xref: /freebsd/sys/kern/kern_proc.c (revision 23833df4831a6f41aa39e952fba524edfb8cec6d)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_ktrace.h"
38 #include "opt_kstack_pages.h"
39 #include "opt_stack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/elf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/exec.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/loginclass.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/ptrace.h>
57 #include <sys/refcount.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sysent.h>
62 #include <sys/sched.h>
63 #include <sys/smp.h>
64 #include <sys/stack.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/signalvar.h>
70 #include <sys/sdt.h>
71 #include <sys/sx.h>
72 #include <sys/user.h>
73 #include <sys/vnode.h>
74 #include <sys/wait.h>
75 
76 #ifdef DDB
77 #include <ddb/ddb.h>
78 #endif
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/uma.h>
88 
89 #ifdef COMPAT_FREEBSD32
90 #include <compat/freebsd32/freebsd32.h>
91 #include <compat/freebsd32/freebsd32_util.h>
92 #endif
93 
94 SDT_PROVIDER_DEFINE(proc);
95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
96     "int");
97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
98     "int");
99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
100     "struct thread *");
101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
104 
105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
106 MALLOC_DEFINE(M_SESSION, "session", "session header");
107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109 
110 static void doenterpgrp(struct proc *, struct pgrp *);
111 static void orphanpg(struct pgrp *pg);
112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115     int preferthread);
116 static void pgadjustjobc(struct pgrp *pgrp, int entering);
117 static void pgdelete(struct pgrp *);
118 static int proc_ctor(void *mem, int size, void *arg, int flags);
119 static void proc_dtor(void *mem, int size, void *arg);
120 static int proc_init(void *mem, int size, int flags);
121 static void proc_fini(void *mem, int size);
122 static void pargs_free(struct pargs *pa);
123 static struct proc *zpfind_locked(pid_t pid);
124 
125 /*
126  * Other process lists
127  */
128 struct pidhashhead *pidhashtbl;
129 u_long pidhash;
130 struct pgrphashhead *pgrphashtbl;
131 u_long pgrphash;
132 struct proclist allproc;
133 struct proclist zombproc;
134 struct sx allproc_lock;
135 struct sx proctree_lock;
136 struct mtx ppeers_lock;
137 uma_zone_t proc_zone;
138 
139 /*
140  * The offset of various fields in struct proc and struct thread.
141  * These are used by kernel debuggers to enumerate kernel threads and
142  * processes.
143  */
144 const int proc_off_p_pid = offsetof(struct proc, p_pid);
145 const int proc_off_p_comm = offsetof(struct proc, p_comm);
146 const int proc_off_p_list = offsetof(struct proc, p_list);
147 const int proc_off_p_threads = offsetof(struct proc, p_threads);
148 const int thread_off_td_tid = offsetof(struct thread, td_tid);
149 const int thread_off_td_name = offsetof(struct thread, td_name);
150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
152 const int thread_off_td_plist = offsetof(struct thread, td_plist);
153 
154 int kstack_pages = KSTACK_PAGES;
155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
156     "Kernel stack size in pages");
157 static int vmmap_skip_res_cnt = 0;
158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
159     &vmmap_skip_res_cnt, 0,
160     "Skip calculation of the pages resident count in kern.proc.vmmap");
161 
162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
163 #ifdef COMPAT_FREEBSD32
164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
165 #endif
166 
167 /*
168  * Initialize global process hashing structures.
169  */
170 void
171 procinit(void)
172 {
173 
174 	sx_init(&allproc_lock, "allproc");
175 	sx_init(&proctree_lock, "proctree");
176 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
177 	LIST_INIT(&allproc);
178 	LIST_INIT(&zombproc);
179 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
180 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
181 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
182 	    proc_ctor, proc_dtor, proc_init, proc_fini,
183 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
184 	uihashinit();
185 }
186 
187 /*
188  * Prepare a proc for use.
189  */
190 static int
191 proc_ctor(void *mem, int size, void *arg, int flags)
192 {
193 	struct proc *p;
194 	struct thread *td;
195 
196 	p = (struct proc *)mem;
197 	SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
198 	EVENTHANDLER_INVOKE(process_ctor, p);
199 	SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
200 	td = FIRST_THREAD_IN_PROC(p);
201 	if (td != NULL) {
202 		/* Make sure all thread constructors are executed */
203 		EVENTHANDLER_INVOKE(thread_ctor, td);
204 	}
205 	return (0);
206 }
207 
208 /*
209  * Reclaim a proc after use.
210  */
211 static void
212 proc_dtor(void *mem, int size, void *arg)
213 {
214 	struct proc *p;
215 	struct thread *td;
216 
217 	/* INVARIANTS checks go here */
218 	p = (struct proc *)mem;
219 	td = FIRST_THREAD_IN_PROC(p);
220 	SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
221 	if (td != NULL) {
222 #ifdef INVARIANTS
223 		KASSERT((p->p_numthreads == 1),
224 		    ("bad number of threads in exiting process"));
225 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
226 #endif
227 		/* Free all OSD associated to this thread. */
228 		osd_thread_exit(td);
229 		td_softdep_cleanup(td);
230 		MPASS(td->td_su == NULL);
231 
232 		/* Make sure all thread destructors are executed */
233 		EVENTHANDLER_INVOKE(thread_dtor, td);
234 	}
235 	EVENTHANDLER_INVOKE(process_dtor, p);
236 	if (p->p_ksi != NULL)
237 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
238 	SDT_PROBE3(proc, , dtor, return, p, size, arg);
239 }
240 
241 /*
242  * Initialize type-stable parts of a proc (when newly created).
243  */
244 static int
245 proc_init(void *mem, int size, int flags)
246 {
247 	struct proc *p;
248 
249 	p = (struct proc *)mem;
250 	SDT_PROBE3(proc, , init, entry, p, size, flags);
251 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
252 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
253 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
254 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
255 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
256 	cv_init(&p->p_pwait, "ppwait");
257 	cv_init(&p->p_dbgwait, "dbgwait");
258 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
259 	EVENTHANDLER_INVOKE(process_init, p);
260 	p->p_stats = pstats_alloc();
261 	p->p_pgrp = NULL;
262 	SDT_PROBE3(proc, , init, return, p, size, flags);
263 	return (0);
264 }
265 
266 /*
267  * UMA should ensure that this function is never called.
268  * Freeing a proc structure would violate type stability.
269  */
270 static void
271 proc_fini(void *mem, int size)
272 {
273 #ifdef notnow
274 	struct proc *p;
275 
276 	p = (struct proc *)mem;
277 	EVENTHANDLER_INVOKE(process_fini, p);
278 	pstats_free(p->p_stats);
279 	thread_free(FIRST_THREAD_IN_PROC(p));
280 	mtx_destroy(&p->p_mtx);
281 	if (p->p_ksi != NULL)
282 		ksiginfo_free(p->p_ksi);
283 #else
284 	panic("proc reclaimed");
285 #endif
286 }
287 
288 /*
289  * Is p an inferior of the current process?
290  */
291 int
292 inferior(struct proc *p)
293 {
294 
295 	sx_assert(&proctree_lock, SX_LOCKED);
296 	PROC_LOCK_ASSERT(p, MA_OWNED);
297 	for (; p != curproc; p = proc_realparent(p)) {
298 		if (p->p_pid == 0)
299 			return (0);
300 	}
301 	return (1);
302 }
303 
304 struct proc *
305 pfind_locked(pid_t pid)
306 {
307 	struct proc *p;
308 
309 	sx_assert(&allproc_lock, SX_LOCKED);
310 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
311 		if (p->p_pid == pid) {
312 			PROC_LOCK(p);
313 			if (p->p_state == PRS_NEW) {
314 				PROC_UNLOCK(p);
315 				p = NULL;
316 			}
317 			break;
318 		}
319 	}
320 	return (p);
321 }
322 
323 /*
324  * Locate a process by number; return only "live" processes -- i.e., neither
325  * zombies nor newly born but incompletely initialized processes.  By not
326  * returning processes in the PRS_NEW state, we allow callers to avoid
327  * testing for that condition to avoid dereferencing p_ucred, et al.
328  */
329 struct proc *
330 pfind(pid_t pid)
331 {
332 	struct proc *p;
333 
334 	sx_slock(&allproc_lock);
335 	p = pfind_locked(pid);
336 	sx_sunlock(&allproc_lock);
337 	return (p);
338 }
339 
340 static struct proc *
341 pfind_tid_locked(pid_t tid)
342 {
343 	struct proc *p;
344 	struct thread *td;
345 
346 	sx_assert(&allproc_lock, SX_LOCKED);
347 	FOREACH_PROC_IN_SYSTEM(p) {
348 		PROC_LOCK(p);
349 		if (p->p_state == PRS_NEW) {
350 			PROC_UNLOCK(p);
351 			continue;
352 		}
353 		FOREACH_THREAD_IN_PROC(p, td) {
354 			if (td->td_tid == tid)
355 				goto found;
356 		}
357 		PROC_UNLOCK(p);
358 	}
359 found:
360 	return (p);
361 }
362 
363 /*
364  * Locate a process group by number.
365  * The caller must hold proctree_lock.
366  */
367 struct pgrp *
368 pgfind(pid_t pgid)
369 {
370 	struct pgrp *pgrp;
371 
372 	sx_assert(&proctree_lock, SX_LOCKED);
373 
374 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
375 		if (pgrp->pg_id == pgid) {
376 			PGRP_LOCK(pgrp);
377 			return (pgrp);
378 		}
379 	}
380 	return (NULL);
381 }
382 
383 /*
384  * Locate process and do additional manipulations, depending on flags.
385  */
386 int
387 pget(pid_t pid, int flags, struct proc **pp)
388 {
389 	struct proc *p;
390 	int error;
391 
392 	sx_slock(&allproc_lock);
393 	if (pid <= PID_MAX) {
394 		p = pfind_locked(pid);
395 		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
396 			p = zpfind_locked(pid);
397 	} else if ((flags & PGET_NOTID) == 0) {
398 		p = pfind_tid_locked(pid);
399 	} else {
400 		p = NULL;
401 	}
402 	sx_sunlock(&allproc_lock);
403 	if (p == NULL)
404 		return (ESRCH);
405 	if ((flags & PGET_CANSEE) != 0) {
406 		error = p_cansee(curthread, p);
407 		if (error != 0)
408 			goto errout;
409 	}
410 	if ((flags & PGET_CANDEBUG) != 0) {
411 		error = p_candebug(curthread, p);
412 		if (error != 0)
413 			goto errout;
414 	}
415 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
416 		error = EPERM;
417 		goto errout;
418 	}
419 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
420 		error = ESRCH;
421 		goto errout;
422 	}
423 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
424 		/*
425 		 * XXXRW: Not clear ESRCH is the right error during proc
426 		 * execve().
427 		 */
428 		error = ESRCH;
429 		goto errout;
430 	}
431 	if ((flags & PGET_HOLD) != 0) {
432 		_PHOLD(p);
433 		PROC_UNLOCK(p);
434 	}
435 	*pp = p;
436 	return (0);
437 errout:
438 	PROC_UNLOCK(p);
439 	return (error);
440 }
441 
442 /*
443  * Create a new process group.
444  * pgid must be equal to the pid of p.
445  * Begin a new session if required.
446  */
447 int
448 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
449 {
450 
451 	sx_assert(&proctree_lock, SX_XLOCKED);
452 
453 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
454 	KASSERT(p->p_pid == pgid,
455 	    ("enterpgrp: new pgrp and pid != pgid"));
456 	KASSERT(pgfind(pgid) == NULL,
457 	    ("enterpgrp: pgrp with pgid exists"));
458 	KASSERT(!SESS_LEADER(p),
459 	    ("enterpgrp: session leader attempted setpgrp"));
460 
461 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
462 
463 	if (sess != NULL) {
464 		/*
465 		 * new session
466 		 */
467 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
468 		PROC_LOCK(p);
469 		p->p_flag &= ~P_CONTROLT;
470 		PROC_UNLOCK(p);
471 		PGRP_LOCK(pgrp);
472 		sess->s_leader = p;
473 		sess->s_sid = p->p_pid;
474 		refcount_init(&sess->s_count, 1);
475 		sess->s_ttyvp = NULL;
476 		sess->s_ttydp = NULL;
477 		sess->s_ttyp = NULL;
478 		bcopy(p->p_session->s_login, sess->s_login,
479 			    sizeof(sess->s_login));
480 		pgrp->pg_session = sess;
481 		KASSERT(p == curproc,
482 		    ("enterpgrp: mksession and p != curproc"));
483 	} else {
484 		pgrp->pg_session = p->p_session;
485 		sess_hold(pgrp->pg_session);
486 		PGRP_LOCK(pgrp);
487 	}
488 	pgrp->pg_id = pgid;
489 	LIST_INIT(&pgrp->pg_members);
490 
491 	/*
492 	 * As we have an exclusive lock of proctree_lock,
493 	 * this should not deadlock.
494 	 */
495 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
496 	pgrp->pg_jobc = 0;
497 	SLIST_INIT(&pgrp->pg_sigiolst);
498 	PGRP_UNLOCK(pgrp);
499 
500 	doenterpgrp(p, pgrp);
501 
502 	return (0);
503 }
504 
505 /*
506  * Move p to an existing process group
507  */
508 int
509 enterthispgrp(struct proc *p, struct pgrp *pgrp)
510 {
511 
512 	sx_assert(&proctree_lock, SX_XLOCKED);
513 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
514 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
515 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
516 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
517 	KASSERT(pgrp->pg_session == p->p_session,
518 		("%s: pgrp's session %p, p->p_session %p.\n",
519 		__func__,
520 		pgrp->pg_session,
521 		p->p_session));
522 	KASSERT(pgrp != p->p_pgrp,
523 		("%s: p belongs to pgrp.", __func__));
524 
525 	doenterpgrp(p, pgrp);
526 
527 	return (0);
528 }
529 
530 /*
531  * Move p to a process group
532  */
533 static void
534 doenterpgrp(struct proc *p, struct pgrp *pgrp)
535 {
536 	struct pgrp *savepgrp;
537 
538 	sx_assert(&proctree_lock, SX_XLOCKED);
539 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
540 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
541 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
542 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
543 
544 	savepgrp = p->p_pgrp;
545 
546 	/*
547 	 * Adjust eligibility of affected pgrps to participate in job control.
548 	 * Increment eligibility counts before decrementing, otherwise we
549 	 * could reach 0 spuriously during the first call.
550 	 */
551 	fixjobc(p, pgrp, 1);
552 	fixjobc(p, p->p_pgrp, 0);
553 
554 	PGRP_LOCK(pgrp);
555 	PGRP_LOCK(savepgrp);
556 	PROC_LOCK(p);
557 	LIST_REMOVE(p, p_pglist);
558 	p->p_pgrp = pgrp;
559 	PROC_UNLOCK(p);
560 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
561 	PGRP_UNLOCK(savepgrp);
562 	PGRP_UNLOCK(pgrp);
563 	if (LIST_EMPTY(&savepgrp->pg_members))
564 		pgdelete(savepgrp);
565 }
566 
567 /*
568  * remove process from process group
569  */
570 int
571 leavepgrp(struct proc *p)
572 {
573 	struct pgrp *savepgrp;
574 
575 	sx_assert(&proctree_lock, SX_XLOCKED);
576 	savepgrp = p->p_pgrp;
577 	PGRP_LOCK(savepgrp);
578 	PROC_LOCK(p);
579 	LIST_REMOVE(p, p_pglist);
580 	p->p_pgrp = NULL;
581 	PROC_UNLOCK(p);
582 	PGRP_UNLOCK(savepgrp);
583 	if (LIST_EMPTY(&savepgrp->pg_members))
584 		pgdelete(savepgrp);
585 	return (0);
586 }
587 
588 /*
589  * delete a process group
590  */
591 static void
592 pgdelete(struct pgrp *pgrp)
593 {
594 	struct session *savesess;
595 	struct tty *tp;
596 
597 	sx_assert(&proctree_lock, SX_XLOCKED);
598 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
599 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
600 
601 	/*
602 	 * Reset any sigio structures pointing to us as a result of
603 	 * F_SETOWN with our pgid.
604 	 */
605 	funsetownlst(&pgrp->pg_sigiolst);
606 
607 	PGRP_LOCK(pgrp);
608 	tp = pgrp->pg_session->s_ttyp;
609 	LIST_REMOVE(pgrp, pg_hash);
610 	savesess = pgrp->pg_session;
611 	PGRP_UNLOCK(pgrp);
612 
613 	/* Remove the reference to the pgrp before deallocating it. */
614 	if (tp != NULL) {
615 		tty_lock(tp);
616 		tty_rel_pgrp(tp, pgrp);
617 	}
618 
619 	mtx_destroy(&pgrp->pg_mtx);
620 	free(pgrp, M_PGRP);
621 	sess_release(savesess);
622 }
623 
624 static void
625 pgadjustjobc(struct pgrp *pgrp, int entering)
626 {
627 
628 	PGRP_LOCK(pgrp);
629 	if (entering)
630 		pgrp->pg_jobc++;
631 	else {
632 		--pgrp->pg_jobc;
633 		if (pgrp->pg_jobc == 0)
634 			orphanpg(pgrp);
635 	}
636 	PGRP_UNLOCK(pgrp);
637 }
638 
639 /*
640  * Adjust pgrp jobc counters when specified process changes process group.
641  * We count the number of processes in each process group that "qualify"
642  * the group for terminal job control (those with a parent in a different
643  * process group of the same session).  If that count reaches zero, the
644  * process group becomes orphaned.  Check both the specified process'
645  * process group and that of its children.
646  * entering == 0 => p is leaving specified group.
647  * entering == 1 => p is entering specified group.
648  */
649 void
650 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
651 {
652 	struct pgrp *hispgrp;
653 	struct session *mysession;
654 	struct proc *q;
655 
656 	sx_assert(&proctree_lock, SX_LOCKED);
657 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
658 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
659 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
660 
661 	/*
662 	 * Check p's parent to see whether p qualifies its own process
663 	 * group; if so, adjust count for p's process group.
664 	 */
665 	mysession = pgrp->pg_session;
666 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
667 	    hispgrp->pg_session == mysession)
668 		pgadjustjobc(pgrp, entering);
669 
670 	/*
671 	 * Check this process' children to see whether they qualify
672 	 * their process groups; if so, adjust counts for children's
673 	 * process groups.
674 	 */
675 	LIST_FOREACH(q, &p->p_children, p_sibling) {
676 		hispgrp = q->p_pgrp;
677 		if (hispgrp == pgrp ||
678 		    hispgrp->pg_session != mysession)
679 			continue;
680 		if (q->p_state == PRS_ZOMBIE)
681 			continue;
682 		pgadjustjobc(hispgrp, entering);
683 	}
684 }
685 
686 void
687 killjobc(void)
688 {
689 	struct session *sp;
690 	struct tty *tp;
691 	struct proc *p;
692 	struct vnode *ttyvp;
693 
694 	p = curproc;
695 	MPASS(p->p_flag & P_WEXIT);
696 	/*
697 	 * Do a quick check to see if there is anything to do with the
698 	 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
699 	 */
700 	PROC_LOCK(p);
701 	if (!SESS_LEADER(p) &&
702 	    (p->p_pgrp == p->p_pptr->p_pgrp) &&
703 	    LIST_EMPTY(&p->p_children)) {
704 		PROC_UNLOCK(p);
705 		return;
706 	}
707 	PROC_UNLOCK(p);
708 
709 	sx_xlock(&proctree_lock);
710 	if (SESS_LEADER(p)) {
711 		sp = p->p_session;
712 
713 		/*
714 		 * s_ttyp is not zero'd; we use this to indicate that
715 		 * the session once had a controlling terminal. (for
716 		 * logging and informational purposes)
717 		 */
718 		SESS_LOCK(sp);
719 		ttyvp = sp->s_ttyvp;
720 		tp = sp->s_ttyp;
721 		sp->s_ttyvp = NULL;
722 		sp->s_ttydp = NULL;
723 		sp->s_leader = NULL;
724 		SESS_UNLOCK(sp);
725 
726 		/*
727 		 * Signal foreground pgrp and revoke access to
728 		 * controlling terminal if it has not been revoked
729 		 * already.
730 		 *
731 		 * Because the TTY may have been revoked in the mean
732 		 * time and could already have a new session associated
733 		 * with it, make sure we don't send a SIGHUP to a
734 		 * foreground process group that does not belong to this
735 		 * session.
736 		 */
737 
738 		if (tp != NULL) {
739 			tty_lock(tp);
740 			if (tp->t_session == sp)
741 				tty_signal_pgrp(tp, SIGHUP);
742 			tty_unlock(tp);
743 		}
744 
745 		if (ttyvp != NULL) {
746 			sx_xunlock(&proctree_lock);
747 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
748 				VOP_REVOKE(ttyvp, REVOKEALL);
749 				VOP_UNLOCK(ttyvp, 0);
750 			}
751 			vrele(ttyvp);
752 			sx_xlock(&proctree_lock);
753 		}
754 	}
755 	fixjobc(p, p->p_pgrp, 0);
756 	sx_xunlock(&proctree_lock);
757 }
758 
759 /*
760  * A process group has become orphaned;
761  * if there are any stopped processes in the group,
762  * hang-up all process in that group.
763  */
764 static void
765 orphanpg(struct pgrp *pg)
766 {
767 	struct proc *p;
768 
769 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
770 
771 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
772 		PROC_LOCK(p);
773 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
774 			PROC_UNLOCK(p);
775 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
776 				PROC_LOCK(p);
777 				kern_psignal(p, SIGHUP);
778 				kern_psignal(p, SIGCONT);
779 				PROC_UNLOCK(p);
780 			}
781 			return;
782 		}
783 		PROC_UNLOCK(p);
784 	}
785 }
786 
787 void
788 sess_hold(struct session *s)
789 {
790 
791 	refcount_acquire(&s->s_count);
792 }
793 
794 void
795 sess_release(struct session *s)
796 {
797 
798 	if (refcount_release(&s->s_count)) {
799 		if (s->s_ttyp != NULL) {
800 			tty_lock(s->s_ttyp);
801 			tty_rel_sess(s->s_ttyp, s);
802 		}
803 		mtx_destroy(&s->s_mtx);
804 		free(s, M_SESSION);
805 	}
806 }
807 
808 #ifdef DDB
809 
810 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
811 {
812 	struct pgrp *pgrp;
813 	struct proc *p;
814 	int i;
815 
816 	for (i = 0; i <= pgrphash; i++) {
817 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
818 			printf("\tindx %d\n", i);
819 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
820 				printf(
821 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
822 				    (void *)pgrp, (long)pgrp->pg_id,
823 				    (void *)pgrp->pg_session,
824 				    pgrp->pg_session->s_count,
825 				    (void *)LIST_FIRST(&pgrp->pg_members));
826 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
827 					printf("\t\tpid %ld addr %p pgrp %p\n",
828 					    (long)p->p_pid, (void *)p,
829 					    (void *)p->p_pgrp);
830 				}
831 			}
832 		}
833 	}
834 }
835 #endif /* DDB */
836 
837 /*
838  * Calculate the kinfo_proc members which contain process-wide
839  * informations.
840  * Must be called with the target process locked.
841  */
842 static void
843 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
844 {
845 	struct thread *td;
846 
847 	PROC_LOCK_ASSERT(p, MA_OWNED);
848 
849 	kp->ki_estcpu = 0;
850 	kp->ki_pctcpu = 0;
851 	FOREACH_THREAD_IN_PROC(p, td) {
852 		thread_lock(td);
853 		kp->ki_pctcpu += sched_pctcpu(td);
854 		kp->ki_estcpu += sched_estcpu(td);
855 		thread_unlock(td);
856 	}
857 }
858 
859 /*
860  * Clear kinfo_proc and fill in any information that is common
861  * to all threads in the process.
862  * Must be called with the target process locked.
863  */
864 static void
865 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
866 {
867 	struct thread *td0;
868 	struct tty *tp;
869 	struct session *sp;
870 	struct ucred *cred;
871 	struct sigacts *ps;
872 	struct timeval boottime;
873 
874 	/* For proc_realparent. */
875 	sx_assert(&proctree_lock, SX_LOCKED);
876 	PROC_LOCK_ASSERT(p, MA_OWNED);
877 	bzero(kp, sizeof(*kp));
878 
879 	kp->ki_structsize = sizeof(*kp);
880 	kp->ki_paddr = p;
881 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
882 	kp->ki_args = p->p_args;
883 	kp->ki_textvp = p->p_textvp;
884 #ifdef KTRACE
885 	kp->ki_tracep = p->p_tracevp;
886 	kp->ki_traceflag = p->p_traceflag;
887 #endif
888 	kp->ki_fd = p->p_fd;
889 	kp->ki_vmspace = p->p_vmspace;
890 	kp->ki_flag = p->p_flag;
891 	kp->ki_flag2 = p->p_flag2;
892 	cred = p->p_ucred;
893 	if (cred) {
894 		kp->ki_uid = cred->cr_uid;
895 		kp->ki_ruid = cred->cr_ruid;
896 		kp->ki_svuid = cred->cr_svuid;
897 		kp->ki_cr_flags = 0;
898 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
899 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
900 		/* XXX bde doesn't like KI_NGROUPS */
901 		if (cred->cr_ngroups > KI_NGROUPS) {
902 			kp->ki_ngroups = KI_NGROUPS;
903 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
904 		} else
905 			kp->ki_ngroups = cred->cr_ngroups;
906 		bcopy(cred->cr_groups, kp->ki_groups,
907 		    kp->ki_ngroups * sizeof(gid_t));
908 		kp->ki_rgid = cred->cr_rgid;
909 		kp->ki_svgid = cred->cr_svgid;
910 		/* If jailed(cred), emulate the old P_JAILED flag. */
911 		if (jailed(cred)) {
912 			kp->ki_flag |= P_JAILED;
913 			/* If inside the jail, use 0 as a jail ID. */
914 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
915 				kp->ki_jid = cred->cr_prison->pr_id;
916 		}
917 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
918 		    sizeof(kp->ki_loginclass));
919 	}
920 	ps = p->p_sigacts;
921 	if (ps) {
922 		mtx_lock(&ps->ps_mtx);
923 		kp->ki_sigignore = ps->ps_sigignore;
924 		kp->ki_sigcatch = ps->ps_sigcatch;
925 		mtx_unlock(&ps->ps_mtx);
926 	}
927 	if (p->p_state != PRS_NEW &&
928 	    p->p_state != PRS_ZOMBIE &&
929 	    p->p_vmspace != NULL) {
930 		struct vmspace *vm = p->p_vmspace;
931 
932 		kp->ki_size = vm->vm_map.size;
933 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
934 		FOREACH_THREAD_IN_PROC(p, td0) {
935 			if (!TD_IS_SWAPPED(td0))
936 				kp->ki_rssize += td0->td_kstack_pages;
937 		}
938 		kp->ki_swrss = vm->vm_swrss;
939 		kp->ki_tsize = vm->vm_tsize;
940 		kp->ki_dsize = vm->vm_dsize;
941 		kp->ki_ssize = vm->vm_ssize;
942 	} else if (p->p_state == PRS_ZOMBIE)
943 		kp->ki_stat = SZOMB;
944 	if (kp->ki_flag & P_INMEM)
945 		kp->ki_sflag = PS_INMEM;
946 	else
947 		kp->ki_sflag = 0;
948 	/* Calculate legacy swtime as seconds since 'swtick'. */
949 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
950 	kp->ki_pid = p->p_pid;
951 	kp->ki_nice = p->p_nice;
952 	kp->ki_fibnum = p->p_fibnum;
953 	kp->ki_start = p->p_stats->p_start;
954 	getboottime(&boottime);
955 	timevaladd(&kp->ki_start, &boottime);
956 	PROC_STATLOCK(p);
957 	rufetch(p, &kp->ki_rusage);
958 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
959 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
960 	PROC_STATUNLOCK(p);
961 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
962 	/* Some callers want child times in a single value. */
963 	kp->ki_childtime = kp->ki_childstime;
964 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
965 
966 	FOREACH_THREAD_IN_PROC(p, td0)
967 		kp->ki_cow += td0->td_cow;
968 
969 	tp = NULL;
970 	if (p->p_pgrp) {
971 		kp->ki_pgid = p->p_pgrp->pg_id;
972 		kp->ki_jobc = p->p_pgrp->pg_jobc;
973 		sp = p->p_pgrp->pg_session;
974 
975 		if (sp != NULL) {
976 			kp->ki_sid = sp->s_sid;
977 			SESS_LOCK(sp);
978 			strlcpy(kp->ki_login, sp->s_login,
979 			    sizeof(kp->ki_login));
980 			if (sp->s_ttyvp)
981 				kp->ki_kiflag |= KI_CTTY;
982 			if (SESS_LEADER(p))
983 				kp->ki_kiflag |= KI_SLEADER;
984 			/* XXX proctree_lock */
985 			tp = sp->s_ttyp;
986 			SESS_UNLOCK(sp);
987 		}
988 	}
989 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
990 		kp->ki_tdev = tty_udev(tp);
991 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
992 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
993 		if (tp->t_session)
994 			kp->ki_tsid = tp->t_session->s_sid;
995 	} else {
996 		kp->ki_tdev = NODEV;
997 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
998 	}
999 	if (p->p_comm[0] != '\0')
1000 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1001 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1002 	    p->p_sysent->sv_name[0] != '\0')
1003 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1004 	kp->ki_siglist = p->p_siglist;
1005 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1006 	kp->ki_acflag = p->p_acflag;
1007 	kp->ki_lock = p->p_lock;
1008 	if (p->p_pptr) {
1009 		kp->ki_ppid = proc_realparent(p)->p_pid;
1010 		if (p->p_flag & P_TRACED)
1011 			kp->ki_tracer = p->p_pptr->p_pid;
1012 	}
1013 }
1014 
1015 /*
1016  * Fill in information that is thread specific.  Must be called with
1017  * target process locked.  If 'preferthread' is set, overwrite certain
1018  * process-related fields that are maintained for both threads and
1019  * processes.
1020  */
1021 static void
1022 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1023 {
1024 	struct proc *p;
1025 
1026 	p = td->td_proc;
1027 	kp->ki_tdaddr = td;
1028 	PROC_LOCK_ASSERT(p, MA_OWNED);
1029 
1030 	if (preferthread)
1031 		PROC_STATLOCK(p);
1032 	thread_lock(td);
1033 	if (td->td_wmesg != NULL)
1034 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1035 	else
1036 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1037 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1038 	    sizeof(kp->ki_tdname)) {
1039 		strlcpy(kp->ki_moretdname,
1040 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1041 		    sizeof(kp->ki_moretdname));
1042 	} else {
1043 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1044 	}
1045 	if (TD_ON_LOCK(td)) {
1046 		kp->ki_kiflag |= KI_LOCKBLOCK;
1047 		strlcpy(kp->ki_lockname, td->td_lockname,
1048 		    sizeof(kp->ki_lockname));
1049 	} else {
1050 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1051 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1052 	}
1053 
1054 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1055 		if (TD_ON_RUNQ(td) ||
1056 		    TD_CAN_RUN(td) ||
1057 		    TD_IS_RUNNING(td)) {
1058 			kp->ki_stat = SRUN;
1059 		} else if (P_SHOULDSTOP(p)) {
1060 			kp->ki_stat = SSTOP;
1061 		} else if (TD_IS_SLEEPING(td)) {
1062 			kp->ki_stat = SSLEEP;
1063 		} else if (TD_ON_LOCK(td)) {
1064 			kp->ki_stat = SLOCK;
1065 		} else {
1066 			kp->ki_stat = SWAIT;
1067 		}
1068 	} else if (p->p_state == PRS_ZOMBIE) {
1069 		kp->ki_stat = SZOMB;
1070 	} else {
1071 		kp->ki_stat = SIDL;
1072 	}
1073 
1074 	/* Things in the thread */
1075 	kp->ki_wchan = td->td_wchan;
1076 	kp->ki_pri.pri_level = td->td_priority;
1077 	kp->ki_pri.pri_native = td->td_base_pri;
1078 
1079 	/*
1080 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1081 	 * the maximum u_char CPU value.
1082 	 */
1083 	if (td->td_lastcpu == NOCPU)
1084 		kp->ki_lastcpu_old = NOCPU_OLD;
1085 	else if (td->td_lastcpu > MAXCPU_OLD)
1086 		kp->ki_lastcpu_old = MAXCPU_OLD;
1087 	else
1088 		kp->ki_lastcpu_old = td->td_lastcpu;
1089 
1090 	if (td->td_oncpu == NOCPU)
1091 		kp->ki_oncpu_old = NOCPU_OLD;
1092 	else if (td->td_oncpu > MAXCPU_OLD)
1093 		kp->ki_oncpu_old = MAXCPU_OLD;
1094 	else
1095 		kp->ki_oncpu_old = td->td_oncpu;
1096 
1097 	kp->ki_lastcpu = td->td_lastcpu;
1098 	kp->ki_oncpu = td->td_oncpu;
1099 	kp->ki_tdflags = td->td_flags;
1100 	kp->ki_tid = td->td_tid;
1101 	kp->ki_numthreads = p->p_numthreads;
1102 	kp->ki_pcb = td->td_pcb;
1103 	kp->ki_kstack = (void *)td->td_kstack;
1104 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1105 	kp->ki_pri.pri_class = td->td_pri_class;
1106 	kp->ki_pri.pri_user = td->td_user_pri;
1107 
1108 	if (preferthread) {
1109 		rufetchtd(td, &kp->ki_rusage);
1110 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1111 		kp->ki_pctcpu = sched_pctcpu(td);
1112 		kp->ki_estcpu = sched_estcpu(td);
1113 		kp->ki_cow = td->td_cow;
1114 	}
1115 
1116 	/* We can't get this anymore but ps etc never used it anyway. */
1117 	kp->ki_rqindex = 0;
1118 
1119 	if (preferthread)
1120 		kp->ki_siglist = td->td_siglist;
1121 	kp->ki_sigmask = td->td_sigmask;
1122 	thread_unlock(td);
1123 	if (preferthread)
1124 		PROC_STATUNLOCK(p);
1125 }
1126 
1127 /*
1128  * Fill in a kinfo_proc structure for the specified process.
1129  * Must be called with the target process locked.
1130  */
1131 void
1132 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1133 {
1134 
1135 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1136 
1137 	fill_kinfo_proc_only(p, kp);
1138 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1139 	fill_kinfo_aggregate(p, kp);
1140 }
1141 
1142 struct pstats *
1143 pstats_alloc(void)
1144 {
1145 
1146 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1147 }
1148 
1149 /*
1150  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1151  */
1152 void
1153 pstats_fork(struct pstats *src, struct pstats *dst)
1154 {
1155 
1156 	bzero(&dst->pstat_startzero,
1157 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1158 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1159 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1160 }
1161 
1162 void
1163 pstats_free(struct pstats *ps)
1164 {
1165 
1166 	free(ps, M_SUBPROC);
1167 }
1168 
1169 static struct proc *
1170 zpfind_locked(pid_t pid)
1171 {
1172 	struct proc *p;
1173 
1174 	sx_assert(&allproc_lock, SX_LOCKED);
1175 	LIST_FOREACH(p, &zombproc, p_list) {
1176 		if (p->p_pid == pid) {
1177 			PROC_LOCK(p);
1178 			break;
1179 		}
1180 	}
1181 	return (p);
1182 }
1183 
1184 /*
1185  * Locate a zombie process by number
1186  */
1187 struct proc *
1188 zpfind(pid_t pid)
1189 {
1190 	struct proc *p;
1191 
1192 	sx_slock(&allproc_lock);
1193 	p = zpfind_locked(pid);
1194 	sx_sunlock(&allproc_lock);
1195 	return (p);
1196 }
1197 
1198 #ifdef COMPAT_FREEBSD32
1199 
1200 /*
1201  * This function is typically used to copy out the kernel address, so
1202  * it can be replaced by assignment of zero.
1203  */
1204 static inline uint32_t
1205 ptr32_trim(void *ptr)
1206 {
1207 	uintptr_t uptr;
1208 
1209 	uptr = (uintptr_t)ptr;
1210 	return ((uptr > UINT_MAX) ? 0 : uptr);
1211 }
1212 
1213 #define PTRTRIM_CP(src,dst,fld) \
1214 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1215 
1216 static void
1217 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1218 {
1219 	int i;
1220 
1221 	bzero(ki32, sizeof(struct kinfo_proc32));
1222 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1223 	CP(*ki, *ki32, ki_layout);
1224 	PTRTRIM_CP(*ki, *ki32, ki_args);
1225 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1226 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1227 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1228 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1229 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1230 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1231 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1232 	CP(*ki, *ki32, ki_pid);
1233 	CP(*ki, *ki32, ki_ppid);
1234 	CP(*ki, *ki32, ki_pgid);
1235 	CP(*ki, *ki32, ki_tpgid);
1236 	CP(*ki, *ki32, ki_sid);
1237 	CP(*ki, *ki32, ki_tsid);
1238 	CP(*ki, *ki32, ki_jobc);
1239 	CP(*ki, *ki32, ki_tdev);
1240 	CP(*ki, *ki32, ki_tdev_freebsd11);
1241 	CP(*ki, *ki32, ki_siglist);
1242 	CP(*ki, *ki32, ki_sigmask);
1243 	CP(*ki, *ki32, ki_sigignore);
1244 	CP(*ki, *ki32, ki_sigcatch);
1245 	CP(*ki, *ki32, ki_uid);
1246 	CP(*ki, *ki32, ki_ruid);
1247 	CP(*ki, *ki32, ki_svuid);
1248 	CP(*ki, *ki32, ki_rgid);
1249 	CP(*ki, *ki32, ki_svgid);
1250 	CP(*ki, *ki32, ki_ngroups);
1251 	for (i = 0; i < KI_NGROUPS; i++)
1252 		CP(*ki, *ki32, ki_groups[i]);
1253 	CP(*ki, *ki32, ki_size);
1254 	CP(*ki, *ki32, ki_rssize);
1255 	CP(*ki, *ki32, ki_swrss);
1256 	CP(*ki, *ki32, ki_tsize);
1257 	CP(*ki, *ki32, ki_dsize);
1258 	CP(*ki, *ki32, ki_ssize);
1259 	CP(*ki, *ki32, ki_xstat);
1260 	CP(*ki, *ki32, ki_acflag);
1261 	CP(*ki, *ki32, ki_pctcpu);
1262 	CP(*ki, *ki32, ki_estcpu);
1263 	CP(*ki, *ki32, ki_slptime);
1264 	CP(*ki, *ki32, ki_swtime);
1265 	CP(*ki, *ki32, ki_cow);
1266 	CP(*ki, *ki32, ki_runtime);
1267 	TV_CP(*ki, *ki32, ki_start);
1268 	TV_CP(*ki, *ki32, ki_childtime);
1269 	CP(*ki, *ki32, ki_flag);
1270 	CP(*ki, *ki32, ki_kiflag);
1271 	CP(*ki, *ki32, ki_traceflag);
1272 	CP(*ki, *ki32, ki_stat);
1273 	CP(*ki, *ki32, ki_nice);
1274 	CP(*ki, *ki32, ki_lock);
1275 	CP(*ki, *ki32, ki_rqindex);
1276 	CP(*ki, *ki32, ki_oncpu);
1277 	CP(*ki, *ki32, ki_lastcpu);
1278 
1279 	/* XXX TODO: wrap cpu value as appropriate */
1280 	CP(*ki, *ki32, ki_oncpu_old);
1281 	CP(*ki, *ki32, ki_lastcpu_old);
1282 
1283 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1284 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1285 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1286 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1287 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1288 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1289 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1290 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1291 	CP(*ki, *ki32, ki_tracer);
1292 	CP(*ki, *ki32, ki_flag2);
1293 	CP(*ki, *ki32, ki_fibnum);
1294 	CP(*ki, *ki32, ki_cr_flags);
1295 	CP(*ki, *ki32, ki_jid);
1296 	CP(*ki, *ki32, ki_numthreads);
1297 	CP(*ki, *ki32, ki_tid);
1298 	CP(*ki, *ki32, ki_pri);
1299 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1300 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1301 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1302 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1303 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1304 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1305 	CP(*ki, *ki32, ki_sflag);
1306 	CP(*ki, *ki32, ki_tdflags);
1307 }
1308 #endif
1309 
1310 int
1311 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1312 {
1313 	struct thread *td;
1314 	struct kinfo_proc ki;
1315 #ifdef COMPAT_FREEBSD32
1316 	struct kinfo_proc32 ki32;
1317 #endif
1318 	int error;
1319 
1320 	PROC_LOCK_ASSERT(p, MA_OWNED);
1321 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1322 
1323 	error = 0;
1324 	fill_kinfo_proc(p, &ki);
1325 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1326 #ifdef COMPAT_FREEBSD32
1327 		if ((flags & KERN_PROC_MASK32) != 0) {
1328 			freebsd32_kinfo_proc_out(&ki, &ki32);
1329 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1330 				error = ENOMEM;
1331 		} else
1332 #endif
1333 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1334 				error = ENOMEM;
1335 	} else {
1336 		FOREACH_THREAD_IN_PROC(p, td) {
1337 			fill_kinfo_thread(td, &ki, 1);
1338 #ifdef COMPAT_FREEBSD32
1339 			if ((flags & KERN_PROC_MASK32) != 0) {
1340 				freebsd32_kinfo_proc_out(&ki, &ki32);
1341 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1342 					error = ENOMEM;
1343 			} else
1344 #endif
1345 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1346 					error = ENOMEM;
1347 			if (error != 0)
1348 				break;
1349 		}
1350 	}
1351 	PROC_UNLOCK(p);
1352 	return (error);
1353 }
1354 
1355 static int
1356 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1357     int doingzomb)
1358 {
1359 	struct sbuf sb;
1360 	struct kinfo_proc ki;
1361 	struct proc *np;
1362 	int error, error2;
1363 	pid_t pid;
1364 
1365 	pid = p->p_pid;
1366 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1367 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1368 	error = kern_proc_out(p, &sb, flags);
1369 	error2 = sbuf_finish(&sb);
1370 	sbuf_delete(&sb);
1371 	if (error != 0)
1372 		return (error);
1373 	else if (error2 != 0)
1374 		return (error2);
1375 	if (doingzomb)
1376 		np = zpfind(pid);
1377 	else {
1378 		if (pid == 0)
1379 			return (0);
1380 		np = pfind(pid);
1381 	}
1382 	if (np == NULL)
1383 		return (ESRCH);
1384 	if (np != p) {
1385 		PROC_UNLOCK(np);
1386 		return (ESRCH);
1387 	}
1388 	PROC_UNLOCK(np);
1389 	return (0);
1390 }
1391 
1392 static int
1393 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1394 {
1395 	int *name = (int *)arg1;
1396 	u_int namelen = arg2;
1397 	struct proc *p;
1398 	int flags, doingzomb, oid_number;
1399 	int error = 0;
1400 
1401 	oid_number = oidp->oid_number;
1402 	if (oid_number != KERN_PROC_ALL &&
1403 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1404 		flags = KERN_PROC_NOTHREADS;
1405 	else {
1406 		flags = 0;
1407 		oid_number &= ~KERN_PROC_INC_THREAD;
1408 	}
1409 #ifdef COMPAT_FREEBSD32
1410 	if (req->flags & SCTL_MASK32)
1411 		flags |= KERN_PROC_MASK32;
1412 #endif
1413 	if (oid_number == KERN_PROC_PID) {
1414 		if (namelen != 1)
1415 			return (EINVAL);
1416 		error = sysctl_wire_old_buffer(req, 0);
1417 		if (error)
1418 			return (error);
1419 		sx_slock(&proctree_lock);
1420 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1421 		if (error == 0)
1422 			error = sysctl_out_proc(p, req, flags, 0);
1423 		sx_sunlock(&proctree_lock);
1424 		return (error);
1425 	}
1426 
1427 	switch (oid_number) {
1428 	case KERN_PROC_ALL:
1429 		if (namelen != 0)
1430 			return (EINVAL);
1431 		break;
1432 	case KERN_PROC_PROC:
1433 		if (namelen != 0 && namelen != 1)
1434 			return (EINVAL);
1435 		break;
1436 	default:
1437 		if (namelen != 1)
1438 			return (EINVAL);
1439 		break;
1440 	}
1441 
1442 	if (!req->oldptr) {
1443 		/* overestimate by 5 procs */
1444 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1445 		if (error)
1446 			return (error);
1447 	}
1448 	error = sysctl_wire_old_buffer(req, 0);
1449 	if (error != 0)
1450 		return (error);
1451 	sx_slock(&proctree_lock);
1452 	sx_slock(&allproc_lock);
1453 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1454 		if (!doingzomb)
1455 			p = LIST_FIRST(&allproc);
1456 		else
1457 			p = LIST_FIRST(&zombproc);
1458 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
1459 			/*
1460 			 * Skip embryonic processes.
1461 			 */
1462 			PROC_LOCK(p);
1463 			if (p->p_state == PRS_NEW) {
1464 				PROC_UNLOCK(p);
1465 				continue;
1466 			}
1467 			KASSERT(p->p_ucred != NULL,
1468 			    ("process credential is NULL for non-NEW proc"));
1469 			/*
1470 			 * Show a user only appropriate processes.
1471 			 */
1472 			if (p_cansee(curthread, p)) {
1473 				PROC_UNLOCK(p);
1474 				continue;
1475 			}
1476 			/*
1477 			 * TODO - make more efficient (see notes below).
1478 			 * do by session.
1479 			 */
1480 			switch (oid_number) {
1481 
1482 			case KERN_PROC_GID:
1483 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1484 					PROC_UNLOCK(p);
1485 					continue;
1486 				}
1487 				break;
1488 
1489 			case KERN_PROC_PGRP:
1490 				/* could do this by traversing pgrp */
1491 				if (p->p_pgrp == NULL ||
1492 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1493 					PROC_UNLOCK(p);
1494 					continue;
1495 				}
1496 				break;
1497 
1498 			case KERN_PROC_RGID:
1499 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1500 					PROC_UNLOCK(p);
1501 					continue;
1502 				}
1503 				break;
1504 
1505 			case KERN_PROC_SESSION:
1506 				if (p->p_session == NULL ||
1507 				    p->p_session->s_sid != (pid_t)name[0]) {
1508 					PROC_UNLOCK(p);
1509 					continue;
1510 				}
1511 				break;
1512 
1513 			case KERN_PROC_TTY:
1514 				if ((p->p_flag & P_CONTROLT) == 0 ||
1515 				    p->p_session == NULL) {
1516 					PROC_UNLOCK(p);
1517 					continue;
1518 				}
1519 				/* XXX proctree_lock */
1520 				SESS_LOCK(p->p_session);
1521 				if (p->p_session->s_ttyp == NULL ||
1522 				    tty_udev(p->p_session->s_ttyp) !=
1523 				    (dev_t)name[0]) {
1524 					SESS_UNLOCK(p->p_session);
1525 					PROC_UNLOCK(p);
1526 					continue;
1527 				}
1528 				SESS_UNLOCK(p->p_session);
1529 				break;
1530 
1531 			case KERN_PROC_UID:
1532 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1533 					PROC_UNLOCK(p);
1534 					continue;
1535 				}
1536 				break;
1537 
1538 			case KERN_PROC_RUID:
1539 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1540 					PROC_UNLOCK(p);
1541 					continue;
1542 				}
1543 				break;
1544 
1545 			case KERN_PROC_PROC:
1546 				break;
1547 
1548 			default:
1549 				break;
1550 
1551 			}
1552 
1553 			error = sysctl_out_proc(p, req, flags, doingzomb);
1554 			if (error) {
1555 				sx_sunlock(&allproc_lock);
1556 				sx_sunlock(&proctree_lock);
1557 				return (error);
1558 			}
1559 		}
1560 	}
1561 	sx_sunlock(&allproc_lock);
1562 	sx_sunlock(&proctree_lock);
1563 	return (0);
1564 }
1565 
1566 struct pargs *
1567 pargs_alloc(int len)
1568 {
1569 	struct pargs *pa;
1570 
1571 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1572 		M_WAITOK);
1573 	refcount_init(&pa->ar_ref, 1);
1574 	pa->ar_length = len;
1575 	return (pa);
1576 }
1577 
1578 static void
1579 pargs_free(struct pargs *pa)
1580 {
1581 
1582 	free(pa, M_PARGS);
1583 }
1584 
1585 void
1586 pargs_hold(struct pargs *pa)
1587 {
1588 
1589 	if (pa == NULL)
1590 		return;
1591 	refcount_acquire(&pa->ar_ref);
1592 }
1593 
1594 void
1595 pargs_drop(struct pargs *pa)
1596 {
1597 
1598 	if (pa == NULL)
1599 		return;
1600 	if (refcount_release(&pa->ar_ref))
1601 		pargs_free(pa);
1602 }
1603 
1604 static int
1605 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1606     size_t len)
1607 {
1608 	ssize_t n;
1609 
1610 	/*
1611 	 * This may return a short read if the string is shorter than the chunk
1612 	 * and is aligned at the end of the page, and the following page is not
1613 	 * mapped.
1614 	 */
1615 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1616 	if (n <= 0)
1617 		return (ENOMEM);
1618 	return (0);
1619 }
1620 
1621 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1622 
1623 enum proc_vector_type {
1624 	PROC_ARG,
1625 	PROC_ENV,
1626 	PROC_AUX,
1627 };
1628 
1629 #ifdef COMPAT_FREEBSD32
1630 static int
1631 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1632     size_t *vsizep, enum proc_vector_type type)
1633 {
1634 	struct freebsd32_ps_strings pss;
1635 	Elf32_Auxinfo aux;
1636 	vm_offset_t vptr, ptr;
1637 	uint32_t *proc_vector32;
1638 	char **proc_vector;
1639 	size_t vsize, size;
1640 	int i, error;
1641 
1642 	error = 0;
1643 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1644 	    sizeof(pss)) != sizeof(pss))
1645 		return (ENOMEM);
1646 	switch (type) {
1647 	case PROC_ARG:
1648 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1649 		vsize = pss.ps_nargvstr;
1650 		if (vsize > ARG_MAX)
1651 			return (ENOEXEC);
1652 		size = vsize * sizeof(int32_t);
1653 		break;
1654 	case PROC_ENV:
1655 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1656 		vsize = pss.ps_nenvstr;
1657 		if (vsize > ARG_MAX)
1658 			return (ENOEXEC);
1659 		size = vsize * sizeof(int32_t);
1660 		break;
1661 	case PROC_AUX:
1662 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1663 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1664 		if (vptr % 4 != 0)
1665 			return (ENOEXEC);
1666 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1667 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1668 			    sizeof(aux))
1669 				return (ENOMEM);
1670 			if (aux.a_type == AT_NULL)
1671 				break;
1672 			ptr += sizeof(aux);
1673 		}
1674 		if (aux.a_type != AT_NULL)
1675 			return (ENOEXEC);
1676 		vsize = i + 1;
1677 		size = vsize * sizeof(aux);
1678 		break;
1679 	default:
1680 		KASSERT(0, ("Wrong proc vector type: %d", type));
1681 		return (EINVAL);
1682 	}
1683 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1684 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1685 		error = ENOMEM;
1686 		goto done;
1687 	}
1688 	if (type == PROC_AUX) {
1689 		*proc_vectorp = (char **)proc_vector32;
1690 		*vsizep = vsize;
1691 		return (0);
1692 	}
1693 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1694 	for (i = 0; i < (int)vsize; i++)
1695 		proc_vector[i] = PTRIN(proc_vector32[i]);
1696 	*proc_vectorp = proc_vector;
1697 	*vsizep = vsize;
1698 done:
1699 	free(proc_vector32, M_TEMP);
1700 	return (error);
1701 }
1702 #endif
1703 
1704 static int
1705 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1706     size_t *vsizep, enum proc_vector_type type)
1707 {
1708 	struct ps_strings pss;
1709 	Elf_Auxinfo aux;
1710 	vm_offset_t vptr, ptr;
1711 	char **proc_vector;
1712 	size_t vsize, size;
1713 	int i;
1714 
1715 #ifdef COMPAT_FREEBSD32
1716 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1717 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1718 #endif
1719 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1720 	    sizeof(pss)) != sizeof(pss))
1721 		return (ENOMEM);
1722 	switch (type) {
1723 	case PROC_ARG:
1724 		vptr = (vm_offset_t)pss.ps_argvstr;
1725 		vsize = pss.ps_nargvstr;
1726 		if (vsize > ARG_MAX)
1727 			return (ENOEXEC);
1728 		size = vsize * sizeof(char *);
1729 		break;
1730 	case PROC_ENV:
1731 		vptr = (vm_offset_t)pss.ps_envstr;
1732 		vsize = pss.ps_nenvstr;
1733 		if (vsize > ARG_MAX)
1734 			return (ENOEXEC);
1735 		size = vsize * sizeof(char *);
1736 		break;
1737 	case PROC_AUX:
1738 		/*
1739 		 * The aux array is just above env array on the stack. Check
1740 		 * that the address is naturally aligned.
1741 		 */
1742 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1743 		    * sizeof(char *);
1744 #if __ELF_WORD_SIZE == 64
1745 		if (vptr % sizeof(uint64_t) != 0)
1746 #else
1747 		if (vptr % sizeof(uint32_t) != 0)
1748 #endif
1749 			return (ENOEXEC);
1750 		/*
1751 		 * We count the array size reading the aux vectors from the
1752 		 * stack until AT_NULL vector is returned.  So (to keep the code
1753 		 * simple) we read the process stack twice: the first time here
1754 		 * to find the size and the second time when copying the vectors
1755 		 * to the allocated proc_vector.
1756 		 */
1757 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1758 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1759 			    sizeof(aux))
1760 				return (ENOMEM);
1761 			if (aux.a_type == AT_NULL)
1762 				break;
1763 			ptr += sizeof(aux);
1764 		}
1765 		/*
1766 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1767 		 * not reached AT_NULL, it is most likely we are reading wrong
1768 		 * data: either the process doesn't have auxv array or data has
1769 		 * been modified. Return the error in this case.
1770 		 */
1771 		if (aux.a_type != AT_NULL)
1772 			return (ENOEXEC);
1773 		vsize = i + 1;
1774 		size = vsize * sizeof(aux);
1775 		break;
1776 	default:
1777 		KASSERT(0, ("Wrong proc vector type: %d", type));
1778 		return (EINVAL); /* In case we are built without INVARIANTS. */
1779 	}
1780 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1781 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1782 		free(proc_vector, M_TEMP);
1783 		return (ENOMEM);
1784 	}
1785 	*proc_vectorp = proc_vector;
1786 	*vsizep = vsize;
1787 
1788 	return (0);
1789 }
1790 
1791 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1792 
1793 static int
1794 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1795     enum proc_vector_type type)
1796 {
1797 	size_t done, len, nchr, vsize;
1798 	int error, i;
1799 	char **proc_vector, *sptr;
1800 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1801 
1802 	PROC_ASSERT_HELD(p);
1803 
1804 	/*
1805 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1806 	 */
1807 	nchr = 2 * (PATH_MAX + ARG_MAX);
1808 
1809 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1810 	if (error != 0)
1811 		return (error);
1812 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1813 		/*
1814 		 * The program may have scribbled into its argv array, e.g. to
1815 		 * remove some arguments.  If that has happened, break out
1816 		 * before trying to read from NULL.
1817 		 */
1818 		if (proc_vector[i] == NULL)
1819 			break;
1820 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1821 			error = proc_read_string(td, p, sptr, pss_string,
1822 			    sizeof(pss_string));
1823 			if (error != 0)
1824 				goto done;
1825 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1826 			if (done + len >= nchr)
1827 				len = nchr - done - 1;
1828 			sbuf_bcat(sb, pss_string, len);
1829 			if (len != GET_PS_STRINGS_CHUNK_SZ)
1830 				break;
1831 			done += GET_PS_STRINGS_CHUNK_SZ;
1832 		}
1833 		sbuf_bcat(sb, "", 1);
1834 		done += len + 1;
1835 	}
1836 done:
1837 	free(proc_vector, M_TEMP);
1838 	return (error);
1839 }
1840 
1841 int
1842 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1843 {
1844 
1845 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1846 }
1847 
1848 int
1849 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1850 {
1851 
1852 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1853 }
1854 
1855 int
1856 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1857 {
1858 	size_t vsize, size;
1859 	char **auxv;
1860 	int error;
1861 
1862 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1863 	if (error == 0) {
1864 #ifdef COMPAT_FREEBSD32
1865 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1866 			size = vsize * sizeof(Elf32_Auxinfo);
1867 		else
1868 #endif
1869 			size = vsize * sizeof(Elf_Auxinfo);
1870 		if (sbuf_bcat(sb, auxv, size) != 0)
1871 			error = ENOMEM;
1872 		free(auxv, M_TEMP);
1873 	}
1874 	return (error);
1875 }
1876 
1877 /*
1878  * This sysctl allows a process to retrieve the argument list or process
1879  * title for another process without groping around in the address space
1880  * of the other process.  It also allow a process to set its own "process
1881  * title to a string of its own choice.
1882  */
1883 static int
1884 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1885 {
1886 	int *name = (int *)arg1;
1887 	u_int namelen = arg2;
1888 	struct pargs *newpa, *pa;
1889 	struct proc *p;
1890 	struct sbuf sb;
1891 	int flags, error = 0, error2;
1892 
1893 	if (namelen != 1)
1894 		return (EINVAL);
1895 
1896 	flags = PGET_CANSEE;
1897 	if (req->newptr != NULL)
1898 		flags |= PGET_ISCURRENT;
1899 	error = pget((pid_t)name[0], flags, &p);
1900 	if (error)
1901 		return (error);
1902 
1903 	pa = p->p_args;
1904 	if (pa != NULL) {
1905 		pargs_hold(pa);
1906 		PROC_UNLOCK(p);
1907 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1908 		pargs_drop(pa);
1909 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1910 		_PHOLD(p);
1911 		PROC_UNLOCK(p);
1912 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1913 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1914 		error = proc_getargv(curthread, p, &sb);
1915 		error2 = sbuf_finish(&sb);
1916 		PRELE(p);
1917 		sbuf_delete(&sb);
1918 		if (error == 0 && error2 != 0)
1919 			error = error2;
1920 	} else {
1921 		PROC_UNLOCK(p);
1922 	}
1923 	if (error != 0 || req->newptr == NULL)
1924 		return (error);
1925 
1926 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1927 		return (ENOMEM);
1928 	newpa = pargs_alloc(req->newlen);
1929 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1930 	if (error != 0) {
1931 		pargs_free(newpa);
1932 		return (error);
1933 	}
1934 	PROC_LOCK(p);
1935 	pa = p->p_args;
1936 	p->p_args = newpa;
1937 	PROC_UNLOCK(p);
1938 	pargs_drop(pa);
1939 	return (0);
1940 }
1941 
1942 /*
1943  * This sysctl allows a process to retrieve environment of another process.
1944  */
1945 static int
1946 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1947 {
1948 	int *name = (int *)arg1;
1949 	u_int namelen = arg2;
1950 	struct proc *p;
1951 	struct sbuf sb;
1952 	int error, error2;
1953 
1954 	if (namelen != 1)
1955 		return (EINVAL);
1956 
1957 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1958 	if (error != 0)
1959 		return (error);
1960 	if ((p->p_flag & P_SYSTEM) != 0) {
1961 		PRELE(p);
1962 		return (0);
1963 	}
1964 
1965 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1966 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1967 	error = proc_getenvv(curthread, p, &sb);
1968 	error2 = sbuf_finish(&sb);
1969 	PRELE(p);
1970 	sbuf_delete(&sb);
1971 	return (error != 0 ? error : error2);
1972 }
1973 
1974 /*
1975  * This sysctl allows a process to retrieve ELF auxiliary vector of
1976  * another process.
1977  */
1978 static int
1979 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1980 {
1981 	int *name = (int *)arg1;
1982 	u_int namelen = arg2;
1983 	struct proc *p;
1984 	struct sbuf sb;
1985 	int error, error2;
1986 
1987 	if (namelen != 1)
1988 		return (EINVAL);
1989 
1990 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1991 	if (error != 0)
1992 		return (error);
1993 	if ((p->p_flag & P_SYSTEM) != 0) {
1994 		PRELE(p);
1995 		return (0);
1996 	}
1997 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1998 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1999 	error = proc_getauxv(curthread, p, &sb);
2000 	error2 = sbuf_finish(&sb);
2001 	PRELE(p);
2002 	sbuf_delete(&sb);
2003 	return (error != 0 ? error : error2);
2004 }
2005 
2006 /*
2007  * This sysctl allows a process to retrieve the path of the executable for
2008  * itself or another process.
2009  */
2010 static int
2011 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2012 {
2013 	pid_t *pidp = (pid_t *)arg1;
2014 	unsigned int arglen = arg2;
2015 	struct proc *p;
2016 	struct vnode *vp;
2017 	char *retbuf, *freebuf;
2018 	int error;
2019 
2020 	if (arglen != 1)
2021 		return (EINVAL);
2022 	if (*pidp == -1) {	/* -1 means this process */
2023 		p = req->td->td_proc;
2024 	} else {
2025 		error = pget(*pidp, PGET_CANSEE, &p);
2026 		if (error != 0)
2027 			return (error);
2028 	}
2029 
2030 	vp = p->p_textvp;
2031 	if (vp == NULL) {
2032 		if (*pidp != -1)
2033 			PROC_UNLOCK(p);
2034 		return (0);
2035 	}
2036 	vref(vp);
2037 	if (*pidp != -1)
2038 		PROC_UNLOCK(p);
2039 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
2040 	vrele(vp);
2041 	if (error)
2042 		return (error);
2043 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2044 	free(freebuf, M_TEMP);
2045 	return (error);
2046 }
2047 
2048 static int
2049 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2050 {
2051 	struct proc *p;
2052 	char *sv_name;
2053 	int *name;
2054 	int namelen;
2055 	int error;
2056 
2057 	namelen = arg2;
2058 	if (namelen != 1)
2059 		return (EINVAL);
2060 
2061 	name = (int *)arg1;
2062 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2063 	if (error != 0)
2064 		return (error);
2065 	sv_name = p->p_sysent->sv_name;
2066 	PROC_UNLOCK(p);
2067 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2068 }
2069 
2070 #ifdef KINFO_OVMENTRY_SIZE
2071 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2072 #endif
2073 
2074 #ifdef COMPAT_FREEBSD7
2075 static int
2076 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2077 {
2078 	vm_map_entry_t entry, tmp_entry;
2079 	unsigned int last_timestamp;
2080 	char *fullpath, *freepath;
2081 	struct kinfo_ovmentry *kve;
2082 	struct vattr va;
2083 	struct ucred *cred;
2084 	int error, *name;
2085 	struct vnode *vp;
2086 	struct proc *p;
2087 	vm_map_t map;
2088 	struct vmspace *vm;
2089 
2090 	name = (int *)arg1;
2091 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2092 	if (error != 0)
2093 		return (error);
2094 	vm = vmspace_acquire_ref(p);
2095 	if (vm == NULL) {
2096 		PRELE(p);
2097 		return (ESRCH);
2098 	}
2099 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2100 
2101 	map = &vm->vm_map;
2102 	vm_map_lock_read(map);
2103 	for (entry = map->header.next; entry != &map->header;
2104 	    entry = entry->next) {
2105 		vm_object_t obj, tobj, lobj;
2106 		vm_offset_t addr;
2107 
2108 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2109 			continue;
2110 
2111 		bzero(kve, sizeof(*kve));
2112 		kve->kve_structsize = sizeof(*kve);
2113 
2114 		kve->kve_private_resident = 0;
2115 		obj = entry->object.vm_object;
2116 		if (obj != NULL) {
2117 			VM_OBJECT_RLOCK(obj);
2118 			if (obj->shadow_count == 1)
2119 				kve->kve_private_resident =
2120 				    obj->resident_page_count;
2121 		}
2122 		kve->kve_resident = 0;
2123 		addr = entry->start;
2124 		while (addr < entry->end) {
2125 			if (pmap_extract(map->pmap, addr))
2126 				kve->kve_resident++;
2127 			addr += PAGE_SIZE;
2128 		}
2129 
2130 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2131 			if (tobj != obj)
2132 				VM_OBJECT_RLOCK(tobj);
2133 			if (lobj != obj)
2134 				VM_OBJECT_RUNLOCK(lobj);
2135 			lobj = tobj;
2136 		}
2137 
2138 		kve->kve_start = (void*)entry->start;
2139 		kve->kve_end = (void*)entry->end;
2140 		kve->kve_offset = (off_t)entry->offset;
2141 
2142 		if (entry->protection & VM_PROT_READ)
2143 			kve->kve_protection |= KVME_PROT_READ;
2144 		if (entry->protection & VM_PROT_WRITE)
2145 			kve->kve_protection |= KVME_PROT_WRITE;
2146 		if (entry->protection & VM_PROT_EXECUTE)
2147 			kve->kve_protection |= KVME_PROT_EXEC;
2148 
2149 		if (entry->eflags & MAP_ENTRY_COW)
2150 			kve->kve_flags |= KVME_FLAG_COW;
2151 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2152 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2153 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2154 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2155 
2156 		last_timestamp = map->timestamp;
2157 		vm_map_unlock_read(map);
2158 
2159 		kve->kve_fileid = 0;
2160 		kve->kve_fsid = 0;
2161 		freepath = NULL;
2162 		fullpath = "";
2163 		if (lobj) {
2164 			vp = NULL;
2165 			switch (lobj->type) {
2166 			case OBJT_DEFAULT:
2167 				kve->kve_type = KVME_TYPE_DEFAULT;
2168 				break;
2169 			case OBJT_VNODE:
2170 				kve->kve_type = KVME_TYPE_VNODE;
2171 				vp = lobj->handle;
2172 				vref(vp);
2173 				break;
2174 			case OBJT_SWAP:
2175 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2176 					kve->kve_type = KVME_TYPE_VNODE;
2177 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2178 						vp = lobj->un_pager.swp.swp_tmpfs;
2179 						vref(vp);
2180 					}
2181 				} else {
2182 					kve->kve_type = KVME_TYPE_SWAP;
2183 				}
2184 				break;
2185 			case OBJT_DEVICE:
2186 				kve->kve_type = KVME_TYPE_DEVICE;
2187 				break;
2188 			case OBJT_PHYS:
2189 				kve->kve_type = KVME_TYPE_PHYS;
2190 				break;
2191 			case OBJT_DEAD:
2192 				kve->kve_type = KVME_TYPE_DEAD;
2193 				break;
2194 			case OBJT_SG:
2195 				kve->kve_type = KVME_TYPE_SG;
2196 				break;
2197 			default:
2198 				kve->kve_type = KVME_TYPE_UNKNOWN;
2199 				break;
2200 			}
2201 			if (lobj != obj)
2202 				VM_OBJECT_RUNLOCK(lobj);
2203 
2204 			kve->kve_ref_count = obj->ref_count;
2205 			kve->kve_shadow_count = obj->shadow_count;
2206 			VM_OBJECT_RUNLOCK(obj);
2207 			if (vp != NULL) {
2208 				vn_fullpath(curthread, vp, &fullpath,
2209 				    &freepath);
2210 				cred = curthread->td_ucred;
2211 				vn_lock(vp, LK_SHARED | LK_RETRY);
2212 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2213 					kve->kve_fileid = va.va_fileid;
2214 					/* truncate */
2215 					kve->kve_fsid = va.va_fsid;
2216 				}
2217 				vput(vp);
2218 			}
2219 		} else {
2220 			kve->kve_type = KVME_TYPE_NONE;
2221 			kve->kve_ref_count = 0;
2222 			kve->kve_shadow_count = 0;
2223 		}
2224 
2225 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2226 		if (freepath != NULL)
2227 			free(freepath, M_TEMP);
2228 
2229 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2230 		vm_map_lock_read(map);
2231 		if (error)
2232 			break;
2233 		if (last_timestamp != map->timestamp) {
2234 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2235 			entry = tmp_entry;
2236 		}
2237 	}
2238 	vm_map_unlock_read(map);
2239 	vmspace_free(vm);
2240 	PRELE(p);
2241 	free(kve, M_TEMP);
2242 	return (error);
2243 }
2244 #endif	/* COMPAT_FREEBSD7 */
2245 
2246 #ifdef KINFO_VMENTRY_SIZE
2247 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2248 #endif
2249 
2250 static void
2251 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2252     struct kinfo_vmentry *kve)
2253 {
2254 	vm_object_t obj, tobj;
2255 	vm_page_t m, m_adv;
2256 	vm_offset_t addr;
2257 	vm_paddr_t locked_pa;
2258 	vm_pindex_t pi, pi_adv, pindex;
2259 
2260 	locked_pa = 0;
2261 	obj = entry->object.vm_object;
2262 	addr = entry->start;
2263 	m_adv = NULL;
2264 	pi = OFF_TO_IDX(entry->offset);
2265 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2266 		if (m_adv != NULL) {
2267 			m = m_adv;
2268 		} else {
2269 			pi_adv = atop(entry->end - addr);
2270 			pindex = pi;
2271 			for (tobj = obj;; tobj = tobj->backing_object) {
2272 				m = vm_page_find_least(tobj, pindex);
2273 				if (m != NULL) {
2274 					if (m->pindex == pindex)
2275 						break;
2276 					if (pi_adv > m->pindex - pindex) {
2277 						pi_adv = m->pindex - pindex;
2278 						m_adv = m;
2279 					}
2280 				}
2281 				if (tobj->backing_object == NULL)
2282 					goto next;
2283 				pindex += OFF_TO_IDX(tobj->
2284 				    backing_object_offset);
2285 			}
2286 		}
2287 		m_adv = NULL;
2288 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2289 		    (addr & (pagesizes[1] - 1)) == 0 &&
2290 		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2291 		    MINCORE_SUPER) != 0) {
2292 			kve->kve_flags |= KVME_FLAG_SUPER;
2293 			pi_adv = atop(pagesizes[1]);
2294 		} else {
2295 			/*
2296 			 * We do not test the found page on validity.
2297 			 * Either the page is busy and being paged in,
2298 			 * or it was invalidated.  The first case
2299 			 * should be counted as resident, the second
2300 			 * is not so clear; we do account both.
2301 			 */
2302 			pi_adv = 1;
2303 		}
2304 		kve->kve_resident += pi_adv;
2305 next:;
2306 	}
2307 	PA_UNLOCK_COND(locked_pa);
2308 }
2309 
2310 /*
2311  * Must be called with the process locked and will return unlocked.
2312  */
2313 int
2314 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2315 {
2316 	vm_map_entry_t entry, tmp_entry;
2317 	struct vattr va;
2318 	vm_map_t map;
2319 	vm_object_t obj, tobj, lobj;
2320 	char *fullpath, *freepath;
2321 	struct kinfo_vmentry *kve;
2322 	struct ucred *cred;
2323 	struct vnode *vp;
2324 	struct vmspace *vm;
2325 	vm_offset_t addr;
2326 	unsigned int last_timestamp;
2327 	int error;
2328 
2329 	PROC_LOCK_ASSERT(p, MA_OWNED);
2330 
2331 	_PHOLD(p);
2332 	PROC_UNLOCK(p);
2333 	vm = vmspace_acquire_ref(p);
2334 	if (vm == NULL) {
2335 		PRELE(p);
2336 		return (ESRCH);
2337 	}
2338 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2339 
2340 	error = 0;
2341 	map = &vm->vm_map;
2342 	vm_map_lock_read(map);
2343 	for (entry = map->header.next; entry != &map->header;
2344 	    entry = entry->next) {
2345 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2346 			continue;
2347 
2348 		addr = entry->end;
2349 		bzero(kve, sizeof(*kve));
2350 		obj = entry->object.vm_object;
2351 		if (obj != NULL) {
2352 			for (tobj = obj; tobj != NULL;
2353 			    tobj = tobj->backing_object) {
2354 				VM_OBJECT_RLOCK(tobj);
2355 				lobj = tobj;
2356 			}
2357 			if (obj->backing_object == NULL)
2358 				kve->kve_private_resident =
2359 				    obj->resident_page_count;
2360 			if (!vmmap_skip_res_cnt)
2361 				kern_proc_vmmap_resident(map, entry, kve);
2362 			for (tobj = obj; tobj != NULL;
2363 			    tobj = tobj->backing_object) {
2364 				if (tobj != obj && tobj != lobj)
2365 					VM_OBJECT_RUNLOCK(tobj);
2366 			}
2367 		} else {
2368 			lobj = NULL;
2369 		}
2370 
2371 		kve->kve_start = entry->start;
2372 		kve->kve_end = entry->end;
2373 		kve->kve_offset = entry->offset;
2374 
2375 		if (entry->protection & VM_PROT_READ)
2376 			kve->kve_protection |= KVME_PROT_READ;
2377 		if (entry->protection & VM_PROT_WRITE)
2378 			kve->kve_protection |= KVME_PROT_WRITE;
2379 		if (entry->protection & VM_PROT_EXECUTE)
2380 			kve->kve_protection |= KVME_PROT_EXEC;
2381 
2382 		if (entry->eflags & MAP_ENTRY_COW)
2383 			kve->kve_flags |= KVME_FLAG_COW;
2384 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2385 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2386 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2387 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2388 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2389 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2390 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2391 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2392 
2393 		last_timestamp = map->timestamp;
2394 		vm_map_unlock_read(map);
2395 
2396 		freepath = NULL;
2397 		fullpath = "";
2398 		if (lobj != NULL) {
2399 			vp = NULL;
2400 			switch (lobj->type) {
2401 			case OBJT_DEFAULT:
2402 				kve->kve_type = KVME_TYPE_DEFAULT;
2403 				break;
2404 			case OBJT_VNODE:
2405 				kve->kve_type = KVME_TYPE_VNODE;
2406 				vp = lobj->handle;
2407 				vref(vp);
2408 				break;
2409 			case OBJT_SWAP:
2410 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2411 					kve->kve_type = KVME_TYPE_VNODE;
2412 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2413 						vp = lobj->un_pager.swp.swp_tmpfs;
2414 						vref(vp);
2415 					}
2416 				} else {
2417 					kve->kve_type = KVME_TYPE_SWAP;
2418 				}
2419 				break;
2420 			case OBJT_DEVICE:
2421 				kve->kve_type = KVME_TYPE_DEVICE;
2422 				break;
2423 			case OBJT_PHYS:
2424 				kve->kve_type = KVME_TYPE_PHYS;
2425 				break;
2426 			case OBJT_DEAD:
2427 				kve->kve_type = KVME_TYPE_DEAD;
2428 				break;
2429 			case OBJT_SG:
2430 				kve->kve_type = KVME_TYPE_SG;
2431 				break;
2432 			case OBJT_MGTDEVICE:
2433 				kve->kve_type = KVME_TYPE_MGTDEVICE;
2434 				break;
2435 			default:
2436 				kve->kve_type = KVME_TYPE_UNKNOWN;
2437 				break;
2438 			}
2439 			if (lobj != obj)
2440 				VM_OBJECT_RUNLOCK(lobj);
2441 
2442 			kve->kve_ref_count = obj->ref_count;
2443 			kve->kve_shadow_count = obj->shadow_count;
2444 			VM_OBJECT_RUNLOCK(obj);
2445 			if (vp != NULL) {
2446 				vn_fullpath(curthread, vp, &fullpath,
2447 				    &freepath);
2448 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2449 				cred = curthread->td_ucred;
2450 				vn_lock(vp, LK_SHARED | LK_RETRY);
2451 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2452 					kve->kve_vn_fileid = va.va_fileid;
2453 					kve->kve_vn_fsid = va.va_fsid;
2454 					kve->kve_vn_fsid_freebsd11 =
2455 					    kve->kve_vn_fsid; /* truncate */
2456 					kve->kve_vn_mode =
2457 					    MAKEIMODE(va.va_type, va.va_mode);
2458 					kve->kve_vn_size = va.va_size;
2459 					kve->kve_vn_rdev = va.va_rdev;
2460 					kve->kve_vn_rdev_freebsd11 =
2461 					    kve->kve_vn_rdev; /* truncate */
2462 					kve->kve_status = KF_ATTR_VALID;
2463 				}
2464 				vput(vp);
2465 			}
2466 		} else {
2467 			kve->kve_type = KVME_TYPE_NONE;
2468 			kve->kve_ref_count = 0;
2469 			kve->kve_shadow_count = 0;
2470 		}
2471 
2472 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2473 		if (freepath != NULL)
2474 			free(freepath, M_TEMP);
2475 
2476 		/* Pack record size down */
2477 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2478 			kve->kve_structsize =
2479 			    offsetof(struct kinfo_vmentry, kve_path) +
2480 			    strlen(kve->kve_path) + 1;
2481 		else
2482 			kve->kve_structsize = sizeof(*kve);
2483 		kve->kve_structsize = roundup(kve->kve_structsize,
2484 		    sizeof(uint64_t));
2485 
2486 		/* Halt filling and truncate rather than exceeding maxlen */
2487 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2488 			error = 0;
2489 			vm_map_lock_read(map);
2490 			break;
2491 		} else if (maxlen != -1)
2492 			maxlen -= kve->kve_structsize;
2493 
2494 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2495 			error = ENOMEM;
2496 		vm_map_lock_read(map);
2497 		if (error != 0)
2498 			break;
2499 		if (last_timestamp != map->timestamp) {
2500 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2501 			entry = tmp_entry;
2502 		}
2503 	}
2504 	vm_map_unlock_read(map);
2505 	vmspace_free(vm);
2506 	PRELE(p);
2507 	free(kve, M_TEMP);
2508 	return (error);
2509 }
2510 
2511 static int
2512 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2513 {
2514 	struct proc *p;
2515 	struct sbuf sb;
2516 	int error, error2, *name;
2517 
2518 	name = (int *)arg1;
2519 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2520 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2521 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2522 	if (error != 0) {
2523 		sbuf_delete(&sb);
2524 		return (error);
2525 	}
2526 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2527 	error2 = sbuf_finish(&sb);
2528 	sbuf_delete(&sb);
2529 	return (error != 0 ? error : error2);
2530 }
2531 
2532 #if defined(STACK) || defined(DDB)
2533 static int
2534 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2535 {
2536 	struct kinfo_kstack *kkstp;
2537 	int error, i, *name, numthreads;
2538 	lwpid_t *lwpidarray;
2539 	struct thread *td;
2540 	struct stack *st;
2541 	struct sbuf sb;
2542 	struct proc *p;
2543 
2544 	name = (int *)arg1;
2545 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2546 	if (error != 0)
2547 		return (error);
2548 
2549 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2550 	st = stack_create();
2551 
2552 	lwpidarray = NULL;
2553 	PROC_LOCK(p);
2554 	do {
2555 		if (lwpidarray != NULL) {
2556 			free(lwpidarray, M_TEMP);
2557 			lwpidarray = NULL;
2558 		}
2559 		numthreads = p->p_numthreads;
2560 		PROC_UNLOCK(p);
2561 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2562 		    M_WAITOK | M_ZERO);
2563 		PROC_LOCK(p);
2564 	} while (numthreads < p->p_numthreads);
2565 
2566 	/*
2567 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2568 	 * of changes could have taken place.  Should we check to see if the
2569 	 * vmspace has been replaced, or the like, in order to prevent
2570 	 * giving a snapshot that spans, say, execve(2), with some threads
2571 	 * before and some after?  Among other things, the credentials could
2572 	 * have changed, in which case the right to extract debug info might
2573 	 * no longer be assured.
2574 	 */
2575 	i = 0;
2576 	FOREACH_THREAD_IN_PROC(p, td) {
2577 		KASSERT(i < numthreads,
2578 		    ("sysctl_kern_proc_kstack: numthreads"));
2579 		lwpidarray[i] = td->td_tid;
2580 		i++;
2581 	}
2582 	numthreads = i;
2583 	for (i = 0; i < numthreads; i++) {
2584 		td = thread_find(p, lwpidarray[i]);
2585 		if (td == NULL) {
2586 			continue;
2587 		}
2588 		bzero(kkstp, sizeof(*kkstp));
2589 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2590 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2591 		thread_lock(td);
2592 		kkstp->kkst_tid = td->td_tid;
2593 		if (TD_IS_SWAPPED(td)) {
2594 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2595 		} else if (TD_IS_RUNNING(td)) {
2596 			if (stack_save_td_running(st, td) == 0)
2597 				kkstp->kkst_state = KKST_STATE_STACKOK;
2598 			else
2599 				kkstp->kkst_state = KKST_STATE_RUNNING;
2600 		} else {
2601 			kkstp->kkst_state = KKST_STATE_STACKOK;
2602 			stack_save_td(st, td);
2603 		}
2604 		thread_unlock(td);
2605 		PROC_UNLOCK(p);
2606 		stack_sbuf_print(&sb, st);
2607 		sbuf_finish(&sb);
2608 		sbuf_delete(&sb);
2609 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2610 		PROC_LOCK(p);
2611 		if (error)
2612 			break;
2613 	}
2614 	_PRELE(p);
2615 	PROC_UNLOCK(p);
2616 	if (lwpidarray != NULL)
2617 		free(lwpidarray, M_TEMP);
2618 	stack_destroy(st);
2619 	free(kkstp, M_TEMP);
2620 	return (error);
2621 }
2622 #endif
2623 
2624 /*
2625  * This sysctl allows a process to retrieve the full list of groups from
2626  * itself or another process.
2627  */
2628 static int
2629 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2630 {
2631 	pid_t *pidp = (pid_t *)arg1;
2632 	unsigned int arglen = arg2;
2633 	struct proc *p;
2634 	struct ucred *cred;
2635 	int error;
2636 
2637 	if (arglen != 1)
2638 		return (EINVAL);
2639 	if (*pidp == -1) {	/* -1 means this process */
2640 		p = req->td->td_proc;
2641 		PROC_LOCK(p);
2642 	} else {
2643 		error = pget(*pidp, PGET_CANSEE, &p);
2644 		if (error != 0)
2645 			return (error);
2646 	}
2647 
2648 	cred = crhold(p->p_ucred);
2649 	PROC_UNLOCK(p);
2650 
2651 	error = SYSCTL_OUT(req, cred->cr_groups,
2652 	    cred->cr_ngroups * sizeof(gid_t));
2653 	crfree(cred);
2654 	return (error);
2655 }
2656 
2657 /*
2658  * This sysctl allows a process to retrieve or/and set the resource limit for
2659  * another process.
2660  */
2661 static int
2662 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2663 {
2664 	int *name = (int *)arg1;
2665 	u_int namelen = arg2;
2666 	struct rlimit rlim;
2667 	struct proc *p;
2668 	u_int which;
2669 	int flags, error;
2670 
2671 	if (namelen != 2)
2672 		return (EINVAL);
2673 
2674 	which = (u_int)name[1];
2675 	if (which >= RLIM_NLIMITS)
2676 		return (EINVAL);
2677 
2678 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2679 		return (EINVAL);
2680 
2681 	flags = PGET_HOLD | PGET_NOTWEXIT;
2682 	if (req->newptr != NULL)
2683 		flags |= PGET_CANDEBUG;
2684 	else
2685 		flags |= PGET_CANSEE;
2686 	error = pget((pid_t)name[0], flags, &p);
2687 	if (error != 0)
2688 		return (error);
2689 
2690 	/*
2691 	 * Retrieve limit.
2692 	 */
2693 	if (req->oldptr != NULL) {
2694 		PROC_LOCK(p);
2695 		lim_rlimit_proc(p, which, &rlim);
2696 		PROC_UNLOCK(p);
2697 	}
2698 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2699 	if (error != 0)
2700 		goto errout;
2701 
2702 	/*
2703 	 * Set limit.
2704 	 */
2705 	if (req->newptr != NULL) {
2706 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2707 		if (error == 0)
2708 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2709 	}
2710 
2711 errout:
2712 	PRELE(p);
2713 	return (error);
2714 }
2715 
2716 /*
2717  * This sysctl allows a process to retrieve ps_strings structure location of
2718  * another process.
2719  */
2720 static int
2721 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2722 {
2723 	int *name = (int *)arg1;
2724 	u_int namelen = arg2;
2725 	struct proc *p;
2726 	vm_offset_t ps_strings;
2727 	int error;
2728 #ifdef COMPAT_FREEBSD32
2729 	uint32_t ps_strings32;
2730 #endif
2731 
2732 	if (namelen != 1)
2733 		return (EINVAL);
2734 
2735 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2736 	if (error != 0)
2737 		return (error);
2738 #ifdef COMPAT_FREEBSD32
2739 	if ((req->flags & SCTL_MASK32) != 0) {
2740 		/*
2741 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2742 		 * process.
2743 		 */
2744 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2745 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2746 		PROC_UNLOCK(p);
2747 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2748 		return (error);
2749 	}
2750 #endif
2751 	ps_strings = p->p_sysent->sv_psstrings;
2752 	PROC_UNLOCK(p);
2753 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2754 	return (error);
2755 }
2756 
2757 /*
2758  * This sysctl allows a process to retrieve umask of another process.
2759  */
2760 static int
2761 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2762 {
2763 	int *name = (int *)arg1;
2764 	u_int namelen = arg2;
2765 	struct proc *p;
2766 	int error;
2767 	u_short fd_cmask;
2768 
2769 	if (namelen != 1)
2770 		return (EINVAL);
2771 
2772 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2773 	if (error != 0)
2774 		return (error);
2775 
2776 	FILEDESC_SLOCK(p->p_fd);
2777 	fd_cmask = p->p_fd->fd_cmask;
2778 	FILEDESC_SUNLOCK(p->p_fd);
2779 	PRELE(p);
2780 	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2781 	return (error);
2782 }
2783 
2784 /*
2785  * This sysctl allows a process to set and retrieve binary osreldate of
2786  * another process.
2787  */
2788 static int
2789 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2790 {
2791 	int *name = (int *)arg1;
2792 	u_int namelen = arg2;
2793 	struct proc *p;
2794 	int flags, error, osrel;
2795 
2796 	if (namelen != 1)
2797 		return (EINVAL);
2798 
2799 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2800 		return (EINVAL);
2801 
2802 	flags = PGET_HOLD | PGET_NOTWEXIT;
2803 	if (req->newptr != NULL)
2804 		flags |= PGET_CANDEBUG;
2805 	else
2806 		flags |= PGET_CANSEE;
2807 	error = pget((pid_t)name[0], flags, &p);
2808 	if (error != 0)
2809 		return (error);
2810 
2811 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2812 	if (error != 0)
2813 		goto errout;
2814 
2815 	if (req->newptr != NULL) {
2816 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2817 		if (error != 0)
2818 			goto errout;
2819 		if (osrel < 0) {
2820 			error = EINVAL;
2821 			goto errout;
2822 		}
2823 		p->p_osrel = osrel;
2824 	}
2825 errout:
2826 	PRELE(p);
2827 	return (error);
2828 }
2829 
2830 static int
2831 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2832 {
2833 	int *name = (int *)arg1;
2834 	u_int namelen = arg2;
2835 	struct proc *p;
2836 	struct kinfo_sigtramp kst;
2837 	const struct sysentvec *sv;
2838 	int error;
2839 #ifdef COMPAT_FREEBSD32
2840 	struct kinfo_sigtramp32 kst32;
2841 #endif
2842 
2843 	if (namelen != 1)
2844 		return (EINVAL);
2845 
2846 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2847 	if (error != 0)
2848 		return (error);
2849 	sv = p->p_sysent;
2850 #ifdef COMPAT_FREEBSD32
2851 	if ((req->flags & SCTL_MASK32) != 0) {
2852 		bzero(&kst32, sizeof(kst32));
2853 		if (SV_PROC_FLAG(p, SV_ILP32)) {
2854 			if (sv->sv_sigcode_base != 0) {
2855 				kst32.ksigtramp_start = sv->sv_sigcode_base;
2856 				kst32.ksigtramp_end = sv->sv_sigcode_base +
2857 				    *sv->sv_szsigcode;
2858 			} else {
2859 				kst32.ksigtramp_start = sv->sv_psstrings -
2860 				    *sv->sv_szsigcode;
2861 				kst32.ksigtramp_end = sv->sv_psstrings;
2862 			}
2863 		}
2864 		PROC_UNLOCK(p);
2865 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2866 		return (error);
2867 	}
2868 #endif
2869 	bzero(&kst, sizeof(kst));
2870 	if (sv->sv_sigcode_base != 0) {
2871 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2872 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2873 		    *sv->sv_szsigcode;
2874 	} else {
2875 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2876 		    *sv->sv_szsigcode;
2877 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2878 	}
2879 	PROC_UNLOCK(p);
2880 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2881 	return (error);
2882 }
2883 
2884 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2885 
2886 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2887 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2888 	"Return entire process table");
2889 
2890 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2891 	sysctl_kern_proc, "Process table");
2892 
2893 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2894 	sysctl_kern_proc, "Process table");
2895 
2896 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2897 	sysctl_kern_proc, "Process table");
2898 
2899 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2900 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2901 
2902 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2903 	sysctl_kern_proc, "Process table");
2904 
2905 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2906 	sysctl_kern_proc, "Process table");
2907 
2908 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2909 	sysctl_kern_proc, "Process table");
2910 
2911 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2912 	sysctl_kern_proc, "Process table");
2913 
2914 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2915 	sysctl_kern_proc, "Return process table, no threads");
2916 
2917 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2918 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2919 	sysctl_kern_proc_args, "Process argument list");
2920 
2921 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2922 	sysctl_kern_proc_env, "Process environment");
2923 
2924 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2925 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2926 
2927 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2928 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2929 
2930 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2931 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2932 	"Process syscall vector name (ABI type)");
2933 
2934 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2935 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2936 
2937 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2938 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2939 
2940 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2941 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2942 
2943 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2944 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2945 
2946 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2947 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2948 
2949 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2950 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2951 
2952 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2953 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2954 
2955 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2956 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2957 
2958 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2959 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2960 	"Return process table, no threads");
2961 
2962 #ifdef COMPAT_FREEBSD7
2963 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2964 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2965 #endif
2966 
2967 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2968 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2969 
2970 #if defined(STACK) || defined(DDB)
2971 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2972 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2973 #endif
2974 
2975 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2976 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2977 
2978 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2979 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2980 	"Process resource limits");
2981 
2982 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2983 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2984 	"Process ps_strings location");
2985 
2986 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2987 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2988 
2989 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2990 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2991 	"Process binary osreldate");
2992 
2993 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2994 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2995 	"Process signal trampoline location");
2996 
2997 int allproc_gen;
2998 
2999 /*
3000  * stop_all_proc() purpose is to stop all process which have usermode,
3001  * except current process for obvious reasons.  This makes it somewhat
3002  * unreliable when invoked from multithreaded process.  The service
3003  * must not be user-callable anyway.
3004  */
3005 void
3006 stop_all_proc(void)
3007 {
3008 	struct proc *cp, *p;
3009 	int r, gen;
3010 	bool restart, seen_stopped, seen_exiting, stopped_some;
3011 
3012 	cp = curproc;
3013 allproc_loop:
3014 	sx_xlock(&allproc_lock);
3015 	gen = allproc_gen;
3016 	seen_exiting = seen_stopped = stopped_some = restart = false;
3017 	LIST_REMOVE(cp, p_list);
3018 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3019 	for (;;) {
3020 		p = LIST_NEXT(cp, p_list);
3021 		if (p == NULL)
3022 			break;
3023 		LIST_REMOVE(cp, p_list);
3024 		LIST_INSERT_AFTER(p, cp, p_list);
3025 		PROC_LOCK(p);
3026 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3027 			PROC_UNLOCK(p);
3028 			continue;
3029 		}
3030 		if ((p->p_flag & P_WEXIT) != 0) {
3031 			seen_exiting = true;
3032 			PROC_UNLOCK(p);
3033 			continue;
3034 		}
3035 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3036 			/*
3037 			 * Stopped processes are tolerated when there
3038 			 * are no other processes which might continue
3039 			 * them.  P_STOPPED_SINGLE but not
3040 			 * P_TOTAL_STOP process still has at least one
3041 			 * thread running.
3042 			 */
3043 			seen_stopped = true;
3044 			PROC_UNLOCK(p);
3045 			continue;
3046 		}
3047 		_PHOLD(p);
3048 		sx_xunlock(&allproc_lock);
3049 		r = thread_single(p, SINGLE_ALLPROC);
3050 		if (r != 0)
3051 			restart = true;
3052 		else
3053 			stopped_some = true;
3054 		_PRELE(p);
3055 		PROC_UNLOCK(p);
3056 		sx_xlock(&allproc_lock);
3057 	}
3058 	/* Catch forked children we did not see in iteration. */
3059 	if (gen != allproc_gen)
3060 		restart = true;
3061 	sx_xunlock(&allproc_lock);
3062 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3063 		kern_yield(PRI_USER);
3064 		goto allproc_loop;
3065 	}
3066 }
3067 
3068 void
3069 resume_all_proc(void)
3070 {
3071 	struct proc *cp, *p;
3072 
3073 	cp = curproc;
3074 	sx_xlock(&allproc_lock);
3075 	LIST_REMOVE(cp, p_list);
3076 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3077 	for (;;) {
3078 		p = LIST_NEXT(cp, p_list);
3079 		if (p == NULL)
3080 			break;
3081 		LIST_REMOVE(cp, p_list);
3082 		LIST_INSERT_AFTER(p, cp, p_list);
3083 		PROC_LOCK(p);
3084 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3085 			sx_xunlock(&allproc_lock);
3086 			_PHOLD(p);
3087 			thread_single_end(p, SINGLE_ALLPROC);
3088 			_PRELE(p);
3089 			PROC_UNLOCK(p);
3090 			sx_xlock(&allproc_lock);
3091 		} else {
3092 			PROC_UNLOCK(p);
3093 		}
3094 	}
3095 	sx_xunlock(&allproc_lock);
3096 }
3097 
3098 /* #define	TOTAL_STOP_DEBUG	1 */
3099 #ifdef TOTAL_STOP_DEBUG
3100 volatile static int ap_resume;
3101 #include <sys/mount.h>
3102 
3103 static int
3104 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3105 {
3106 	int error, val;
3107 
3108 	val = 0;
3109 	ap_resume = 0;
3110 	error = sysctl_handle_int(oidp, &val, 0, req);
3111 	if (error != 0 || req->newptr == NULL)
3112 		return (error);
3113 	if (val != 0) {
3114 		stop_all_proc();
3115 		syncer_suspend();
3116 		while (ap_resume == 0)
3117 			;
3118 		syncer_resume();
3119 		resume_all_proc();
3120 	}
3121 	return (0);
3122 }
3123 
3124 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3125     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3126     sysctl_debug_stop_all_proc, "I",
3127     "");
3128 #endif
3129