1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/refcount.h> 47 #include <sys/sysent.h> 48 #include <sys/sched.h> 49 #include <sys/smp.h> 50 #include <sys/sysctl.h> 51 #include <sys/filedesc.h> 52 #include <sys/tty.h> 53 #include <sys/signalvar.h> 54 #include <sys/sx.h> 55 #include <sys/user.h> 56 #include <sys/jail.h> 57 #include <sys/vnode.h> 58 #ifdef KTRACE 59 #include <sys/uio.h> 60 #include <sys/ktrace.h> 61 #endif 62 63 #include <vm/vm.h> 64 #include <vm/vm_extern.h> 65 #include <vm/pmap.h> 66 #include <vm/vm_map.h> 67 #include <vm/uma.h> 68 69 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 70 MALLOC_DEFINE(M_SESSION, "session", "session header"); 71 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 72 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 73 74 static void doenterpgrp(struct proc *, struct pgrp *); 75 static void orphanpg(struct pgrp *pg); 76 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 77 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 78 static void pgadjustjobc(struct pgrp *pgrp, int entering); 79 static void pgdelete(struct pgrp *); 80 static int proc_ctor(void *mem, int size, void *arg, int flags); 81 static void proc_dtor(void *mem, int size, void *arg); 82 static int proc_init(void *mem, int size, int flags); 83 static void proc_fini(void *mem, int size); 84 85 /* 86 * Other process lists 87 */ 88 struct pidhashhead *pidhashtbl; 89 u_long pidhash; 90 struct pgrphashhead *pgrphashtbl; 91 u_long pgrphash; 92 struct proclist allproc; 93 struct proclist zombproc; 94 struct sx allproc_lock; 95 struct sx proctree_lock; 96 struct mtx ppeers_lock; 97 uma_zone_t proc_zone; 98 uma_zone_t ithread_zone; 99 100 int kstack_pages = KSTACK_PAGES; 101 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 102 103 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 104 105 /* 106 * Initialize global process hashing structures. 107 */ 108 void 109 procinit() 110 { 111 112 sx_init(&allproc_lock, "allproc"); 113 sx_init(&proctree_lock, "proctree"); 114 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 115 LIST_INIT(&allproc); 116 LIST_INIT(&zombproc); 117 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 118 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 119 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 120 proc_ctor, proc_dtor, proc_init, proc_fini, 121 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 122 uihashinit(); 123 } 124 125 /* 126 * Prepare a proc for use. 127 */ 128 static int 129 proc_ctor(void *mem, int size, void *arg, int flags) 130 { 131 struct proc *p; 132 133 p = (struct proc *)mem; 134 return (0); 135 } 136 137 /* 138 * Reclaim a proc after use. 139 */ 140 static void 141 proc_dtor(void *mem, int size, void *arg) 142 { 143 struct proc *p; 144 struct thread *td; 145 #ifdef INVARIANTS 146 struct ksegrp *kg; 147 #endif 148 149 /* INVARIANTS checks go here */ 150 p = (struct proc *)mem; 151 td = FIRST_THREAD_IN_PROC(p); 152 #ifdef INVARIANTS 153 KASSERT((p->p_numthreads == 1), 154 ("bad number of threads in exiting process")); 155 KASSERT((p->p_numksegrps == 1), ("free proc with > 1 ksegrp")); 156 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 157 kg = FIRST_KSEGRP_IN_PROC(p); 158 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 159 #endif 160 161 /* Dispose of an alternate kstack, if it exists. 162 * XXX What if there are more than one thread in the proc? 163 * The first thread in the proc is special and not 164 * freed, so you gotta do this here. 165 */ 166 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 167 vm_thread_dispose_altkstack(td); 168 } 169 170 /* 171 * Initialize type-stable parts of a proc (when newly created). 172 */ 173 static int 174 proc_init(void *mem, int size, int flags) 175 { 176 struct proc *p; 177 struct thread *td; 178 struct ksegrp *kg; 179 180 p = (struct proc *)mem; 181 p->p_sched = (struct p_sched *)&p[1]; 182 td = thread_alloc(); 183 kg = ksegrp_alloc(); 184 bzero(&p->p_mtx, sizeof(struct mtx)); 185 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 186 p->p_stats = pstats_alloc(); 187 proc_linkup(p, kg, td); 188 sched_newproc(p, kg, td); 189 return (0); 190 } 191 192 /* 193 * UMA should ensure that this function is never called. 194 * Freeing a proc structure would violate type stability. 195 */ 196 static void 197 proc_fini(void *mem, int size) 198 { 199 #ifdef notnow 200 struct proc *p; 201 202 p = (struct proc *)mem; 203 pstats_free(p->p_stats); 204 ksegrp_free(FIRST_KSEGRP_IN_PROC(p)); 205 thread_free(FIRST_THREAD_IN_PROC(p)); 206 mtx_destroy(&p->p_mtx); 207 #else 208 panic("proc reclaimed"); 209 #endif 210 } 211 212 /* 213 * Is p an inferior of the current process? 214 */ 215 int 216 inferior(p) 217 register struct proc *p; 218 { 219 220 sx_assert(&proctree_lock, SX_LOCKED); 221 for (; p != curproc; p = p->p_pptr) 222 if (p->p_pid == 0) 223 return (0); 224 return (1); 225 } 226 227 /* 228 * Locate a process by number; return only "live" processes -- i.e., neither 229 * zombies nor newly born but incompletely initialized processes. By not 230 * returning processes in the PRS_NEW state, we allow callers to avoid 231 * testing for that condition to avoid dereferencing p_ucred, et al. 232 */ 233 struct proc * 234 pfind(pid) 235 register pid_t pid; 236 { 237 register struct proc *p; 238 239 sx_slock(&allproc_lock); 240 LIST_FOREACH(p, PIDHASH(pid), p_hash) 241 if (p->p_pid == pid) { 242 if (p->p_state == PRS_NEW) { 243 p = NULL; 244 break; 245 } 246 PROC_LOCK(p); 247 break; 248 } 249 sx_sunlock(&allproc_lock); 250 return (p); 251 } 252 253 /* 254 * Locate a process group by number. 255 * The caller must hold proctree_lock. 256 */ 257 struct pgrp * 258 pgfind(pgid) 259 register pid_t pgid; 260 { 261 register struct pgrp *pgrp; 262 263 sx_assert(&proctree_lock, SX_LOCKED); 264 265 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 266 if (pgrp->pg_id == pgid) { 267 PGRP_LOCK(pgrp); 268 return (pgrp); 269 } 270 } 271 return (NULL); 272 } 273 274 /* 275 * Create a new process group. 276 * pgid must be equal to the pid of p. 277 * Begin a new session if required. 278 */ 279 int 280 enterpgrp(p, pgid, pgrp, sess) 281 register struct proc *p; 282 pid_t pgid; 283 struct pgrp *pgrp; 284 struct session *sess; 285 { 286 struct pgrp *pgrp2; 287 288 sx_assert(&proctree_lock, SX_XLOCKED); 289 290 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 291 KASSERT(p->p_pid == pgid, 292 ("enterpgrp: new pgrp and pid != pgid")); 293 294 pgrp2 = pgfind(pgid); 295 296 KASSERT(pgrp2 == NULL, 297 ("enterpgrp: pgrp with pgid exists")); 298 KASSERT(!SESS_LEADER(p), 299 ("enterpgrp: session leader attempted setpgrp")); 300 301 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 302 303 if (sess != NULL) { 304 /* 305 * new session 306 */ 307 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 308 PROC_LOCK(p); 309 p->p_flag &= ~P_CONTROLT; 310 PROC_UNLOCK(p); 311 PGRP_LOCK(pgrp); 312 sess->s_leader = p; 313 sess->s_sid = p->p_pid; 314 sess->s_count = 1; 315 sess->s_ttyvp = NULL; 316 sess->s_ttyp = NULL; 317 bcopy(p->p_session->s_login, sess->s_login, 318 sizeof(sess->s_login)); 319 pgrp->pg_session = sess; 320 KASSERT(p == curproc, 321 ("enterpgrp: mksession and p != curproc")); 322 } else { 323 pgrp->pg_session = p->p_session; 324 SESS_LOCK(pgrp->pg_session); 325 pgrp->pg_session->s_count++; 326 SESS_UNLOCK(pgrp->pg_session); 327 PGRP_LOCK(pgrp); 328 } 329 pgrp->pg_id = pgid; 330 LIST_INIT(&pgrp->pg_members); 331 332 /* 333 * As we have an exclusive lock of proctree_lock, 334 * this should not deadlock. 335 */ 336 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 337 pgrp->pg_jobc = 0; 338 SLIST_INIT(&pgrp->pg_sigiolst); 339 PGRP_UNLOCK(pgrp); 340 341 doenterpgrp(p, pgrp); 342 343 return (0); 344 } 345 346 /* 347 * Move p to an existing process group 348 */ 349 int 350 enterthispgrp(p, pgrp) 351 register struct proc *p; 352 struct pgrp *pgrp; 353 { 354 355 sx_assert(&proctree_lock, SX_XLOCKED); 356 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 357 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 358 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 359 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 360 KASSERT(pgrp->pg_session == p->p_session, 361 ("%s: pgrp's session %p, p->p_session %p.\n", 362 __func__, 363 pgrp->pg_session, 364 p->p_session)); 365 KASSERT(pgrp != p->p_pgrp, 366 ("%s: p belongs to pgrp.", __func__)); 367 368 doenterpgrp(p, pgrp); 369 370 return (0); 371 } 372 373 /* 374 * Move p to a process group 375 */ 376 static void 377 doenterpgrp(p, pgrp) 378 struct proc *p; 379 struct pgrp *pgrp; 380 { 381 struct pgrp *savepgrp; 382 383 sx_assert(&proctree_lock, SX_XLOCKED); 384 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 385 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 386 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 387 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 388 389 savepgrp = p->p_pgrp; 390 391 /* 392 * Adjust eligibility of affected pgrps to participate in job control. 393 * Increment eligibility counts before decrementing, otherwise we 394 * could reach 0 spuriously during the first call. 395 */ 396 fixjobc(p, pgrp, 1); 397 fixjobc(p, p->p_pgrp, 0); 398 399 PGRP_LOCK(pgrp); 400 PGRP_LOCK(savepgrp); 401 PROC_LOCK(p); 402 LIST_REMOVE(p, p_pglist); 403 p->p_pgrp = pgrp; 404 PROC_UNLOCK(p); 405 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 406 PGRP_UNLOCK(savepgrp); 407 PGRP_UNLOCK(pgrp); 408 if (LIST_EMPTY(&savepgrp->pg_members)) 409 pgdelete(savepgrp); 410 } 411 412 /* 413 * remove process from process group 414 */ 415 int 416 leavepgrp(p) 417 register struct proc *p; 418 { 419 struct pgrp *savepgrp; 420 421 sx_assert(&proctree_lock, SX_XLOCKED); 422 savepgrp = p->p_pgrp; 423 PGRP_LOCK(savepgrp); 424 PROC_LOCK(p); 425 LIST_REMOVE(p, p_pglist); 426 p->p_pgrp = NULL; 427 PROC_UNLOCK(p); 428 PGRP_UNLOCK(savepgrp); 429 if (LIST_EMPTY(&savepgrp->pg_members)) 430 pgdelete(savepgrp); 431 return (0); 432 } 433 434 /* 435 * delete a process group 436 */ 437 static void 438 pgdelete(pgrp) 439 register struct pgrp *pgrp; 440 { 441 struct session *savesess; 442 443 sx_assert(&proctree_lock, SX_XLOCKED); 444 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 445 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 446 447 /* 448 * Reset any sigio structures pointing to us as a result of 449 * F_SETOWN with our pgid. 450 */ 451 funsetownlst(&pgrp->pg_sigiolst); 452 453 PGRP_LOCK(pgrp); 454 if (pgrp->pg_session->s_ttyp != NULL && 455 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 456 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 457 LIST_REMOVE(pgrp, pg_hash); 458 savesess = pgrp->pg_session; 459 SESSRELE(savesess); 460 PGRP_UNLOCK(pgrp); 461 mtx_destroy(&pgrp->pg_mtx); 462 FREE(pgrp, M_PGRP); 463 } 464 465 static void 466 pgadjustjobc(pgrp, entering) 467 struct pgrp *pgrp; 468 int entering; 469 { 470 471 PGRP_LOCK(pgrp); 472 if (entering) 473 pgrp->pg_jobc++; 474 else { 475 --pgrp->pg_jobc; 476 if (pgrp->pg_jobc == 0) 477 orphanpg(pgrp); 478 } 479 PGRP_UNLOCK(pgrp); 480 } 481 482 /* 483 * Adjust pgrp jobc counters when specified process changes process group. 484 * We count the number of processes in each process group that "qualify" 485 * the group for terminal job control (those with a parent in a different 486 * process group of the same session). If that count reaches zero, the 487 * process group becomes orphaned. Check both the specified process' 488 * process group and that of its children. 489 * entering == 0 => p is leaving specified group. 490 * entering == 1 => p is entering specified group. 491 */ 492 void 493 fixjobc(p, pgrp, entering) 494 register struct proc *p; 495 register struct pgrp *pgrp; 496 int entering; 497 { 498 register struct pgrp *hispgrp; 499 register struct session *mysession; 500 501 sx_assert(&proctree_lock, SX_LOCKED); 502 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 503 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 504 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 505 506 /* 507 * Check p's parent to see whether p qualifies its own process 508 * group; if so, adjust count for p's process group. 509 */ 510 mysession = pgrp->pg_session; 511 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 512 hispgrp->pg_session == mysession) 513 pgadjustjobc(pgrp, entering); 514 515 /* 516 * Check this process' children to see whether they qualify 517 * their process groups; if so, adjust counts for children's 518 * process groups. 519 */ 520 LIST_FOREACH(p, &p->p_children, p_sibling) { 521 hispgrp = p->p_pgrp; 522 if (hispgrp == pgrp || 523 hispgrp->pg_session != mysession) 524 continue; 525 PROC_LOCK(p); 526 if (p->p_state == PRS_ZOMBIE) { 527 PROC_UNLOCK(p); 528 continue; 529 } 530 PROC_UNLOCK(p); 531 pgadjustjobc(hispgrp, entering); 532 } 533 } 534 535 /* 536 * A process group has become orphaned; 537 * if there are any stopped processes in the group, 538 * hang-up all process in that group. 539 */ 540 static void 541 orphanpg(pg) 542 struct pgrp *pg; 543 { 544 register struct proc *p; 545 546 PGRP_LOCK_ASSERT(pg, MA_OWNED); 547 548 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 549 PROC_LOCK(p); 550 if (P_SHOULDSTOP(p)) { 551 PROC_UNLOCK(p); 552 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 553 PROC_LOCK(p); 554 psignal(p, SIGHUP); 555 psignal(p, SIGCONT); 556 PROC_UNLOCK(p); 557 } 558 return; 559 } 560 PROC_UNLOCK(p); 561 } 562 } 563 564 void 565 sessrele(struct session *s) 566 { 567 int i; 568 569 SESS_LOCK(s); 570 i = --s->s_count; 571 SESS_UNLOCK(s); 572 if (i == 0) { 573 if (s->s_ttyp != NULL) 574 ttyrel(s->s_ttyp); 575 mtx_destroy(&s->s_mtx); 576 FREE(s, M_SESSION); 577 } 578 } 579 580 #include "opt_ddb.h" 581 #ifdef DDB 582 #include <ddb/ddb.h> 583 584 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 585 { 586 register struct pgrp *pgrp; 587 register struct proc *p; 588 register int i; 589 590 for (i = 0; i <= pgrphash; i++) { 591 if (!LIST_EMPTY(&pgrphashtbl[i])) { 592 printf("\tindx %d\n", i); 593 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 594 printf( 595 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 596 (void *)pgrp, (long)pgrp->pg_id, 597 (void *)pgrp->pg_session, 598 pgrp->pg_session->s_count, 599 (void *)LIST_FIRST(&pgrp->pg_members)); 600 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 601 printf("\t\tpid %ld addr %p pgrp %p\n", 602 (long)p->p_pid, (void *)p, 603 (void *)p->p_pgrp); 604 } 605 } 606 } 607 } 608 } 609 #endif /* DDB */ 610 611 /* 612 * Clear kinfo_proc and fill in any information that is common 613 * to all threads in the process. 614 * Must be called with the target process locked. 615 */ 616 static void 617 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 618 { 619 struct thread *td0; 620 struct tty *tp; 621 struct session *sp; 622 struct timeval tv; 623 struct ucred *cred; 624 struct sigacts *ps; 625 626 bzero(kp, sizeof(*kp)); 627 628 kp->ki_structsize = sizeof(*kp); 629 kp->ki_paddr = p; 630 PROC_LOCK_ASSERT(p, MA_OWNED); 631 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 632 kp->ki_args = p->p_args; 633 kp->ki_textvp = p->p_textvp; 634 #ifdef KTRACE 635 kp->ki_tracep = p->p_tracevp; 636 mtx_lock(&ktrace_mtx); 637 kp->ki_traceflag = p->p_traceflag; 638 mtx_unlock(&ktrace_mtx); 639 #endif 640 kp->ki_fd = p->p_fd; 641 kp->ki_vmspace = p->p_vmspace; 642 kp->ki_flag = p->p_flag; 643 cred = p->p_ucred; 644 if (cred) { 645 kp->ki_uid = cred->cr_uid; 646 kp->ki_ruid = cred->cr_ruid; 647 kp->ki_svuid = cred->cr_svuid; 648 /* XXX bde doesn't like KI_NGROUPS */ 649 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 650 bcopy(cred->cr_groups, kp->ki_groups, 651 kp->ki_ngroups * sizeof(gid_t)); 652 kp->ki_rgid = cred->cr_rgid; 653 kp->ki_svgid = cred->cr_svgid; 654 /* If jailed(cred), emulate the old P_JAILED flag. */ 655 if (jailed(cred)) { 656 kp->ki_flag |= P_JAILED; 657 /* If inside a jail, use 0 as a jail ID. */ 658 if (!jailed(curthread->td_ucred)) 659 kp->ki_jid = cred->cr_prison->pr_id; 660 } 661 } 662 ps = p->p_sigacts; 663 if (ps) { 664 mtx_lock(&ps->ps_mtx); 665 kp->ki_sigignore = ps->ps_sigignore; 666 kp->ki_sigcatch = ps->ps_sigcatch; 667 mtx_unlock(&ps->ps_mtx); 668 } 669 mtx_lock_spin(&sched_lock); 670 if (p->p_state != PRS_NEW && 671 p->p_state != PRS_ZOMBIE && 672 p->p_vmspace != NULL) { 673 struct vmspace *vm = p->p_vmspace; 674 675 kp->ki_size = vm->vm_map.size; 676 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 677 FOREACH_THREAD_IN_PROC(p, td0) { 678 if (!TD_IS_SWAPPED(td0)) 679 kp->ki_rssize += td0->td_kstack_pages; 680 if (td0->td_altkstack_obj != NULL) 681 kp->ki_rssize += td0->td_altkstack_pages; 682 } 683 kp->ki_swrss = vm->vm_swrss; 684 kp->ki_tsize = vm->vm_tsize; 685 kp->ki_dsize = vm->vm_dsize; 686 kp->ki_ssize = vm->vm_ssize; 687 } else if (p->p_state == PRS_ZOMBIE) 688 kp->ki_stat = SZOMB; 689 kp->ki_sflag = p->p_sflag; 690 kp->ki_swtime = p->p_swtime; 691 kp->ki_pid = p->p_pid; 692 kp->ki_nice = p->p_nice; 693 bintime2timeval(&p->p_rux.rux_runtime, &tv); 694 kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 695 mtx_unlock_spin(&sched_lock); 696 if ((p->p_sflag & PS_INMEM) && p->p_stats != NULL) { 697 kp->ki_start = p->p_stats->p_start; 698 timevaladd(&kp->ki_start, &boottime); 699 kp->ki_rusage = p->p_stats->p_ru; 700 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 701 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 702 703 /* Some callers want child-times in a single value */ 704 kp->ki_childtime = kp->ki_childstime; 705 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 706 } 707 tp = NULL; 708 if (p->p_pgrp) { 709 kp->ki_pgid = p->p_pgrp->pg_id; 710 kp->ki_jobc = p->p_pgrp->pg_jobc; 711 sp = p->p_pgrp->pg_session; 712 713 if (sp != NULL) { 714 kp->ki_sid = sp->s_sid; 715 SESS_LOCK(sp); 716 strlcpy(kp->ki_login, sp->s_login, 717 sizeof(kp->ki_login)); 718 if (sp->s_ttyvp) 719 kp->ki_kiflag |= KI_CTTY; 720 if (SESS_LEADER(p)) 721 kp->ki_kiflag |= KI_SLEADER; 722 tp = sp->s_ttyp; 723 SESS_UNLOCK(sp); 724 } 725 } 726 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 727 kp->ki_tdev = dev2udev(tp->t_dev); 728 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 729 if (tp->t_session) 730 kp->ki_tsid = tp->t_session->s_sid; 731 } else 732 kp->ki_tdev = NODEV; 733 if (p->p_comm[0] != '\0') { 734 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 735 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 736 } 737 if (p->p_sysent && p->p_sysent->sv_name != NULL && 738 p->p_sysent->sv_name[0] != '\0') 739 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 740 kp->ki_siglist = p->p_siglist; 741 kp->ki_xstat = p->p_xstat; 742 kp->ki_acflag = p->p_acflag; 743 kp->ki_lock = p->p_lock; 744 if (p->p_pptr) 745 kp->ki_ppid = p->p_pptr->p_pid; 746 } 747 748 /* 749 * Fill in information that is thread specific. 750 * Must be called with sched_lock locked. 751 */ 752 static void 753 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 754 { 755 struct ksegrp *kg; 756 struct proc *p; 757 758 p = td->td_proc; 759 760 if (td->td_wmesg != NULL) 761 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 762 else 763 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 764 if (TD_ON_LOCK(td)) { 765 kp->ki_kiflag |= KI_LOCKBLOCK; 766 strlcpy(kp->ki_lockname, td->td_lockname, 767 sizeof(kp->ki_lockname)); 768 } else { 769 kp->ki_kiflag &= ~KI_LOCKBLOCK; 770 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 771 } 772 773 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 774 if (TD_ON_RUNQ(td) || 775 TD_CAN_RUN(td) || 776 TD_IS_RUNNING(td)) { 777 kp->ki_stat = SRUN; 778 } else if (P_SHOULDSTOP(p)) { 779 kp->ki_stat = SSTOP; 780 } else if (TD_IS_SLEEPING(td)) { 781 kp->ki_stat = SSLEEP; 782 } else if (TD_ON_LOCK(td)) { 783 kp->ki_stat = SLOCK; 784 } else { 785 kp->ki_stat = SWAIT; 786 } 787 } else { 788 kp->ki_stat = SIDL; 789 } 790 791 kg = td->td_ksegrp; 792 793 /* things in the KSE GROUP */ 794 kp->ki_estcpu = kg->kg_estcpu; 795 kp->ki_slptime = kg->kg_slptime; 796 kp->ki_pri.pri_user = kg->kg_user_pri; 797 kp->ki_pri.pri_class = kg->kg_pri_class; 798 799 /* Things in the thread */ 800 kp->ki_wchan = td->td_wchan; 801 kp->ki_pri.pri_level = td->td_priority; 802 kp->ki_pri.pri_native = td->td_base_pri; 803 kp->ki_lastcpu = td->td_lastcpu; 804 kp->ki_oncpu = td->td_oncpu; 805 kp->ki_tdflags = td->td_flags; 806 kp->ki_tid = td->td_tid; 807 kp->ki_numthreads = p->p_numthreads; 808 kp->ki_pcb = td->td_pcb; 809 kp->ki_kstack = (void *)td->td_kstack; 810 kp->ki_pctcpu = sched_pctcpu(td); 811 812 /* We can't get this anymore but ps etc never used it anyway. */ 813 kp->ki_rqindex = 0; 814 815 SIGSETOR(kp->ki_siglist, td->td_siglist); 816 kp->ki_sigmask = td->td_sigmask; 817 } 818 819 /* 820 * Fill in a kinfo_proc structure for the specified process. 821 * Must be called with the target process locked. 822 */ 823 void 824 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 825 { 826 827 fill_kinfo_proc_only(p, kp); 828 mtx_lock_spin(&sched_lock); 829 if (FIRST_THREAD_IN_PROC(p) != NULL) 830 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 831 mtx_unlock_spin(&sched_lock); 832 } 833 834 struct pstats * 835 pstats_alloc(void) 836 { 837 838 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 839 } 840 841 /* 842 * Copy parts of p_stats; zero the rest of p_stats (statistics). 843 */ 844 void 845 pstats_fork(struct pstats *src, struct pstats *dst) 846 { 847 848 bzero(&dst->pstat_startzero, 849 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 850 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 851 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 852 } 853 854 void 855 pstats_free(struct pstats *ps) 856 { 857 858 free(ps, M_SUBPROC); 859 } 860 861 /* 862 * Locate a zombie process by number 863 */ 864 struct proc * 865 zpfind(pid_t pid) 866 { 867 struct proc *p; 868 869 sx_slock(&allproc_lock); 870 LIST_FOREACH(p, &zombproc, p_list) 871 if (p->p_pid == pid) { 872 PROC_LOCK(p); 873 break; 874 } 875 sx_sunlock(&allproc_lock); 876 return (p); 877 } 878 879 #define KERN_PROC_ZOMBMASK 0x3 880 #define KERN_PROC_NOTHREADS 0x4 881 882 /* 883 * Must be called with the process locked and will return with it unlocked. 884 */ 885 static int 886 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 887 { 888 struct thread *td; 889 struct kinfo_proc kinfo_proc; 890 int error = 0; 891 struct proc *np; 892 pid_t pid = p->p_pid; 893 894 PROC_LOCK_ASSERT(p, MA_OWNED); 895 896 fill_kinfo_proc_only(p, &kinfo_proc); 897 if (flags & KERN_PROC_NOTHREADS) { 898 mtx_lock_spin(&sched_lock); 899 if (FIRST_THREAD_IN_PROC(p) != NULL) 900 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), &kinfo_proc); 901 mtx_unlock_spin(&sched_lock); 902 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 903 sizeof(kinfo_proc)); 904 } else { 905 mtx_lock_spin(&sched_lock); 906 if (FIRST_THREAD_IN_PROC(p) != NULL) 907 FOREACH_THREAD_IN_PROC(p, td) { 908 fill_kinfo_thread(td, &kinfo_proc); 909 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 910 sizeof(kinfo_proc)); 911 if (error) 912 break; 913 } 914 else 915 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 916 sizeof(kinfo_proc)); 917 mtx_unlock_spin(&sched_lock); 918 } 919 PROC_UNLOCK(p); 920 if (error) 921 return (error); 922 if (flags & KERN_PROC_ZOMBMASK) 923 np = zpfind(pid); 924 else { 925 if (pid == 0) 926 return (0); 927 np = pfind(pid); 928 } 929 if (np == NULL) 930 return EAGAIN; 931 if (np != p) { 932 PROC_UNLOCK(np); 933 return EAGAIN; 934 } 935 PROC_UNLOCK(np); 936 return (0); 937 } 938 939 static int 940 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 941 { 942 int *name = (int*) arg1; 943 u_int namelen = arg2; 944 struct proc *p; 945 int flags, doingzomb, oid_number; 946 int error = 0; 947 948 oid_number = oidp->oid_number; 949 if (oid_number != KERN_PROC_ALL && 950 (oid_number & KERN_PROC_INC_THREAD) == 0) 951 flags = KERN_PROC_NOTHREADS; 952 else { 953 flags = 0; 954 oid_number &= ~KERN_PROC_INC_THREAD; 955 } 956 if (oid_number == KERN_PROC_PID) { 957 if (namelen != 1) 958 return (EINVAL); 959 error = sysctl_wire_old_buffer(req, 0); 960 if (error) 961 return (error); 962 p = pfind((pid_t)name[0]); 963 if (!p) 964 return (ESRCH); 965 if ((error = p_cansee(curthread, p))) { 966 PROC_UNLOCK(p); 967 return (error); 968 } 969 error = sysctl_out_proc(p, req, flags); 970 return (error); 971 } 972 973 switch (oid_number) { 974 case KERN_PROC_ALL: 975 if (namelen != 0) 976 return (EINVAL); 977 break; 978 case KERN_PROC_PROC: 979 if (namelen != 0 && namelen != 1) 980 return (EINVAL); 981 break; 982 default: 983 if (namelen != 1) 984 return (EINVAL); 985 break; 986 } 987 988 if (!req->oldptr) { 989 /* overestimate by 5 procs */ 990 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 991 if (error) 992 return (error); 993 } 994 error = sysctl_wire_old_buffer(req, 0); 995 if (error != 0) 996 return (error); 997 sx_slock(&allproc_lock); 998 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 999 if (!doingzomb) 1000 p = LIST_FIRST(&allproc); 1001 else 1002 p = LIST_FIRST(&zombproc); 1003 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1004 /* 1005 * Skip embryonic processes. 1006 */ 1007 mtx_lock_spin(&sched_lock); 1008 if (p->p_state == PRS_NEW) { 1009 mtx_unlock_spin(&sched_lock); 1010 continue; 1011 } 1012 mtx_unlock_spin(&sched_lock); 1013 PROC_LOCK(p); 1014 /* 1015 * Show a user only appropriate processes. 1016 */ 1017 if (p_cansee(curthread, p)) { 1018 PROC_UNLOCK(p); 1019 continue; 1020 } 1021 /* 1022 * TODO - make more efficient (see notes below). 1023 * do by session. 1024 */ 1025 switch (oid_number) { 1026 1027 case KERN_PROC_GID: 1028 if (p->p_ucred == NULL || 1029 p->p_ucred->cr_gid != (gid_t)name[0]) { 1030 PROC_UNLOCK(p); 1031 continue; 1032 } 1033 break; 1034 1035 case KERN_PROC_PGRP: 1036 /* could do this by traversing pgrp */ 1037 if (p->p_pgrp == NULL || 1038 p->p_pgrp->pg_id != (pid_t)name[0]) { 1039 PROC_UNLOCK(p); 1040 continue; 1041 } 1042 break; 1043 1044 case KERN_PROC_RGID: 1045 if (p->p_ucred == NULL || 1046 p->p_ucred->cr_rgid != (gid_t)name[0]) { 1047 PROC_UNLOCK(p); 1048 continue; 1049 } 1050 break; 1051 1052 case KERN_PROC_SESSION: 1053 if (p->p_session == NULL || 1054 p->p_session->s_sid != (pid_t)name[0]) { 1055 PROC_UNLOCK(p); 1056 continue; 1057 } 1058 break; 1059 1060 case KERN_PROC_TTY: 1061 if ((p->p_flag & P_CONTROLT) == 0 || 1062 p->p_session == NULL) { 1063 PROC_UNLOCK(p); 1064 continue; 1065 } 1066 SESS_LOCK(p->p_session); 1067 if (p->p_session->s_ttyp == NULL || 1068 dev2udev(p->p_session->s_ttyp->t_dev) != 1069 (dev_t)name[0]) { 1070 SESS_UNLOCK(p->p_session); 1071 PROC_UNLOCK(p); 1072 continue; 1073 } 1074 SESS_UNLOCK(p->p_session); 1075 break; 1076 1077 case KERN_PROC_UID: 1078 if (p->p_ucred == NULL || 1079 p->p_ucred->cr_uid != (uid_t)name[0]) { 1080 PROC_UNLOCK(p); 1081 continue; 1082 } 1083 break; 1084 1085 case KERN_PROC_RUID: 1086 if (p->p_ucred == NULL || 1087 p->p_ucred->cr_ruid != (uid_t)name[0]) { 1088 PROC_UNLOCK(p); 1089 continue; 1090 } 1091 break; 1092 1093 case KERN_PROC_PROC: 1094 break; 1095 1096 default: 1097 break; 1098 1099 } 1100 1101 error = sysctl_out_proc(p, req, flags | doingzomb); 1102 if (error) { 1103 sx_sunlock(&allproc_lock); 1104 return (error); 1105 } 1106 } 1107 } 1108 sx_sunlock(&allproc_lock); 1109 return (0); 1110 } 1111 1112 struct pargs * 1113 pargs_alloc(int len) 1114 { 1115 struct pargs *pa; 1116 1117 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1118 M_WAITOK); 1119 refcount_init(&pa->ar_ref, 1); 1120 pa->ar_length = len; 1121 return (pa); 1122 } 1123 1124 void 1125 pargs_free(struct pargs *pa) 1126 { 1127 1128 FREE(pa, M_PARGS); 1129 } 1130 1131 void 1132 pargs_hold(struct pargs *pa) 1133 { 1134 1135 if (pa == NULL) 1136 return; 1137 refcount_acquire(&pa->ar_ref); 1138 } 1139 1140 void 1141 pargs_drop(struct pargs *pa) 1142 { 1143 1144 if (pa == NULL) 1145 return; 1146 if (refcount_release(&pa->ar_ref)) 1147 pargs_free(pa); 1148 } 1149 1150 /* 1151 * This sysctl allows a process to retrieve the argument list or process 1152 * title for another process without groping around in the address space 1153 * of the other process. It also allow a process to set its own "process 1154 * title to a string of its own choice. 1155 */ 1156 static int 1157 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1158 { 1159 int *name = (int*) arg1; 1160 u_int namelen = arg2; 1161 struct pargs *newpa, *pa; 1162 struct proc *p; 1163 int error = 0; 1164 1165 if (namelen != 1) 1166 return (EINVAL); 1167 1168 p = pfind((pid_t)name[0]); 1169 if (!p) 1170 return (ESRCH); 1171 1172 if ((error = p_cansee(curthread, p)) != 0) { 1173 PROC_UNLOCK(p); 1174 return (error); 1175 } 1176 1177 if (req->newptr && curproc != p) { 1178 PROC_UNLOCK(p); 1179 return (EPERM); 1180 } 1181 1182 pa = p->p_args; 1183 pargs_hold(pa); 1184 PROC_UNLOCK(p); 1185 if (req->oldptr != NULL && pa != NULL) 1186 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1187 pargs_drop(pa); 1188 if (error != 0 || req->newptr == NULL) 1189 return (error); 1190 1191 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1192 return (ENOMEM); 1193 newpa = pargs_alloc(req->newlen); 1194 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1195 if (error != 0) { 1196 pargs_free(newpa); 1197 return (error); 1198 } 1199 PROC_LOCK(p); 1200 pa = p->p_args; 1201 p->p_args = newpa; 1202 PROC_UNLOCK(p); 1203 pargs_drop(pa); 1204 return (0); 1205 } 1206 1207 /* 1208 * This sysctl allows a process to retrieve the path of the executable for 1209 * itself or another process. 1210 */ 1211 static int 1212 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1213 { 1214 pid_t *pidp = (pid_t *)arg1; 1215 unsigned int arglen = arg2; 1216 struct proc *p; 1217 struct vnode *vp; 1218 char *retbuf, *freebuf; 1219 int error; 1220 1221 if (arglen != 1) 1222 return (EINVAL); 1223 if (*pidp == -1) { /* -1 means this process */ 1224 p = req->td->td_proc; 1225 } else { 1226 p = pfind(*pidp); 1227 if (p == NULL) 1228 return (ESRCH); 1229 if ((error = p_cansee(curthread, p)) != 0) { 1230 PROC_UNLOCK(p); 1231 return (error); 1232 } 1233 } 1234 1235 vp = p->p_textvp; 1236 vref(vp); 1237 if (*pidp != -1) 1238 PROC_UNLOCK(p); 1239 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1240 vrele(vp); 1241 if (error) 1242 return (error); 1243 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1244 free(freebuf, M_TEMP); 1245 return (error); 1246 } 1247 1248 static int 1249 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1250 { 1251 struct proc *p; 1252 char *sv_name; 1253 int *name; 1254 int namelen; 1255 int error; 1256 1257 namelen = arg2; 1258 if (namelen != 1) 1259 return (EINVAL); 1260 1261 name = (int *)arg1; 1262 if ((p = pfind((pid_t)name[0])) == NULL) 1263 return (ESRCH); 1264 if ((error = p_cansee(curthread, p))) { 1265 PROC_UNLOCK(p); 1266 return (error); 1267 } 1268 sv_name = p->p_sysent->sv_name; 1269 PROC_UNLOCK(p); 1270 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1271 } 1272 1273 1274 static SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1275 1276 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1277 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1278 1279 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1280 sysctl_kern_proc, "Process table"); 1281 1282 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1283 sysctl_kern_proc, "Process table"); 1284 1285 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1286 sysctl_kern_proc, "Process table"); 1287 1288 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1289 sysctl_kern_proc, "Process table"); 1290 1291 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1292 sysctl_kern_proc, "Process table"); 1293 1294 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1295 sysctl_kern_proc, "Process table"); 1296 1297 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1298 sysctl_kern_proc, "Process table"); 1299 1300 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1301 sysctl_kern_proc, "Process table"); 1302 1303 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1304 sysctl_kern_proc, "Return process table, no threads"); 1305 1306 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1307 CTLFLAG_RW | CTLFLAG_ANYBODY, 1308 sysctl_kern_proc_args, "Process argument list"); 1309 1310 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1311 sysctl_kern_proc_pathname, "Process executable path"); 1312 1313 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1314 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1315 1316 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1317 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1318 1319 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1320 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1321 1322 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1323 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1324 1325 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1326 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1327 1328 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1329 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1330 1331 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1332 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1333 1334 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1335 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1336 1337 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1338 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1339 1340 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1341 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1342