 #include <sys/eventhandler.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, entry, "struct proc *", "int", 96 "void *", "int"); 97 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, return, "struct proc *", "int", 98 "void *", "int"); 99 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, entry, "struct proc *", "int", 100 "void *", "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, return, "struct proc *", "int", 102 "void *"); 103 SDT_PROBE_DEFINE3(proc, kernel, init, entry, entry, "struct proc *", "int", 104 "int"); 105 SDT_PROBE_DEFINE3(proc, kernel, init, return, return, "struct proc *", "int", 106 "int"); 107 108 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 109 MALLOC_DEFINE(M_SESSION, "session", "session header"); 110 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 111 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 112 113 static void doenterpgrp(struct proc *, struct pgrp *); 114 static void orphanpg(struct pgrp *pg); 115 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 117 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 118 int preferthread); 119 static void pgadjustjobc(struct pgrp *pgrp, int entering); 120 static void pgdelete(struct pgrp *); 121 static int proc_ctor(void *mem, int size, void *arg, int flags); 122 static void proc_dtor(void *mem, int size, void *arg); 123 static int proc_init(void *mem, int size, int flags); 124 static void proc_fini(void *mem, int size); 125 static void pargs_free(struct pargs *pa); 126 static struct proc *zpfind_locked(pid_t pid); 127 128 /* 129 * Other process lists 130 */ 131 struct pidhashhead *pidhashtbl; 132 u_long pidhash; 133 struct pgrphashhead *pgrphashtbl; 134 u_long pgrphash; 135 struct proclist allproc; 136 struct proclist zombproc; 137 struct sx allproc_lock; 138 struct sx proctree_lock; 139 struct mtx ppeers_lock; 140 uma_zone_t proc_zone; 141 142 int kstack_pages = KSTACK_PAGES; 143 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 144 "Kernel stack size in pages"); 145 146 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 147 #ifdef COMPAT_FREEBSD32 148 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 149 #endif 150 151 /* 152 * Initialize global process hashing structures. 153 */ 154 void 155 procinit() 156 { 157 158 sx_init(&allproc_lock, "allproc"); 159 sx_init(&proctree_lock, "proctree"); 160 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 161 LIST_INIT(&allproc); 162 LIST_INIT(&zombproc); 163 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 164 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 165 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 166 proc_ctor, proc_dtor, proc_init, proc_fini, 167 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 168 uihashinit(); 169 } 170 171 /* 172 * Prepare a proc for use. 173 */ 174 static int 175 proc_ctor(void *mem, int size, void *arg, int flags) 176 { 177 struct proc *p; 178 179 p = (struct proc *)mem; 180 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 181 EVENTHANDLER_INVOKE(process_ctor, p); 182 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 183 return (0); 184 } 185 186 /* 187 * Reclaim a proc after use. 188 */ 189 static void 190 proc_dtor(void *mem, int size, void *arg) 191 { 192 struct proc *p; 193 struct thread *td; 194 195 /* INVARIANTS checks go here */ 196 p = (struct proc *)mem; 197 td = FIRST_THREAD_IN_PROC(p); 198 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 199 if (td != NULL) { 200 #ifdef INVARIANTS 201 KASSERT((p->p_numthreads == 1), 202 ("bad number of threads in exiting process")); 203 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 204 #endif 205 /* Free all OSD associated to this thread. */ 206 osd_thread_exit(td); 207 } 208 EVENTHANDLER_INVOKE(process_dtor, p); 209 if (p->p_ksi != NULL) 210 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 211 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 212 } 213 214 /* 215 * Initialize type-stable parts of a proc (when newly created). 216 */ 217 static int 218 proc_init(void *mem, int size, int flags) 219 { 220 struct proc *p; 221 222 p = (struct proc *)mem; 223 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 224 p->p_sched = (struct p_sched *)&p[1]; 225 bzero(&p->p_mtx, sizeof(struct mtx)); 226 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 227 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 228 cv_init(&p->p_pwait, "ppwait"); 229 cv_init(&p->p_dbgwait, "dbgwait"); 230 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 231 EVENTHANDLER_INVOKE(process_init, p); 232 p->p_stats = pstats_alloc(); 233 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 234 return (0); 235 } 236 237 /* 238 * UMA should ensure that this function is never called. 239 * Freeing a proc structure would violate type stability. 240 */ 241 static void 242 proc_fini(void *mem, int size) 243 { 244 #ifdef notnow 245 struct proc *p; 246 247 p = (struct proc *)mem; 248 EVENTHANDLER_INVOKE(process_fini, p); 249 pstats_free(p->p_stats); 250 thread_free(FIRST_THREAD_IN_PROC(p)); 251 mtx_destroy(&p->p_mtx); 252 if (p->p_ksi != NULL) 253 ksiginfo_free(p->p_ksi); 254 #else 255 panic("proc reclaimed"); 256 #endif 257 } 258 259 /* 260 * Is p an inferior of the current process? 261 */ 262 int 263 inferior(p) 264 register struct proc *p; 265 { 266 267 sx_assert(&proctree_lock, SX_LOCKED); 268 for (; p != curproc; p = p->p_pptr) 269 if (p->p_pid == 0) 270 return (0); 271 return (1); 272 } 273 274 struct proc * 275 pfind_locked(pid_t pid) 276 { 277 struct proc *p; 278 279 sx_assert(&allproc_lock, SX_LOCKED); 280 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 281 if (p->p_pid == pid) { 282 PROC_LOCK(p); 283 if (p->p_state == PRS_NEW) { 284 PROC_UNLOCK(p); 285 p = NULL; 286 } 287 break; 288 } 289 } 290 return (p); 291 } 292 293 /* 294 * Locate a process by number; return only "live" processes -- i.e., neither 295 * zombies nor newly born but incompletely initialized processes. By not 296 * returning processes in the PRS_NEW state, we allow callers to avoid 297 * testing for that condition to avoid dereferencing p_ucred, et al. 298 */ 299 struct proc * 300 pfind(pid_t pid) 301 { 302 struct proc *p; 303 304 sx_slock(&allproc_lock); 305 p = pfind_locked(pid); 306 sx_sunlock(&allproc_lock); 307 return (p); 308 } 309 310 static struct proc * 311 pfind_tid_locked(pid_t tid) 312 { 313 struct proc *p; 314 struct thread *td; 315 316 sx_assert(&allproc_lock, SX_LOCKED); 317 FOREACH_PROC_IN_SYSTEM(p) { 318 PROC_LOCK(p); 319 if (p->p_state == PRS_NEW) { 320 PROC_UNLOCK(p); 321 continue; 322 } 323 FOREACH_THREAD_IN_PROC(p, td) { 324 if (td->td_tid == tid) 325 goto found; 326 } 327 PROC_UNLOCK(p); 328 } 329 found: 330 return (p); 331 } 332 333 /* 334 * Locate a process group by number. 335 * The caller must hold proctree_lock. 336 */ 337 struct pgrp * 338 pgfind(pgid) 339 register pid_t pgid; 340 { 341 register struct pgrp *pgrp; 342 343 sx_assert(&proctree_lock, SX_LOCKED); 344 345 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 346 if (pgrp->pg_id == pgid) { 347 PGRP_LOCK(pgrp); 348 return (pgrp); 349 } 350 } 351 return (NULL); 352 } 353 354 /* 355 * Locate process and do additional manipulations, depending on flags. 356 */ 357 int 358 pget(pid_t pid, int flags, struct proc **pp) 359 { 360 struct proc *p; 361 int error; 362 363 sx_slock(&allproc_lock); 364 if (pid <= PID_MAX) { 365 p = pfind_locked(pid); 366 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 367 p = zpfind_locked(pid); 368 } else if ((flags & PGET_NOTID) == 0) { 369 p = pfind_tid_locked(pid); 370 } else { 371 p = NULL; 372 } 373 sx_sunlock(&allproc_lock); 374 if (p == NULL) 375 return (ESRCH); 376 if ((flags & PGET_CANSEE) != 0) { 377 error = p_cansee(curthread, p); 378 if (error != 0) 379 goto errout; 380 } 381 if ((flags & PGET_CANDEBUG) != 0) { 382 error = p_candebug(curthread, p); 383 if (error != 0) 384 goto errout; 385 } 386 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 387 error = EPERM; 388 goto errout; 389 } 390 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 391 error = ESRCH; 392 goto errout; 393 } 394 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 395 /* 396 * XXXRW: Not clear ESRCH is the right error during proc 397 * execve(). 398 */ 399 error = ESRCH; 400 goto errout; 401 } 402 if ((flags & PGET_HOLD) != 0) { 403 _PHOLD(p); 404 PROC_UNLOCK(p); 405 } 406 *pp = p; 407 return (0); 408 errout: 409 PROC_UNLOCK(p); 410 return (error); 411 } 412 413 /* 414 * Create a new process group. 415 * pgid must be equal to the pid of p. 416 * Begin a new session if required. 417 */ 418 int 419 enterpgrp(p, pgid, pgrp, sess) 420 register struct proc *p; 421 pid_t pgid; 422 struct pgrp *pgrp; 423 struct session *sess; 424 { 425 426 sx_assert(&proctree_lock, SX_XLOCKED); 427 428 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 429 KASSERT(p->p_pid == pgid, 430 ("enterpgrp: new pgrp and pid != pgid")); 431 KASSERT(pgfind(pgid) == NULL, 432 ("enterpgrp: pgrp with pgid exists")); 433 KASSERT(!SESS_LEADER(p), 434 ("enterpgrp: session leader attempted setpgrp")); 435 436 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 437 438 if (sess != NULL) { 439 /* 440 * new session 441 */ 442 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 443 PROC_LOCK(p); 444 p->p_flag &= ~P_CONTROLT; 445 PROC_UNLOCK(p); 446 PGRP_LOCK(pgrp); 447 sess->s_leader = p; 448 sess->s_sid = p->p_pid; 449 refcount_init(&sess->s_count, 1); 450 sess->s_ttyvp = NULL; 451 sess->s_ttydp = NULL; 452 sess->s_ttyp = NULL; 453 bcopy(p->p_session->s_login, sess->s_login, 454 sizeof(sess->s_login)); 455 pgrp->pg_session = sess; 456 KASSERT(p == curproc, 457 ("enterpgrp: mksession and p != curproc")); 458 } else { 459 pgrp->pg_session = p->p_session; 460 sess_hold(pgrp->pg_session); 461 PGRP_LOCK(pgrp); 462 } 463 pgrp->pg_id = pgid; 464 LIST_INIT(&pgrp->pg_members); 465 466 /* 467 * As we have an exclusive lock of proctree_lock, 468 * this should not deadlock. 469 */ 470 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 471 pgrp->pg_jobc = 0; 472 SLIST_INIT(&pgrp->pg_sigiolst); 473 PGRP_UNLOCK(pgrp); 474 475 doenterpgrp(p, pgrp); 476 477 return (0); 478 } 479 480 /* 481 * Move p to an existing process group 482 */ 483 int 484 enterthispgrp(p, pgrp) 485 register struct proc *p; 486 struct pgrp *pgrp; 487 { 488 489 sx_assert(&proctree_lock, SX_XLOCKED); 490 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 491 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 492 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 493 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 494 KASSERT(pgrp->pg_session == p->p_session, 495 ("%s: pgrp's session %p, p->p_session %p.\n", 496 __func__, 497 pgrp->pg_session, 498 p->p_session)); 499 KASSERT(pgrp != p->p_pgrp, 500 ("%s: p belongs to pgrp.", __func__)); 501 502 doenterpgrp(p, pgrp); 503 504 return (0); 505 } 506 507 /* 508 * Move p to a process group 509 */ 510 static void 511 doenterpgrp(p, pgrp) 512 struct proc *p; 513 struct pgrp *pgrp; 514 { 515 struct pgrp *savepgrp; 516 517 sx_assert(&proctree_lock, SX_XLOCKED); 518 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 519 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 520 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 521 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 522 523 savepgrp = p->p_pgrp; 524 525 /* 526 * Adjust eligibility of affected pgrps to participate in job control. 527 * Increment eligibility counts before decrementing, otherwise we 528 * could reach 0 spuriously during the first call. 529 */ 530 fixjobc(p, pgrp, 1); 531 fixjobc(p, p->p_pgrp, 0); 532 533 PGRP_LOCK(pgrp); 534 PGRP_LOCK(savepgrp); 535 PROC_LOCK(p); 536 LIST_REMOVE(p, p_pglist); 537 p->p_pgrp = pgrp; 538 PROC_UNLOCK(p); 539 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 540 PGRP_UNLOCK(savepgrp); 541 PGRP_UNLOCK(pgrp); 542 if (LIST_EMPTY(&savepgrp->pg_members)) 543 pgdelete(savepgrp); 544 } 545 546 /* 547 * remove process from process group 548 */ 549 int 550 leavepgrp(p) 551 register struct proc *p; 552 { 553 struct pgrp *savepgrp; 554 555 sx_assert(&proctree_lock, SX_XLOCKED); 556 savepgrp = p->p_pgrp; 557 PGRP_LOCK(savepgrp); 558 PROC_LOCK(p); 559 LIST_REMOVE(p, p_pglist); 560 p->p_pgrp = NULL; 561 PROC_UNLOCK(p); 562 PGRP_UNLOCK(savepgrp); 563 if (LIST_EMPTY(&savepgrp->pg_members)) 564 pgdelete(savepgrp); 565 return (0); 566 } 567 568 /* 569 * delete a process group 570 */ 571 static void 572 pgdelete(pgrp) 573 register struct pgrp *pgrp; 574 { 575 struct session *savesess; 576 struct tty *tp; 577 578 sx_assert(&proctree_lock, SX_XLOCKED); 579 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 580 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 581 582 /* 583 * Reset any sigio structures pointing to us as a result of 584 * F_SETOWN with our pgid. 585 */ 586 funsetownlst(&pgrp->pg_sigiolst); 587 588 PGRP_LOCK(pgrp); 589 tp = pgrp->pg_session->s_ttyp; 590 LIST_REMOVE(pgrp, pg_hash); 591 savesess = pgrp->pg_session; 592 PGRP_UNLOCK(pgrp); 593 594 /* Remove the reference to the pgrp before deallocating it. */ 595 if (tp != NULL) { 596 tty_lock(tp); 597 tty_rel_pgrp(tp, pgrp); 598 } 599 600 mtx_destroy(&pgrp->pg_mtx); 601 free(pgrp, M_PGRP); 602 sess_release(savesess); 603 } 604 605 static void 606 pgadjustjobc(pgrp, entering) 607 struct pgrp *pgrp; 608 int entering; 609 { 610 611 PGRP_LOCK(pgrp); 612 if (entering) 613 pgrp->pg_jobc++; 614 else { 615 --pgrp->pg_jobc; 616 if (pgrp->pg_jobc == 0) 617 orphanpg(pgrp); 618 } 619 PGRP_UNLOCK(pgrp); 620 } 621 622 /* 623 * Adjust pgrp jobc counters when specified process changes process group. 624 * We count the number of processes in each process group that "qualify" 625 * the group for terminal job control (those with a parent in a different 626 * process group of the same session). If that count reaches zero, the 627 * process group becomes orphaned. Check both the specified process' 628 * process group and that of its children. 629 * entering == 0 => p is leaving specified group. 630 * entering == 1 => p is entering specified group. 631 */ 632 void 633 fixjobc(p, pgrp, entering) 634 register struct proc *p; 635 register struct pgrp *pgrp; 636 int entering; 637 { 638 register struct pgrp *hispgrp; 639 register struct session *mysession; 640 641 sx_assert(&proctree_lock, SX_LOCKED); 642 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 643 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 644 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 645 646 /* 647 * Check p's parent to see whether p qualifies its own process 648 * group; if so, adjust count for p's process group. 649 */ 650 mysession = pgrp->pg_session; 651 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 652 hispgrp->pg_session == mysession) 653 pgadjustjobc(pgrp, entering); 654 655 /* 656 * Check this process' children to see whether they qualify 657 * their process groups; if so, adjust counts for children's 658 * process groups. 659 */ 660 LIST_FOREACH(p, &p->p_children, p_sibling) { 661 hispgrp = p->p_pgrp; 662 if (hispgrp == pgrp || 663 hispgrp->pg_session != mysession) 664 continue; 665 PROC_LOCK(p); 666 if (p->p_state == PRS_ZOMBIE) { 667 PROC_UNLOCK(p); 668 continue; 669 } 670 PROC_UNLOCK(p); 671 pgadjustjobc(hispgrp, entering); 672 } 673 } 674 675 /* 676 * A process group has become orphaned; 677 * if there are any stopped processes in the group, 678 * hang-up all process in that group. 679 */ 680 static void 681 orphanpg(pg) 682 struct pgrp *pg; 683 { 684 register struct proc *p; 685 686 PGRP_LOCK_ASSERT(pg, MA_OWNED); 687 688 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 689 PROC_LOCK(p); 690 if (P_SHOULDSTOP(p)) { 691 PROC_UNLOCK(p); 692 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 693 PROC_LOCK(p); 694 kern_psignal(p, SIGHUP); 695 kern_psignal(p, SIGCONT); 696 PROC_UNLOCK(p); 697 } 698 return; 699 } 700 PROC_UNLOCK(p); 701 } 702 } 703 704 void 705 sess_hold(struct session *s) 706 { 707 708 refcount_acquire(&s->s_count); 709 } 710 711 void 712 sess_release(struct session *s) 713 { 714 715 if (refcount_release(&s->s_count)) { 716 if (s->s_ttyp != NULL) { 717 tty_lock(s->s_ttyp); 718 tty_rel_sess(s->s_ttyp, s); 719 } 720 mtx_destroy(&s->s_mtx); 721 free(s, M_SESSION); 722 } 723 } 724 725 #ifdef DDB 726 727 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 728 { 729 register struct pgrp *pgrp; 730 register struct proc *p; 731 register int i; 732 733 for (i = 0; i <= pgrphash; i++) { 734 if (!LIST_EMPTY(&pgrphashtbl[i])) { 735 printf("\tindx %d\n", i); 736 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 737 printf( 738 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 739 (void *)pgrp, (long)pgrp->pg_id, 740 (void *)pgrp->pg_session, 741 pgrp->pg_session->s_count, 742 (void *)LIST_FIRST(&pgrp->pg_members)); 743 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 744 printf("\t\tpid %ld addr %p pgrp %p\n", 745 (long)p->p_pid, (void *)p, 746 (void *)p->p_pgrp); 747 } 748 } 749 } 750 } 751 } 752 #endif /* DDB */ 753 754 /* 755 * Calculate the kinfo_proc members which contain process-wide 756 * informations. 757 * Must be called with the target process locked. 758 */ 759 static void 760 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 761 { 762 struct thread *td; 763 764 PROC_LOCK_ASSERT(p, MA_OWNED); 765 766 kp->ki_estcpu = 0; 767 kp->ki_pctcpu = 0; 768 FOREACH_THREAD_IN_PROC(p, td) { 769 thread_lock(td); 770 kp->ki_pctcpu += sched_pctcpu(td); 771 kp->ki_estcpu += td->td_estcpu; 772 thread_unlock(td); 773 } 774 } 775 776 /* 777 * Clear kinfo_proc and fill in any information that is common 778 * to all threads in the process. 779 * Must be called with the target process locked. 780 */ 781 static void 782 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 783 { 784 struct thread *td0; 785 struct tty *tp; 786 struct session *sp; 787 struct ucred *cred; 788 struct sigacts *ps; 789 790 PROC_LOCK_ASSERT(p, MA_OWNED); 791 bzero(kp, sizeof(*kp)); 792 793 kp->ki_structsize = sizeof(*kp); 794 kp->ki_paddr = p; 795 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 796 kp->ki_args = p->p_args; 797 kp->ki_textvp = p->p_textvp; 798 #ifdef KTRACE 799 kp->ki_tracep = p->p_tracevp; 800 kp->ki_traceflag = p->p_traceflag; 801 #endif 802 kp->ki_fd = p->p_fd; 803 kp->ki_vmspace = p->p_vmspace; 804 kp->ki_flag = p->p_flag; 805 cred = p->p_ucred; 806 if (cred) { 807 kp->ki_uid = cred->cr_uid; 808 kp->ki_ruid = cred->cr_ruid; 809 kp->ki_svuid = cred->cr_svuid; 810 kp->ki_cr_flags = 0; 811 if (cred->cr_flags & CRED_FLAG_CAPMODE) 812 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 813 /* XXX bde doesn't like KI_NGROUPS */ 814 if (cred->cr_ngroups > KI_NGROUPS) { 815 kp->ki_ngroups = KI_NGROUPS; 816 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 817 } else 818 kp->ki_ngroups = cred->cr_ngroups; 819 bcopy(cred->cr_groups, kp->ki_groups, 820 kp->ki_ngroups * sizeof(gid_t)); 821 kp->ki_rgid = cred->cr_rgid; 822 kp->ki_svgid = cred->cr_svgid; 823 /* If jailed(cred), emulate the old P_JAILED flag. */ 824 if (jailed(cred)) { 825 kp->ki_flag |= P_JAILED; 826 /* If inside the jail, use 0 as a jail ID. */ 827 if (cred->cr_prison != curthread->td_ucred->cr_prison) 828 kp->ki_jid = cred->cr_prison->pr_id; 829 } 830 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 831 sizeof(kp->ki_loginclass)); 832 } 833 ps = p->p_sigacts; 834 if (ps) { 835 mtx_lock(&ps->ps_mtx); 836 kp->ki_sigignore = ps->ps_sigignore; 837 kp->ki_sigcatch = ps->ps_sigcatch; 838 mtx_unlock(&ps->ps_mtx); 839 } 840 if (p->p_state != PRS_NEW && 841 p->p_state != PRS_ZOMBIE && 842 p->p_vmspace != NULL) { 843 struct vmspace *vm = p->p_vmspace; 844 845 kp->ki_size = vm->vm_map.size; 846 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 847 FOREACH_THREAD_IN_PROC(p, td0) { 848 if (!TD_IS_SWAPPED(td0)) 849 kp->ki_rssize += td0->td_kstack_pages; 850 } 851 kp->ki_swrss = vm->vm_swrss; 852 kp->ki_tsize = vm->vm_tsize; 853 kp->ki_dsize = vm->vm_dsize; 854 kp->ki_ssize = vm->vm_ssize; 855 } else if (p->p_state == PRS_ZOMBIE) 856 kp->ki_stat = SZOMB; 857 if (kp->ki_flag & P_INMEM) 858 kp->ki_sflag = PS_INMEM; 859 else 860 kp->ki_sflag = 0; 861 /* Calculate legacy swtime as seconds since 'swtick'. */ 862 kp->ki_swtime = (ticks - p->p_swtick) / hz; 863 kp->ki_pid = p->p_pid; 864 kp->ki_nice = p->p_nice; 865 kp->ki_start = p->p_stats->p_start; 866 timevaladd(&kp->ki_start, &boottime); 867 PROC_SLOCK(p); 868 rufetch(p, &kp->ki_rusage); 869 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 870 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 871 PROC_SUNLOCK(p); 872 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 873 /* Some callers want child times in a single value. */ 874 kp->ki_childtime = kp->ki_childstime; 875 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 876 877 FOREACH_THREAD_IN_PROC(p, td0) 878 kp->ki_cow += td0->td_cow; 879 880 tp = NULL; 881 if (p->p_pgrp) { 882 kp->ki_pgid = p->p_pgrp->pg_id; 883 kp->ki_jobc = p->p_pgrp->pg_jobc; 884 sp = p->p_pgrp->pg_session; 885 886 if (sp != NULL) { 887 kp->ki_sid = sp->s_sid; 888 SESS_LOCK(sp); 889 strlcpy(kp->ki_login, sp->s_login, 890 sizeof(kp->ki_login)); 891 if (sp->s_ttyvp) 892 kp->ki_kiflag |= KI_CTTY; 893 if (SESS_LEADER(p)) 894 kp->ki_kiflag |= KI_SLEADER; 895 /* XXX proctree_lock */ 896 tp = sp->s_ttyp; 897 SESS_UNLOCK(sp); 898 } 899 } 900 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 901 kp->ki_tdev = tty_udev(tp); 902 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 903 if (tp->t_session) 904 kp->ki_tsid = tp->t_session->s_sid; 905 } else 906 kp->ki_tdev = NODEV; 907 if (p->p_comm[0] != '\0') 908 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 909 if (p->p_sysent && p->p_sysent->sv_name != NULL && 910 p->p_sysent->sv_name[0] != '\0') 911 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 912 kp->ki_siglist = p->p_siglist; 913 kp->ki_xstat = p->p_xstat; 914 kp->ki_acflag = p->p_acflag; 915 kp->ki_lock = p->p_lock; 916 if (p->p_pptr) 917 kp->ki_ppid = p->p_pptr->p_pid; 918 } 919 920 /* 921 * Fill in information that is thread specific. Must be called with 922 * target process locked. If 'preferthread' is set, overwrite certain 923 * process-related fields that are maintained for both threads and 924 * processes. 925 */ 926 static void 927 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 928 { 929 struct proc *p; 930 931 p = td->td_proc; 932 kp->ki_tdaddr = td; 933 PROC_LOCK_ASSERT(p, MA_OWNED); 934 935 if (preferthread) 936 PROC_SLOCK(p); 937 thread_lock(td); 938 if (td->td_wmesg != NULL) 939 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 940 else 941 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 942 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 943 if (TD_ON_LOCK(td)) { 944 kp->ki_kiflag |= KI_LOCKBLOCK; 945 strlcpy(kp->ki_lockname, td->td_lockname, 946 sizeof(kp->ki_lockname)); 947 } else { 948 kp->ki_kiflag &= ~KI_LOCKBLOCK; 949 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 950 } 951 952 if (p->p_state == PRS_NORMAL) { /* approximate. */ 953 if (TD_ON_RUNQ(td) || 954 TD_CAN_RUN(td) || 955 TD_IS_RUNNING(td)) { 956 kp->ki_stat = SRUN; 957 } else if (P_SHOULDSTOP(p)) { 958 kp->ki_stat = SSTOP; 959 } else if (TD_IS_SLEEPING(td)) { 960 kp->ki_stat = SSLEEP; 961 } else if (TD_ON_LOCK(td)) { 962 kp->ki_stat = SLOCK; 963 } else { 964 kp->ki_stat = SWAIT; 965 } 966 } else if (p->p_state == PRS_ZOMBIE) { 967 kp->ki_stat = SZOMB; 968 } else { 969 kp->ki_stat = SIDL; 970 } 971 972 /* Things in the thread */ 973 kp->ki_wchan = td->td_wchan; 974 kp->ki_pri.pri_level = td->td_priority; 975 kp->ki_pri.pri_native = td->td_base_pri; 976 kp->ki_lastcpu = td->td_lastcpu; 977 kp->ki_oncpu = td->td_oncpu; 978 kp->ki_tdflags = td->td_flags; 979 kp->ki_tid = td->td_tid; 980 kp->ki_numthreads = p->p_numthreads; 981 kp->ki_pcb = td->td_pcb; 982 kp->ki_kstack = (void *)td->td_kstack; 983 kp->ki_slptime = (ticks - td->td_slptick) / hz; 984 kp->ki_pri.pri_class = td->td_pri_class; 985 kp->ki_pri.pri_user = td->td_user_pri; 986 987 if (preferthread) { 988 rufetchtd(td, &kp->ki_rusage); 989 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 990 kp->ki_pctcpu = sched_pctcpu(td); 991 kp->ki_estcpu = td->td_estcpu; 992 kp->ki_cow = td->td_cow; 993 } 994 995 /* We can't get this anymore but ps etc never used it anyway. */ 996 kp->ki_rqindex = 0; 997 998 if (preferthread) 999 kp->ki_siglist = td->td_siglist; 1000 kp->ki_sigmask = td->td_sigmask; 1001 thread_unlock(td); 1002 if (preferthread) 1003 PROC_SUNLOCK(p); 1004 } 1005 1006 /* 1007 * Fill in a kinfo_proc structure for the specified process. 1008 * Must be called with the target process locked. 1009 */ 1010 void 1011 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1012 { 1013 1014 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1015 1016 fill_kinfo_proc_only(p, kp); 1017 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1018 fill_kinfo_aggregate(p, kp); 1019 } 1020 1021 struct pstats * 1022 pstats_alloc(void) 1023 { 1024 1025 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1026 } 1027 1028 /* 1029 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1030 */ 1031 void 1032 pstats_fork(struct pstats *src, struct pstats *dst) 1033 { 1034 1035 bzero(&dst->pstat_startzero, 1036 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1037 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1038 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1039 } 1040 1041 void 1042 pstats_free(struct pstats *ps) 1043 { 1044 1045 free(ps, M_SUBPROC); 1046 } 1047 1048 static struct proc * 1049 zpfind_locked(pid_t pid) 1050 { 1051 struct proc *p; 1052 1053 sx_assert(&allproc_lock, SX_LOCKED); 1054 LIST_FOREACH(p, &zombproc, p_list) { 1055 if (p->p_pid == pid) { 1056 PROC_LOCK(p); 1057 break; 1058 } 1059 } 1060 return (p); 1061 } 1062 1063 /* 1064 * Locate a zombie process by number 1065 */ 1066 struct proc * 1067 zpfind(pid_t pid) 1068 { 1069 struct proc *p; 1070 1071 sx_slock(&allproc_lock); 1072 p = zpfind_locked(pid); 1073 sx_sunlock(&allproc_lock); 1074 return (p); 1075 } 1076 1077 #ifdef COMPAT_FREEBSD32 1078 1079 /* 1080 * This function is typically used to copy out the kernel address, so 1081 * it can be replaced by assignment of zero. 1082 */ 1083 static inline uint32_t 1084 ptr32_trim(void *ptr) 1085 { 1086 uintptr_t uptr; 1087 1088 uptr = (uintptr_t)ptr; 1089 return ((uptr > UINT_MAX) ? 0 : uptr); 1090 } 1091 1092 #define PTRTRIM_CP(src,dst,fld) \ 1093 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1094 1095 static void 1096 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1097 { 1098 int i; 1099 1100 bzero(ki32, sizeof(struct kinfo_proc32)); 1101 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1102 CP(*ki, *ki32, ki_layout); 1103 PTRTRIM_CP(*ki, *ki32, ki_args); 1104 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1105 PTRTRIM_CP(*ki, *ki32, ki_addr); 1106 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1107 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1108 PTRTRIM_CP(*ki, *ki32, ki_fd); 1109 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1110 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1111 CP(*ki, *ki32, ki_pid); 1112 CP(*ki, *ki32, ki_ppid); 1113 CP(*ki, *ki32, ki_pgid); 1114 CP(*ki, *ki32, ki_tpgid); 1115 CP(*ki, *ki32, ki_sid); 1116 CP(*ki, *ki32, ki_tsid); 1117 CP(*ki, *ki32, ki_jobc); 1118 CP(*ki, *ki32, ki_tdev); 1119 CP(*ki, *ki32, ki_siglist); 1120 CP(*ki, *ki32, ki_sigmask); 1121 CP(*ki, *ki32, ki_sigignore); 1122 CP(*ki, *ki32, ki_sigcatch); 1123 CP(*ki, *ki32, ki_uid); 1124 CP(*ki, *ki32, ki_ruid); 1125 CP(*ki, *ki32, ki_svuid); 1126 CP(*ki, *ki32, ki_rgid); 1127 CP(*ki, *ki32, ki_svgid); 1128 CP(*ki, *ki32, ki_ngroups); 1129 for (i = 0; i < KI_NGROUPS; i++) 1130 CP(*ki, *ki32, ki_groups[i]); 1131 CP(*ki, *ki32, ki_size); 1132 CP(*ki, *ki32, ki_rssize); 1133 CP(*ki, *ki32, ki_swrss); 1134 CP(*ki, *ki32, ki_tsize); 1135 CP(*ki, *ki32, ki_dsize); 1136 CP(*ki, *ki32, ki_ssize); 1137 CP(*ki, *ki32, ki_xstat); 1138 CP(*ki, *ki32, ki_acflag); 1139 CP(*ki, *ki32, ki_pctcpu); 1140 CP(*ki, *ki32, ki_estcpu); 1141 CP(*ki, *ki32, ki_slptime); 1142 CP(*ki, *ki32, ki_swtime); 1143 CP(*ki, *ki32, ki_cow); 1144 CP(*ki, *ki32, ki_runtime); 1145 TV_CP(*ki, *ki32, ki_start); 1146 TV_CP(*ki, *ki32, ki_childtime); 1147 CP(*ki, *ki32, ki_flag); 1148 CP(*ki, *ki32, ki_kiflag); 1149 CP(*ki, *ki32, ki_traceflag); 1150 CP(*ki, *ki32, ki_stat); 1151 CP(*ki, *ki32, ki_nice); 1152 CP(*ki, *ki32, ki_lock); 1153 CP(*ki, *ki32, ki_rqindex); 1154 CP(*ki, *ki32, ki_oncpu); 1155 CP(*ki, *ki32, ki_lastcpu); 1156 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1157 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1158 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1159 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1160 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1161 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1162 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1163 CP(*ki, *ki32, ki_cr_flags); 1164 CP(*ki, *ki32, ki_jid); 1165 CP(*ki, *ki32, ki_numthreads); 1166 CP(*ki, *ki32, ki_tid); 1167 CP(*ki, *ki32, ki_pri); 1168 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1169 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1170 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1171 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1172 PTRTRIM_CP(*ki, *ki32, ki_udata); 1173 CP(*ki, *ki32, ki_sflag); 1174 CP(*ki, *ki32, ki_tdflags); 1175 } 1176 #endif 1177 1178 int 1179 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1180 { 1181 struct thread *td; 1182 struct kinfo_proc ki; 1183 #ifdef COMPAT_FREEBSD32 1184 struct kinfo_proc32 ki32; 1185 #endif 1186 int error; 1187 1188 PROC_LOCK_ASSERT(p, MA_OWNED); 1189 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1190 1191 error = 0; 1192 fill_kinfo_proc(p, &ki); 1193 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1194 #ifdef COMPAT_FREEBSD32 1195 if ((flags & KERN_PROC_MASK32) != 0) { 1196 freebsd32_kinfo_proc_out(&ki, &ki32); 1197 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1198 } else 1199 #endif 1200 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1201 } else { 1202 FOREACH_THREAD_IN_PROC(p, td) { 1203 fill_kinfo_thread(td, &ki, 1); 1204 #ifdef COMPAT_FREEBSD32 1205 if ((flags & KERN_PROC_MASK32) != 0) { 1206 freebsd32_kinfo_proc_out(&ki, &ki32); 1207 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1208 } else 1209 #endif 1210 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1211 if (error) 1212 break; 1213 } 1214 } 1215 PROC_UNLOCK(p); 1216 return (error); 1217 } 1218 1219 static int 1220 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1221 int doingzomb) 1222 { 1223 struct sbuf sb; 1224 struct kinfo_proc ki; 1225 struct proc *np; 1226 int error, error2; 1227 pid_t pid; 1228 1229 pid = p->p_pid; 1230 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1231 error = kern_proc_out(p, &sb, flags); 1232 error2 = sbuf_finish(&sb); 1233 sbuf_delete(&sb); 1234 if (error != 0) 1235 return (error); 1236 else if (error2 != 0) 1237 return (error2); 1238 if (doingzomb) 1239 np = zpfind(pid); 1240 else { 1241 if (pid == 0) 1242 return (0); 1243 np = pfind(pid); 1244 } 1245 if (np == NULL) 1246 return (ESRCH); 1247 if (np != p) { 1248 PROC_UNLOCK(np); 1249 return (ESRCH); 1250 } 1251 PROC_UNLOCK(np); 1252 return (0); 1253 } 1254 1255 static int 1256 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1257 { 1258 int *name = (int *)arg1; 1259 u_int namelen = arg2; 1260 struct proc *p; 1261 int flags, doingzomb, oid_number; 1262 int error = 0; 1263 1264 oid_number = oidp->oid_number; 1265 if (oid_number != KERN_PROC_ALL && 1266 (oid_number & KERN_PROC_INC_THREAD) == 0) 1267 flags = KERN_PROC_NOTHREADS; 1268 else { 1269 flags = 0; 1270 oid_number &= ~KERN_PROC_INC_THREAD; 1271 } 1272 #ifdef COMPAT_FREEBSD32 1273 if (req->flags & SCTL_MASK32) 1274 flags |= KERN_PROC_MASK32; 1275 #endif 1276 if (oid_number == KERN_PROC_PID) { 1277 if (namelen != 1) 1278 return (EINVAL); 1279 error = sysctl_wire_old_buffer(req, 0); 1280 if (error) 1281 return (error); 1282 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1283 if (error != 0) 1284 return (error); 1285 error = sysctl_out_proc(p, req, flags, 0); 1286 return (error); 1287 } 1288 1289 switch (oid_number) { 1290 case KERN_PROC_ALL: 1291 if (namelen != 0) 1292 return (EINVAL); 1293 break; 1294 case KERN_PROC_PROC: 1295 if (namelen != 0 && namelen != 1) 1296 return (EINVAL); 1297 break; 1298 default: 1299 if (namelen != 1) 1300 return (EINVAL); 1301 break; 1302 } 1303 1304 if (!req->oldptr) { 1305 /* overestimate by 5 procs */ 1306 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1307 if (error) 1308 return (error); 1309 } 1310 error = sysctl_wire_old_buffer(req, 0); 1311 if (error != 0) 1312 return (error); 1313 sx_slock(&allproc_lock); 1314 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1315 if (!doingzomb) 1316 p = LIST_FIRST(&allproc); 1317 else 1318 p = LIST_FIRST(&zombproc); 1319 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1320 /* 1321 * Skip embryonic processes. 1322 */ 1323 PROC_LOCK(p); 1324 if (p->p_state == PRS_NEW) { 1325 PROC_UNLOCK(p); 1326 continue; 1327 } 1328 KASSERT(p->p_ucred != NULL, 1329 ("process credential is NULL for non-NEW proc")); 1330 /* 1331 * Show a user only appropriate processes. 1332 */ 1333 if (p_cansee(curthread, p)) { 1334 PROC_UNLOCK(p); 1335 continue; 1336 } 1337 /* 1338 * TODO - make more efficient (see notes below). 1339 * do by session. 1340 */ 1341 switch (oid_number) { 1342 1343 case KERN_PROC_GID: 1344 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1345 PROC_UNLOCK(p); 1346 continue; 1347 } 1348 break; 1349 1350 case KERN_PROC_PGRP: 1351 /* could do this by traversing pgrp */ 1352 if (p->p_pgrp == NULL || 1353 p->p_pgrp->pg_id != (pid_t)name[0]) { 1354 PROC_UNLOCK(p); 1355 continue; 1356 } 1357 break; 1358 1359 case KERN_PROC_RGID: 1360 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1361 PROC_UNLOCK(p); 1362 continue; 1363 } 1364 break; 1365 1366 case KERN_PROC_SESSION: 1367 if (p->p_session == NULL || 1368 p->p_session->s_sid != (pid_t)name[0]) { 1369 PROC_UNLOCK(p); 1370 continue; 1371 } 1372 break; 1373 1374 case KERN_PROC_TTY: 1375 if ((p->p_flag & P_CONTROLT) == 0 || 1376 p->p_session == NULL) { 1377 PROC_UNLOCK(p); 1378 continue; 1379 } 1380 /* XXX proctree_lock */ 1381 SESS_LOCK(p->p_session); 1382 if (p->p_session->s_ttyp == NULL || 1383 tty_udev(p->p_session->s_ttyp) != 1384 (dev_t)name[0]) { 1385 SESS_UNLOCK(p->p_session); 1386 PROC_UNLOCK(p); 1387 continue; 1388 } 1389 SESS_UNLOCK(p->p_session); 1390 break; 1391 1392 case KERN_PROC_UID: 1393 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1394 PROC_UNLOCK(p); 1395 continue; 1396 } 1397 break; 1398 1399 case KERN_PROC_RUID: 1400 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1401 PROC_UNLOCK(p); 1402 continue; 1403 } 1404 break; 1405 1406 case KERN_PROC_PROC: 1407 break; 1408 1409 default: 1410 break; 1411 1412 } 1413 1414 error = sysctl_out_proc(p, req, flags, doingzomb); 1415 if (error) { 1416 sx_sunlock(&allproc_lock); 1417 return (error); 1418 } 1419 } 1420 } 1421 sx_sunlock(&allproc_lock); 1422 return (0); 1423 } 1424 1425 struct pargs * 1426 pargs_alloc(int len) 1427 { 1428 struct pargs *pa; 1429 1430 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1431 M_WAITOK); 1432 refcount_init(&pa->ar_ref, 1); 1433 pa->ar_length = len; 1434 return (pa); 1435 } 1436 1437 static void 1438 pargs_free(struct pargs *pa) 1439 { 1440 1441 free(pa, M_PARGS); 1442 } 1443 1444 void 1445 pargs_hold(struct pargs *pa) 1446 { 1447 1448 if (pa == NULL) 1449 return; 1450 refcount_acquire(&pa->ar_ref); 1451 } 1452 1453 void 1454 pargs_drop(struct pargs *pa) 1455 { 1456 1457 if (pa == NULL) 1458 return; 1459 if (refcount_release(&pa->ar_ref)) 1460 pargs_free(pa); 1461 } 1462 1463 static int 1464 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1465 size_t len) 1466 { 1467 struct iovec iov; 1468 struct uio uio; 1469 1470 iov.iov_base = (caddr_t)buf; 1471 iov.iov_len = len; 1472 uio.uio_iov = &iov; 1473 uio.uio_iovcnt = 1; 1474 uio.uio_offset = offset; 1475 uio.uio_resid = (ssize_t)len; 1476 uio.uio_segflg = UIO_SYSSPACE; 1477 uio.uio_rw = UIO_READ; 1478 uio.uio_td = td; 1479 1480 return (proc_rwmem(p, &uio)); 1481 } 1482 1483 static int 1484 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1485 size_t len) 1486 { 1487 size_t i; 1488 int error; 1489 1490 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1491 /* 1492 * Reading the chunk may validly return EFAULT if the string is shorter 1493 * than the chunk and is aligned at the end of the page, assuming the 1494 * next page is not mapped. So if EFAULT is returned do a fallback to 1495 * one byte read loop. 1496 */ 1497 if (error == EFAULT) { 1498 for (i = 0; i < len; i++, buf++, sptr++) { 1499 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1500 if (error != 0) 1501 return (error); 1502 if (*buf == '\0') 1503 break; 1504 } 1505 error = 0; 1506 } 1507 return (error); 1508 } 1509 1510 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1511 1512 enum proc_vector_type { 1513 PROC_ARG, 1514 PROC_ENV, 1515 PROC_AUX, 1516 }; 1517 1518 #ifdef COMPAT_FREEBSD32 1519 static int 1520 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1521 size_t *vsizep, enum proc_vector_type type) 1522 { 1523 struct freebsd32_ps_strings pss; 1524 Elf32_Auxinfo aux; 1525 vm_offset_t vptr, ptr; 1526 uint32_t *proc_vector32; 1527 char **proc_vector; 1528 size_t vsize, size; 1529 int i, error; 1530 1531 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1532 &pss, sizeof(pss)); 1533 if (error != 0) 1534 return (error); 1535 switch (type) { 1536 case PROC_ARG: 1537 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1538 vsize = pss.ps_nargvstr; 1539 if (vsize > ARG_MAX) 1540 return (ENOEXEC); 1541 size = vsize * sizeof(int32_t); 1542 break; 1543 case PROC_ENV: 1544 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1545 vsize = pss.ps_nenvstr; 1546 if (vsize > ARG_MAX) 1547 return (ENOEXEC); 1548 size = vsize * sizeof(int32_t); 1549 break; 1550 case PROC_AUX: 1551 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1552 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1553 if (vptr % 4 != 0) 1554 return (ENOEXEC); 1555 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1556 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1557 if (error != 0) 1558 return (error); 1559 if (aux.a_type == AT_NULL) 1560 break; 1561 ptr += sizeof(aux); 1562 } 1563 if (aux.a_type != AT_NULL) 1564 return (ENOEXEC); 1565 vsize = i + 1; 1566 size = vsize * sizeof(aux); 1567 break; 1568 default: 1569 KASSERT(0, ("Wrong proc vector type: %d", type)); 1570 return (EINVAL); 1571 } 1572 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1573 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1574 if (error != 0) 1575 goto done; 1576 if (type == PROC_AUX) { 1577 *proc_vectorp = (char **)proc_vector32; 1578 *vsizep = vsize; 1579 return (0); 1580 } 1581 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1582 for (i = 0; i < (int)vsize; i++) 1583 proc_vector[i] = PTRIN(proc_vector32[i]); 1584 *proc_vectorp = proc_vector; 1585 *vsizep = vsize; 1586 done: 1587 free(proc_vector32, M_TEMP); 1588 return (error); 1589 } 1590 #endif 1591 1592 static int 1593 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1594 size_t *vsizep, enum proc_vector_type type) 1595 { 1596 struct ps_strings pss; 1597 Elf_Auxinfo aux; 1598 vm_offset_t vptr, ptr; 1599 char **proc_vector; 1600 size_t vsize, size; 1601 int error, i; 1602 1603 #ifdef COMPAT_FREEBSD32 1604 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1605 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1606 #endif 1607 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1608 &pss, sizeof(pss)); 1609 if (error != 0) 1610 return (error); 1611 switch (type) { 1612 case PROC_ARG: 1613 vptr = (vm_offset_t)pss.ps_argvstr; 1614 vsize = pss.ps_nargvstr; 1615 if (vsize > ARG_MAX) 1616 return (ENOEXEC); 1617 size = vsize * sizeof(char *); 1618 break; 1619 case PROC_ENV: 1620 vptr = (vm_offset_t)pss.ps_envstr; 1621 vsize = pss.ps_nenvstr; 1622 if (vsize > ARG_MAX) 1623 return (ENOEXEC); 1624 size = vsize * sizeof(char *); 1625 break; 1626 case PROC_AUX: 1627 /* 1628 * The aux array is just above env array on the stack. Check 1629 * that the address is naturally aligned. 1630 */ 1631 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1632 * sizeof(char *); 1633 #if __ELF_WORD_SIZE == 64 1634 if (vptr % sizeof(uint64_t) != 0) 1635 #else 1636 if (vptr % sizeof(uint32_t) != 0) 1637 #endif 1638 return (ENOEXEC); 1639 /* 1640 * We count the array size reading the aux vectors from the 1641 * stack until AT_NULL vector is returned. So (to keep the code 1642 * simple) we read the process stack twice: the first time here 1643 * to find the size and the second time when copying the vectors 1644 * to the allocated proc_vector. 1645 */ 1646 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1647 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1648 if (error != 0) 1649 return (error); 1650 if (aux.a_type == AT_NULL) 1651 break; 1652 ptr += sizeof(aux); 1653 } 1654 /* 1655 * If the PROC_AUXV_MAX entries are iterated over, and we have 1656 * not reached AT_NULL, it is most likely we are reading wrong 1657 * data: either the process doesn't have auxv array or data has 1658 * been modified. Return the error in this case. 1659 */ 1660 if (aux.a_type != AT_NULL) 1661 return (ENOEXEC); 1662 vsize = i + 1; 1663 size = vsize * sizeof(aux); 1664 break; 1665 default: 1666 KASSERT(0, ("Wrong proc vector type: %d", type)); 1667 return (EINVAL); /* In case we are built without INVARIANTS. */ 1668 } 1669 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1670 if (proc_vector == NULL) 1671 return (ENOMEM); 1672 error = proc_read_mem(td, p, vptr, proc_vector, size); 1673 if (error != 0) { 1674 free(proc_vector, M_TEMP); 1675 return (error); 1676 } 1677 *proc_vectorp = proc_vector; 1678 *vsizep = vsize; 1679 1680 return (0); 1681 } 1682 1683 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1684 1685 static int 1686 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1687 enum proc_vector_type type) 1688 { 1689 size_t done, len, nchr, vsize; 1690 int error, i; 1691 char **proc_vector, *sptr; 1692 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1693 1694 PROC_ASSERT_HELD(p); 1695 1696 /* 1697 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1698 */ 1699 nchr = 2 * (PATH_MAX + ARG_MAX); 1700 1701 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1702 if (error != 0) 1703 return (error); 1704 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1705 /* 1706 * The program may have scribbled into its argv array, e.g. to 1707 * remove some arguments. If that has happened, break out 1708 * before trying to read from NULL. 1709 */ 1710 if (proc_vector[i] == NULL) 1711 break; 1712 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1713 error = proc_read_string(td, p, sptr, pss_string, 1714 sizeof(pss_string)); 1715 if (error != 0) 1716 goto done; 1717 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1718 if (done + len >= nchr) 1719 len = nchr - done - 1; 1720 sbuf_bcat(sb, pss_string, len); 1721 if (len != GET_PS_STRINGS_CHUNK_SZ) 1722 break; 1723 done += GET_PS_STRINGS_CHUNK_SZ; 1724 } 1725 sbuf_bcat(sb, "", 1); 1726 done += len + 1; 1727 } 1728 done: 1729 free(proc_vector, M_TEMP); 1730 return (error); 1731 } 1732 1733 int 1734 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1735 { 1736 1737 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1738 } 1739 1740 int 1741 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1742 { 1743 1744 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1745 } 1746 1747 int 1748 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1749 { 1750 size_t vsize, size; 1751 char **auxv; 1752 int error; 1753 1754 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1755 if (error == 0) { 1756 #ifdef COMPAT_FREEBSD32 1757 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1758 size = vsize * sizeof(Elf32_Auxinfo); 1759 else 1760 #endif 1761 size = vsize * sizeof(Elf_Auxinfo); 1762 error = sbuf_bcat(sb, auxv, size); 1763 free(auxv, M_TEMP); 1764 } 1765 return (error); 1766 } 1767 1768 /* 1769 * This sysctl allows a process to retrieve the argument list or process 1770 * title for another process without groping around in the address space 1771 * of the other process. It also allow a process to set its own "process 1772 * title to a string of its own choice. 1773 */ 1774 static int 1775 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1776 { 1777 int *name = (int *)arg1; 1778 u_int namelen = arg2; 1779 struct pargs *newpa, *pa; 1780 struct proc *p; 1781 struct sbuf sb; 1782 int flags, error = 0, error2; 1783 1784 if (namelen != 1) 1785 return (EINVAL); 1786 1787 flags = PGET_CANSEE; 1788 if (req->newptr != NULL) 1789 flags |= PGET_ISCURRENT; 1790 error = pget((pid_t)name[0], flags, &p); 1791 if (error) 1792 return (error); 1793 1794 pa = p->p_args; 1795 if (pa != NULL) { 1796 pargs_hold(pa); 1797 PROC_UNLOCK(p); 1798 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1799 pargs_drop(pa); 1800 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1801 _PHOLD(p); 1802 PROC_UNLOCK(p); 1803 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1804 error = proc_getargv(curthread, p, &sb); 1805 error2 = sbuf_finish(&sb); 1806 PRELE(p); 1807 sbuf_delete(&sb); 1808 if (error == 0 && error2 != 0) 1809 error = error2; 1810 } else { 1811 PROC_UNLOCK(p); 1812 } 1813 if (error != 0 || req->newptr == NULL) 1814 return (error); 1815 1816 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1817 return (ENOMEM); 1818 newpa = pargs_alloc(req->newlen); 1819 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1820 if (error != 0) { 1821 pargs_free(newpa); 1822 return (error); 1823 } 1824 PROC_LOCK(p); 1825 pa = p->p_args; 1826 p->p_args = newpa; 1827 PROC_UNLOCK(p); 1828 pargs_drop(pa); 1829 return (0); 1830 } 1831 1832 /* 1833 * This sysctl allows a process to retrieve environment of another process. 1834 */ 1835 static int 1836 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1837 { 1838 int *name = (int *)arg1; 1839 u_int namelen = arg2; 1840 struct proc *p; 1841 struct sbuf sb; 1842 int error, error2; 1843 1844 if (namelen != 1) 1845 return (EINVAL); 1846 1847 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1848 if (error != 0) 1849 return (error); 1850 if ((p->p_flag & P_SYSTEM) != 0) { 1851 PRELE(p); 1852 return (0); 1853 } 1854 1855 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1856 error = proc_getenvv(curthread, p, &sb); 1857 error2 = sbuf_finish(&sb); 1858 PRELE(p); 1859 sbuf_delete(&sb); 1860 return (error != 0 ? error : error2); 1861 } 1862 1863 /* 1864 * This sysctl allows a process to retrieve ELF auxiliary vector of 1865 * another process. 1866 */ 1867 static int 1868 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1869 { 1870 int *name = (int *)arg1; 1871 u_int namelen = arg2; 1872 struct proc *p; 1873 struct sbuf sb; 1874 int error, error2; 1875 1876 if (namelen != 1) 1877 return (EINVAL); 1878 1879 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1880 if (error != 0) 1881 return (error); 1882 if ((p->p_flag & P_SYSTEM) != 0) { 1883 PRELE(p); 1884 return (0); 1885 } 1886 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1887 error = proc_getauxv(curthread, p, &sb); 1888 error2 = sbuf_finish(&sb); 1889 PRELE(p); 1890 sbuf_delete(&sb); 1891 return (error != 0 ? error : error2); 1892 } 1893 1894 /* 1895 * This sysctl allows a process to retrieve the path of the executable for 1896 * itself or another process. 1897 */ 1898 static int 1899 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1900 { 1901 pid_t *pidp = (pid_t *)arg1; 1902 unsigned int arglen = arg2; 1903 struct proc *p; 1904 struct vnode *vp; 1905 char *retbuf, *freebuf; 1906 int error; 1907 1908 if (arglen != 1) 1909 return (EINVAL); 1910 if (*pidp == -1) { /* -1 means this process */ 1911 p = req->td->td_proc; 1912 } else { 1913 error = pget(*pidp, PGET_CANSEE, &p); 1914 if (error != 0) 1915 return (error); 1916 } 1917 1918 vp = p->p_textvp; 1919 if (vp == NULL) { 1920 if (*pidp != -1) 1921 PROC_UNLOCK(p); 1922 return (0); 1923 } 1924 vref(vp); 1925 if (*pidp != -1) 1926 PROC_UNLOCK(p); 1927 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1928 vrele(vp); 1929 if (error) 1930 return (error); 1931 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1932 free(freebuf, M_TEMP); 1933 return (error); 1934 } 1935 1936 static int 1937 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1938 { 1939 struct proc *p; 1940 char *sv_name; 1941 int *name; 1942 int namelen; 1943 int error; 1944 1945 namelen = arg2; 1946 if (namelen != 1) 1947 return (EINVAL); 1948 1949 name = (int *)arg1; 1950 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1951 if (error != 0) 1952 return (error); 1953 sv_name = p->p_sysent->sv_name; 1954 PROC_UNLOCK(p); 1955 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1956 } 1957 1958 #ifdef KINFO_OVMENTRY_SIZE 1959 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1960 #endif 1961 1962 #ifdef COMPAT_FREEBSD7 1963 static int 1964 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1965 { 1966 vm_map_entry_t entry, tmp_entry; 1967 unsigned int last_timestamp; 1968 char *fullpath, *freepath; 1969 struct kinfo_ovmentry *kve; 1970 struct vattr va; 1971 struct ucred *cred; 1972 int error, *name; 1973 struct vnode *vp; 1974 struct proc *p; 1975 vm_map_t map; 1976 struct vmspace *vm; 1977 1978 name = (int *)arg1; 1979 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1980 if (error != 0) 1981 return (error); 1982 vm = vmspace_acquire_ref(p); 1983 if (vm == NULL) { 1984 PRELE(p); 1985 return (ESRCH); 1986 } 1987 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1988 1989 map = &vm->vm_map; 1990 vm_map_lock_read(map); 1991 for (entry = map->header.next; entry != &map->header; 1992 entry = entry->next) { 1993 vm_object_t obj, tobj, lobj; 1994 vm_offset_t addr; 1995 1996 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1997 continue; 1998 1999 bzero(kve, sizeof(*kve)); 2000 kve->kve_structsize = sizeof(*kve); 2001 2002 kve->kve_private_resident = 0; 2003 obj = entry->object.vm_object; 2004 if (obj != NULL) { 2005 VM_OBJECT_RLOCK(obj); 2006 if (obj->shadow_count == 1) 2007 kve->kve_private_resident = 2008 obj->resident_page_count; 2009 } 2010 kve->kve_resident = 0; 2011 addr = entry->start; 2012 while (addr < entry->end) { 2013 if (pmap_extract(map->pmap, addr)) 2014 kve->kve_resident++; 2015 addr += PAGE_SIZE; 2016 } 2017 2018 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2019 if (tobj != obj) 2020 VM_OBJECT_RLOCK(tobj); 2021 if (lobj != obj) 2022 VM_OBJECT_RUNLOCK(lobj); 2023 lobj = tobj; 2024 } 2025 2026 kve->kve_start = (void*)entry->start; 2027 kve->kve_end = (void*)entry->end; 2028 kve->kve_offset = (off_t)entry->offset; 2029 2030 if (entry->protection & VM_PROT_READ) 2031 kve->kve_protection |= KVME_PROT_READ; 2032 if (entry->protection & VM_PROT_WRITE) 2033 kve->kve_protection |= KVME_PROT_WRITE; 2034 if (entry->protection & VM_PROT_EXECUTE) 2035 kve->kve_protection |= KVME_PROT_EXEC; 2036 2037 if (entry->eflags & MAP_ENTRY_COW) 2038 kve->kve_flags |= KVME_FLAG_COW; 2039 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2040 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2041 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2042 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2043 2044 last_timestamp = map->timestamp; 2045 vm_map_unlock_read(map); 2046 2047 kve->kve_fileid = 0; 2048 kve->kve_fsid = 0; 2049 freepath = NULL; 2050 fullpath = ""; 2051 if (lobj) { 2052 vp = NULL; 2053 switch (lobj->type) { 2054 case OBJT_DEFAULT: 2055 kve->kve_type = KVME_TYPE_DEFAULT; 2056 break; 2057 case OBJT_VNODE: 2058 kve->kve_type = KVME_TYPE_VNODE; 2059 vp = lobj->handle; 2060 vref(vp); 2061 break; 2062 case OBJT_SWAP: 2063 kve->kve_type = KVME_TYPE_SWAP; 2064 break; 2065 case OBJT_DEVICE: 2066 kve->kve_type = KVME_TYPE_DEVICE; 2067 break; 2068 case OBJT_PHYS: 2069 kve->kve_type = KVME_TYPE_PHYS; 2070 break; 2071 case OBJT_DEAD: 2072 kve->kve_type = KVME_TYPE_DEAD; 2073 break; 2074 case OBJT_SG: 2075 kve->kve_type = KVME_TYPE_SG; 2076 break; 2077 default: 2078 kve->kve_type = KVME_TYPE_UNKNOWN; 2079 break; 2080 } 2081 if (lobj != obj) 2082 VM_OBJECT_RUNLOCK(lobj); 2083 2084 kve->kve_ref_count = obj->ref_count; 2085 kve->kve_shadow_count = obj->shadow_count; 2086 VM_OBJECT_RUNLOCK(obj); 2087 if (vp != NULL) { 2088 vn_fullpath(curthread, vp, &fullpath, 2089 &freepath); 2090 cred = curthread->td_ucred; 2091 vn_lock(vp, LK_SHARED | LK_RETRY); 2092 if (VOP_GETATTR(vp, &va, cred) == 0) { 2093 kve->kve_fileid = va.va_fileid; 2094 kve->kve_fsid = va.va_fsid; 2095 } 2096 vput(vp); 2097 } 2098 } else { 2099 kve->kve_type = KVME_TYPE_NONE; 2100 kve->kve_ref_count = 0; 2101 kve->kve_shadow_count = 0; 2102 } 2103 2104 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2105 if (freepath != NULL) 2106 free(freepath, M_TEMP); 2107 2108 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2109 vm_map_lock_read(map); 2110 if (error) 2111 break; 2112 if (last_timestamp != map->timestamp) { 2113 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2114 entry = tmp_entry; 2115 } 2116 } 2117 vm_map_unlock_read(map); 2118 vmspace_free(vm); 2119 PRELE(p); 2120 free(kve, M_TEMP); 2121 return (error); 2122 } 2123 #endif /* COMPAT_FREEBSD7 */ 2124 2125 #ifdef KINFO_VMENTRY_SIZE 2126 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2127 #endif 2128 2129 /* 2130 * Must be called with the process locked and will return unlocked. 2131 */ 2132 int 2133 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb) 2134 { 2135 vm_map_entry_t entry, tmp_entry; 2136 unsigned int last_timestamp; 2137 char *fullpath, *freepath; 2138 struct kinfo_vmentry *kve; 2139 struct vattr va; 2140 struct ucred *cred; 2141 int error; 2142 struct vnode *vp; 2143 struct vmspace *vm; 2144 vm_map_t map; 2145 2146 PROC_LOCK_ASSERT(p, MA_OWNED); 2147 2148 _PHOLD(p); 2149 PROC_UNLOCK(p); 2150 vm = vmspace_acquire_ref(p); 2151 if (vm == NULL) { 2152 PRELE(p); 2153 return (ESRCH); 2154 } 2155 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2156 2157 error = 0; 2158 map = &vm->vm_map; 2159 vm_map_lock_read(map); 2160 for (entry = map->header.next; entry != &map->header; 2161 entry = entry->next) { 2162 vm_object_t obj, tobj, lobj; 2163 vm_offset_t addr; 2164 vm_paddr_t locked_pa; 2165 int mincoreinfo; 2166 2167 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2168 continue; 2169 2170 bzero(kve, sizeof(*kve)); 2171 2172 kve->kve_private_resident = 0; 2173 obj = entry->object.vm_object; 2174 if (obj != NULL) { 2175 VM_OBJECT_RLOCK(obj); 2176 if (obj->shadow_count == 1) 2177 kve->kve_private_resident = 2178 obj->resident_page_count; 2179 } 2180 kve->kve_resident = 0; 2181 addr = entry->start; 2182 while (addr < entry->end) { 2183 locked_pa = 0; 2184 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2185 if (locked_pa != 0) 2186 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2187 if (mincoreinfo & MINCORE_INCORE) 2188 kve->kve_resident++; 2189 if (mincoreinfo & MINCORE_SUPER) 2190 kve->kve_flags |= KVME_FLAG_SUPER; 2191 addr += PAGE_SIZE; 2192 } 2193 2194 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2195 if (tobj != obj) 2196 VM_OBJECT_RLOCK(tobj); 2197 if (lobj != obj) 2198 VM_OBJECT_RUNLOCK(lobj); 2199 lobj = tobj; 2200 } 2201 2202 kve->kve_start = entry->start; 2203 kve->kve_end = entry->end; 2204 kve->kve_offset = entry->offset; 2205 2206 if (entry->protection & VM_PROT_READ) 2207 kve->kve_protection |= KVME_PROT_READ; 2208 if (entry->protection & VM_PROT_WRITE) 2209 kve->kve_protection |= KVME_PROT_WRITE; 2210 if (entry->protection & VM_PROT_EXECUTE) 2211 kve->kve_protection |= KVME_PROT_EXEC; 2212 2213 if (entry->eflags & MAP_ENTRY_COW) 2214 kve->kve_flags |= KVME_FLAG_COW; 2215 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2216 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2217 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2218 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2219 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2220 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2221 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2222 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2223 2224 last_timestamp = map->timestamp; 2225 vm_map_unlock_read(map); 2226 2227 freepath = NULL; 2228 fullpath = ""; 2229 if (lobj) { 2230 vp = NULL; 2231 switch (lobj->type) { 2232 case OBJT_DEFAULT: 2233 kve->kve_type = KVME_TYPE_DEFAULT; 2234 break; 2235 case OBJT_VNODE: 2236 kve->kve_type = KVME_TYPE_VNODE; 2237 vp = lobj->handle; 2238 vref(vp); 2239 break; 2240 case OBJT_SWAP: 2241 kve->kve_type = KVME_TYPE_SWAP; 2242 break; 2243 case OBJT_DEVICE: 2244 kve->kve_type = KVME_TYPE_DEVICE; 2245 break; 2246 case OBJT_PHYS: 2247 kve->kve_type = KVME_TYPE_PHYS; 2248 break; 2249 case OBJT_DEAD: 2250 kve->kve_type = KVME_TYPE_DEAD; 2251 break; 2252 case OBJT_SG: 2253 kve->kve_type = KVME_TYPE_SG; 2254 break; 2255 default: 2256 kve->kve_type = KVME_TYPE_UNKNOWN; 2257 break; 2258 } 2259 if (lobj != obj) 2260 VM_OBJECT_RUNLOCK(lobj); 2261 2262 kve->kve_ref_count = obj->ref_count; 2263 kve->kve_shadow_count = obj->shadow_count; 2264 VM_OBJECT_RUNLOCK(obj); 2265 if (vp != NULL) { 2266 vn_fullpath(curthread, vp, &fullpath, 2267 &freepath); 2268 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2269 cred = curthread->td_ucred; 2270 vn_lock(vp, LK_SHARED | LK_RETRY); 2271 if (VOP_GETATTR(vp, &va, cred) == 0) { 2272 kve->kve_vn_fileid = va.va_fileid; 2273 kve->kve_vn_fsid = va.va_fsid; 2274 kve->kve_vn_mode = 2275 MAKEIMODE(va.va_type, va.va_mode); 2276 kve->kve_vn_size = va.va_size; 2277 kve->kve_vn_rdev = va.va_rdev; 2278 kve->kve_status = KF_ATTR_VALID; 2279 } 2280 vput(vp); 2281 } 2282 } else { 2283 kve->kve_type = KVME_TYPE_NONE; 2284 kve->kve_ref_count = 0; 2285 kve->kve_shadow_count = 0; 2286 } 2287 2288 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2289 if (freepath != NULL) 2290 free(freepath, M_TEMP); 2291 2292 /* Pack record size down */ 2293 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2294 strlen(kve->kve_path) + 1; 2295 kve->kve_structsize = roundup(kve->kve_structsize, 2296 sizeof(uint64_t)); 2297 error = sbuf_bcat(sb, kve, kve->kve_structsize); 2298 vm_map_lock_read(map); 2299 if (error) 2300 break; 2301 if (last_timestamp != map->timestamp) { 2302 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2303 entry = tmp_entry; 2304 } 2305 } 2306 vm_map_unlock_read(map); 2307 vmspace_free(vm); 2308 PRELE(p); 2309 free(kve, M_TEMP); 2310 return (error); 2311 } 2312 2313 static int 2314 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2315 { 2316 struct proc *p; 2317 struct sbuf sb; 2318 int error, error2, *name; 2319 2320 name = (int *)arg1; 2321 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2322 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2323 if (error != 0) { 2324 sbuf_delete(&sb); 2325 return (error); 2326 } 2327 error = kern_proc_vmmap_out(p, &sb); 2328 error2 = sbuf_finish(&sb); 2329 sbuf_delete(&sb); 2330 return (error != 0 ? error : error2); 2331 } 2332 2333 #if defined(STACK) || defined(DDB) 2334 static int 2335 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2336 { 2337 struct kinfo_kstack *kkstp; 2338 int error, i, *name, numthreads; 2339 lwpid_t *lwpidarray; 2340 struct thread *td; 2341 struct stack *st; 2342 struct sbuf sb; 2343 struct proc *p; 2344 2345 name = (int *)arg1; 2346 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2347 if (error != 0) 2348 return (error); 2349 2350 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2351 st = stack_create(); 2352 2353 lwpidarray = NULL; 2354 numthreads = 0; 2355 PROC_LOCK(p); 2356 repeat: 2357 if (numthreads < p->p_numthreads) { 2358 if (lwpidarray != NULL) { 2359 free(lwpidarray, M_TEMP); 2360 lwpidarray = NULL; 2361 } 2362 numthreads = p->p_numthreads; 2363 PROC_UNLOCK(p); 2364 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2365 M_WAITOK | M_ZERO); 2366 PROC_LOCK(p); 2367 goto repeat; 2368 } 2369 i = 0; 2370 2371 /* 2372 * XXXRW: During the below loop, execve(2) and countless other sorts 2373 * of changes could have taken place. Should we check to see if the 2374 * vmspace has been replaced, or the like, in order to prevent 2375 * giving a snapshot that spans, say, execve(2), with some threads 2376 * before and some after? Among other things, the credentials could 2377 * have changed, in which case the right to extract debug info might 2378 * no longer be assured. 2379 */ 2380 FOREACH_THREAD_IN_PROC(p, td) { 2381 KASSERT(i < numthreads, 2382 ("sysctl_kern_proc_kstack: numthreads")); 2383 lwpidarray[i] = td->td_tid; 2384 i++; 2385 } 2386 numthreads = i; 2387 for (i = 0; i < numthreads; i++) { 2388 td = thread_find(p, lwpidarray[i]); 2389 if (td == NULL) { 2390 continue; 2391 } 2392 bzero(kkstp, sizeof(*kkstp)); 2393 (void)sbuf_new(&sb, kkstp->kkst_trace, 2394 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2395 thread_lock(td); 2396 kkstp->kkst_tid = td->td_tid; 2397 if (TD_IS_SWAPPED(td)) 2398 kkstp->kkst_state = KKST_STATE_SWAPPED; 2399 else if (TD_IS_RUNNING(td)) 2400 kkstp->kkst_state = KKST_STATE_RUNNING; 2401 else { 2402 kkstp->kkst_state = KKST_STATE_STACKOK; 2403 stack_save_td(st, td); 2404 } 2405 thread_unlock(td); 2406 PROC_UNLOCK(p); 2407 stack_sbuf_print(&sb, st); 2408 sbuf_finish(&sb); 2409 sbuf_delete(&sb); 2410 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2411 PROC_LOCK(p); 2412 if (error) 2413 break; 2414 } 2415 _PRELE(p); 2416 PROC_UNLOCK(p); 2417 if (lwpidarray != NULL) 2418 free(lwpidarray, M_TEMP); 2419 stack_destroy(st); 2420 free(kkstp, M_TEMP); 2421 return (error); 2422 } 2423 #endif 2424 2425 /* 2426 * This sysctl allows a process to retrieve the full list of groups from 2427 * itself or another process. 2428 */ 2429 static int 2430 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2431 { 2432 pid_t *pidp = (pid_t *)arg1; 2433 unsigned int arglen = arg2; 2434 struct proc *p; 2435 struct ucred *cred; 2436 int error; 2437 2438 if (arglen != 1) 2439 return (EINVAL); 2440 if (*pidp == -1) { /* -1 means this process */ 2441 p = req->td->td_proc; 2442 } else { 2443 error = pget(*pidp, PGET_CANSEE, &p); 2444 if (error != 0) 2445 return (error); 2446 } 2447 2448 cred = crhold(p->p_ucred); 2449 if (*pidp != -1) 2450 PROC_UNLOCK(p); 2451 2452 error = SYSCTL_OUT(req, cred->cr_groups, 2453 cred->cr_ngroups * sizeof(gid_t)); 2454 crfree(cred); 2455 return (error); 2456 } 2457 2458 /* 2459 * This sysctl allows a process to retrieve or/and set the resource limit for 2460 * another process. 2461 */ 2462 static int 2463 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2464 { 2465 int *name = (int *)arg1; 2466 u_int namelen = arg2; 2467 struct rlimit rlim; 2468 struct proc *p; 2469 u_int which; 2470 int flags, error; 2471 2472 if (namelen != 2) 2473 return (EINVAL); 2474 2475 which = (u_int)name[1]; 2476 if (which >= RLIM_NLIMITS) 2477 return (EINVAL); 2478 2479 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2480 return (EINVAL); 2481 2482 flags = PGET_HOLD | PGET_NOTWEXIT; 2483 if (req->newptr != NULL) 2484 flags |= PGET_CANDEBUG; 2485 else 2486 flags |= PGET_CANSEE; 2487 error = pget((pid_t)name[0], flags, &p); 2488 if (error != 0) 2489 return (error); 2490 2491 /* 2492 * Retrieve limit. 2493 */ 2494 if (req->oldptr != NULL) { 2495 PROC_LOCK(p); 2496 lim_rlimit(p, which, &rlim); 2497 PROC_UNLOCK(p); 2498 } 2499 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2500 if (error != 0) 2501 goto errout; 2502 2503 /* 2504 * Set limit. 2505 */ 2506 if (req->newptr != NULL) { 2507 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2508 if (error == 0) 2509 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2510 } 2511 2512 errout: 2513 PRELE(p); 2514 return (error); 2515 } 2516 2517 /* 2518 * This sysctl allows a process to retrieve ps_strings structure location of 2519 * another process. 2520 */ 2521 static int 2522 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2523 { 2524 int *name = (int *)arg1; 2525 u_int namelen = arg2; 2526 struct proc *p; 2527 vm_offset_t ps_strings; 2528 int error; 2529 #ifdef COMPAT_FREEBSD32 2530 uint32_t ps_strings32; 2531 #endif 2532 2533 if (namelen != 1) 2534 return (EINVAL); 2535 2536 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2537 if (error != 0) 2538 return (error); 2539 #ifdef COMPAT_FREEBSD32 2540 if ((req->flags & SCTL_MASK32) != 0) { 2541 /* 2542 * We return 0 if the 32 bit emulation request is for a 64 bit 2543 * process. 2544 */ 2545 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2546 PTROUT(p->p_sysent->sv_psstrings) : 0; 2547 PROC_UNLOCK(p); 2548 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2549 return (error); 2550 } 2551 #endif 2552 ps_strings = p->p_sysent->sv_psstrings; 2553 PROC_UNLOCK(p); 2554 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2555 return (error); 2556 } 2557 2558 /* 2559 * This sysctl allows a process to retrieve umask of another process. 2560 */ 2561 static int 2562 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2563 { 2564 int *name = (int *)arg1; 2565 u_int namelen = arg2; 2566 struct proc *p; 2567 int error; 2568 u_short fd_cmask; 2569 2570 if (namelen != 1) 2571 return (EINVAL); 2572 2573 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2574 if (error != 0) 2575 return (error); 2576 2577 FILEDESC_SLOCK(p->p_fd); 2578 fd_cmask = p->p_fd->fd_cmask; 2579 FILEDESC_SUNLOCK(p->p_fd); 2580 PRELE(p); 2581 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2582 return (error); 2583 } 2584 2585 /* 2586 * This sysctl allows a process to set and retrieve binary osreldate of 2587 * another process. 2588 */ 2589 static int 2590 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2591 { 2592 int *name = (int *)arg1; 2593 u_int namelen = arg2; 2594 struct proc *p; 2595 int flags, error, osrel; 2596 2597 if (namelen != 1) 2598 return (EINVAL); 2599 2600 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2601 return (EINVAL); 2602 2603 flags = PGET_HOLD | PGET_NOTWEXIT; 2604 if (req->newptr != NULL) 2605 flags |= PGET_CANDEBUG; 2606 else 2607 flags |= PGET_CANSEE; 2608 error = pget((pid_t)name[0], flags, &p); 2609 if (error != 0) 2610 return (error); 2611 2612 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2613 if (error != 0) 2614 goto errout; 2615 2616 if (req->newptr != NULL) { 2617 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2618 if (error != 0) 2619 goto errout; 2620 if (osrel < 0) { 2621 error = EINVAL; 2622 goto errout; 2623 } 2624 p->p_osrel = osrel; 2625 } 2626 errout: 2627 PRELE(p); 2628 return (error); 2629 } 2630 2631 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2632 2633 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2634 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2635 "Return entire process table"); 2636 2637 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2638 sysctl_kern_proc, "Process table"); 2639 2640 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2641 sysctl_kern_proc, "Process table"); 2642 2643 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2644 sysctl_kern_proc, "Process table"); 2645 2646 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2647 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2648 2649 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2650 sysctl_kern_proc, "Process table"); 2651 2652 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2653 sysctl_kern_proc, "Process table"); 2654 2655 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2656 sysctl_kern_proc, "Process table"); 2657 2658 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2659 sysctl_kern_proc, "Process table"); 2660 2661 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2662 sysctl_kern_proc, "Return process table, no threads"); 2663 2664 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2665 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2666 sysctl_kern_proc_args, "Process argument list"); 2667 2668 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2669 sysctl_kern_proc_env, "Process environment"); 2670 2671 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2672 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2673 2674 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2675 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2676 2677 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2678 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2679 "Process syscall vector name (ABI type)"); 2680 2681 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2682 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2683 2684 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2685 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2686 2687 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2688 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2689 2690 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2691 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2692 2693 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2694 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2695 2696 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2697 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2698 2699 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2700 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2701 2702 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2703 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2704 2705 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2706 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2707 "Return process table, no threads"); 2708 2709 #ifdef COMPAT_FREEBSD7 2710 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2711 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2712 #endif 2713 2714 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2715 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2716 2717 #if defined(STACK) || defined(DDB) 2718 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2719 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2720 #endif 2721 2722 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2723 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2724 2725 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2726 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2727 "Process resource limits"); 2728 2729 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2730 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2731 "Process ps_strings location"); 2732 2733 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2734 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2735 2736 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2737 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2738 "Process binary osreldate"); 2739