1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/sysent.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 #include <sys/filedesc.h> 51 #include <sys/tty.h> 52 #include <sys/signalvar.h> 53 #include <sys/sx.h> 54 #include <sys/user.h> 55 #include <sys/jail.h> 56 #ifdef KTRACE 57 #include <sys/uio.h> 58 #include <sys/ktrace.h> 59 #endif 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/uma.h> 66 #include <machine/critical.h> 67 68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 69 MALLOC_DEFINE(M_SESSION, "session", "session header"); 70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 72 73 static void doenterpgrp(struct proc *, struct pgrp *); 74 static void orphanpg(struct pgrp *pg); 75 static void pgadjustjobc(struct pgrp *pgrp, int entering); 76 static void pgdelete(struct pgrp *); 77 static int proc_ctor(void *mem, int size, void *arg, int flags); 78 static void proc_dtor(void *mem, int size, void *arg); 79 static int proc_init(void *mem, int size, int flags); 80 static void proc_fini(void *mem, int size); 81 82 /* 83 * Other process lists 84 */ 85 struct pidhashhead *pidhashtbl; 86 u_long pidhash; 87 struct pgrphashhead *pgrphashtbl; 88 u_long pgrphash; 89 struct proclist allproc; 90 struct proclist zombproc; 91 struct sx allproc_lock; 92 struct sx proctree_lock; 93 struct mtx pargs_ref_lock; 94 struct mtx ppeers_lock; 95 uma_zone_t proc_zone; 96 uma_zone_t ithread_zone; 97 98 int kstack_pages = KSTACK_PAGES; 99 int uarea_pages = UAREA_PAGES; 100 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 101 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, ""); 102 103 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 104 105 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 106 107 /* 108 * Initialize global process hashing structures. 109 */ 110 void 111 procinit() 112 { 113 114 sx_init(&allproc_lock, "allproc"); 115 sx_init(&proctree_lock, "proctree"); 116 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); 117 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 118 LIST_INIT(&allproc); 119 LIST_INIT(&zombproc); 120 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 121 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 122 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 123 proc_ctor, proc_dtor, proc_init, proc_fini, 124 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 125 uihashinit(); 126 } 127 128 /* 129 * Prepare a proc for use. 130 */ 131 static int 132 proc_ctor(void *mem, int size, void *arg, int flags) 133 { 134 struct proc *p; 135 136 p = (struct proc *)mem; 137 return (0); 138 } 139 140 /* 141 * Reclaim a proc after use. 142 */ 143 static void 144 proc_dtor(void *mem, int size, void *arg) 145 { 146 struct proc *p; 147 struct thread *td; 148 struct ksegrp *kg; 149 struct kse *ke; 150 151 /* INVARIANTS checks go here */ 152 p = (struct proc *)mem; 153 KASSERT((p->p_numthreads == 1), 154 ("bad number of threads in exiting process")); 155 td = FIRST_THREAD_IN_PROC(p); 156 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 157 kg = FIRST_KSEGRP_IN_PROC(p); 158 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 159 ke = FIRST_KSE_IN_KSEGRP(kg); 160 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 161 162 /* Dispose of an alternate kstack, if it exists. 163 * XXX What if there are more than one thread in the proc? 164 * The first thread in the proc is special and not 165 * freed, so you gotta do this here. 166 */ 167 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 168 vm_thread_dispose_altkstack(td); 169 170 /* 171 * We want to make sure we know the initial linkages. 172 * so for now tear them down and remake them. 173 * This is probably un-needed as we can probably rely 174 * on the state coming in here from wait4(). 175 */ 176 proc_linkup(p, kg, ke, td); 177 } 178 179 /* 180 * Initialize type-stable parts of a proc (when newly created). 181 */ 182 static int 183 proc_init(void *mem, int size, int flags) 184 { 185 struct proc *p; 186 struct thread *td; 187 struct ksegrp *kg; 188 struct kse *ke; 189 190 p = (struct proc *)mem; 191 p->p_sched = (struct p_sched *)&p[1]; 192 vm_proc_new(p); 193 td = thread_alloc(); 194 ke = kse_alloc(); 195 kg = ksegrp_alloc(); 196 proc_linkup(p, kg, ke, td); 197 bzero(&p->p_mtx, sizeof(struct mtx)); 198 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 199 return (0); 200 } 201 202 /* 203 * Tear down type-stable parts of a proc (just before being discarded) 204 */ 205 static void 206 proc_fini(void *mem, int size) 207 { 208 struct proc *p; 209 struct thread *td; 210 struct ksegrp *kg; 211 struct kse *ke; 212 213 p = (struct proc *)mem; 214 KASSERT((p->p_numthreads == 1), 215 ("bad number of threads in freeing process")); 216 td = FIRST_THREAD_IN_PROC(p); 217 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 218 kg = FIRST_KSEGRP_IN_PROC(p); 219 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 220 ke = FIRST_KSE_IN_KSEGRP(kg); 221 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 222 vm_proc_dispose(p); 223 thread_free(td); 224 ksegrp_free(kg); 225 kse_free(ke); 226 mtx_destroy(&p->p_mtx); 227 } 228 229 /* 230 * Is p an inferior of the current process? 231 */ 232 int 233 inferior(p) 234 register struct proc *p; 235 { 236 237 sx_assert(&proctree_lock, SX_LOCKED); 238 for (; p != curproc; p = p->p_pptr) 239 if (p->p_pid == 0) 240 return (0); 241 return (1); 242 } 243 244 /* 245 * Locate a process by number 246 */ 247 struct proc * 248 pfind(pid) 249 register pid_t pid; 250 { 251 register struct proc *p; 252 253 sx_slock(&allproc_lock); 254 LIST_FOREACH(p, PIDHASH(pid), p_hash) 255 if (p->p_pid == pid) { 256 PROC_LOCK(p); 257 break; 258 } 259 sx_sunlock(&allproc_lock); 260 return (p); 261 } 262 263 /* 264 * Locate a process group by number. 265 * The caller must hold proctree_lock. 266 */ 267 struct pgrp * 268 pgfind(pgid) 269 register pid_t pgid; 270 { 271 register struct pgrp *pgrp; 272 273 sx_assert(&proctree_lock, SX_LOCKED); 274 275 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 276 if (pgrp->pg_id == pgid) { 277 PGRP_LOCK(pgrp); 278 return (pgrp); 279 } 280 } 281 return (NULL); 282 } 283 284 /* 285 * Create a new process group. 286 * pgid must be equal to the pid of p. 287 * Begin a new session if required. 288 */ 289 int 290 enterpgrp(p, pgid, pgrp, sess) 291 register struct proc *p; 292 pid_t pgid; 293 struct pgrp *pgrp; 294 struct session *sess; 295 { 296 struct pgrp *pgrp2; 297 298 sx_assert(&proctree_lock, SX_XLOCKED); 299 300 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 301 KASSERT(p->p_pid == pgid, 302 ("enterpgrp: new pgrp and pid != pgid")); 303 304 pgrp2 = pgfind(pgid); 305 306 KASSERT(pgrp2 == NULL, 307 ("enterpgrp: pgrp with pgid exists")); 308 KASSERT(!SESS_LEADER(p), 309 ("enterpgrp: session leader attempted setpgrp")); 310 311 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 312 313 if (sess != NULL) { 314 /* 315 * new session 316 */ 317 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 318 PROC_LOCK(p); 319 p->p_flag &= ~P_CONTROLT; 320 PROC_UNLOCK(p); 321 PGRP_LOCK(pgrp); 322 sess->s_leader = p; 323 sess->s_sid = p->p_pid; 324 sess->s_count = 1; 325 sess->s_ttyvp = NULL; 326 sess->s_ttyp = NULL; 327 bcopy(p->p_session->s_login, sess->s_login, 328 sizeof(sess->s_login)); 329 pgrp->pg_session = sess; 330 KASSERT(p == curproc, 331 ("enterpgrp: mksession and p != curproc")); 332 } else { 333 pgrp->pg_session = p->p_session; 334 SESS_LOCK(pgrp->pg_session); 335 pgrp->pg_session->s_count++; 336 SESS_UNLOCK(pgrp->pg_session); 337 PGRP_LOCK(pgrp); 338 } 339 pgrp->pg_id = pgid; 340 LIST_INIT(&pgrp->pg_members); 341 342 /* 343 * As we have an exclusive lock of proctree_lock, 344 * this should not deadlock. 345 */ 346 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 347 pgrp->pg_jobc = 0; 348 SLIST_INIT(&pgrp->pg_sigiolst); 349 PGRP_UNLOCK(pgrp); 350 351 doenterpgrp(p, pgrp); 352 353 return (0); 354 } 355 356 /* 357 * Move p to an existing process group 358 */ 359 int 360 enterthispgrp(p, pgrp) 361 register struct proc *p; 362 struct pgrp *pgrp; 363 { 364 365 sx_assert(&proctree_lock, SX_XLOCKED); 366 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 367 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 368 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 369 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 370 KASSERT(pgrp->pg_session == p->p_session, 371 ("%s: pgrp's session %p, p->p_session %p.\n", 372 __func__, 373 pgrp->pg_session, 374 p->p_session)); 375 KASSERT(pgrp != p->p_pgrp, 376 ("%s: p belongs to pgrp.", __func__)); 377 378 doenterpgrp(p, pgrp); 379 380 return (0); 381 } 382 383 /* 384 * Move p to a process group 385 */ 386 static void 387 doenterpgrp(p, pgrp) 388 struct proc *p; 389 struct pgrp *pgrp; 390 { 391 struct pgrp *savepgrp; 392 393 sx_assert(&proctree_lock, SX_XLOCKED); 394 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 395 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 396 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 397 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 398 399 savepgrp = p->p_pgrp; 400 401 /* 402 * Adjust eligibility of affected pgrps to participate in job control. 403 * Increment eligibility counts before decrementing, otherwise we 404 * could reach 0 spuriously during the first call. 405 */ 406 fixjobc(p, pgrp, 1); 407 fixjobc(p, p->p_pgrp, 0); 408 409 PGRP_LOCK(pgrp); 410 PGRP_LOCK(savepgrp); 411 PROC_LOCK(p); 412 LIST_REMOVE(p, p_pglist); 413 p->p_pgrp = pgrp; 414 PROC_UNLOCK(p); 415 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 416 PGRP_UNLOCK(savepgrp); 417 PGRP_UNLOCK(pgrp); 418 if (LIST_EMPTY(&savepgrp->pg_members)) 419 pgdelete(savepgrp); 420 } 421 422 /* 423 * remove process from process group 424 */ 425 int 426 leavepgrp(p) 427 register struct proc *p; 428 { 429 struct pgrp *savepgrp; 430 431 sx_assert(&proctree_lock, SX_XLOCKED); 432 savepgrp = p->p_pgrp; 433 PGRP_LOCK(savepgrp); 434 PROC_LOCK(p); 435 LIST_REMOVE(p, p_pglist); 436 p->p_pgrp = NULL; 437 PROC_UNLOCK(p); 438 PGRP_UNLOCK(savepgrp); 439 if (LIST_EMPTY(&savepgrp->pg_members)) 440 pgdelete(savepgrp); 441 return (0); 442 } 443 444 /* 445 * delete a process group 446 */ 447 static void 448 pgdelete(pgrp) 449 register struct pgrp *pgrp; 450 { 451 struct session *savesess; 452 int i; 453 454 sx_assert(&proctree_lock, SX_XLOCKED); 455 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 456 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 457 458 /* 459 * Reset any sigio structures pointing to us as a result of 460 * F_SETOWN with our pgid. 461 */ 462 funsetownlst(&pgrp->pg_sigiolst); 463 464 PGRP_LOCK(pgrp); 465 if (pgrp->pg_session->s_ttyp != NULL && 466 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 467 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 468 LIST_REMOVE(pgrp, pg_hash); 469 savesess = pgrp->pg_session; 470 SESS_LOCK(savesess); 471 i = --savesess->s_count; 472 SESS_UNLOCK(savesess); 473 PGRP_UNLOCK(pgrp); 474 if (i == 0) { 475 if (savesess->s_ttyp != NULL) 476 ttyrel(savesess->s_ttyp); 477 mtx_destroy(&savesess->s_mtx); 478 FREE(savesess, M_SESSION); 479 } 480 mtx_destroy(&pgrp->pg_mtx); 481 FREE(pgrp, M_PGRP); 482 } 483 484 static void 485 pgadjustjobc(pgrp, entering) 486 struct pgrp *pgrp; 487 int entering; 488 { 489 490 PGRP_LOCK(pgrp); 491 if (entering) 492 pgrp->pg_jobc++; 493 else { 494 --pgrp->pg_jobc; 495 if (pgrp->pg_jobc == 0) 496 orphanpg(pgrp); 497 } 498 PGRP_UNLOCK(pgrp); 499 } 500 501 /* 502 * Adjust pgrp jobc counters when specified process changes process group. 503 * We count the number of processes in each process group that "qualify" 504 * the group for terminal job control (those with a parent in a different 505 * process group of the same session). If that count reaches zero, the 506 * process group becomes orphaned. Check both the specified process' 507 * process group and that of its children. 508 * entering == 0 => p is leaving specified group. 509 * entering == 1 => p is entering specified group. 510 */ 511 void 512 fixjobc(p, pgrp, entering) 513 register struct proc *p; 514 register struct pgrp *pgrp; 515 int entering; 516 { 517 register struct pgrp *hispgrp; 518 register struct session *mysession; 519 520 sx_assert(&proctree_lock, SX_LOCKED); 521 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 522 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 523 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 524 525 /* 526 * Check p's parent to see whether p qualifies its own process 527 * group; if so, adjust count for p's process group. 528 */ 529 mysession = pgrp->pg_session; 530 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 531 hispgrp->pg_session == mysession) 532 pgadjustjobc(pgrp, entering); 533 534 /* 535 * Check this process' children to see whether they qualify 536 * their process groups; if so, adjust counts for children's 537 * process groups. 538 */ 539 LIST_FOREACH(p, &p->p_children, p_sibling) { 540 hispgrp = p->p_pgrp; 541 if (hispgrp == pgrp || 542 hispgrp->pg_session != mysession) 543 continue; 544 PROC_LOCK(p); 545 if (p->p_state == PRS_ZOMBIE) { 546 PROC_UNLOCK(p); 547 continue; 548 } 549 PROC_UNLOCK(p); 550 pgadjustjobc(hispgrp, entering); 551 } 552 } 553 554 /* 555 * A process group has become orphaned; 556 * if there are any stopped processes in the group, 557 * hang-up all process in that group. 558 */ 559 static void 560 orphanpg(pg) 561 struct pgrp *pg; 562 { 563 register struct proc *p; 564 565 PGRP_LOCK_ASSERT(pg, MA_OWNED); 566 567 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 568 PROC_LOCK(p); 569 if (P_SHOULDSTOP(p)) { 570 PROC_UNLOCK(p); 571 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 572 PROC_LOCK(p); 573 psignal(p, SIGHUP); 574 psignal(p, SIGCONT); 575 PROC_UNLOCK(p); 576 } 577 return; 578 } 579 PROC_UNLOCK(p); 580 } 581 } 582 583 #include "opt_ddb.h" 584 #ifdef DDB 585 #include <ddb/ddb.h> 586 587 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 588 { 589 register struct pgrp *pgrp; 590 register struct proc *p; 591 register int i; 592 593 for (i = 0; i <= pgrphash; i++) { 594 if (!LIST_EMPTY(&pgrphashtbl[i])) { 595 printf("\tindx %d\n", i); 596 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 597 printf( 598 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 599 (void *)pgrp, (long)pgrp->pg_id, 600 (void *)pgrp->pg_session, 601 pgrp->pg_session->s_count, 602 (void *)LIST_FIRST(&pgrp->pg_members)); 603 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 604 printf("\t\tpid %ld addr %p pgrp %p\n", 605 (long)p->p_pid, (void *)p, 606 (void *)p->p_pgrp); 607 } 608 } 609 } 610 } 611 } 612 #endif /* DDB */ 613 void 614 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 615 616 /* 617 * Fill in a kinfo_proc structure for the specified process. 618 * Must be called with the target process locked. 619 */ 620 void 621 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 622 { 623 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 624 } 625 626 void 627 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 628 { 629 struct proc *p; 630 struct thread *td0; 631 struct kse *ke; 632 struct ksegrp *kg; 633 struct tty *tp; 634 struct session *sp; 635 struct timeval tv; 636 struct sigacts *ps; 637 638 p = td->td_proc; 639 640 bzero(kp, sizeof(*kp)); 641 642 kp->ki_structsize = sizeof(*kp); 643 kp->ki_paddr = p; 644 PROC_LOCK_ASSERT(p, MA_OWNED); 645 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 646 kp->ki_args = p->p_args; 647 kp->ki_textvp = p->p_textvp; 648 #ifdef KTRACE 649 kp->ki_tracep = p->p_tracevp; 650 mtx_lock(&ktrace_mtx); 651 kp->ki_traceflag = p->p_traceflag; 652 mtx_unlock(&ktrace_mtx); 653 #endif 654 kp->ki_fd = p->p_fd; 655 kp->ki_vmspace = p->p_vmspace; 656 if (p->p_ucred) { 657 kp->ki_uid = p->p_ucred->cr_uid; 658 kp->ki_ruid = p->p_ucred->cr_ruid; 659 kp->ki_svuid = p->p_ucred->cr_svuid; 660 /* XXX bde doesn't like KI_NGROUPS */ 661 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); 662 bcopy(p->p_ucred->cr_groups, kp->ki_groups, 663 kp->ki_ngroups * sizeof(gid_t)); 664 kp->ki_rgid = p->p_ucred->cr_rgid; 665 kp->ki_svgid = p->p_ucred->cr_svgid; 666 } 667 if (p->p_sigacts) { 668 ps = p->p_sigacts; 669 mtx_lock(&ps->ps_mtx); 670 kp->ki_sigignore = ps->ps_sigignore; 671 kp->ki_sigcatch = ps->ps_sigcatch; 672 mtx_unlock(&ps->ps_mtx); 673 } 674 mtx_lock_spin(&sched_lock); 675 if (p->p_state != PRS_NEW && 676 p->p_state != PRS_ZOMBIE && 677 p->p_vmspace != NULL) { 678 struct vmspace *vm = p->p_vmspace; 679 680 kp->ki_size = vm->vm_map.size; 681 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 682 if (p->p_sflag & PS_INMEM) 683 kp->ki_rssize += UAREA_PAGES; 684 FOREACH_THREAD_IN_PROC(p, td0) { 685 if (!TD_IS_SWAPPED(td0)) 686 kp->ki_rssize += td0->td_kstack_pages; 687 if (td0->td_altkstack_obj != NULL) 688 kp->ki_rssize += td0->td_altkstack_pages; 689 } 690 kp->ki_swrss = vm->vm_swrss; 691 kp->ki_tsize = vm->vm_tsize; 692 kp->ki_dsize = vm->vm_dsize; 693 kp->ki_ssize = vm->vm_ssize; 694 } 695 if ((p->p_sflag & PS_INMEM) && p->p_stats) { 696 kp->ki_start = p->p_stats->p_start; 697 timevaladd(&kp->ki_start, &boottime); 698 kp->ki_rusage = p->p_stats->p_ru; 699 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime, 700 NULL); 701 kp->ki_childstime = p->p_stats->p_cru.ru_stime; 702 kp->ki_childutime = p->p_stats->p_cru.ru_utime; 703 /* Some callers want child-times in a single value */ 704 kp->ki_childtime = kp->ki_childstime; 705 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 706 } 707 kp->ki_sflag = p->p_sflag; 708 kp->ki_swtime = p->p_swtime; 709 kp->ki_pid = p->p_pid; 710 kp->ki_nice = p->p_nice; 711 bintime2timeval(&p->p_runtime, &tv); 712 kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 713 if (p->p_state != PRS_ZOMBIE) { 714 #if 0 715 if (td == NULL) { 716 /* XXXKSE: This should never happen. */ 717 printf("fill_kinfo_proc(): pid %d has no threads!\n", 718 p->p_pid); 719 mtx_unlock_spin(&sched_lock); 720 return; 721 } 722 #endif 723 if (td->td_wmesg != NULL) { 724 strlcpy(kp->ki_wmesg, td->td_wmesg, 725 sizeof(kp->ki_wmesg)); 726 } 727 if (TD_ON_LOCK(td)) { 728 kp->ki_kiflag |= KI_LOCKBLOCK; 729 strlcpy(kp->ki_lockname, td->td_lockname, 730 sizeof(kp->ki_lockname)); 731 } 732 733 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 734 if (TD_ON_RUNQ(td) || 735 TD_CAN_RUN(td) || 736 TD_IS_RUNNING(td)) { 737 kp->ki_stat = SRUN; 738 } else if (P_SHOULDSTOP(p)) { 739 kp->ki_stat = SSTOP; 740 } else if (TD_IS_SLEEPING(td)) { 741 kp->ki_stat = SSLEEP; 742 } else if (TD_ON_LOCK(td)) { 743 kp->ki_stat = SLOCK; 744 } else { 745 kp->ki_stat = SWAIT; 746 } 747 } else { 748 kp->ki_stat = SIDL; 749 } 750 751 kg = td->td_ksegrp; 752 ke = td->td_kse; 753 754 /* things in the KSE GROUP */ 755 kp->ki_estcpu = kg->kg_estcpu; 756 kp->ki_slptime = kg->kg_slptime; 757 kp->ki_pri.pri_user = kg->kg_user_pri; 758 kp->ki_pri.pri_class = kg->kg_pri_class; 759 760 /* Things in the thread */ 761 kp->ki_wchan = td->td_wchan; 762 kp->ki_pri.pri_level = td->td_priority; 763 kp->ki_pri.pri_native = td->td_base_pri; 764 kp->ki_lastcpu = td->td_lastcpu; 765 kp->ki_oncpu = td->td_oncpu; 766 kp->ki_tdflags = td->td_flags; 767 kp->ki_tid = td->td_tid; 768 kp->ki_numthreads = p->p_numthreads; 769 kp->ki_pcb = td->td_pcb; 770 kp->ki_kstack = (void *)td->td_kstack; 771 kp->ki_pctcpu = sched_pctcpu(td); 772 773 /* Things in the kse */ 774 if (ke) 775 kp->ki_rqindex = ke->ke_rqindex; 776 else 777 kp->ki_rqindex = 0; 778 779 } else { 780 kp->ki_stat = SZOMB; 781 } 782 mtx_unlock_spin(&sched_lock); 783 sp = NULL; 784 tp = NULL; 785 if (p->p_pgrp) { 786 kp->ki_pgid = p->p_pgrp->pg_id; 787 kp->ki_jobc = p->p_pgrp->pg_jobc; 788 sp = p->p_pgrp->pg_session; 789 790 if (sp != NULL) { 791 kp->ki_sid = sp->s_sid; 792 SESS_LOCK(sp); 793 strlcpy(kp->ki_login, sp->s_login, 794 sizeof(kp->ki_login)); 795 if (sp->s_ttyvp) 796 kp->ki_kiflag |= KI_CTTY; 797 if (SESS_LEADER(p)) 798 kp->ki_kiflag |= KI_SLEADER; 799 tp = sp->s_ttyp; 800 SESS_UNLOCK(sp); 801 } 802 } 803 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 804 kp->ki_tdev = dev2udev(tp->t_dev); 805 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 806 if (tp->t_session) 807 kp->ki_tsid = tp->t_session->s_sid; 808 } else 809 kp->ki_tdev = NODEV; 810 if (p->p_comm[0] != '\0') { 811 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 812 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 813 } 814 if (p->p_sysent && p->p_sysent->sv_name != NULL && 815 p->p_sysent->sv_name[0] != '\0') 816 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 817 kp->ki_siglist = p->p_siglist; 818 SIGSETOR(kp->ki_siglist, td->td_siglist); 819 kp->ki_sigmask = td->td_sigmask; 820 kp->ki_xstat = p->p_xstat; 821 kp->ki_acflag = p->p_acflag; 822 kp->ki_flag = p->p_flag; 823 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ 824 if (jailed(p->p_ucred)) 825 kp->ki_flag |= P_JAILED; 826 kp->ki_lock = p->p_lock; 827 if (p->p_pptr) 828 kp->ki_ppid = p->p_pptr->p_pid; 829 } 830 831 /* 832 * Locate a zombie process by number 833 */ 834 struct proc * 835 zpfind(pid_t pid) 836 { 837 struct proc *p; 838 839 sx_slock(&allproc_lock); 840 LIST_FOREACH(p, &zombproc, p_list) 841 if (p->p_pid == pid) { 842 PROC_LOCK(p); 843 break; 844 } 845 sx_sunlock(&allproc_lock); 846 return (p); 847 } 848 849 #define KERN_PROC_ZOMBMASK 0x3 850 #define KERN_PROC_NOTHREADS 0x4 851 852 /* 853 * Must be called with the process locked and will return with it unlocked. 854 */ 855 static int 856 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 857 { 858 struct thread *td; 859 struct kinfo_proc kinfo_proc; 860 int error = 0; 861 struct proc *np; 862 pid_t pid = p->p_pid; 863 864 PROC_LOCK_ASSERT(p, MA_OWNED); 865 866 if (flags & KERN_PROC_NOTHREADS) { 867 fill_kinfo_proc(p, &kinfo_proc); 868 PROC_UNLOCK(p); 869 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 870 sizeof(kinfo_proc)); 871 PROC_LOCK(p); 872 } else { 873 _PHOLD(p); 874 FOREACH_THREAD_IN_PROC(p, td) { 875 fill_kinfo_thread(td, &kinfo_proc); 876 PROC_UNLOCK(p); 877 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 878 sizeof(kinfo_proc)); 879 PROC_LOCK(p); 880 if (error) 881 break; 882 } 883 _PRELE(p); 884 } 885 PROC_UNLOCK(p); 886 if (error) 887 return (error); 888 if (flags & KERN_PROC_ZOMBMASK) 889 np = zpfind(pid); 890 else { 891 if (pid == 0) 892 return (0); 893 np = pfind(pid); 894 } 895 if (np == NULL) 896 return EAGAIN; 897 if (np != p) { 898 PROC_UNLOCK(np); 899 return EAGAIN; 900 } 901 PROC_UNLOCK(np); 902 return (0); 903 } 904 905 static int 906 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 907 { 908 int *name = (int*) arg1; 909 u_int namelen = arg2; 910 struct proc *p; 911 int flags, doingzomb, oid_number; 912 int error = 0; 913 914 oid_number = oidp->oid_number; 915 if (oid_number != KERN_PROC_ALL && 916 (oid_number & KERN_PROC_INC_THREAD) == 0) 917 flags = KERN_PROC_NOTHREADS; 918 else { 919 flags = 0; 920 oid_number &= ~KERN_PROC_INC_THREAD; 921 } 922 if (oid_number == KERN_PROC_PID) { 923 if (namelen != 1) 924 return (EINVAL); 925 p = pfind((pid_t)name[0]); 926 if (!p) 927 return (ESRCH); 928 if ((error = p_cansee(curthread, p))) { 929 PROC_UNLOCK(p); 930 return (error); 931 } 932 error = sysctl_out_proc(p, req, flags); 933 return (error); 934 } 935 936 switch (oid_number) { 937 case KERN_PROC_ALL: 938 if (namelen != 0) 939 return (EINVAL); 940 break; 941 case KERN_PROC_PROC: 942 if (namelen != 0 && namelen != 1) 943 return (EINVAL); 944 break; 945 default: 946 if (namelen != 1) 947 return (EINVAL); 948 break; 949 } 950 951 if (!req->oldptr) { 952 /* overestimate by 5 procs */ 953 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 954 if (error) 955 return (error); 956 } 957 error = sysctl_wire_old_buffer(req, 0); 958 if (error != 0) 959 return (error); 960 sx_slock(&allproc_lock); 961 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 962 if (!doingzomb) 963 p = LIST_FIRST(&allproc); 964 else 965 p = LIST_FIRST(&zombproc); 966 for (; p != 0; p = LIST_NEXT(p, p_list)) { 967 /* 968 * Skip embryonic processes. 969 */ 970 mtx_lock_spin(&sched_lock); 971 if (p->p_state == PRS_NEW) { 972 mtx_unlock_spin(&sched_lock); 973 continue; 974 } 975 mtx_unlock_spin(&sched_lock); 976 PROC_LOCK(p); 977 /* 978 * Show a user only appropriate processes. 979 */ 980 if (p_cansee(curthread, p)) { 981 PROC_UNLOCK(p); 982 continue; 983 } 984 /* 985 * TODO - make more efficient (see notes below). 986 * do by session. 987 */ 988 switch (oid_number) { 989 990 case KERN_PROC_GID: 991 if (p->p_ucred == NULL || 992 p->p_ucred->cr_gid != (gid_t)name[0]) { 993 PROC_UNLOCK(p); 994 continue; 995 } 996 break; 997 998 case KERN_PROC_PGRP: 999 /* could do this by traversing pgrp */ 1000 if (p->p_pgrp == NULL || 1001 p->p_pgrp->pg_id != (pid_t)name[0]) { 1002 PROC_UNLOCK(p); 1003 continue; 1004 } 1005 break; 1006 1007 case KERN_PROC_RGID: 1008 if (p->p_ucred == NULL || 1009 p->p_ucred->cr_rgid != (gid_t)name[0]) { 1010 PROC_UNLOCK(p); 1011 continue; 1012 } 1013 break; 1014 1015 case KERN_PROC_SESSION: 1016 if (p->p_session == NULL || 1017 p->p_session->s_sid != (pid_t)name[0]) { 1018 PROC_UNLOCK(p); 1019 continue; 1020 } 1021 break; 1022 1023 case KERN_PROC_TTY: 1024 if ((p->p_flag & P_CONTROLT) == 0 || 1025 p->p_session == NULL) { 1026 PROC_UNLOCK(p); 1027 continue; 1028 } 1029 SESS_LOCK(p->p_session); 1030 if (p->p_session->s_ttyp == NULL || 1031 dev2udev(p->p_session->s_ttyp->t_dev) != 1032 (dev_t)name[0]) { 1033 SESS_UNLOCK(p->p_session); 1034 PROC_UNLOCK(p); 1035 continue; 1036 } 1037 SESS_UNLOCK(p->p_session); 1038 break; 1039 1040 case KERN_PROC_UID: 1041 if (p->p_ucred == NULL || 1042 p->p_ucred->cr_uid != (uid_t)name[0]) { 1043 PROC_UNLOCK(p); 1044 continue; 1045 } 1046 break; 1047 1048 case KERN_PROC_RUID: 1049 if (p->p_ucred == NULL || 1050 p->p_ucred->cr_ruid != (uid_t)name[0]) { 1051 PROC_UNLOCK(p); 1052 continue; 1053 } 1054 break; 1055 1056 case KERN_PROC_PROC: 1057 break; 1058 1059 default: 1060 break; 1061 1062 } 1063 1064 error = sysctl_out_proc(p, req, flags | doingzomb); 1065 if (error) { 1066 sx_sunlock(&allproc_lock); 1067 return (error); 1068 } 1069 } 1070 } 1071 sx_sunlock(&allproc_lock); 1072 return (0); 1073 } 1074 1075 struct pargs * 1076 pargs_alloc(int len) 1077 { 1078 struct pargs *pa; 1079 1080 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1081 M_WAITOK); 1082 pa->ar_ref = 1; 1083 pa->ar_length = len; 1084 return (pa); 1085 } 1086 1087 void 1088 pargs_free(struct pargs *pa) 1089 { 1090 1091 FREE(pa, M_PARGS); 1092 } 1093 1094 void 1095 pargs_hold(struct pargs *pa) 1096 { 1097 1098 if (pa == NULL) 1099 return; 1100 PARGS_LOCK(pa); 1101 pa->ar_ref++; 1102 PARGS_UNLOCK(pa); 1103 } 1104 1105 void 1106 pargs_drop(struct pargs *pa) 1107 { 1108 1109 if (pa == NULL) 1110 return; 1111 PARGS_LOCK(pa); 1112 if (--pa->ar_ref == 0) { 1113 PARGS_UNLOCK(pa); 1114 pargs_free(pa); 1115 } else 1116 PARGS_UNLOCK(pa); 1117 } 1118 1119 /* 1120 * This sysctl allows a process to retrieve the argument list or process 1121 * title for another process without groping around in the address space 1122 * of the other process. It also allow a process to set its own "process 1123 * title to a string of its own choice. 1124 */ 1125 static int 1126 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1127 { 1128 int *name = (int*) arg1; 1129 u_int namelen = arg2; 1130 struct pargs *newpa, *pa; 1131 struct proc *p; 1132 int error = 0; 1133 1134 if (namelen != 1) 1135 return (EINVAL); 1136 1137 p = pfind((pid_t)name[0]); 1138 if (!p) 1139 return (ESRCH); 1140 1141 if ((error = p_cansee(curthread, p)) != 0) { 1142 PROC_UNLOCK(p); 1143 return (error); 1144 } 1145 1146 if (req->newptr && curproc != p) { 1147 PROC_UNLOCK(p); 1148 return (EPERM); 1149 } 1150 1151 pa = p->p_args; 1152 pargs_hold(pa); 1153 PROC_UNLOCK(p); 1154 if (req->oldptr != NULL && pa != NULL) 1155 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1156 pargs_drop(pa); 1157 if (error != 0 || req->newptr == NULL) 1158 return (error); 1159 1160 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1161 return (ENOMEM); 1162 newpa = pargs_alloc(req->newlen); 1163 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1164 if (error != 0) { 1165 pargs_free(newpa); 1166 return (error); 1167 } 1168 PROC_LOCK(p); 1169 pa = p->p_args; 1170 p->p_args = newpa; 1171 PROC_UNLOCK(p); 1172 pargs_drop(pa); 1173 return (0); 1174 } 1175 1176 static int 1177 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1178 { 1179 struct proc *p; 1180 char *sv_name; 1181 int *name; 1182 int namelen; 1183 int error; 1184 1185 namelen = arg2; 1186 if (namelen != 1) 1187 return (EINVAL); 1188 1189 name = (int *)arg1; 1190 if ((p = pfind((pid_t)name[0])) == NULL) 1191 return (ESRCH); 1192 if ((error = p_cansee(curthread, p))) { 1193 PROC_UNLOCK(p); 1194 return (error); 1195 } 1196 sv_name = p->p_sysent->sv_name; 1197 PROC_UNLOCK(p); 1198 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1199 } 1200 1201 1202 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1203 1204 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1205 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1206 1207 SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1208 sysctl_kern_proc, "Process table"); 1209 1210 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1211 sysctl_kern_proc, "Process table"); 1212 1213 SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1214 sysctl_kern_proc, "Process table"); 1215 1216 SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1217 sysctl_kern_proc, "Process table"); 1218 1219 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1220 sysctl_kern_proc, "Process table"); 1221 1222 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1223 sysctl_kern_proc, "Process table"); 1224 1225 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1226 sysctl_kern_proc, "Process table"); 1227 1228 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1229 sysctl_kern_proc, "Process table"); 1230 1231 SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1232 sysctl_kern_proc, "Return process table, no threads"); 1233 1234 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 1235 sysctl_kern_proc_args, "Process argument list"); 1236 1237 SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1238 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1239 1240 SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1241 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1242 1243 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1244 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1245 1246 SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1247 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1248 1249 SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td, 1250 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1251 1252 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1253 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1254 1255 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1256 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1257 1258 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1259 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1260 1261 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1262 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1263 1264 SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1265 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1266