xref: /freebsd/sys/kern/kern_proc.c (revision 24ccef81405eb25efc65f16b6e9a787f3a51151a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitstring.h>
45 #include <sys/elf.h>
46 #include <sys/eventhandler.h>
47 #include <sys/exec.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/limits.h>
51 #include <sys/lock.h>
52 #include <sys/loginclass.h>
53 #include <sys/malloc.h>
54 #include <sys/mman.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/smp.h>
66 #include <sys/stack.h>
67 #include <sys/stat.h>
68 #include <sys/dtrace_bsd.h>
69 #include <sys/sysctl.h>
70 #include <sys/filedesc.h>
71 #include <sys/tty.h>
72 #include <sys/signalvar.h>
73 #include <sys/sdt.h>
74 #include <sys/sx.h>
75 #include <sys/user.h>
76 #include <sys/vnode.h>
77 #include <sys/wait.h>
78 #ifdef KTRACE
79 #include <sys/ktrace.h>
80 #endif
81 
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #endif
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_extern.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/uma.h>
94 
95 #include <fs/devfs/devfs.h>
96 
97 #ifdef COMPAT_FREEBSD32
98 #include <compat/freebsd32/freebsd32.h>
99 #include <compat/freebsd32/freebsd32_util.h>
100 #endif
101 
102 SDT_PROVIDER_DEFINE(proc);
103 
104 MALLOC_DEFINE(M_SESSION, "session", "session header");
105 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
106 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
107 
108 static void doenterpgrp(struct proc *, struct pgrp *);
109 static void orphanpg(struct pgrp *pg);
110 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
111 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
112 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
113     int preferthread);
114 static void pgdelete(struct pgrp *);
115 static int pgrp_init(void *mem, int size, int flags);
116 static int proc_ctor(void *mem, int size, void *arg, int flags);
117 static void proc_dtor(void *mem, int size, void *arg);
118 static int proc_init(void *mem, int size, int flags);
119 static void proc_fini(void *mem, int size);
120 static void pargs_free(struct pargs *pa);
121 
122 /*
123  * Other process lists
124  */
125 struct pidhashhead *pidhashtbl = NULL;
126 struct sx *pidhashtbl_lock;
127 u_long pidhash;
128 u_long pidhashlock;
129 struct pgrphashhead *pgrphashtbl;
130 u_long pgrphash;
131 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
132 struct sx __exclusive_cache_line allproc_lock;
133 struct sx __exclusive_cache_line proctree_lock;
134 struct mtx __exclusive_cache_line ppeers_lock;
135 struct mtx __exclusive_cache_line procid_lock;
136 uma_zone_t proc_zone;
137 uma_zone_t pgrp_zone;
138 
139 /*
140  * The offset of various fields in struct proc and struct thread.
141  * These are used by kernel debuggers to enumerate kernel threads and
142  * processes.
143  */
144 const int proc_off_p_pid = offsetof(struct proc, p_pid);
145 const int proc_off_p_comm = offsetof(struct proc, p_comm);
146 const int proc_off_p_list = offsetof(struct proc, p_list);
147 const int proc_off_p_hash = offsetof(struct proc, p_hash);
148 const int proc_off_p_threads = offsetof(struct proc, p_threads);
149 const int thread_off_td_tid = offsetof(struct thread, td_tid);
150 const int thread_off_td_name = offsetof(struct thread, td_name);
151 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
152 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
153 const int thread_off_td_plist = offsetof(struct thread, td_plist);
154 
155 EVENTHANDLER_LIST_DEFINE(process_ctor);
156 EVENTHANDLER_LIST_DEFINE(process_dtor);
157 EVENTHANDLER_LIST_DEFINE(process_init);
158 EVENTHANDLER_LIST_DEFINE(process_fini);
159 EVENTHANDLER_LIST_DEFINE(process_exit);
160 EVENTHANDLER_LIST_DEFINE(process_fork);
161 EVENTHANDLER_LIST_DEFINE(process_exec);
162 
163 int kstack_pages = KSTACK_PAGES;
164 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
165     "Kernel stack size in pages");
166 static int vmmap_skip_res_cnt = 0;
167 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
168     &vmmap_skip_res_cnt, 0,
169     "Skip calculation of the pages resident count in kern.proc.vmmap");
170 
171 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
172 #ifdef COMPAT_FREEBSD32
173 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
174 #endif
175 
176 /*
177  * Initialize global process hashing structures.
178  */
179 void
180 procinit(void)
181 {
182 	u_long i;
183 
184 	sx_init(&allproc_lock, "allproc");
185 	sx_init(&proctree_lock, "proctree");
186 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
187 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
188 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
189 	pidhashlock = (pidhash + 1) / 64;
190 	if (pidhashlock > 0)
191 		pidhashlock--;
192 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
193 	    M_PROC, M_WAITOK | M_ZERO);
194 	for (i = 0; i < pidhashlock + 1; i++)
195 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
196 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
197 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
198 	    proc_ctor, proc_dtor, proc_init, proc_fini,
199 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200 	pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
201 	    pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 	uihashinit();
203 }
204 
205 /*
206  * Prepare a proc for use.
207  */
208 static int
209 proc_ctor(void *mem, int size, void *arg, int flags)
210 {
211 	struct proc *p;
212 	struct thread *td;
213 
214 	p = (struct proc *)mem;
215 #ifdef KDTRACE_HOOKS
216 	kdtrace_proc_ctor(p);
217 #endif
218 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
219 	td = FIRST_THREAD_IN_PROC(p);
220 	if (td != NULL) {
221 		/* Make sure all thread constructors are executed */
222 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
223 	}
224 	return (0);
225 }
226 
227 /*
228  * Reclaim a proc after use.
229  */
230 static void
231 proc_dtor(void *mem, int size, void *arg)
232 {
233 	struct proc *p;
234 	struct thread *td;
235 
236 	/* INVARIANTS checks go here */
237 	p = (struct proc *)mem;
238 	td = FIRST_THREAD_IN_PROC(p);
239 	if (td != NULL) {
240 #ifdef INVARIANTS
241 		KASSERT((p->p_numthreads == 1),
242 		    ("bad number of threads in exiting process"));
243 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
244 #endif
245 		/* Free all OSD associated to this thread. */
246 		osd_thread_exit(td);
247 		td_softdep_cleanup(td);
248 		MPASS(td->td_su == NULL);
249 
250 		/* Make sure all thread destructors are executed */
251 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
252 	}
253 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
254 #ifdef KDTRACE_HOOKS
255 	kdtrace_proc_dtor(p);
256 #endif
257 	if (p->p_ksi != NULL)
258 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
259 }
260 
261 /*
262  * Initialize type-stable parts of a proc (when newly created).
263  */
264 static int
265 proc_init(void *mem, int size, int flags)
266 {
267 	struct proc *p;
268 
269 	p = (struct proc *)mem;
270 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
271 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
272 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
273 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
274 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
275 	cv_init(&p->p_pwait, "ppwait");
276 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
277 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
278 	p->p_stats = pstats_alloc();
279 	p->p_pgrp = NULL;
280 	return (0);
281 }
282 
283 /*
284  * UMA should ensure that this function is never called.
285  * Freeing a proc structure would violate type stability.
286  */
287 static void
288 proc_fini(void *mem, int size)
289 {
290 #ifdef notnow
291 	struct proc *p;
292 
293 	p = (struct proc *)mem;
294 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
295 	pstats_free(p->p_stats);
296 	thread_free(FIRST_THREAD_IN_PROC(p));
297 	mtx_destroy(&p->p_mtx);
298 	if (p->p_ksi != NULL)
299 		ksiginfo_free(p->p_ksi);
300 #else
301 	panic("proc reclaimed");
302 #endif
303 }
304 
305 static int
306 pgrp_init(void *mem, int size, int flags)
307 {
308 	struct pgrp *pg;
309 
310 	pg = mem;
311 	mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
312 	return (0);
313 }
314 
315 /*
316  * PID space management.
317  *
318  * These bitmaps are used by fork_findpid.
319  */
320 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
321 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
322 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
323 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
324 
325 static bitstr_t *proc_id_array[] = {
326 	proc_id_pidmap,
327 	proc_id_grpidmap,
328 	proc_id_sessidmap,
329 	proc_id_reapmap,
330 };
331 
332 void
333 proc_id_set(int type, pid_t id)
334 {
335 
336 	KASSERT(type >= 0 && type < nitems(proc_id_array),
337 	    ("invalid type %d\n", type));
338 	mtx_lock(&procid_lock);
339 	KASSERT(bit_test(proc_id_array[type], id) == 0,
340 	    ("bit %d already set in %d\n", id, type));
341 	bit_set(proc_id_array[type], id);
342 	mtx_unlock(&procid_lock);
343 }
344 
345 void
346 proc_id_set_cond(int type, pid_t id)
347 {
348 
349 	KASSERT(type >= 0 && type < nitems(proc_id_array),
350 	    ("invalid type %d\n", type));
351 	if (bit_test(proc_id_array[type], id))
352 		return;
353 	mtx_lock(&procid_lock);
354 	bit_set(proc_id_array[type], id);
355 	mtx_unlock(&procid_lock);
356 }
357 
358 void
359 proc_id_clear(int type, pid_t id)
360 {
361 
362 	KASSERT(type >= 0 && type < nitems(proc_id_array),
363 	    ("invalid type %d\n", type));
364 	mtx_lock(&procid_lock);
365 	KASSERT(bit_test(proc_id_array[type], id) != 0,
366 	    ("bit %d not set in %d\n", id, type));
367 	bit_clear(proc_id_array[type], id);
368 	mtx_unlock(&procid_lock);
369 }
370 
371 /*
372  * Is p an inferior of the current process?
373  */
374 int
375 inferior(struct proc *p)
376 {
377 
378 	sx_assert(&proctree_lock, SX_LOCKED);
379 	PROC_LOCK_ASSERT(p, MA_OWNED);
380 	for (; p != curproc; p = proc_realparent(p)) {
381 		if (p->p_pid == 0)
382 			return (0);
383 	}
384 	return (1);
385 }
386 
387 /*
388  * Shared lock all the pid hash lists.
389  */
390 void
391 pidhash_slockall(void)
392 {
393 	u_long i;
394 
395 	for (i = 0; i < pidhashlock + 1; i++)
396 		sx_slock(&pidhashtbl_lock[i]);
397 }
398 
399 /*
400  * Shared unlock all the pid hash lists.
401  */
402 void
403 pidhash_sunlockall(void)
404 {
405 	u_long i;
406 
407 	for (i = 0; i < pidhashlock + 1; i++)
408 		sx_sunlock(&pidhashtbl_lock[i]);
409 }
410 
411 /*
412  * Similar to pfind_any(), this function finds zombies.
413  */
414 struct proc *
415 pfind_any_locked(pid_t pid)
416 {
417 	struct proc *p;
418 
419 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
420 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
421 		if (p->p_pid == pid) {
422 			PROC_LOCK(p);
423 			if (p->p_state == PRS_NEW) {
424 				PROC_UNLOCK(p);
425 				p = NULL;
426 			}
427 			break;
428 		}
429 	}
430 	return (p);
431 }
432 
433 /*
434  * Locate a process by number.
435  *
436  * By not returning processes in the PRS_NEW state, we allow callers to avoid
437  * testing for that condition to avoid dereferencing p_ucred, et al.
438  */
439 static __always_inline struct proc *
440 _pfind(pid_t pid, bool zombie)
441 {
442 	struct proc *p;
443 
444 	p = curproc;
445 	if (p->p_pid == pid) {
446 		PROC_LOCK(p);
447 		return (p);
448 	}
449 	sx_slock(PIDHASHLOCK(pid));
450 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
451 		if (p->p_pid == pid) {
452 			PROC_LOCK(p);
453 			if (p->p_state == PRS_NEW ||
454 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
455 				PROC_UNLOCK(p);
456 				p = NULL;
457 			}
458 			break;
459 		}
460 	}
461 	sx_sunlock(PIDHASHLOCK(pid));
462 	return (p);
463 }
464 
465 struct proc *
466 pfind(pid_t pid)
467 {
468 
469 	return (_pfind(pid, false));
470 }
471 
472 /*
473  * Same as pfind but allow zombies.
474  */
475 struct proc *
476 pfind_any(pid_t pid)
477 {
478 
479 	return (_pfind(pid, true));
480 }
481 
482 /*
483  * Locate a process group by number.
484  * The caller must hold proctree_lock.
485  */
486 struct pgrp *
487 pgfind(pid_t pgid)
488 {
489 	struct pgrp *pgrp;
490 
491 	sx_assert(&proctree_lock, SX_LOCKED);
492 
493 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
494 		if (pgrp->pg_id == pgid) {
495 			PGRP_LOCK(pgrp);
496 			return (pgrp);
497 		}
498 	}
499 	return (NULL);
500 }
501 
502 /*
503  * Locate process and do additional manipulations, depending on flags.
504  */
505 int
506 pget(pid_t pid, int flags, struct proc **pp)
507 {
508 	struct proc *p;
509 	struct thread *td1;
510 	int error;
511 
512 	p = curproc;
513 	if (p->p_pid == pid) {
514 		PROC_LOCK(p);
515 	} else {
516 		p = NULL;
517 		if (pid <= PID_MAX) {
518 			if ((flags & PGET_NOTWEXIT) == 0)
519 				p = pfind_any(pid);
520 			else
521 				p = pfind(pid);
522 		} else if ((flags & PGET_NOTID) == 0) {
523 			td1 = tdfind(pid, -1);
524 			if (td1 != NULL)
525 				p = td1->td_proc;
526 		}
527 		if (p == NULL)
528 			return (ESRCH);
529 		if ((flags & PGET_CANSEE) != 0) {
530 			error = p_cansee(curthread, p);
531 			if (error != 0)
532 				goto errout;
533 		}
534 	}
535 	if ((flags & PGET_CANDEBUG) != 0) {
536 		error = p_candebug(curthread, p);
537 		if (error != 0)
538 			goto errout;
539 	}
540 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
541 		error = EPERM;
542 		goto errout;
543 	}
544 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
545 		error = ESRCH;
546 		goto errout;
547 	}
548 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
549 		/*
550 		 * XXXRW: Not clear ESRCH is the right error during proc
551 		 * execve().
552 		 */
553 		error = ESRCH;
554 		goto errout;
555 	}
556 	if ((flags & PGET_HOLD) != 0) {
557 		_PHOLD(p);
558 		PROC_UNLOCK(p);
559 	}
560 	*pp = p;
561 	return (0);
562 errout:
563 	PROC_UNLOCK(p);
564 	return (error);
565 }
566 
567 /*
568  * Create a new process group.
569  * pgid must be equal to the pid of p.
570  * Begin a new session if required.
571  */
572 int
573 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
574 {
575 
576 	sx_assert(&proctree_lock, SX_XLOCKED);
577 
578 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
579 	KASSERT(p->p_pid == pgid,
580 	    ("enterpgrp: new pgrp and pid != pgid"));
581 	KASSERT(pgfind(pgid) == NULL,
582 	    ("enterpgrp: pgrp with pgid exists"));
583 	KASSERT(!SESS_LEADER(p),
584 	    ("enterpgrp: session leader attempted setpgrp"));
585 
586 	if (sess != NULL) {
587 		/*
588 		 * new session
589 		 */
590 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
591 		PROC_LOCK(p);
592 		p->p_flag &= ~P_CONTROLT;
593 		PROC_UNLOCK(p);
594 		PGRP_LOCK(pgrp);
595 		sess->s_leader = p;
596 		sess->s_sid = p->p_pid;
597 		proc_id_set(PROC_ID_SESSION, p->p_pid);
598 		refcount_init(&sess->s_count, 1);
599 		sess->s_ttyvp = NULL;
600 		sess->s_ttydp = NULL;
601 		sess->s_ttyp = NULL;
602 		bcopy(p->p_session->s_login, sess->s_login,
603 			    sizeof(sess->s_login));
604 		pgrp->pg_session = sess;
605 		KASSERT(p == curproc,
606 		    ("enterpgrp: mksession and p != curproc"));
607 	} else {
608 		pgrp->pg_session = p->p_session;
609 		sess_hold(pgrp->pg_session);
610 		PGRP_LOCK(pgrp);
611 	}
612 	pgrp->pg_id = pgid;
613 	proc_id_set(PROC_ID_GROUP, p->p_pid);
614 	LIST_INIT(&pgrp->pg_members);
615 	pgrp->pg_flags = 0;
616 
617 	/*
618 	 * As we have an exclusive lock of proctree_lock,
619 	 * this should not deadlock.
620 	 */
621 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
622 	SLIST_INIT(&pgrp->pg_sigiolst);
623 	PGRP_UNLOCK(pgrp);
624 
625 	doenterpgrp(p, pgrp);
626 
627 	return (0);
628 }
629 
630 /*
631  * Move p to an existing process group
632  */
633 int
634 enterthispgrp(struct proc *p, struct pgrp *pgrp)
635 {
636 
637 	sx_assert(&proctree_lock, SX_XLOCKED);
638 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
639 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
640 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
641 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
642 	KASSERT(pgrp->pg_session == p->p_session,
643 	    ("%s: pgrp's session %p, p->p_session %p proc %p\n",
644 	    __func__, pgrp->pg_session, p->p_session, p));
645 	KASSERT(pgrp != p->p_pgrp,
646 	    ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
647 
648 	doenterpgrp(p, pgrp);
649 
650 	return (0);
651 }
652 
653 /*
654  * If true, any child of q which belongs to group pgrp, qualifies the
655  * process group pgrp as not orphaned.
656  */
657 static bool
658 isjobproc(struct proc *q, struct pgrp *pgrp)
659 {
660 	sx_assert(&proctree_lock, SX_LOCKED);
661 
662 	return (q->p_pgrp != pgrp &&
663 	    q->p_pgrp->pg_session == pgrp->pg_session);
664 }
665 
666 static struct proc *
667 jobc_reaper(struct proc *p)
668 {
669 	struct proc *pp;
670 
671 	sx_assert(&proctree_lock, SA_LOCKED);
672 
673 	for (pp = p;;) {
674 		pp = pp->p_reaper;
675 		if (pp->p_reaper == pp ||
676 		    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
677 			return (pp);
678 	}
679 }
680 
681 static struct proc *
682 jobc_parent(struct proc *p, struct proc *p_exiting)
683 {
684 	struct proc *pp;
685 
686 	sx_assert(&proctree_lock, SA_LOCKED);
687 
688 	pp = proc_realparent(p);
689 	if (pp->p_pptr == NULL || pp == p_exiting ||
690 	    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
691 		return (pp);
692 	return (jobc_reaper(pp));
693 }
694 
695 static int
696 pgrp_calc_jobc(struct pgrp *pgrp)
697 {
698 	struct proc *q;
699 	int cnt;
700 
701 #ifdef INVARIANTS
702 	if (!mtx_owned(&pgrp->pg_mtx))
703 		sx_assert(&proctree_lock, SA_LOCKED);
704 #endif
705 
706 	cnt = 0;
707 	LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
708 		if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
709 		    q->p_pptr == NULL)
710 			continue;
711 		if (isjobproc(jobc_parent(q, NULL), pgrp))
712 			cnt++;
713 	}
714 	return (cnt);
715 }
716 
717 /*
718  * Move p to a process group
719  */
720 static void
721 doenterpgrp(struct proc *p, struct pgrp *pgrp)
722 {
723 	struct pgrp *savepgrp;
724 	struct proc *pp;
725 
726 	sx_assert(&proctree_lock, SX_XLOCKED);
727 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
728 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
729 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
730 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
731 
732 	savepgrp = p->p_pgrp;
733 	pp = jobc_parent(p, NULL);
734 
735 	PGRP_LOCK(pgrp);
736 	PGRP_LOCK(savepgrp);
737 	if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
738 		orphanpg(savepgrp);
739 	PROC_LOCK(p);
740 	LIST_REMOVE(p, p_pglist);
741 	p->p_pgrp = pgrp;
742 	PROC_UNLOCK(p);
743 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
744 	if (isjobproc(pp, pgrp))
745 		pgrp->pg_flags &= ~PGRP_ORPHANED;
746 	PGRP_UNLOCK(savepgrp);
747 	PGRP_UNLOCK(pgrp);
748 	if (LIST_EMPTY(&savepgrp->pg_members))
749 		pgdelete(savepgrp);
750 }
751 
752 /*
753  * remove process from process group
754  */
755 int
756 leavepgrp(struct proc *p)
757 {
758 	struct pgrp *savepgrp;
759 
760 	sx_assert(&proctree_lock, SX_XLOCKED);
761 	savepgrp = p->p_pgrp;
762 	PGRP_LOCK(savepgrp);
763 	PROC_LOCK(p);
764 	LIST_REMOVE(p, p_pglist);
765 	p->p_pgrp = NULL;
766 	PROC_UNLOCK(p);
767 	PGRP_UNLOCK(savepgrp);
768 	if (LIST_EMPTY(&savepgrp->pg_members))
769 		pgdelete(savepgrp);
770 	return (0);
771 }
772 
773 /*
774  * delete a process group
775  */
776 static void
777 pgdelete(struct pgrp *pgrp)
778 {
779 	struct session *savesess;
780 	struct tty *tp;
781 
782 	sx_assert(&proctree_lock, SX_XLOCKED);
783 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
784 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
785 
786 	/*
787 	 * Reset any sigio structures pointing to us as a result of
788 	 * F_SETOWN with our pgid.  The proctree lock ensures that
789 	 * new sigio structures will not be added after this point.
790 	 */
791 	funsetownlst(&pgrp->pg_sigiolst);
792 
793 	PGRP_LOCK(pgrp);
794 	tp = pgrp->pg_session->s_ttyp;
795 	LIST_REMOVE(pgrp, pg_hash);
796 	savesess = pgrp->pg_session;
797 	PGRP_UNLOCK(pgrp);
798 
799 	/* Remove the reference to the pgrp before deallocating it. */
800 	if (tp != NULL) {
801 		tty_lock(tp);
802 		tty_rel_pgrp(tp, pgrp);
803 	}
804 
805 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
806 	uma_zfree(pgrp_zone, pgrp);
807 	sess_release(savesess);
808 }
809 
810 
811 static void
812 fixjobc_kill(struct proc *p)
813 {
814 	struct proc *q;
815 	struct pgrp *pgrp;
816 
817 	sx_assert(&proctree_lock, SX_LOCKED);
818 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
819 	pgrp = p->p_pgrp;
820 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
821 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
822 
823 	/*
824 	 * p no longer affects process group orphanage for children.
825 	 * It is marked by the flag because p is only physically
826 	 * removed from its process group on wait(2).
827 	 */
828 	MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
829 	p->p_treeflag |= P_TREE_GRPEXITED;
830 
831 	/*
832 	 * Check if exiting p orphans its own group.
833 	 */
834 	pgrp = p->p_pgrp;
835 	if (isjobproc(jobc_parent(p, NULL), pgrp)) {
836 		PGRP_LOCK(pgrp);
837 		if (pgrp_calc_jobc(pgrp) == 0)
838 			orphanpg(pgrp);
839 		PGRP_UNLOCK(pgrp);
840 	}
841 
842 	/*
843 	 * Check this process' children to see whether they qualify
844 	 * their process groups after reparenting to reaper.
845 	 */
846 	LIST_FOREACH(q, &p->p_children, p_sibling) {
847 		pgrp = q->p_pgrp;
848 		PGRP_LOCK(pgrp);
849 		if (pgrp_calc_jobc(pgrp) == 0) {
850 			/*
851 			 * We want to handle exactly the children that
852 			 * has p as realparent.  Then, when calculating
853 			 * jobc_parent for children, we should ignore
854 			 * P_TREE_GRPEXITED flag already set on p.
855 			 */
856 			if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
857 				orphanpg(pgrp);
858 		} else
859 			pgrp->pg_flags &= ~PGRP_ORPHANED;
860 		PGRP_UNLOCK(pgrp);
861 	}
862 	LIST_FOREACH(q, &p->p_orphans, p_orphan) {
863 		pgrp = q->p_pgrp;
864 		PGRP_LOCK(pgrp);
865 		if (pgrp_calc_jobc(pgrp) == 0) {
866 			if (isjobproc(p, pgrp))
867 				orphanpg(pgrp);
868 		} else
869 			pgrp->pg_flags &= ~PGRP_ORPHANED;
870 		PGRP_UNLOCK(pgrp);
871 	}
872 }
873 
874 void
875 killjobc(void)
876 {
877 	struct session *sp;
878 	struct tty *tp;
879 	struct proc *p;
880 	struct vnode *ttyvp;
881 
882 	p = curproc;
883 	MPASS(p->p_flag & P_WEXIT);
884 	sx_assert(&proctree_lock, SX_LOCKED);
885 
886 	if (SESS_LEADER(p)) {
887 		sp = p->p_session;
888 
889 		/*
890 		 * s_ttyp is not zero'd; we use this to indicate that
891 		 * the session once had a controlling terminal. (for
892 		 * logging and informational purposes)
893 		 */
894 		SESS_LOCK(sp);
895 		ttyvp = sp->s_ttyvp;
896 		tp = sp->s_ttyp;
897 		sp->s_ttyvp = NULL;
898 		sp->s_ttydp = NULL;
899 		sp->s_leader = NULL;
900 		SESS_UNLOCK(sp);
901 
902 		/*
903 		 * Signal foreground pgrp and revoke access to
904 		 * controlling terminal if it has not been revoked
905 		 * already.
906 		 *
907 		 * Because the TTY may have been revoked in the mean
908 		 * time and could already have a new session associated
909 		 * with it, make sure we don't send a SIGHUP to a
910 		 * foreground process group that does not belong to this
911 		 * session.
912 		 */
913 
914 		if (tp != NULL) {
915 			tty_lock(tp);
916 			if (tp->t_session == sp)
917 				tty_signal_pgrp(tp, SIGHUP);
918 			tty_unlock(tp);
919 		}
920 
921 		if (ttyvp != NULL) {
922 			sx_xunlock(&proctree_lock);
923 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
924 				VOP_REVOKE(ttyvp, REVOKEALL);
925 				VOP_UNLOCK(ttyvp);
926 			}
927 			devfs_ctty_unref(ttyvp);
928 			sx_xlock(&proctree_lock);
929 		}
930 	}
931 	fixjobc_kill(p);
932 }
933 
934 /*
935  * A process group has become orphaned, mark it as such for signal
936  * delivery code.  If there are any stopped processes in the group,
937  * hang-up all process in that group.
938  */
939 static void
940 orphanpg(struct pgrp *pg)
941 {
942 	struct proc *p;
943 
944 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
945 
946 	pg->pg_flags |= PGRP_ORPHANED;
947 
948 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
949 		PROC_LOCK(p);
950 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
951 			PROC_UNLOCK(p);
952 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
953 				PROC_LOCK(p);
954 				kern_psignal(p, SIGHUP);
955 				kern_psignal(p, SIGCONT);
956 				PROC_UNLOCK(p);
957 			}
958 			return;
959 		}
960 		PROC_UNLOCK(p);
961 	}
962 }
963 
964 void
965 sess_hold(struct session *s)
966 {
967 
968 	refcount_acquire(&s->s_count);
969 }
970 
971 void
972 sess_release(struct session *s)
973 {
974 
975 	if (refcount_release(&s->s_count)) {
976 		if (s->s_ttyp != NULL) {
977 			tty_lock(s->s_ttyp);
978 			tty_rel_sess(s->s_ttyp, s);
979 		}
980 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
981 		mtx_destroy(&s->s_mtx);
982 		free(s, M_SESSION);
983 	}
984 }
985 
986 #ifdef DDB
987 
988 static void
989 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
990 {
991 	db_printf(
992 	    "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
993 	    p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
994 	    p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
995 	    p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
996 }
997 
998 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
999 {
1000 	struct pgrp *pgrp;
1001 	struct proc *p;
1002 	int i;
1003 
1004 	for (i = 0; i <= pgrphash; i++) {
1005 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
1006 			db_printf("indx %d\n", i);
1007 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1008 				db_printf(
1009 			"  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1010 				    pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1011 				    pgrp->pg_session->s_count,
1012 				    LIST_FIRST(&pgrp->pg_members));
1013 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1014 					db_print_pgrp_one(pgrp, p);
1015 			}
1016 		}
1017 	}
1018 }
1019 #endif /* DDB */
1020 
1021 /*
1022  * Calculate the kinfo_proc members which contain process-wide
1023  * informations.
1024  * Must be called with the target process locked.
1025  */
1026 static void
1027 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1028 {
1029 	struct thread *td;
1030 
1031 	PROC_LOCK_ASSERT(p, MA_OWNED);
1032 
1033 	kp->ki_estcpu = 0;
1034 	kp->ki_pctcpu = 0;
1035 	FOREACH_THREAD_IN_PROC(p, td) {
1036 		thread_lock(td);
1037 		kp->ki_pctcpu += sched_pctcpu(td);
1038 		kp->ki_estcpu += sched_estcpu(td);
1039 		thread_unlock(td);
1040 	}
1041 }
1042 
1043 /*
1044  * Fill in any information that is common to all threads in the process.
1045  * Must be called with the target process locked.
1046  */
1047 static void
1048 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1049 {
1050 	struct thread *td0;
1051 	struct ucred *cred;
1052 	struct sigacts *ps;
1053 	struct timeval boottime;
1054 
1055 	PROC_LOCK_ASSERT(p, MA_OWNED);
1056 
1057 	kp->ki_structsize = sizeof(*kp);
1058 	kp->ki_paddr = p;
1059 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
1060 	kp->ki_args = p->p_args;
1061 	kp->ki_textvp = p->p_textvp;
1062 #ifdef KTRACE
1063 	kp->ki_tracep = ktr_get_tracevp(p, false);
1064 	kp->ki_traceflag = p->p_traceflag;
1065 #endif
1066 	kp->ki_fd = p->p_fd;
1067 	kp->ki_pd = p->p_pd;
1068 	kp->ki_vmspace = p->p_vmspace;
1069 	kp->ki_flag = p->p_flag;
1070 	kp->ki_flag2 = p->p_flag2;
1071 	cred = p->p_ucred;
1072 	if (cred) {
1073 		kp->ki_uid = cred->cr_uid;
1074 		kp->ki_ruid = cred->cr_ruid;
1075 		kp->ki_svuid = cred->cr_svuid;
1076 		kp->ki_cr_flags = 0;
1077 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
1078 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1079 		/* XXX bde doesn't like KI_NGROUPS */
1080 		if (cred->cr_ngroups > KI_NGROUPS) {
1081 			kp->ki_ngroups = KI_NGROUPS;
1082 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1083 		} else
1084 			kp->ki_ngroups = cred->cr_ngroups;
1085 		bcopy(cred->cr_groups, kp->ki_groups,
1086 		    kp->ki_ngroups * sizeof(gid_t));
1087 		kp->ki_rgid = cred->cr_rgid;
1088 		kp->ki_svgid = cred->cr_svgid;
1089 		/* If jailed(cred), emulate the old P_JAILED flag. */
1090 		if (jailed(cred)) {
1091 			kp->ki_flag |= P_JAILED;
1092 			/* If inside the jail, use 0 as a jail ID. */
1093 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
1094 				kp->ki_jid = cred->cr_prison->pr_id;
1095 		}
1096 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1097 		    sizeof(kp->ki_loginclass));
1098 	}
1099 	ps = p->p_sigacts;
1100 	if (ps) {
1101 		mtx_lock(&ps->ps_mtx);
1102 		kp->ki_sigignore = ps->ps_sigignore;
1103 		kp->ki_sigcatch = ps->ps_sigcatch;
1104 		mtx_unlock(&ps->ps_mtx);
1105 	}
1106 	if (p->p_state != PRS_NEW &&
1107 	    p->p_state != PRS_ZOMBIE &&
1108 	    p->p_vmspace != NULL) {
1109 		struct vmspace *vm = p->p_vmspace;
1110 
1111 		kp->ki_size = vm->vm_map.size;
1112 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1113 		FOREACH_THREAD_IN_PROC(p, td0) {
1114 			if (!TD_IS_SWAPPED(td0))
1115 				kp->ki_rssize += td0->td_kstack_pages;
1116 		}
1117 		kp->ki_swrss = vm->vm_swrss;
1118 		kp->ki_tsize = vm->vm_tsize;
1119 		kp->ki_dsize = vm->vm_dsize;
1120 		kp->ki_ssize = vm->vm_ssize;
1121 	} else if (p->p_state == PRS_ZOMBIE)
1122 		kp->ki_stat = SZOMB;
1123 	if (kp->ki_flag & P_INMEM)
1124 		kp->ki_sflag = PS_INMEM;
1125 	else
1126 		kp->ki_sflag = 0;
1127 	/* Calculate legacy swtime as seconds since 'swtick'. */
1128 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
1129 	kp->ki_pid = p->p_pid;
1130 	kp->ki_nice = p->p_nice;
1131 	kp->ki_fibnum = p->p_fibnum;
1132 	kp->ki_start = p->p_stats->p_start;
1133 	getboottime(&boottime);
1134 	timevaladd(&kp->ki_start, &boottime);
1135 	PROC_STATLOCK(p);
1136 	rufetch(p, &kp->ki_rusage);
1137 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1138 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1139 	PROC_STATUNLOCK(p);
1140 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1141 	/* Some callers want child times in a single value. */
1142 	kp->ki_childtime = kp->ki_childstime;
1143 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1144 
1145 	FOREACH_THREAD_IN_PROC(p, td0)
1146 		kp->ki_cow += td0->td_cow;
1147 
1148 	if (p->p_comm[0] != '\0')
1149 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1150 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1151 	    p->p_sysent->sv_name[0] != '\0')
1152 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1153 	kp->ki_siglist = p->p_siglist;
1154 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1155 	kp->ki_acflag = p->p_acflag;
1156 	kp->ki_lock = p->p_lock;
1157 	if (p->p_pptr) {
1158 		kp->ki_ppid = p->p_oppid;
1159 		if (p->p_flag & P_TRACED)
1160 			kp->ki_tracer = p->p_pptr->p_pid;
1161 	}
1162 }
1163 
1164 /*
1165  * Fill job-related process information.
1166  */
1167 static void
1168 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1169 {
1170 	struct tty *tp;
1171 	struct session *sp;
1172 	struct pgrp *pgrp;
1173 
1174 	sx_assert(&proctree_lock, SA_LOCKED);
1175 	PROC_LOCK_ASSERT(p, MA_OWNED);
1176 
1177 	pgrp = p->p_pgrp;
1178 	if (pgrp == NULL)
1179 		return;
1180 
1181 	kp->ki_pgid = pgrp->pg_id;
1182 	kp->ki_jobc = pgrp_calc_jobc(pgrp);
1183 
1184 	sp = pgrp->pg_session;
1185 	tp = NULL;
1186 
1187 	if (sp != NULL) {
1188 		kp->ki_sid = sp->s_sid;
1189 		SESS_LOCK(sp);
1190 		strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1191 		if (sp->s_ttyvp)
1192 			kp->ki_kiflag |= KI_CTTY;
1193 		if (SESS_LEADER(p))
1194 			kp->ki_kiflag |= KI_SLEADER;
1195 		tp = sp->s_ttyp;
1196 		SESS_UNLOCK(sp);
1197 	}
1198 
1199 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1200 		kp->ki_tdev = tty_udev(tp);
1201 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1202 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1203 		if (tp->t_session)
1204 			kp->ki_tsid = tp->t_session->s_sid;
1205 	} else {
1206 		kp->ki_tdev = NODEV;
1207 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1208 	}
1209 }
1210 
1211 /*
1212  * Fill in information that is thread specific.  Must be called with
1213  * target process locked.  If 'preferthread' is set, overwrite certain
1214  * process-related fields that are maintained for both threads and
1215  * processes.
1216  */
1217 static void
1218 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1219 {
1220 	struct proc *p;
1221 
1222 	p = td->td_proc;
1223 	kp->ki_tdaddr = td;
1224 	PROC_LOCK_ASSERT(p, MA_OWNED);
1225 
1226 	if (preferthread)
1227 		PROC_STATLOCK(p);
1228 	thread_lock(td);
1229 	if (td->td_wmesg != NULL)
1230 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1231 	else
1232 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1233 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1234 	    sizeof(kp->ki_tdname)) {
1235 		strlcpy(kp->ki_moretdname,
1236 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1237 		    sizeof(kp->ki_moretdname));
1238 	} else {
1239 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1240 	}
1241 	if (TD_ON_LOCK(td)) {
1242 		kp->ki_kiflag |= KI_LOCKBLOCK;
1243 		strlcpy(kp->ki_lockname, td->td_lockname,
1244 		    sizeof(kp->ki_lockname));
1245 	} else {
1246 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1247 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1248 	}
1249 
1250 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1251 		if (TD_ON_RUNQ(td) ||
1252 		    TD_CAN_RUN(td) ||
1253 		    TD_IS_RUNNING(td)) {
1254 			kp->ki_stat = SRUN;
1255 		} else if (P_SHOULDSTOP(p)) {
1256 			kp->ki_stat = SSTOP;
1257 		} else if (TD_IS_SLEEPING(td)) {
1258 			kp->ki_stat = SSLEEP;
1259 		} else if (TD_ON_LOCK(td)) {
1260 			kp->ki_stat = SLOCK;
1261 		} else {
1262 			kp->ki_stat = SWAIT;
1263 		}
1264 	} else if (p->p_state == PRS_ZOMBIE) {
1265 		kp->ki_stat = SZOMB;
1266 	} else {
1267 		kp->ki_stat = SIDL;
1268 	}
1269 
1270 	/* Things in the thread */
1271 	kp->ki_wchan = td->td_wchan;
1272 	kp->ki_pri.pri_level = td->td_priority;
1273 	kp->ki_pri.pri_native = td->td_base_pri;
1274 
1275 	/*
1276 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1277 	 * the maximum u_char CPU value.
1278 	 */
1279 	if (td->td_lastcpu == NOCPU)
1280 		kp->ki_lastcpu_old = NOCPU_OLD;
1281 	else if (td->td_lastcpu > MAXCPU_OLD)
1282 		kp->ki_lastcpu_old = MAXCPU_OLD;
1283 	else
1284 		kp->ki_lastcpu_old = td->td_lastcpu;
1285 
1286 	if (td->td_oncpu == NOCPU)
1287 		kp->ki_oncpu_old = NOCPU_OLD;
1288 	else if (td->td_oncpu > MAXCPU_OLD)
1289 		kp->ki_oncpu_old = MAXCPU_OLD;
1290 	else
1291 		kp->ki_oncpu_old = td->td_oncpu;
1292 
1293 	kp->ki_lastcpu = td->td_lastcpu;
1294 	kp->ki_oncpu = td->td_oncpu;
1295 	kp->ki_tdflags = td->td_flags;
1296 	kp->ki_tid = td->td_tid;
1297 	kp->ki_numthreads = p->p_numthreads;
1298 	kp->ki_pcb = td->td_pcb;
1299 	kp->ki_kstack = (void *)td->td_kstack;
1300 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1301 	kp->ki_pri.pri_class = td->td_pri_class;
1302 	kp->ki_pri.pri_user = td->td_user_pri;
1303 
1304 	if (preferthread) {
1305 		rufetchtd(td, &kp->ki_rusage);
1306 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1307 		kp->ki_pctcpu = sched_pctcpu(td);
1308 		kp->ki_estcpu = sched_estcpu(td);
1309 		kp->ki_cow = td->td_cow;
1310 	}
1311 
1312 	/* We can't get this anymore but ps etc never used it anyway. */
1313 	kp->ki_rqindex = 0;
1314 
1315 	if (preferthread)
1316 		kp->ki_siglist = td->td_siglist;
1317 	kp->ki_sigmask = td->td_sigmask;
1318 	thread_unlock(td);
1319 	if (preferthread)
1320 		PROC_STATUNLOCK(p);
1321 }
1322 
1323 /*
1324  * Fill in a kinfo_proc structure for the specified process.
1325  * Must be called with the target process locked.
1326  */
1327 void
1328 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1329 {
1330 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1331 
1332 	bzero(kp, sizeof(*kp));
1333 
1334 	fill_kinfo_proc_pgrp(p,kp);
1335 	fill_kinfo_proc_only(p, kp);
1336 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1337 	fill_kinfo_aggregate(p, kp);
1338 }
1339 
1340 struct pstats *
1341 pstats_alloc(void)
1342 {
1343 
1344 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1345 }
1346 
1347 /*
1348  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1349  */
1350 void
1351 pstats_fork(struct pstats *src, struct pstats *dst)
1352 {
1353 
1354 	bzero(&dst->pstat_startzero,
1355 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1356 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1357 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1358 }
1359 
1360 void
1361 pstats_free(struct pstats *ps)
1362 {
1363 
1364 	free(ps, M_SUBPROC);
1365 }
1366 
1367 #ifdef COMPAT_FREEBSD32
1368 
1369 /*
1370  * This function is typically used to copy out the kernel address, so
1371  * it can be replaced by assignment of zero.
1372  */
1373 static inline uint32_t
1374 ptr32_trim(const void *ptr)
1375 {
1376 	uintptr_t uptr;
1377 
1378 	uptr = (uintptr_t)ptr;
1379 	return ((uptr > UINT_MAX) ? 0 : uptr);
1380 }
1381 
1382 #define PTRTRIM_CP(src,dst,fld) \
1383 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1384 
1385 static void
1386 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1387 {
1388 	int i;
1389 
1390 	bzero(ki32, sizeof(struct kinfo_proc32));
1391 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1392 	CP(*ki, *ki32, ki_layout);
1393 	PTRTRIM_CP(*ki, *ki32, ki_args);
1394 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1395 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1396 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1397 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1398 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1399 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1400 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1401 	CP(*ki, *ki32, ki_pid);
1402 	CP(*ki, *ki32, ki_ppid);
1403 	CP(*ki, *ki32, ki_pgid);
1404 	CP(*ki, *ki32, ki_tpgid);
1405 	CP(*ki, *ki32, ki_sid);
1406 	CP(*ki, *ki32, ki_tsid);
1407 	CP(*ki, *ki32, ki_jobc);
1408 	CP(*ki, *ki32, ki_tdev);
1409 	CP(*ki, *ki32, ki_tdev_freebsd11);
1410 	CP(*ki, *ki32, ki_siglist);
1411 	CP(*ki, *ki32, ki_sigmask);
1412 	CP(*ki, *ki32, ki_sigignore);
1413 	CP(*ki, *ki32, ki_sigcatch);
1414 	CP(*ki, *ki32, ki_uid);
1415 	CP(*ki, *ki32, ki_ruid);
1416 	CP(*ki, *ki32, ki_svuid);
1417 	CP(*ki, *ki32, ki_rgid);
1418 	CP(*ki, *ki32, ki_svgid);
1419 	CP(*ki, *ki32, ki_ngroups);
1420 	for (i = 0; i < KI_NGROUPS; i++)
1421 		CP(*ki, *ki32, ki_groups[i]);
1422 	CP(*ki, *ki32, ki_size);
1423 	CP(*ki, *ki32, ki_rssize);
1424 	CP(*ki, *ki32, ki_swrss);
1425 	CP(*ki, *ki32, ki_tsize);
1426 	CP(*ki, *ki32, ki_dsize);
1427 	CP(*ki, *ki32, ki_ssize);
1428 	CP(*ki, *ki32, ki_xstat);
1429 	CP(*ki, *ki32, ki_acflag);
1430 	CP(*ki, *ki32, ki_pctcpu);
1431 	CP(*ki, *ki32, ki_estcpu);
1432 	CP(*ki, *ki32, ki_slptime);
1433 	CP(*ki, *ki32, ki_swtime);
1434 	CP(*ki, *ki32, ki_cow);
1435 	CP(*ki, *ki32, ki_runtime);
1436 	TV_CP(*ki, *ki32, ki_start);
1437 	TV_CP(*ki, *ki32, ki_childtime);
1438 	CP(*ki, *ki32, ki_flag);
1439 	CP(*ki, *ki32, ki_kiflag);
1440 	CP(*ki, *ki32, ki_traceflag);
1441 	CP(*ki, *ki32, ki_stat);
1442 	CP(*ki, *ki32, ki_nice);
1443 	CP(*ki, *ki32, ki_lock);
1444 	CP(*ki, *ki32, ki_rqindex);
1445 	CP(*ki, *ki32, ki_oncpu);
1446 	CP(*ki, *ki32, ki_lastcpu);
1447 
1448 	/* XXX TODO: wrap cpu value as appropriate */
1449 	CP(*ki, *ki32, ki_oncpu_old);
1450 	CP(*ki, *ki32, ki_lastcpu_old);
1451 
1452 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1453 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1454 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1455 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1456 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1457 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1458 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1459 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1460 	CP(*ki, *ki32, ki_tracer);
1461 	CP(*ki, *ki32, ki_flag2);
1462 	CP(*ki, *ki32, ki_fibnum);
1463 	CP(*ki, *ki32, ki_cr_flags);
1464 	CP(*ki, *ki32, ki_jid);
1465 	CP(*ki, *ki32, ki_numthreads);
1466 	CP(*ki, *ki32, ki_tid);
1467 	CP(*ki, *ki32, ki_pri);
1468 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1469 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1470 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1471 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1472 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1473 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1474 	CP(*ki, *ki32, ki_sflag);
1475 	CP(*ki, *ki32, ki_tdflags);
1476 }
1477 #endif
1478 
1479 static ssize_t
1480 kern_proc_out_size(struct proc *p, int flags)
1481 {
1482 	ssize_t size = 0;
1483 
1484 	PROC_LOCK_ASSERT(p, MA_OWNED);
1485 
1486 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1487 #ifdef COMPAT_FREEBSD32
1488 		if ((flags & KERN_PROC_MASK32) != 0) {
1489 			size += sizeof(struct kinfo_proc32);
1490 		} else
1491 #endif
1492 			size += sizeof(struct kinfo_proc);
1493 	} else {
1494 #ifdef COMPAT_FREEBSD32
1495 		if ((flags & KERN_PROC_MASK32) != 0)
1496 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1497 		else
1498 #endif
1499 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
1500 	}
1501 	PROC_UNLOCK(p);
1502 	return (size);
1503 }
1504 
1505 int
1506 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1507 {
1508 	struct thread *td;
1509 	struct kinfo_proc ki;
1510 #ifdef COMPAT_FREEBSD32
1511 	struct kinfo_proc32 ki32;
1512 #endif
1513 	int error;
1514 
1515 	PROC_LOCK_ASSERT(p, MA_OWNED);
1516 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1517 
1518 	error = 0;
1519 	fill_kinfo_proc(p, &ki);
1520 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1521 #ifdef COMPAT_FREEBSD32
1522 		if ((flags & KERN_PROC_MASK32) != 0) {
1523 			freebsd32_kinfo_proc_out(&ki, &ki32);
1524 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1525 				error = ENOMEM;
1526 		} else
1527 #endif
1528 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1529 				error = ENOMEM;
1530 	} else {
1531 		FOREACH_THREAD_IN_PROC(p, td) {
1532 			fill_kinfo_thread(td, &ki, 1);
1533 #ifdef COMPAT_FREEBSD32
1534 			if ((flags & KERN_PROC_MASK32) != 0) {
1535 				freebsd32_kinfo_proc_out(&ki, &ki32);
1536 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1537 					error = ENOMEM;
1538 			} else
1539 #endif
1540 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1541 					error = ENOMEM;
1542 			if (error != 0)
1543 				break;
1544 		}
1545 	}
1546 	PROC_UNLOCK(p);
1547 	return (error);
1548 }
1549 
1550 static int
1551 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1552 {
1553 	struct sbuf sb;
1554 	struct kinfo_proc ki;
1555 	int error, error2;
1556 
1557 	if (req->oldptr == NULL)
1558 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1559 
1560 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1561 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1562 	error = kern_proc_out(p, &sb, flags);
1563 	error2 = sbuf_finish(&sb);
1564 	sbuf_delete(&sb);
1565 	if (error != 0)
1566 		return (error);
1567 	else if (error2 != 0)
1568 		return (error2);
1569 	return (0);
1570 }
1571 
1572 int
1573 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1574 {
1575 	struct proc *p;
1576 	int error, i, j;
1577 
1578 	for (i = 0; i < pidhashlock + 1; i++) {
1579 		sx_slock(&proctree_lock);
1580 		sx_slock(&pidhashtbl_lock[i]);
1581 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
1582 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1583 				if (p->p_state == PRS_NEW)
1584 					continue;
1585 				error = cb(p, cbarg);
1586 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1587 				if (error != 0) {
1588 					sx_sunlock(&pidhashtbl_lock[i]);
1589 					sx_sunlock(&proctree_lock);
1590 					return (error);
1591 				}
1592 			}
1593 		}
1594 		sx_sunlock(&pidhashtbl_lock[i]);
1595 		sx_sunlock(&proctree_lock);
1596 	}
1597 	return (0);
1598 }
1599 
1600 struct kern_proc_out_args {
1601 	struct sysctl_req *req;
1602 	int flags;
1603 	int oid_number;
1604 	int *name;
1605 };
1606 
1607 static int
1608 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1609 {
1610 	struct kern_proc_out_args *arg = origarg;
1611 	int *name = arg->name;
1612 	int oid_number = arg->oid_number;
1613 	int flags = arg->flags;
1614 	struct sysctl_req *req = arg->req;
1615 	int error = 0;
1616 
1617 	PROC_LOCK(p);
1618 
1619 	KASSERT(p->p_ucred != NULL,
1620 	    ("process credential is NULL for non-NEW proc"));
1621 	/*
1622 	 * Show a user only appropriate processes.
1623 	 */
1624 	if (p_cansee(curthread, p))
1625 		goto skip;
1626 	/*
1627 	 * TODO - make more efficient (see notes below).
1628 	 * do by session.
1629 	 */
1630 	switch (oid_number) {
1631 	case KERN_PROC_GID:
1632 		if (p->p_ucred->cr_gid != (gid_t)name[0])
1633 			goto skip;
1634 		break;
1635 
1636 	case KERN_PROC_PGRP:
1637 		/* could do this by traversing pgrp */
1638 		if (p->p_pgrp == NULL ||
1639 		    p->p_pgrp->pg_id != (pid_t)name[0])
1640 			goto skip;
1641 		break;
1642 
1643 	case KERN_PROC_RGID:
1644 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
1645 			goto skip;
1646 		break;
1647 
1648 	case KERN_PROC_SESSION:
1649 		if (p->p_session == NULL ||
1650 		    p->p_session->s_sid != (pid_t)name[0])
1651 			goto skip;
1652 		break;
1653 
1654 	case KERN_PROC_TTY:
1655 		if ((p->p_flag & P_CONTROLT) == 0 ||
1656 		    p->p_session == NULL)
1657 			goto skip;
1658 		/* XXX proctree_lock */
1659 		SESS_LOCK(p->p_session);
1660 		if (p->p_session->s_ttyp == NULL ||
1661 		    tty_udev(p->p_session->s_ttyp) !=
1662 		    (dev_t)name[0]) {
1663 			SESS_UNLOCK(p->p_session);
1664 			goto skip;
1665 		}
1666 		SESS_UNLOCK(p->p_session);
1667 		break;
1668 
1669 	case KERN_PROC_UID:
1670 		if (p->p_ucred->cr_uid != (uid_t)name[0])
1671 			goto skip;
1672 		break;
1673 
1674 	case KERN_PROC_RUID:
1675 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
1676 			goto skip;
1677 		break;
1678 
1679 	case KERN_PROC_PROC:
1680 		break;
1681 
1682 	default:
1683 		break;
1684 	}
1685 	error = sysctl_out_proc(p, req, flags);
1686 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1687 	return (error);
1688 skip:
1689 	PROC_UNLOCK(p);
1690 	return (0);
1691 }
1692 
1693 static int
1694 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1695 {
1696 	struct kern_proc_out_args iterarg;
1697 	int *name = (int *)arg1;
1698 	u_int namelen = arg2;
1699 	struct proc *p;
1700 	int flags, oid_number;
1701 	int error = 0;
1702 
1703 	oid_number = oidp->oid_number;
1704 	if (oid_number != KERN_PROC_ALL &&
1705 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1706 		flags = KERN_PROC_NOTHREADS;
1707 	else {
1708 		flags = 0;
1709 		oid_number &= ~KERN_PROC_INC_THREAD;
1710 	}
1711 #ifdef COMPAT_FREEBSD32
1712 	if (req->flags & SCTL_MASK32)
1713 		flags |= KERN_PROC_MASK32;
1714 #endif
1715 	if (oid_number == KERN_PROC_PID) {
1716 		if (namelen != 1)
1717 			return (EINVAL);
1718 		error = sysctl_wire_old_buffer(req, 0);
1719 		if (error)
1720 			return (error);
1721 		sx_slock(&proctree_lock);
1722 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1723 		if (error == 0)
1724 			error = sysctl_out_proc(p, req, flags);
1725 		sx_sunlock(&proctree_lock);
1726 		return (error);
1727 	}
1728 
1729 	switch (oid_number) {
1730 	case KERN_PROC_ALL:
1731 		if (namelen != 0)
1732 			return (EINVAL);
1733 		break;
1734 	case KERN_PROC_PROC:
1735 		if (namelen != 0 && namelen != 1)
1736 			return (EINVAL);
1737 		break;
1738 	default:
1739 		if (namelen != 1)
1740 			return (EINVAL);
1741 		break;
1742 	}
1743 
1744 	if (req->oldptr == NULL) {
1745 		/* overestimate by 5 procs */
1746 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1747 		if (error)
1748 			return (error);
1749 	} else {
1750 		error = sysctl_wire_old_buffer(req, 0);
1751 		if (error != 0)
1752 			return (error);
1753 	}
1754 	iterarg.flags = flags;
1755 	iterarg.oid_number = oid_number;
1756 	iterarg.req = req;
1757 	iterarg.name = name;
1758 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1759 	return (error);
1760 }
1761 
1762 struct pargs *
1763 pargs_alloc(int len)
1764 {
1765 	struct pargs *pa;
1766 
1767 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1768 		M_WAITOK);
1769 	refcount_init(&pa->ar_ref, 1);
1770 	pa->ar_length = len;
1771 	return (pa);
1772 }
1773 
1774 static void
1775 pargs_free(struct pargs *pa)
1776 {
1777 
1778 	free(pa, M_PARGS);
1779 }
1780 
1781 void
1782 pargs_hold(struct pargs *pa)
1783 {
1784 
1785 	if (pa == NULL)
1786 		return;
1787 	refcount_acquire(&pa->ar_ref);
1788 }
1789 
1790 void
1791 pargs_drop(struct pargs *pa)
1792 {
1793 
1794 	if (pa == NULL)
1795 		return;
1796 	if (refcount_release(&pa->ar_ref))
1797 		pargs_free(pa);
1798 }
1799 
1800 static int
1801 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1802     size_t len)
1803 {
1804 	ssize_t n;
1805 
1806 	/*
1807 	 * This may return a short read if the string is shorter than the chunk
1808 	 * and is aligned at the end of the page, and the following page is not
1809 	 * mapped.
1810 	 */
1811 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1812 	if (n <= 0)
1813 		return (ENOMEM);
1814 	return (0);
1815 }
1816 
1817 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1818 
1819 enum proc_vector_type {
1820 	PROC_ARG,
1821 	PROC_ENV,
1822 	PROC_AUX,
1823 };
1824 
1825 #ifdef COMPAT_FREEBSD32
1826 static int
1827 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1828     size_t *vsizep, enum proc_vector_type type)
1829 {
1830 	struct freebsd32_ps_strings pss;
1831 	Elf32_Auxinfo aux;
1832 	vm_offset_t vptr, ptr;
1833 	uint32_t *proc_vector32;
1834 	char **proc_vector;
1835 	size_t vsize, size;
1836 	int i, error;
1837 
1838 	error = 0;
1839 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1840 	    sizeof(pss)) != sizeof(pss))
1841 		return (ENOMEM);
1842 	switch (type) {
1843 	case PROC_ARG:
1844 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1845 		vsize = pss.ps_nargvstr;
1846 		if (vsize > ARG_MAX)
1847 			return (ENOEXEC);
1848 		size = vsize * sizeof(int32_t);
1849 		break;
1850 	case PROC_ENV:
1851 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1852 		vsize = pss.ps_nenvstr;
1853 		if (vsize > ARG_MAX)
1854 			return (ENOEXEC);
1855 		size = vsize * sizeof(int32_t);
1856 		break;
1857 	case PROC_AUX:
1858 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1859 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1860 		if (vptr % 4 != 0)
1861 			return (ENOEXEC);
1862 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1863 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1864 			    sizeof(aux))
1865 				return (ENOMEM);
1866 			if (aux.a_type == AT_NULL)
1867 				break;
1868 			ptr += sizeof(aux);
1869 		}
1870 		if (aux.a_type != AT_NULL)
1871 			return (ENOEXEC);
1872 		vsize = i + 1;
1873 		size = vsize * sizeof(aux);
1874 		break;
1875 	default:
1876 		KASSERT(0, ("Wrong proc vector type: %d", type));
1877 		return (EINVAL);
1878 	}
1879 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1880 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1881 		error = ENOMEM;
1882 		goto done;
1883 	}
1884 	if (type == PROC_AUX) {
1885 		*proc_vectorp = (char **)proc_vector32;
1886 		*vsizep = vsize;
1887 		return (0);
1888 	}
1889 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1890 	for (i = 0; i < (int)vsize; i++)
1891 		proc_vector[i] = PTRIN(proc_vector32[i]);
1892 	*proc_vectorp = proc_vector;
1893 	*vsizep = vsize;
1894 done:
1895 	free(proc_vector32, M_TEMP);
1896 	return (error);
1897 }
1898 #endif
1899 
1900 static int
1901 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1902     size_t *vsizep, enum proc_vector_type type)
1903 {
1904 	struct ps_strings pss;
1905 	Elf_Auxinfo aux;
1906 	vm_offset_t vptr, ptr;
1907 	char **proc_vector;
1908 	size_t vsize, size;
1909 	int i;
1910 
1911 #ifdef COMPAT_FREEBSD32
1912 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1913 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1914 #endif
1915 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1916 	    sizeof(pss)) != sizeof(pss))
1917 		return (ENOMEM);
1918 	switch (type) {
1919 	case PROC_ARG:
1920 		vptr = (vm_offset_t)pss.ps_argvstr;
1921 		vsize = pss.ps_nargvstr;
1922 		if (vsize > ARG_MAX)
1923 			return (ENOEXEC);
1924 		size = vsize * sizeof(char *);
1925 		break;
1926 	case PROC_ENV:
1927 		vptr = (vm_offset_t)pss.ps_envstr;
1928 		vsize = pss.ps_nenvstr;
1929 		if (vsize > ARG_MAX)
1930 			return (ENOEXEC);
1931 		size = vsize * sizeof(char *);
1932 		break;
1933 	case PROC_AUX:
1934 		/*
1935 		 * The aux array is just above env array on the stack. Check
1936 		 * that the address is naturally aligned.
1937 		 */
1938 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1939 		    * sizeof(char *);
1940 #if __ELF_WORD_SIZE == 64
1941 		if (vptr % sizeof(uint64_t) != 0)
1942 #else
1943 		if (vptr % sizeof(uint32_t) != 0)
1944 #endif
1945 			return (ENOEXEC);
1946 		/*
1947 		 * We count the array size reading the aux vectors from the
1948 		 * stack until AT_NULL vector is returned.  So (to keep the code
1949 		 * simple) we read the process stack twice: the first time here
1950 		 * to find the size and the second time when copying the vectors
1951 		 * to the allocated proc_vector.
1952 		 */
1953 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1954 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1955 			    sizeof(aux))
1956 				return (ENOMEM);
1957 			if (aux.a_type == AT_NULL)
1958 				break;
1959 			ptr += sizeof(aux);
1960 		}
1961 		/*
1962 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1963 		 * not reached AT_NULL, it is most likely we are reading wrong
1964 		 * data: either the process doesn't have auxv array or data has
1965 		 * been modified. Return the error in this case.
1966 		 */
1967 		if (aux.a_type != AT_NULL)
1968 			return (ENOEXEC);
1969 		vsize = i + 1;
1970 		size = vsize * sizeof(aux);
1971 		break;
1972 	default:
1973 		KASSERT(0, ("Wrong proc vector type: %d", type));
1974 		return (EINVAL); /* In case we are built without INVARIANTS. */
1975 	}
1976 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1977 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1978 		free(proc_vector, M_TEMP);
1979 		return (ENOMEM);
1980 	}
1981 	*proc_vectorp = proc_vector;
1982 	*vsizep = vsize;
1983 
1984 	return (0);
1985 }
1986 
1987 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1988 
1989 static int
1990 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1991     enum proc_vector_type type)
1992 {
1993 	size_t done, len, nchr, vsize;
1994 	int error, i;
1995 	char **proc_vector, *sptr;
1996 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1997 
1998 	PROC_ASSERT_HELD(p);
1999 
2000 	/*
2001 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2002 	 */
2003 	nchr = 2 * (PATH_MAX + ARG_MAX);
2004 
2005 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2006 	if (error != 0)
2007 		return (error);
2008 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2009 		/*
2010 		 * The program may have scribbled into its argv array, e.g. to
2011 		 * remove some arguments.  If that has happened, break out
2012 		 * before trying to read from NULL.
2013 		 */
2014 		if (proc_vector[i] == NULL)
2015 			break;
2016 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2017 			error = proc_read_string(td, p, sptr, pss_string,
2018 			    sizeof(pss_string));
2019 			if (error != 0)
2020 				goto done;
2021 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2022 			if (done + len >= nchr)
2023 				len = nchr - done - 1;
2024 			sbuf_bcat(sb, pss_string, len);
2025 			if (len != GET_PS_STRINGS_CHUNK_SZ)
2026 				break;
2027 			done += GET_PS_STRINGS_CHUNK_SZ;
2028 		}
2029 		sbuf_bcat(sb, "", 1);
2030 		done += len + 1;
2031 	}
2032 done:
2033 	free(proc_vector, M_TEMP);
2034 	return (error);
2035 }
2036 
2037 int
2038 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2039 {
2040 
2041 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
2042 }
2043 
2044 int
2045 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2046 {
2047 
2048 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
2049 }
2050 
2051 int
2052 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2053 {
2054 	size_t vsize, size;
2055 	char **auxv;
2056 	int error;
2057 
2058 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2059 	if (error == 0) {
2060 #ifdef COMPAT_FREEBSD32
2061 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2062 			size = vsize * sizeof(Elf32_Auxinfo);
2063 		else
2064 #endif
2065 			size = vsize * sizeof(Elf_Auxinfo);
2066 		if (sbuf_bcat(sb, auxv, size) != 0)
2067 			error = ENOMEM;
2068 		free(auxv, M_TEMP);
2069 	}
2070 	return (error);
2071 }
2072 
2073 /*
2074  * This sysctl allows a process to retrieve the argument list or process
2075  * title for another process without groping around in the address space
2076  * of the other process.  It also allow a process to set its own "process
2077  * title to a string of its own choice.
2078  */
2079 static int
2080 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2081 {
2082 	int *name = (int *)arg1;
2083 	u_int namelen = arg2;
2084 	struct pargs *newpa, *pa;
2085 	struct proc *p;
2086 	struct sbuf sb;
2087 	int flags, error = 0, error2;
2088 	pid_t pid;
2089 
2090 	if (namelen != 1)
2091 		return (EINVAL);
2092 
2093 	p = curproc;
2094 	pid = (pid_t)name[0];
2095 	if (pid == -1) {
2096 		pid = p->p_pid;
2097 	}
2098 
2099 	/*
2100 	 * If the query is for this process and it is single-threaded, there
2101 	 * is nobody to modify pargs, thus we can just read.
2102 	 */
2103 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2104 	    (pa = p->p_args) != NULL)
2105 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2106 
2107 	flags = PGET_CANSEE;
2108 	if (req->newptr != NULL)
2109 		flags |= PGET_ISCURRENT;
2110 	error = pget(pid, flags, &p);
2111 	if (error)
2112 		return (error);
2113 
2114 	pa = p->p_args;
2115 	if (pa != NULL) {
2116 		pargs_hold(pa);
2117 		PROC_UNLOCK(p);
2118 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2119 		pargs_drop(pa);
2120 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2121 		_PHOLD(p);
2122 		PROC_UNLOCK(p);
2123 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2124 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2125 		error = proc_getargv(curthread, p, &sb);
2126 		error2 = sbuf_finish(&sb);
2127 		PRELE(p);
2128 		sbuf_delete(&sb);
2129 		if (error == 0 && error2 != 0)
2130 			error = error2;
2131 	} else {
2132 		PROC_UNLOCK(p);
2133 	}
2134 	if (error != 0 || req->newptr == NULL)
2135 		return (error);
2136 
2137 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2138 		return (ENOMEM);
2139 
2140 	if (req->newlen == 0) {
2141 		/*
2142 		 * Clear the argument pointer, so that we'll fetch arguments
2143 		 * with proc_getargv() until further notice.
2144 		 */
2145 		newpa = NULL;
2146 	} else {
2147 		newpa = pargs_alloc(req->newlen);
2148 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2149 		if (error != 0) {
2150 			pargs_free(newpa);
2151 			return (error);
2152 		}
2153 	}
2154 	PROC_LOCK(p);
2155 	pa = p->p_args;
2156 	p->p_args = newpa;
2157 	PROC_UNLOCK(p);
2158 	pargs_drop(pa);
2159 	return (0);
2160 }
2161 
2162 /*
2163  * This sysctl allows a process to retrieve environment of another process.
2164  */
2165 static int
2166 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2167 {
2168 	int *name = (int *)arg1;
2169 	u_int namelen = arg2;
2170 	struct proc *p;
2171 	struct sbuf sb;
2172 	int error, error2;
2173 
2174 	if (namelen != 1)
2175 		return (EINVAL);
2176 
2177 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2178 	if (error != 0)
2179 		return (error);
2180 	if ((p->p_flag & P_SYSTEM) != 0) {
2181 		PRELE(p);
2182 		return (0);
2183 	}
2184 
2185 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2186 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2187 	error = proc_getenvv(curthread, p, &sb);
2188 	error2 = sbuf_finish(&sb);
2189 	PRELE(p);
2190 	sbuf_delete(&sb);
2191 	return (error != 0 ? error : error2);
2192 }
2193 
2194 /*
2195  * This sysctl allows a process to retrieve ELF auxiliary vector of
2196  * another process.
2197  */
2198 static int
2199 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2200 {
2201 	int *name = (int *)arg1;
2202 	u_int namelen = arg2;
2203 	struct proc *p;
2204 	struct sbuf sb;
2205 	int error, error2;
2206 
2207 	if (namelen != 1)
2208 		return (EINVAL);
2209 
2210 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2211 	if (error != 0)
2212 		return (error);
2213 	if ((p->p_flag & P_SYSTEM) != 0) {
2214 		PRELE(p);
2215 		return (0);
2216 	}
2217 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2218 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2219 	error = proc_getauxv(curthread, p, &sb);
2220 	error2 = sbuf_finish(&sb);
2221 	PRELE(p);
2222 	sbuf_delete(&sb);
2223 	return (error != 0 ? error : error2);
2224 }
2225 
2226 /*
2227  * This sysctl allows a process to retrieve the path of the executable for
2228  * itself or another process.
2229  */
2230 static int
2231 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2232 {
2233 	pid_t *pidp = (pid_t *)arg1;
2234 	unsigned int arglen = arg2;
2235 	struct proc *p;
2236 	struct vnode *vp;
2237 	char *retbuf, *freebuf;
2238 	int error;
2239 
2240 	if (arglen != 1)
2241 		return (EINVAL);
2242 	if (*pidp == -1) {	/* -1 means this process */
2243 		p = req->td->td_proc;
2244 	} else {
2245 		error = pget(*pidp, PGET_CANSEE, &p);
2246 		if (error != 0)
2247 			return (error);
2248 	}
2249 
2250 	vp = p->p_textvp;
2251 	if (vp == NULL) {
2252 		if (*pidp != -1)
2253 			PROC_UNLOCK(p);
2254 		return (0);
2255 	}
2256 	vref(vp);
2257 	if (*pidp != -1)
2258 		PROC_UNLOCK(p);
2259 	error = vn_fullpath(vp, &retbuf, &freebuf);
2260 	vrele(vp);
2261 	if (error)
2262 		return (error);
2263 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2264 	free(freebuf, M_TEMP);
2265 	return (error);
2266 }
2267 
2268 static int
2269 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2270 {
2271 	struct proc *p;
2272 	char *sv_name;
2273 	int *name;
2274 	int namelen;
2275 	int error;
2276 
2277 	namelen = arg2;
2278 	if (namelen != 1)
2279 		return (EINVAL);
2280 
2281 	name = (int *)arg1;
2282 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2283 	if (error != 0)
2284 		return (error);
2285 	sv_name = p->p_sysent->sv_name;
2286 	PROC_UNLOCK(p);
2287 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2288 }
2289 
2290 #ifdef KINFO_OVMENTRY_SIZE
2291 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2292 #endif
2293 
2294 #ifdef COMPAT_FREEBSD7
2295 static int
2296 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2297 {
2298 	vm_map_entry_t entry, tmp_entry;
2299 	unsigned int last_timestamp, namelen;
2300 	char *fullpath, *freepath;
2301 	struct kinfo_ovmentry *kve;
2302 	struct vattr va;
2303 	struct ucred *cred;
2304 	int error, *name;
2305 	struct vnode *vp;
2306 	struct proc *p;
2307 	vm_map_t map;
2308 	struct vmspace *vm;
2309 
2310 	namelen = arg2;
2311 	if (namelen != 1)
2312 		return (EINVAL);
2313 
2314 	name = (int *)arg1;
2315 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2316 	if (error != 0)
2317 		return (error);
2318 	vm = vmspace_acquire_ref(p);
2319 	if (vm == NULL) {
2320 		PRELE(p);
2321 		return (ESRCH);
2322 	}
2323 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2324 
2325 	map = &vm->vm_map;
2326 	vm_map_lock_read(map);
2327 	VM_MAP_ENTRY_FOREACH(entry, map) {
2328 		vm_object_t obj, tobj, lobj;
2329 		vm_offset_t addr;
2330 
2331 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2332 			continue;
2333 
2334 		bzero(kve, sizeof(*kve));
2335 		kve->kve_structsize = sizeof(*kve);
2336 
2337 		kve->kve_private_resident = 0;
2338 		obj = entry->object.vm_object;
2339 		if (obj != NULL) {
2340 			VM_OBJECT_RLOCK(obj);
2341 			if (obj->shadow_count == 1)
2342 				kve->kve_private_resident =
2343 				    obj->resident_page_count;
2344 		}
2345 		kve->kve_resident = 0;
2346 		addr = entry->start;
2347 		while (addr < entry->end) {
2348 			if (pmap_extract(map->pmap, addr))
2349 				kve->kve_resident++;
2350 			addr += PAGE_SIZE;
2351 		}
2352 
2353 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2354 			if (tobj != obj) {
2355 				VM_OBJECT_RLOCK(tobj);
2356 				kve->kve_offset += tobj->backing_object_offset;
2357 			}
2358 			if (lobj != obj)
2359 				VM_OBJECT_RUNLOCK(lobj);
2360 			lobj = tobj;
2361 		}
2362 
2363 		kve->kve_start = (void*)entry->start;
2364 		kve->kve_end = (void*)entry->end;
2365 		kve->kve_offset += (off_t)entry->offset;
2366 
2367 		if (entry->protection & VM_PROT_READ)
2368 			kve->kve_protection |= KVME_PROT_READ;
2369 		if (entry->protection & VM_PROT_WRITE)
2370 			kve->kve_protection |= KVME_PROT_WRITE;
2371 		if (entry->protection & VM_PROT_EXECUTE)
2372 			kve->kve_protection |= KVME_PROT_EXEC;
2373 
2374 		if (entry->eflags & MAP_ENTRY_COW)
2375 			kve->kve_flags |= KVME_FLAG_COW;
2376 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2377 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2378 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2379 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2380 
2381 		last_timestamp = map->timestamp;
2382 		vm_map_unlock_read(map);
2383 
2384 		kve->kve_fileid = 0;
2385 		kve->kve_fsid = 0;
2386 		freepath = NULL;
2387 		fullpath = "";
2388 		if (lobj) {
2389 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2390 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2391 				kve->kve_type = KVME_TYPE_UNKNOWN;
2392 			if (vp != NULL)
2393 				vref(vp);
2394 			if (lobj != obj)
2395 				VM_OBJECT_RUNLOCK(lobj);
2396 
2397 			kve->kve_ref_count = obj->ref_count;
2398 			kve->kve_shadow_count = obj->shadow_count;
2399 			VM_OBJECT_RUNLOCK(obj);
2400 			if (vp != NULL) {
2401 				vn_fullpath(vp, &fullpath, &freepath);
2402 				cred = curthread->td_ucred;
2403 				vn_lock(vp, LK_SHARED | LK_RETRY);
2404 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2405 					kve->kve_fileid = va.va_fileid;
2406 					/* truncate */
2407 					kve->kve_fsid = va.va_fsid;
2408 				}
2409 				vput(vp);
2410 			}
2411 		} else {
2412 			kve->kve_type = KVME_TYPE_NONE;
2413 			kve->kve_ref_count = 0;
2414 			kve->kve_shadow_count = 0;
2415 		}
2416 
2417 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2418 		if (freepath != NULL)
2419 			free(freepath, M_TEMP);
2420 
2421 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2422 		vm_map_lock_read(map);
2423 		if (error)
2424 			break;
2425 		if (last_timestamp != map->timestamp) {
2426 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2427 			entry = tmp_entry;
2428 		}
2429 	}
2430 	vm_map_unlock_read(map);
2431 	vmspace_free(vm);
2432 	PRELE(p);
2433 	free(kve, M_TEMP);
2434 	return (error);
2435 }
2436 #endif	/* COMPAT_FREEBSD7 */
2437 
2438 #ifdef KINFO_VMENTRY_SIZE
2439 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2440 #endif
2441 
2442 void
2443 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2444     int *resident_count, bool *super)
2445 {
2446 	vm_object_t obj, tobj;
2447 	vm_page_t m, m_adv;
2448 	vm_offset_t addr;
2449 	vm_paddr_t pa;
2450 	vm_pindex_t pi, pi_adv, pindex;
2451 
2452 	*super = false;
2453 	*resident_count = 0;
2454 	if (vmmap_skip_res_cnt)
2455 		return;
2456 
2457 	pa = 0;
2458 	obj = entry->object.vm_object;
2459 	addr = entry->start;
2460 	m_adv = NULL;
2461 	pi = OFF_TO_IDX(entry->offset);
2462 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2463 		if (m_adv != NULL) {
2464 			m = m_adv;
2465 		} else {
2466 			pi_adv = atop(entry->end - addr);
2467 			pindex = pi;
2468 			for (tobj = obj;; tobj = tobj->backing_object) {
2469 				m = vm_page_find_least(tobj, pindex);
2470 				if (m != NULL) {
2471 					if (m->pindex == pindex)
2472 						break;
2473 					if (pi_adv > m->pindex - pindex) {
2474 						pi_adv = m->pindex - pindex;
2475 						m_adv = m;
2476 					}
2477 				}
2478 				if (tobj->backing_object == NULL)
2479 					goto next;
2480 				pindex += OFF_TO_IDX(tobj->
2481 				    backing_object_offset);
2482 			}
2483 		}
2484 		m_adv = NULL;
2485 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2486 		    (addr & (pagesizes[1] - 1)) == 0 &&
2487 		    (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2488 			*super = true;
2489 			pi_adv = atop(pagesizes[1]);
2490 		} else {
2491 			/*
2492 			 * We do not test the found page on validity.
2493 			 * Either the page is busy and being paged in,
2494 			 * or it was invalidated.  The first case
2495 			 * should be counted as resident, the second
2496 			 * is not so clear; we do account both.
2497 			 */
2498 			pi_adv = 1;
2499 		}
2500 		*resident_count += pi_adv;
2501 next:;
2502 	}
2503 }
2504 
2505 /*
2506  * Must be called with the process locked and will return unlocked.
2507  */
2508 int
2509 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2510 {
2511 	vm_map_entry_t entry, tmp_entry;
2512 	struct vattr va;
2513 	vm_map_t map;
2514 	vm_object_t lobj, nobj, obj, tobj;
2515 	char *fullpath, *freepath;
2516 	struct kinfo_vmentry *kve;
2517 	struct ucred *cred;
2518 	struct vnode *vp;
2519 	struct vmspace *vm;
2520 	vm_offset_t addr;
2521 	unsigned int last_timestamp;
2522 	int error;
2523 	bool guard, super;
2524 
2525 	PROC_LOCK_ASSERT(p, MA_OWNED);
2526 
2527 	_PHOLD(p);
2528 	PROC_UNLOCK(p);
2529 	vm = vmspace_acquire_ref(p);
2530 	if (vm == NULL) {
2531 		PRELE(p);
2532 		return (ESRCH);
2533 	}
2534 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2535 
2536 	error = 0;
2537 	map = &vm->vm_map;
2538 	vm_map_lock_read(map);
2539 	VM_MAP_ENTRY_FOREACH(entry, map) {
2540 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2541 			continue;
2542 
2543 		addr = entry->end;
2544 		bzero(kve, sizeof(*kve));
2545 		obj = entry->object.vm_object;
2546 		if (obj != NULL) {
2547 			if ((obj->flags & OBJ_ANON) != 0)
2548 				kve->kve_obj = (uintptr_t)obj;
2549 
2550 			for (tobj = obj; tobj != NULL;
2551 			    tobj = tobj->backing_object) {
2552 				VM_OBJECT_RLOCK(tobj);
2553 				kve->kve_offset += tobj->backing_object_offset;
2554 				lobj = tobj;
2555 			}
2556 			if (obj->backing_object == NULL)
2557 				kve->kve_private_resident =
2558 				    obj->resident_page_count;
2559 			kern_proc_vmmap_resident(map, entry,
2560 			    &kve->kve_resident, &super);
2561 			if (super)
2562 				kve->kve_flags |= KVME_FLAG_SUPER;
2563 			for (tobj = obj; tobj != NULL; tobj = nobj) {
2564 				nobj = tobj->backing_object;
2565 				if (tobj != obj && tobj != lobj)
2566 					VM_OBJECT_RUNLOCK(tobj);
2567 			}
2568 		} else {
2569 			lobj = NULL;
2570 		}
2571 
2572 		kve->kve_start = entry->start;
2573 		kve->kve_end = entry->end;
2574 		kve->kve_offset += entry->offset;
2575 
2576 		if (entry->protection & VM_PROT_READ)
2577 			kve->kve_protection |= KVME_PROT_READ;
2578 		if (entry->protection & VM_PROT_WRITE)
2579 			kve->kve_protection |= KVME_PROT_WRITE;
2580 		if (entry->protection & VM_PROT_EXECUTE)
2581 			kve->kve_protection |= KVME_PROT_EXEC;
2582 
2583 		if (entry->eflags & MAP_ENTRY_COW)
2584 			kve->kve_flags |= KVME_FLAG_COW;
2585 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2586 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2587 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2588 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2589 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2590 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2591 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2592 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2593 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
2594 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
2595 
2596 		guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2597 
2598 		last_timestamp = map->timestamp;
2599 		vm_map_unlock_read(map);
2600 
2601 		freepath = NULL;
2602 		fullpath = "";
2603 		if (lobj != NULL) {
2604 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2605 			if (vp != NULL)
2606 				vref(vp);
2607 			if (lobj != obj)
2608 				VM_OBJECT_RUNLOCK(lobj);
2609 
2610 			kve->kve_ref_count = obj->ref_count;
2611 			kve->kve_shadow_count = obj->shadow_count;
2612 			VM_OBJECT_RUNLOCK(obj);
2613 			if (vp != NULL) {
2614 				vn_fullpath(vp, &fullpath, &freepath);
2615 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2616 				cred = curthread->td_ucred;
2617 				vn_lock(vp, LK_SHARED | LK_RETRY);
2618 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2619 					kve->kve_vn_fileid = va.va_fileid;
2620 					kve->kve_vn_fsid = va.va_fsid;
2621 					kve->kve_vn_fsid_freebsd11 =
2622 					    kve->kve_vn_fsid; /* truncate */
2623 					kve->kve_vn_mode =
2624 					    MAKEIMODE(va.va_type, va.va_mode);
2625 					kve->kve_vn_size = va.va_size;
2626 					kve->kve_vn_rdev = va.va_rdev;
2627 					kve->kve_vn_rdev_freebsd11 =
2628 					    kve->kve_vn_rdev; /* truncate */
2629 					kve->kve_status = KF_ATTR_VALID;
2630 				}
2631 				vput(vp);
2632 			}
2633 		} else {
2634 			kve->kve_type = guard ? KVME_TYPE_GUARD :
2635 			    KVME_TYPE_NONE;
2636 			kve->kve_ref_count = 0;
2637 			kve->kve_shadow_count = 0;
2638 		}
2639 
2640 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2641 		if (freepath != NULL)
2642 			free(freepath, M_TEMP);
2643 
2644 		/* Pack record size down */
2645 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2646 			kve->kve_structsize =
2647 			    offsetof(struct kinfo_vmentry, kve_path) +
2648 			    strlen(kve->kve_path) + 1;
2649 		else
2650 			kve->kve_structsize = sizeof(*kve);
2651 		kve->kve_structsize = roundup(kve->kve_structsize,
2652 		    sizeof(uint64_t));
2653 
2654 		/* Halt filling and truncate rather than exceeding maxlen */
2655 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2656 			error = 0;
2657 			vm_map_lock_read(map);
2658 			break;
2659 		} else if (maxlen != -1)
2660 			maxlen -= kve->kve_structsize;
2661 
2662 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2663 			error = ENOMEM;
2664 		vm_map_lock_read(map);
2665 		if (error != 0)
2666 			break;
2667 		if (last_timestamp != map->timestamp) {
2668 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2669 			entry = tmp_entry;
2670 		}
2671 	}
2672 	vm_map_unlock_read(map);
2673 	vmspace_free(vm);
2674 	PRELE(p);
2675 	free(kve, M_TEMP);
2676 	return (error);
2677 }
2678 
2679 static int
2680 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2681 {
2682 	struct proc *p;
2683 	struct sbuf sb;
2684 	u_int namelen;
2685 	int error, error2, *name;
2686 
2687 	namelen = arg2;
2688 	if (namelen != 1)
2689 		return (EINVAL);
2690 
2691 	name = (int *)arg1;
2692 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2693 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2694 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2695 	if (error != 0) {
2696 		sbuf_delete(&sb);
2697 		return (error);
2698 	}
2699 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2700 	error2 = sbuf_finish(&sb);
2701 	sbuf_delete(&sb);
2702 	return (error != 0 ? error : error2);
2703 }
2704 
2705 #if defined(STACK) || defined(DDB)
2706 static int
2707 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2708 {
2709 	struct kinfo_kstack *kkstp;
2710 	int error, i, *name, numthreads;
2711 	lwpid_t *lwpidarray;
2712 	struct thread *td;
2713 	struct stack *st;
2714 	struct sbuf sb;
2715 	struct proc *p;
2716 	u_int namelen;
2717 
2718 	namelen = arg2;
2719 	if (namelen != 1)
2720 		return (EINVAL);
2721 
2722 	name = (int *)arg1;
2723 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2724 	if (error != 0)
2725 		return (error);
2726 
2727 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2728 	st = stack_create(M_WAITOK);
2729 
2730 	lwpidarray = NULL;
2731 	PROC_LOCK(p);
2732 	do {
2733 		if (lwpidarray != NULL) {
2734 			free(lwpidarray, M_TEMP);
2735 			lwpidarray = NULL;
2736 		}
2737 		numthreads = p->p_numthreads;
2738 		PROC_UNLOCK(p);
2739 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2740 		    M_WAITOK | M_ZERO);
2741 		PROC_LOCK(p);
2742 	} while (numthreads < p->p_numthreads);
2743 
2744 	/*
2745 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2746 	 * of changes could have taken place.  Should we check to see if the
2747 	 * vmspace has been replaced, or the like, in order to prevent
2748 	 * giving a snapshot that spans, say, execve(2), with some threads
2749 	 * before and some after?  Among other things, the credentials could
2750 	 * have changed, in which case the right to extract debug info might
2751 	 * no longer be assured.
2752 	 */
2753 	i = 0;
2754 	FOREACH_THREAD_IN_PROC(p, td) {
2755 		KASSERT(i < numthreads,
2756 		    ("sysctl_kern_proc_kstack: numthreads"));
2757 		lwpidarray[i] = td->td_tid;
2758 		i++;
2759 	}
2760 	PROC_UNLOCK(p);
2761 	numthreads = i;
2762 	for (i = 0; i < numthreads; i++) {
2763 		td = tdfind(lwpidarray[i], p->p_pid);
2764 		if (td == NULL) {
2765 			continue;
2766 		}
2767 		bzero(kkstp, sizeof(*kkstp));
2768 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2769 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2770 		thread_lock(td);
2771 		kkstp->kkst_tid = td->td_tid;
2772 		if (TD_IS_SWAPPED(td))
2773 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2774 		else if (stack_save_td(st, td) == 0)
2775 			kkstp->kkst_state = KKST_STATE_STACKOK;
2776 		else
2777 			kkstp->kkst_state = KKST_STATE_RUNNING;
2778 		thread_unlock(td);
2779 		PROC_UNLOCK(p);
2780 		stack_sbuf_print(&sb, st);
2781 		sbuf_finish(&sb);
2782 		sbuf_delete(&sb);
2783 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2784 		if (error)
2785 			break;
2786 	}
2787 	PRELE(p);
2788 	if (lwpidarray != NULL)
2789 		free(lwpidarray, M_TEMP);
2790 	stack_destroy(st);
2791 	free(kkstp, M_TEMP);
2792 	return (error);
2793 }
2794 #endif
2795 
2796 /*
2797  * This sysctl allows a process to retrieve the full list of groups from
2798  * itself or another process.
2799  */
2800 static int
2801 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2802 {
2803 	pid_t *pidp = (pid_t *)arg1;
2804 	unsigned int arglen = arg2;
2805 	struct proc *p;
2806 	struct ucred *cred;
2807 	int error;
2808 
2809 	if (arglen != 1)
2810 		return (EINVAL);
2811 	if (*pidp == -1) {	/* -1 means this process */
2812 		p = req->td->td_proc;
2813 		PROC_LOCK(p);
2814 	} else {
2815 		error = pget(*pidp, PGET_CANSEE, &p);
2816 		if (error != 0)
2817 			return (error);
2818 	}
2819 
2820 	cred = crhold(p->p_ucred);
2821 	PROC_UNLOCK(p);
2822 
2823 	error = SYSCTL_OUT(req, cred->cr_groups,
2824 	    cred->cr_ngroups * sizeof(gid_t));
2825 	crfree(cred);
2826 	return (error);
2827 }
2828 
2829 /*
2830  * This sysctl allows a process to retrieve or/and set the resource limit for
2831  * another process.
2832  */
2833 static int
2834 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2835 {
2836 	int *name = (int *)arg1;
2837 	u_int namelen = arg2;
2838 	struct rlimit rlim;
2839 	struct proc *p;
2840 	u_int which;
2841 	int flags, error;
2842 
2843 	if (namelen != 2)
2844 		return (EINVAL);
2845 
2846 	which = (u_int)name[1];
2847 	if (which >= RLIM_NLIMITS)
2848 		return (EINVAL);
2849 
2850 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2851 		return (EINVAL);
2852 
2853 	flags = PGET_HOLD | PGET_NOTWEXIT;
2854 	if (req->newptr != NULL)
2855 		flags |= PGET_CANDEBUG;
2856 	else
2857 		flags |= PGET_CANSEE;
2858 	error = pget((pid_t)name[0], flags, &p);
2859 	if (error != 0)
2860 		return (error);
2861 
2862 	/*
2863 	 * Retrieve limit.
2864 	 */
2865 	if (req->oldptr != NULL) {
2866 		PROC_LOCK(p);
2867 		lim_rlimit_proc(p, which, &rlim);
2868 		PROC_UNLOCK(p);
2869 	}
2870 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2871 	if (error != 0)
2872 		goto errout;
2873 
2874 	/*
2875 	 * Set limit.
2876 	 */
2877 	if (req->newptr != NULL) {
2878 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2879 		if (error == 0)
2880 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2881 	}
2882 
2883 errout:
2884 	PRELE(p);
2885 	return (error);
2886 }
2887 
2888 /*
2889  * This sysctl allows a process to retrieve ps_strings structure location of
2890  * another process.
2891  */
2892 static int
2893 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2894 {
2895 	int *name = (int *)arg1;
2896 	u_int namelen = arg2;
2897 	struct proc *p;
2898 	vm_offset_t ps_strings;
2899 	int error;
2900 #ifdef COMPAT_FREEBSD32
2901 	uint32_t ps_strings32;
2902 #endif
2903 
2904 	if (namelen != 1)
2905 		return (EINVAL);
2906 
2907 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2908 	if (error != 0)
2909 		return (error);
2910 #ifdef COMPAT_FREEBSD32
2911 	if ((req->flags & SCTL_MASK32) != 0) {
2912 		/*
2913 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2914 		 * process.
2915 		 */
2916 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2917 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2918 		PROC_UNLOCK(p);
2919 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2920 		return (error);
2921 	}
2922 #endif
2923 	ps_strings = p->p_sysent->sv_psstrings;
2924 	PROC_UNLOCK(p);
2925 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2926 	return (error);
2927 }
2928 
2929 /*
2930  * This sysctl allows a process to retrieve umask of another process.
2931  */
2932 static int
2933 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2934 {
2935 	int *name = (int *)arg1;
2936 	u_int namelen = arg2;
2937 	struct proc *p;
2938 	int error;
2939 	u_short cmask;
2940 	pid_t pid;
2941 
2942 	if (namelen != 1)
2943 		return (EINVAL);
2944 
2945 	pid = (pid_t)name[0];
2946 	p = curproc;
2947 	if (pid == p->p_pid || pid == 0) {
2948 		cmask = p->p_pd->pd_cmask;
2949 		goto out;
2950 	}
2951 
2952 	error = pget(pid, PGET_WANTREAD, &p);
2953 	if (error != 0)
2954 		return (error);
2955 
2956 	cmask = p->p_pd->pd_cmask;
2957 	PRELE(p);
2958 out:
2959 	error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
2960 	return (error);
2961 }
2962 
2963 /*
2964  * This sysctl allows a process to set and retrieve binary osreldate of
2965  * another process.
2966  */
2967 static int
2968 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2969 {
2970 	int *name = (int *)arg1;
2971 	u_int namelen = arg2;
2972 	struct proc *p;
2973 	int flags, error, osrel;
2974 
2975 	if (namelen != 1)
2976 		return (EINVAL);
2977 
2978 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2979 		return (EINVAL);
2980 
2981 	flags = PGET_HOLD | PGET_NOTWEXIT;
2982 	if (req->newptr != NULL)
2983 		flags |= PGET_CANDEBUG;
2984 	else
2985 		flags |= PGET_CANSEE;
2986 	error = pget((pid_t)name[0], flags, &p);
2987 	if (error != 0)
2988 		return (error);
2989 
2990 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2991 	if (error != 0)
2992 		goto errout;
2993 
2994 	if (req->newptr != NULL) {
2995 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2996 		if (error != 0)
2997 			goto errout;
2998 		if (osrel < 0) {
2999 			error = EINVAL;
3000 			goto errout;
3001 		}
3002 		p->p_osrel = osrel;
3003 	}
3004 errout:
3005 	PRELE(p);
3006 	return (error);
3007 }
3008 
3009 static int
3010 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3011 {
3012 	int *name = (int *)arg1;
3013 	u_int namelen = arg2;
3014 	struct proc *p;
3015 	struct kinfo_sigtramp kst;
3016 	const struct sysentvec *sv;
3017 	int error;
3018 #ifdef COMPAT_FREEBSD32
3019 	struct kinfo_sigtramp32 kst32;
3020 #endif
3021 
3022 	if (namelen != 1)
3023 		return (EINVAL);
3024 
3025 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3026 	if (error != 0)
3027 		return (error);
3028 	sv = p->p_sysent;
3029 #ifdef COMPAT_FREEBSD32
3030 	if ((req->flags & SCTL_MASK32) != 0) {
3031 		bzero(&kst32, sizeof(kst32));
3032 		if (SV_PROC_FLAG(p, SV_ILP32)) {
3033 			if (sv->sv_sigcode_base != 0) {
3034 				kst32.ksigtramp_start = sv->sv_sigcode_base;
3035 				kst32.ksigtramp_end = sv->sv_sigcode_base +
3036 				    *sv->sv_szsigcode;
3037 			} else {
3038 				kst32.ksigtramp_start = sv->sv_psstrings -
3039 				    *sv->sv_szsigcode;
3040 				kst32.ksigtramp_end = sv->sv_psstrings;
3041 			}
3042 		}
3043 		PROC_UNLOCK(p);
3044 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3045 		return (error);
3046 	}
3047 #endif
3048 	bzero(&kst, sizeof(kst));
3049 	if (sv->sv_sigcode_base != 0) {
3050 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
3051 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
3052 		    *sv->sv_szsigcode;
3053 	} else {
3054 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
3055 		    *sv->sv_szsigcode;
3056 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
3057 	}
3058 	PROC_UNLOCK(p);
3059 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
3060 	return (error);
3061 }
3062 
3063 static int
3064 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3065 {
3066 	int *name = (int *)arg1;
3067 	u_int namelen = arg2;
3068 	pid_t pid;
3069 	struct proc *p;
3070 	struct thread *td1;
3071 	uintptr_t addr;
3072 #ifdef COMPAT_FREEBSD32
3073 	uint32_t addr32;
3074 #endif
3075 	int error;
3076 
3077 	if (namelen != 1 || req->newptr != NULL)
3078 		return (EINVAL);
3079 
3080 	pid = (pid_t)name[0];
3081 	error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3082 	if (error != 0)
3083 		return (error);
3084 
3085 	PROC_LOCK(p);
3086 #ifdef COMPAT_FREEBSD32
3087 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3088 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3089 			error = EINVAL;
3090 			goto errlocked;
3091 		}
3092 	}
3093 #endif
3094 	if (pid <= PID_MAX) {
3095 		td1 = FIRST_THREAD_IN_PROC(p);
3096 	} else {
3097 		FOREACH_THREAD_IN_PROC(p, td1) {
3098 			if (td1->td_tid == pid)
3099 				break;
3100 		}
3101 	}
3102 	if (td1 == NULL) {
3103 		error = ESRCH;
3104 		goto errlocked;
3105 	}
3106 	/*
3107 	 * The access to the private thread flags.  It is fine as far
3108 	 * as no out-of-thin-air values are read from td_pflags, and
3109 	 * usermode read of the td_sigblock_ptr is racy inherently,
3110 	 * since target process might have already changed it
3111 	 * meantime.
3112 	 */
3113 	if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3114 		addr = (uintptr_t)td1->td_sigblock_ptr;
3115 	else
3116 		error = ENOTTY;
3117 
3118 errlocked:
3119 	_PRELE(p);
3120 	PROC_UNLOCK(p);
3121 	if (error != 0)
3122 		return (error);
3123 
3124 #ifdef COMPAT_FREEBSD32
3125 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3126 		addr32 = addr;
3127 		error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3128 	} else
3129 #endif
3130 		error = SYSCTL_OUT(req, &addr, sizeof(addr));
3131 	return (error);
3132 }
3133 
3134 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
3135     "Process table");
3136 
3137 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3138 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3139 	"Return entire process table");
3140 
3141 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3142 	sysctl_kern_proc, "Process table");
3143 
3144 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3145 	sysctl_kern_proc, "Process table");
3146 
3147 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3148 	sysctl_kern_proc, "Process table");
3149 
3150 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3151 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3152 
3153 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3154 	sysctl_kern_proc, "Process table");
3155 
3156 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3157 	sysctl_kern_proc, "Process table");
3158 
3159 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3160 	sysctl_kern_proc, "Process table");
3161 
3162 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3163 	sysctl_kern_proc, "Process table");
3164 
3165 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3166 	sysctl_kern_proc, "Return process table, no threads");
3167 
3168 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3169 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3170 	sysctl_kern_proc_args, "Process argument list");
3171 
3172 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3173 	sysctl_kern_proc_env, "Process environment");
3174 
3175 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3176 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3177 
3178 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3179 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3180 
3181 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3182 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3183 	"Process syscall vector name (ABI type)");
3184 
3185 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3186 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3187 
3188 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3189 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3190 
3191 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3192 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3193 
3194 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3195 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3196 
3197 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3198 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3199 
3200 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3201 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3202 
3203 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3204 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3205 
3206 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3207 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3208 
3209 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3210 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3211 	"Return process table, including threads");
3212 
3213 #ifdef COMPAT_FREEBSD7
3214 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3215 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3216 #endif
3217 
3218 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3219 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3220 
3221 #if defined(STACK) || defined(DDB)
3222 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3223 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3224 #endif
3225 
3226 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3227 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3228 
3229 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3230 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3231 	"Process resource limits");
3232 
3233 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3234 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3235 	"Process ps_strings location");
3236 
3237 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3238 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3239 
3240 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3241 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3242 	"Process binary osreldate");
3243 
3244 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3245 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3246 	"Process signal trampoline location");
3247 
3248 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3249 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3250 	"Thread sigfastblock address");
3251 
3252 int allproc_gen;
3253 
3254 /*
3255  * stop_all_proc() purpose is to stop all process which have usermode,
3256  * except current process for obvious reasons.  This makes it somewhat
3257  * unreliable when invoked from multithreaded process.  The service
3258  * must not be user-callable anyway.
3259  */
3260 void
3261 stop_all_proc(void)
3262 {
3263 	struct proc *cp, *p;
3264 	int r, gen;
3265 	bool restart, seen_stopped, seen_exiting, stopped_some;
3266 
3267 	cp = curproc;
3268 allproc_loop:
3269 	sx_xlock(&allproc_lock);
3270 	gen = allproc_gen;
3271 	seen_exiting = seen_stopped = stopped_some = restart = false;
3272 	LIST_REMOVE(cp, p_list);
3273 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3274 	for (;;) {
3275 		p = LIST_NEXT(cp, p_list);
3276 		if (p == NULL)
3277 			break;
3278 		LIST_REMOVE(cp, p_list);
3279 		LIST_INSERT_AFTER(p, cp, p_list);
3280 		PROC_LOCK(p);
3281 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3282 			PROC_UNLOCK(p);
3283 			continue;
3284 		}
3285 		if ((p->p_flag & P_WEXIT) != 0) {
3286 			seen_exiting = true;
3287 			PROC_UNLOCK(p);
3288 			continue;
3289 		}
3290 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3291 			/*
3292 			 * Stopped processes are tolerated when there
3293 			 * are no other processes which might continue
3294 			 * them.  P_STOPPED_SINGLE but not
3295 			 * P_TOTAL_STOP process still has at least one
3296 			 * thread running.
3297 			 */
3298 			seen_stopped = true;
3299 			PROC_UNLOCK(p);
3300 			continue;
3301 		}
3302 		sx_xunlock(&allproc_lock);
3303 		_PHOLD(p);
3304 		r = thread_single(p, SINGLE_ALLPROC);
3305 		if (r != 0)
3306 			restart = true;
3307 		else
3308 			stopped_some = true;
3309 		_PRELE(p);
3310 		PROC_UNLOCK(p);
3311 		sx_xlock(&allproc_lock);
3312 	}
3313 	/* Catch forked children we did not see in iteration. */
3314 	if (gen != allproc_gen)
3315 		restart = true;
3316 	sx_xunlock(&allproc_lock);
3317 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3318 		kern_yield(PRI_USER);
3319 		goto allproc_loop;
3320 	}
3321 }
3322 
3323 void
3324 resume_all_proc(void)
3325 {
3326 	struct proc *cp, *p;
3327 
3328 	cp = curproc;
3329 	sx_xlock(&allproc_lock);
3330 again:
3331 	LIST_REMOVE(cp, p_list);
3332 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3333 	for (;;) {
3334 		p = LIST_NEXT(cp, p_list);
3335 		if (p == NULL)
3336 			break;
3337 		LIST_REMOVE(cp, p_list);
3338 		LIST_INSERT_AFTER(p, cp, p_list);
3339 		PROC_LOCK(p);
3340 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3341 			sx_xunlock(&allproc_lock);
3342 			_PHOLD(p);
3343 			thread_single_end(p, SINGLE_ALLPROC);
3344 			_PRELE(p);
3345 			PROC_UNLOCK(p);
3346 			sx_xlock(&allproc_lock);
3347 		} else {
3348 			PROC_UNLOCK(p);
3349 		}
3350 	}
3351 	/*  Did the loop above missed any stopped process ? */
3352 	FOREACH_PROC_IN_SYSTEM(p) {
3353 		/* No need for proc lock. */
3354 		if ((p->p_flag & P_TOTAL_STOP) != 0)
3355 			goto again;
3356 	}
3357 	sx_xunlock(&allproc_lock);
3358 }
3359 
3360 /* #define	TOTAL_STOP_DEBUG	1 */
3361 #ifdef TOTAL_STOP_DEBUG
3362 volatile static int ap_resume;
3363 #include <sys/mount.h>
3364 
3365 static int
3366 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3367 {
3368 	int error, val;
3369 
3370 	val = 0;
3371 	ap_resume = 0;
3372 	error = sysctl_handle_int(oidp, &val, 0, req);
3373 	if (error != 0 || req->newptr == NULL)
3374 		return (error);
3375 	if (val != 0) {
3376 		stop_all_proc();
3377 		syncer_suspend();
3378 		while (ap_resume == 0)
3379 			;
3380 		syncer_resume();
3381 		resume_all_proc();
3382 	}
3383 	return (0);
3384 }
3385 
3386 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3387     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3388     sysctl_debug_stop_all_proc, "I",
3389     "");
3390 #endif
3391