1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/refcount.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysent.h> 53 #include <sys/sched.h> 54 #include <sys/smp.h> 55 #include <sys/stack.h> 56 #include <sys/sysctl.h> 57 #include <sys/filedesc.h> 58 #include <sys/tty.h> 59 #include <sys/signalvar.h> 60 #include <sys/sdt.h> 61 #include <sys/sx.h> 62 #include <sys/user.h> 63 #include <sys/jail.h> 64 #include <sys/vnode.h> 65 #include <sys/eventhandler.h> 66 #ifdef KTRACE 67 #include <sys/uio.h> 68 #include <sys/ktrace.h> 69 #endif 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/vm.h> 76 #include <vm/vm_extern.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_object.h> 80 #include <vm/uma.h> 81 82 SDT_PROVIDER_DEFINE(proc); 83 SDT_PROBE_DEFINE(proc, kernel, ctor, entry); 84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 88 SDT_PROBE_DEFINE(proc, kernel, ctor, return); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 93 SDT_PROBE_DEFINE(proc, kernel, dtor, entry); 94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 98 SDT_PROBE_DEFINE(proc, kernel, dtor, return); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 102 SDT_PROBE_DEFINE(proc, kernel, init, entry); 103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 106 SDT_PROBE_DEFINE(proc, kernel, init, return); 107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 110 111 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 112 MALLOC_DEFINE(M_SESSION, "session", "session header"); 113 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 114 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 115 116 static void doenterpgrp(struct proc *, struct pgrp *); 117 static void orphanpg(struct pgrp *pg); 118 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 119 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 120 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 121 int preferthread); 122 static void pgadjustjobc(struct pgrp *pgrp, int entering); 123 static void pgdelete(struct pgrp *); 124 static int proc_ctor(void *mem, int size, void *arg, int flags); 125 static void proc_dtor(void *mem, int size, void *arg); 126 static int proc_init(void *mem, int size, int flags); 127 static void proc_fini(void *mem, int size); 128 static void pargs_free(struct pargs *pa); 129 130 /* 131 * Other process lists 132 */ 133 struct pidhashhead *pidhashtbl; 134 u_long pidhash; 135 struct pgrphashhead *pgrphashtbl; 136 u_long pgrphash; 137 struct proclist allproc; 138 struct proclist zombproc; 139 struct sx allproc_lock; 140 struct sx proctree_lock; 141 struct mtx ppeers_lock; 142 uma_zone_t proc_zone; 143 uma_zone_t ithread_zone; 144 145 int kstack_pages = KSTACK_PAGES; 146 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 147 148 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 149 150 /* 151 * Initialize global process hashing structures. 152 */ 153 void 154 procinit() 155 { 156 157 sx_init(&allproc_lock, "allproc"); 158 sx_init(&proctree_lock, "proctree"); 159 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 160 LIST_INIT(&allproc); 161 LIST_INIT(&zombproc); 162 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 163 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 164 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 165 proc_ctor, proc_dtor, proc_init, proc_fini, 166 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 167 uihashinit(); 168 } 169 170 /* 171 * Prepare a proc for use. 172 */ 173 static int 174 proc_ctor(void *mem, int size, void *arg, int flags) 175 { 176 struct proc *p; 177 178 p = (struct proc *)mem; 179 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 180 EVENTHANDLER_INVOKE(process_ctor, p); 181 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 182 return (0); 183 } 184 185 /* 186 * Reclaim a proc after use. 187 */ 188 static void 189 proc_dtor(void *mem, int size, void *arg) 190 { 191 struct proc *p; 192 struct thread *td; 193 194 /* INVARIANTS checks go here */ 195 p = (struct proc *)mem; 196 td = FIRST_THREAD_IN_PROC(p); 197 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 198 if (td != NULL) { 199 #ifdef INVARIANTS 200 KASSERT((p->p_numthreads == 1), 201 ("bad number of threads in exiting process")); 202 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 203 #endif 204 /* Free all OSD associated to this thread. */ 205 osd_thread_exit(td); 206 207 /* Dispose of an alternate kstack, if it exists. 208 * XXX What if there are more than one thread in the proc? 209 * The first thread in the proc is special and not 210 * freed, so you gotta do this here. 211 */ 212 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 213 vm_thread_dispose_altkstack(td); 214 } 215 EVENTHANDLER_INVOKE(process_dtor, p); 216 if (p->p_ksi != NULL) 217 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 218 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 219 } 220 221 /* 222 * Initialize type-stable parts of a proc (when newly created). 223 */ 224 static int 225 proc_init(void *mem, int size, int flags) 226 { 227 struct proc *p; 228 229 p = (struct proc *)mem; 230 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 231 p->p_sched = (struct p_sched *)&p[1]; 232 bzero(&p->p_mtx, sizeof(struct mtx)); 233 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 234 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 235 cv_init(&p->p_pwait, "ppwait"); 236 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 237 EVENTHANDLER_INVOKE(process_init, p); 238 p->p_stats = pstats_alloc(); 239 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 240 return (0); 241 } 242 243 /* 244 * UMA should ensure that this function is never called. 245 * Freeing a proc structure would violate type stability. 246 */ 247 static void 248 proc_fini(void *mem, int size) 249 { 250 #ifdef notnow 251 struct proc *p; 252 253 p = (struct proc *)mem; 254 EVENTHANDLER_INVOKE(process_fini, p); 255 pstats_free(p->p_stats); 256 thread_free(FIRST_THREAD_IN_PROC(p)); 257 mtx_destroy(&p->p_mtx); 258 if (p->p_ksi != NULL) 259 ksiginfo_free(p->p_ksi); 260 #else 261 panic("proc reclaimed"); 262 #endif 263 } 264 265 /* 266 * Is p an inferior of the current process? 267 */ 268 int 269 inferior(p) 270 register struct proc *p; 271 { 272 273 sx_assert(&proctree_lock, SX_LOCKED); 274 for (; p != curproc; p = p->p_pptr) 275 if (p->p_pid == 0) 276 return (0); 277 return (1); 278 } 279 280 /* 281 * Locate a process by number; return only "live" processes -- i.e., neither 282 * zombies nor newly born but incompletely initialized processes. By not 283 * returning processes in the PRS_NEW state, we allow callers to avoid 284 * testing for that condition to avoid dereferencing p_ucred, et al. 285 */ 286 struct proc * 287 pfind(pid) 288 register pid_t pid; 289 { 290 register struct proc *p; 291 292 sx_slock(&allproc_lock); 293 LIST_FOREACH(p, PIDHASH(pid), p_hash) 294 if (p->p_pid == pid) { 295 if (p->p_state == PRS_NEW) { 296 p = NULL; 297 break; 298 } 299 PROC_LOCK(p); 300 break; 301 } 302 sx_sunlock(&allproc_lock); 303 return (p); 304 } 305 306 /* 307 * Locate a process group by number. 308 * The caller must hold proctree_lock. 309 */ 310 struct pgrp * 311 pgfind(pgid) 312 register pid_t pgid; 313 { 314 register struct pgrp *pgrp; 315 316 sx_assert(&proctree_lock, SX_LOCKED); 317 318 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 319 if (pgrp->pg_id == pgid) { 320 PGRP_LOCK(pgrp); 321 return (pgrp); 322 } 323 } 324 return (NULL); 325 } 326 327 /* 328 * Create a new process group. 329 * pgid must be equal to the pid of p. 330 * Begin a new session if required. 331 */ 332 int 333 enterpgrp(p, pgid, pgrp, sess) 334 register struct proc *p; 335 pid_t pgid; 336 struct pgrp *pgrp; 337 struct session *sess; 338 { 339 struct pgrp *pgrp2; 340 341 sx_assert(&proctree_lock, SX_XLOCKED); 342 343 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 344 KASSERT(p->p_pid == pgid, 345 ("enterpgrp: new pgrp and pid != pgid")); 346 347 pgrp2 = pgfind(pgid); 348 349 KASSERT(pgrp2 == NULL, 350 ("enterpgrp: pgrp with pgid exists")); 351 KASSERT(!SESS_LEADER(p), 352 ("enterpgrp: session leader attempted setpgrp")); 353 354 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 355 356 if (sess != NULL) { 357 /* 358 * new session 359 */ 360 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 361 PROC_LOCK(p); 362 p->p_flag &= ~P_CONTROLT; 363 PROC_UNLOCK(p); 364 PGRP_LOCK(pgrp); 365 sess->s_leader = p; 366 sess->s_sid = p->p_pid; 367 refcount_init(&sess->s_count, 1); 368 sess->s_ttyvp = NULL; 369 sess->s_ttyp = NULL; 370 bcopy(p->p_session->s_login, sess->s_login, 371 sizeof(sess->s_login)); 372 pgrp->pg_session = sess; 373 KASSERT(p == curproc, 374 ("enterpgrp: mksession and p != curproc")); 375 } else { 376 pgrp->pg_session = p->p_session; 377 sess_hold(pgrp->pg_session); 378 PGRP_LOCK(pgrp); 379 } 380 pgrp->pg_id = pgid; 381 LIST_INIT(&pgrp->pg_members); 382 383 /* 384 * As we have an exclusive lock of proctree_lock, 385 * this should not deadlock. 386 */ 387 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 388 pgrp->pg_jobc = 0; 389 SLIST_INIT(&pgrp->pg_sigiolst); 390 PGRP_UNLOCK(pgrp); 391 392 doenterpgrp(p, pgrp); 393 394 return (0); 395 } 396 397 /* 398 * Move p to an existing process group 399 */ 400 int 401 enterthispgrp(p, pgrp) 402 register struct proc *p; 403 struct pgrp *pgrp; 404 { 405 406 sx_assert(&proctree_lock, SX_XLOCKED); 407 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 408 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 409 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 410 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 411 KASSERT(pgrp->pg_session == p->p_session, 412 ("%s: pgrp's session %p, p->p_session %p.\n", 413 __func__, 414 pgrp->pg_session, 415 p->p_session)); 416 KASSERT(pgrp != p->p_pgrp, 417 ("%s: p belongs to pgrp.", __func__)); 418 419 doenterpgrp(p, pgrp); 420 421 return (0); 422 } 423 424 /* 425 * Move p to a process group 426 */ 427 static void 428 doenterpgrp(p, pgrp) 429 struct proc *p; 430 struct pgrp *pgrp; 431 { 432 struct pgrp *savepgrp; 433 434 sx_assert(&proctree_lock, SX_XLOCKED); 435 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 436 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 437 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 438 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 439 440 savepgrp = p->p_pgrp; 441 442 /* 443 * Adjust eligibility of affected pgrps to participate in job control. 444 * Increment eligibility counts before decrementing, otherwise we 445 * could reach 0 spuriously during the first call. 446 */ 447 fixjobc(p, pgrp, 1); 448 fixjobc(p, p->p_pgrp, 0); 449 450 PGRP_LOCK(pgrp); 451 PGRP_LOCK(savepgrp); 452 PROC_LOCK(p); 453 LIST_REMOVE(p, p_pglist); 454 p->p_pgrp = pgrp; 455 PROC_UNLOCK(p); 456 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 457 PGRP_UNLOCK(savepgrp); 458 PGRP_UNLOCK(pgrp); 459 if (LIST_EMPTY(&savepgrp->pg_members)) 460 pgdelete(savepgrp); 461 } 462 463 /* 464 * remove process from process group 465 */ 466 int 467 leavepgrp(p) 468 register struct proc *p; 469 { 470 struct pgrp *savepgrp; 471 472 sx_assert(&proctree_lock, SX_XLOCKED); 473 savepgrp = p->p_pgrp; 474 PGRP_LOCK(savepgrp); 475 PROC_LOCK(p); 476 LIST_REMOVE(p, p_pglist); 477 p->p_pgrp = NULL; 478 PROC_UNLOCK(p); 479 PGRP_UNLOCK(savepgrp); 480 if (LIST_EMPTY(&savepgrp->pg_members)) 481 pgdelete(savepgrp); 482 return (0); 483 } 484 485 /* 486 * delete a process group 487 */ 488 static void 489 pgdelete(pgrp) 490 register struct pgrp *pgrp; 491 { 492 struct session *savesess; 493 struct tty *tp; 494 495 sx_assert(&proctree_lock, SX_XLOCKED); 496 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 497 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 498 499 /* 500 * Reset any sigio structures pointing to us as a result of 501 * F_SETOWN with our pgid. 502 */ 503 funsetownlst(&pgrp->pg_sigiolst); 504 505 PGRP_LOCK(pgrp); 506 tp = pgrp->pg_session->s_ttyp; 507 LIST_REMOVE(pgrp, pg_hash); 508 savesess = pgrp->pg_session; 509 PGRP_UNLOCK(pgrp); 510 511 /* Remove the reference to the pgrp before deallocating it. */ 512 if (tp != NULL) { 513 tty_lock(tp); 514 tty_rel_pgrp(tp, pgrp); 515 } 516 517 mtx_destroy(&pgrp->pg_mtx); 518 free(pgrp, M_PGRP); 519 sess_release(savesess); 520 } 521 522 static void 523 pgadjustjobc(pgrp, entering) 524 struct pgrp *pgrp; 525 int entering; 526 { 527 528 PGRP_LOCK(pgrp); 529 if (entering) 530 pgrp->pg_jobc++; 531 else { 532 --pgrp->pg_jobc; 533 if (pgrp->pg_jobc == 0) 534 orphanpg(pgrp); 535 } 536 PGRP_UNLOCK(pgrp); 537 } 538 539 /* 540 * Adjust pgrp jobc counters when specified process changes process group. 541 * We count the number of processes in each process group that "qualify" 542 * the group for terminal job control (those with a parent in a different 543 * process group of the same session). If that count reaches zero, the 544 * process group becomes orphaned. Check both the specified process' 545 * process group and that of its children. 546 * entering == 0 => p is leaving specified group. 547 * entering == 1 => p is entering specified group. 548 */ 549 void 550 fixjobc(p, pgrp, entering) 551 register struct proc *p; 552 register struct pgrp *pgrp; 553 int entering; 554 { 555 register struct pgrp *hispgrp; 556 register struct session *mysession; 557 558 sx_assert(&proctree_lock, SX_LOCKED); 559 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 560 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 561 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 562 563 /* 564 * Check p's parent to see whether p qualifies its own process 565 * group; if so, adjust count for p's process group. 566 */ 567 mysession = pgrp->pg_session; 568 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 569 hispgrp->pg_session == mysession) 570 pgadjustjobc(pgrp, entering); 571 572 /* 573 * Check this process' children to see whether they qualify 574 * their process groups; if so, adjust counts for children's 575 * process groups. 576 */ 577 LIST_FOREACH(p, &p->p_children, p_sibling) { 578 hispgrp = p->p_pgrp; 579 if (hispgrp == pgrp || 580 hispgrp->pg_session != mysession) 581 continue; 582 PROC_LOCK(p); 583 if (p->p_state == PRS_ZOMBIE) { 584 PROC_UNLOCK(p); 585 continue; 586 } 587 PROC_UNLOCK(p); 588 pgadjustjobc(hispgrp, entering); 589 } 590 } 591 592 /* 593 * A process group has become orphaned; 594 * if there are any stopped processes in the group, 595 * hang-up all process in that group. 596 */ 597 static void 598 orphanpg(pg) 599 struct pgrp *pg; 600 { 601 register struct proc *p; 602 603 PGRP_LOCK_ASSERT(pg, MA_OWNED); 604 605 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 606 PROC_LOCK(p); 607 if (P_SHOULDSTOP(p)) { 608 PROC_UNLOCK(p); 609 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 610 PROC_LOCK(p); 611 psignal(p, SIGHUP); 612 psignal(p, SIGCONT); 613 PROC_UNLOCK(p); 614 } 615 return; 616 } 617 PROC_UNLOCK(p); 618 } 619 } 620 621 void 622 sess_hold(struct session *s) 623 { 624 625 refcount_acquire(&s->s_count); 626 } 627 628 void 629 sess_release(struct session *s) 630 { 631 632 if (refcount_release(&s->s_count)) { 633 if (s->s_ttyp != NULL) { 634 tty_lock(s->s_ttyp); 635 tty_rel_sess(s->s_ttyp, s); 636 } 637 mtx_destroy(&s->s_mtx); 638 free(s, M_SESSION); 639 } 640 } 641 642 #include "opt_ddb.h" 643 #ifdef DDB 644 #include <ddb/ddb.h> 645 646 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 647 { 648 register struct pgrp *pgrp; 649 register struct proc *p; 650 register int i; 651 652 for (i = 0; i <= pgrphash; i++) { 653 if (!LIST_EMPTY(&pgrphashtbl[i])) { 654 printf("\tindx %d\n", i); 655 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 656 printf( 657 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 658 (void *)pgrp, (long)pgrp->pg_id, 659 (void *)pgrp->pg_session, 660 pgrp->pg_session->s_count, 661 (void *)LIST_FIRST(&pgrp->pg_members)); 662 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 663 printf("\t\tpid %ld addr %p pgrp %p\n", 664 (long)p->p_pid, (void *)p, 665 (void *)p->p_pgrp); 666 } 667 } 668 } 669 } 670 } 671 #endif /* DDB */ 672 673 /* 674 * Calculate the kinfo_proc members which contain process-wide 675 * informations. 676 * Must be called with the target process locked. 677 */ 678 static void 679 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 680 { 681 struct thread *td; 682 683 PROC_LOCK_ASSERT(p, MA_OWNED); 684 685 kp->ki_estcpu = 0; 686 kp->ki_pctcpu = 0; 687 kp->ki_runtime = 0; 688 FOREACH_THREAD_IN_PROC(p, td) { 689 thread_lock(td); 690 kp->ki_pctcpu += sched_pctcpu(td); 691 kp->ki_runtime += cputick2usec(td->td_runtime); 692 kp->ki_estcpu += td->td_estcpu; 693 thread_unlock(td); 694 } 695 } 696 697 /* 698 * Clear kinfo_proc and fill in any information that is common 699 * to all threads in the process. 700 * Must be called with the target process locked. 701 */ 702 static void 703 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 704 { 705 struct thread *td0; 706 struct tty *tp; 707 struct session *sp; 708 struct ucred *cred; 709 struct sigacts *ps; 710 711 PROC_LOCK_ASSERT(p, MA_OWNED); 712 bzero(kp, sizeof(*kp)); 713 714 kp->ki_structsize = sizeof(*kp); 715 kp->ki_paddr = p; 716 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 717 kp->ki_args = p->p_args; 718 kp->ki_textvp = p->p_textvp; 719 #ifdef KTRACE 720 kp->ki_tracep = p->p_tracevp; 721 mtx_lock(&ktrace_mtx); 722 kp->ki_traceflag = p->p_traceflag; 723 mtx_unlock(&ktrace_mtx); 724 #endif 725 kp->ki_fd = p->p_fd; 726 kp->ki_vmspace = p->p_vmspace; 727 kp->ki_flag = p->p_flag; 728 cred = p->p_ucred; 729 if (cred) { 730 kp->ki_uid = cred->cr_uid; 731 kp->ki_ruid = cred->cr_ruid; 732 kp->ki_svuid = cred->cr_svuid; 733 /* XXX bde doesn't like KI_NGROUPS */ 734 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 735 bcopy(cred->cr_groups, kp->ki_groups, 736 kp->ki_ngroups * sizeof(gid_t)); 737 kp->ki_rgid = cred->cr_rgid; 738 kp->ki_svgid = cred->cr_svgid; 739 kp->ki_cr_flags = cred->cr_flags; 740 /* If jailed(cred), emulate the old P_JAILED flag. */ 741 if (jailed(cred)) { 742 kp->ki_flag |= P_JAILED; 743 /* If inside the jail, use 0 as a jail ID. */ 744 if (cred->cr_prison != curthread->td_ucred->cr_prison) 745 kp->ki_jid = cred->cr_prison->pr_id; 746 } 747 } 748 ps = p->p_sigacts; 749 if (ps) { 750 mtx_lock(&ps->ps_mtx); 751 kp->ki_sigignore = ps->ps_sigignore; 752 kp->ki_sigcatch = ps->ps_sigcatch; 753 mtx_unlock(&ps->ps_mtx); 754 } 755 PROC_SLOCK(p); 756 if (p->p_state != PRS_NEW && 757 p->p_state != PRS_ZOMBIE && 758 p->p_vmspace != NULL) { 759 struct vmspace *vm = p->p_vmspace; 760 761 kp->ki_size = vm->vm_map.size; 762 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 763 FOREACH_THREAD_IN_PROC(p, td0) { 764 if (!TD_IS_SWAPPED(td0)) 765 kp->ki_rssize += td0->td_kstack_pages; 766 if (td0->td_altkstack_obj != NULL) 767 kp->ki_rssize += td0->td_altkstack_pages; 768 } 769 kp->ki_swrss = vm->vm_swrss; 770 kp->ki_tsize = vm->vm_tsize; 771 kp->ki_dsize = vm->vm_dsize; 772 kp->ki_ssize = vm->vm_ssize; 773 } else if (p->p_state == PRS_ZOMBIE) 774 kp->ki_stat = SZOMB; 775 if (kp->ki_flag & P_INMEM) 776 kp->ki_sflag = PS_INMEM; 777 else 778 kp->ki_sflag = 0; 779 /* Calculate legacy swtime as seconds since 'swtick'. */ 780 kp->ki_swtime = (ticks - p->p_swtick) / hz; 781 kp->ki_pid = p->p_pid; 782 kp->ki_nice = p->p_nice; 783 rufetch(p, &kp->ki_rusage); 784 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 785 PROC_SUNLOCK(p); 786 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 787 kp->ki_start = p->p_stats->p_start; 788 timevaladd(&kp->ki_start, &boottime); 789 PROC_SLOCK(p); 790 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 791 PROC_SUNLOCK(p); 792 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 793 794 /* Some callers want child-times in a single value */ 795 kp->ki_childtime = kp->ki_childstime; 796 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 797 } 798 tp = NULL; 799 if (p->p_pgrp) { 800 kp->ki_pgid = p->p_pgrp->pg_id; 801 kp->ki_jobc = p->p_pgrp->pg_jobc; 802 sp = p->p_pgrp->pg_session; 803 804 if (sp != NULL) { 805 kp->ki_sid = sp->s_sid; 806 SESS_LOCK(sp); 807 strlcpy(kp->ki_login, sp->s_login, 808 sizeof(kp->ki_login)); 809 if (sp->s_ttyvp) 810 kp->ki_kiflag |= KI_CTTY; 811 if (SESS_LEADER(p)) 812 kp->ki_kiflag |= KI_SLEADER; 813 /* XXX proctree_lock */ 814 tp = sp->s_ttyp; 815 SESS_UNLOCK(sp); 816 } 817 } 818 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 819 kp->ki_tdev = tty_udev(tp); 820 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 821 if (tp->t_session) 822 kp->ki_tsid = tp->t_session->s_sid; 823 } else 824 kp->ki_tdev = NODEV; 825 if (p->p_comm[0] != '\0') 826 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 827 if (p->p_sysent && p->p_sysent->sv_name != NULL && 828 p->p_sysent->sv_name[0] != '\0') 829 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 830 kp->ki_siglist = p->p_siglist; 831 kp->ki_xstat = p->p_xstat; 832 kp->ki_acflag = p->p_acflag; 833 kp->ki_lock = p->p_lock; 834 if (p->p_pptr) 835 kp->ki_ppid = p->p_pptr->p_pid; 836 } 837 838 /* 839 * Fill in information that is thread specific. Must be called with p_slock 840 * locked. If 'preferthread' is set, overwrite certain process-related 841 * fields that are maintained for both threads and processes. 842 */ 843 static void 844 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 845 { 846 struct proc *p; 847 848 p = td->td_proc; 849 PROC_LOCK_ASSERT(p, MA_OWNED); 850 851 thread_lock(td); 852 if (td->td_wmesg != NULL) 853 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 854 else 855 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 856 if (td->td_name[0] != '\0') 857 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 858 if (TD_ON_LOCK(td)) { 859 kp->ki_kiflag |= KI_LOCKBLOCK; 860 strlcpy(kp->ki_lockname, td->td_lockname, 861 sizeof(kp->ki_lockname)); 862 } else { 863 kp->ki_kiflag &= ~KI_LOCKBLOCK; 864 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 865 } 866 867 if (p->p_state == PRS_NORMAL) { /* approximate. */ 868 if (TD_ON_RUNQ(td) || 869 TD_CAN_RUN(td) || 870 TD_IS_RUNNING(td)) { 871 kp->ki_stat = SRUN; 872 } else if (P_SHOULDSTOP(p)) { 873 kp->ki_stat = SSTOP; 874 } else if (TD_IS_SLEEPING(td)) { 875 kp->ki_stat = SSLEEP; 876 } else if (TD_ON_LOCK(td)) { 877 kp->ki_stat = SLOCK; 878 } else { 879 kp->ki_stat = SWAIT; 880 } 881 } else if (p->p_state == PRS_ZOMBIE) { 882 kp->ki_stat = SZOMB; 883 } else { 884 kp->ki_stat = SIDL; 885 } 886 887 /* Things in the thread */ 888 kp->ki_wchan = td->td_wchan; 889 kp->ki_pri.pri_level = td->td_priority; 890 kp->ki_pri.pri_native = td->td_base_pri; 891 kp->ki_lastcpu = td->td_lastcpu; 892 kp->ki_oncpu = td->td_oncpu; 893 kp->ki_tdflags = td->td_flags; 894 kp->ki_tid = td->td_tid; 895 kp->ki_numthreads = p->p_numthreads; 896 kp->ki_pcb = td->td_pcb; 897 kp->ki_kstack = (void *)td->td_kstack; 898 kp->ki_slptime = (ticks - td->td_slptick) / hz; 899 kp->ki_pri.pri_class = td->td_pri_class; 900 kp->ki_pri.pri_user = td->td_user_pri; 901 902 if (preferthread) { 903 kp->ki_runtime = cputick2usec(td->td_runtime); 904 kp->ki_pctcpu = sched_pctcpu(td); 905 kp->ki_estcpu = td->td_estcpu; 906 } 907 908 /* We can't get this anymore but ps etc never used it anyway. */ 909 kp->ki_rqindex = 0; 910 911 SIGSETOR(kp->ki_siglist, td->td_siglist); 912 kp->ki_sigmask = td->td_sigmask; 913 thread_unlock(td); 914 } 915 916 /* 917 * Fill in a kinfo_proc structure for the specified process. 918 * Must be called with the target process locked. 919 */ 920 void 921 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 922 { 923 924 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 925 926 fill_kinfo_proc_only(p, kp); 927 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 928 fill_kinfo_aggregate(p, kp); 929 } 930 931 struct pstats * 932 pstats_alloc(void) 933 { 934 935 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 936 } 937 938 /* 939 * Copy parts of p_stats; zero the rest of p_stats (statistics). 940 */ 941 void 942 pstats_fork(struct pstats *src, struct pstats *dst) 943 { 944 945 bzero(&dst->pstat_startzero, 946 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 947 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 948 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 949 } 950 951 void 952 pstats_free(struct pstats *ps) 953 { 954 955 free(ps, M_SUBPROC); 956 } 957 958 /* 959 * Locate a zombie process by number 960 */ 961 struct proc * 962 zpfind(pid_t pid) 963 { 964 struct proc *p; 965 966 sx_slock(&allproc_lock); 967 LIST_FOREACH(p, &zombproc, p_list) 968 if (p->p_pid == pid) { 969 PROC_LOCK(p); 970 break; 971 } 972 sx_sunlock(&allproc_lock); 973 return (p); 974 } 975 976 #define KERN_PROC_ZOMBMASK 0x3 977 #define KERN_PROC_NOTHREADS 0x4 978 979 /* 980 * Must be called with the process locked and will return with it unlocked. 981 */ 982 static int 983 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 984 { 985 struct thread *td; 986 struct kinfo_proc kinfo_proc; 987 int error = 0; 988 struct proc *np; 989 pid_t pid = p->p_pid; 990 991 PROC_LOCK_ASSERT(p, MA_OWNED); 992 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 993 994 fill_kinfo_proc(p, &kinfo_proc); 995 if (flags & KERN_PROC_NOTHREADS) 996 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 997 sizeof(kinfo_proc)); 998 else { 999 FOREACH_THREAD_IN_PROC(p, td) { 1000 fill_kinfo_thread(td, &kinfo_proc, 1); 1001 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 1002 sizeof(kinfo_proc)); 1003 if (error) 1004 break; 1005 } 1006 } 1007 PROC_UNLOCK(p); 1008 if (error) 1009 return (error); 1010 if (flags & KERN_PROC_ZOMBMASK) 1011 np = zpfind(pid); 1012 else { 1013 if (pid == 0) 1014 return (0); 1015 np = pfind(pid); 1016 } 1017 if (np == NULL) 1018 return (ESRCH); 1019 if (np != p) { 1020 PROC_UNLOCK(np); 1021 return (ESRCH); 1022 } 1023 PROC_UNLOCK(np); 1024 return (0); 1025 } 1026 1027 static int 1028 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1029 { 1030 int *name = (int*) arg1; 1031 u_int namelen = arg2; 1032 struct proc *p; 1033 int flags, doingzomb, oid_number; 1034 int error = 0; 1035 1036 oid_number = oidp->oid_number; 1037 if (oid_number != KERN_PROC_ALL && 1038 (oid_number & KERN_PROC_INC_THREAD) == 0) 1039 flags = KERN_PROC_NOTHREADS; 1040 else { 1041 flags = 0; 1042 oid_number &= ~KERN_PROC_INC_THREAD; 1043 } 1044 if (oid_number == KERN_PROC_PID) { 1045 if (namelen != 1) 1046 return (EINVAL); 1047 error = sysctl_wire_old_buffer(req, 0); 1048 if (error) 1049 return (error); 1050 p = pfind((pid_t)name[0]); 1051 if (!p) 1052 return (ESRCH); 1053 if ((error = p_cansee(curthread, p))) { 1054 PROC_UNLOCK(p); 1055 return (error); 1056 } 1057 error = sysctl_out_proc(p, req, flags); 1058 return (error); 1059 } 1060 1061 switch (oid_number) { 1062 case KERN_PROC_ALL: 1063 if (namelen != 0) 1064 return (EINVAL); 1065 break; 1066 case KERN_PROC_PROC: 1067 if (namelen != 0 && namelen != 1) 1068 return (EINVAL); 1069 break; 1070 default: 1071 if (namelen != 1) 1072 return (EINVAL); 1073 break; 1074 } 1075 1076 if (!req->oldptr) { 1077 /* overestimate by 5 procs */ 1078 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1079 if (error) 1080 return (error); 1081 } 1082 error = sysctl_wire_old_buffer(req, 0); 1083 if (error != 0) 1084 return (error); 1085 sx_slock(&allproc_lock); 1086 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1087 if (!doingzomb) 1088 p = LIST_FIRST(&allproc); 1089 else 1090 p = LIST_FIRST(&zombproc); 1091 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1092 /* 1093 * Skip embryonic processes. 1094 */ 1095 PROC_SLOCK(p); 1096 if (p->p_state == PRS_NEW) { 1097 PROC_SUNLOCK(p); 1098 continue; 1099 } 1100 PROC_SUNLOCK(p); 1101 PROC_LOCK(p); 1102 KASSERT(p->p_ucred != NULL, 1103 ("process credential is NULL for non-NEW proc")); 1104 /* 1105 * Show a user only appropriate processes. 1106 */ 1107 if (p_cansee(curthread, p)) { 1108 PROC_UNLOCK(p); 1109 continue; 1110 } 1111 /* 1112 * TODO - make more efficient (see notes below). 1113 * do by session. 1114 */ 1115 switch (oid_number) { 1116 1117 case KERN_PROC_GID: 1118 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1119 PROC_UNLOCK(p); 1120 continue; 1121 } 1122 break; 1123 1124 case KERN_PROC_PGRP: 1125 /* could do this by traversing pgrp */ 1126 if (p->p_pgrp == NULL || 1127 p->p_pgrp->pg_id != (pid_t)name[0]) { 1128 PROC_UNLOCK(p); 1129 continue; 1130 } 1131 break; 1132 1133 case KERN_PROC_RGID: 1134 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1135 PROC_UNLOCK(p); 1136 continue; 1137 } 1138 break; 1139 1140 case KERN_PROC_SESSION: 1141 if (p->p_session == NULL || 1142 p->p_session->s_sid != (pid_t)name[0]) { 1143 PROC_UNLOCK(p); 1144 continue; 1145 } 1146 break; 1147 1148 case KERN_PROC_TTY: 1149 if ((p->p_flag & P_CONTROLT) == 0 || 1150 p->p_session == NULL) { 1151 PROC_UNLOCK(p); 1152 continue; 1153 } 1154 /* XXX proctree_lock */ 1155 SESS_LOCK(p->p_session); 1156 if (p->p_session->s_ttyp == NULL || 1157 tty_udev(p->p_session->s_ttyp) != 1158 (dev_t)name[0]) { 1159 SESS_UNLOCK(p->p_session); 1160 PROC_UNLOCK(p); 1161 continue; 1162 } 1163 SESS_UNLOCK(p->p_session); 1164 break; 1165 1166 case KERN_PROC_UID: 1167 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1168 PROC_UNLOCK(p); 1169 continue; 1170 } 1171 break; 1172 1173 case KERN_PROC_RUID: 1174 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1175 PROC_UNLOCK(p); 1176 continue; 1177 } 1178 break; 1179 1180 case KERN_PROC_PROC: 1181 break; 1182 1183 default: 1184 break; 1185 1186 } 1187 1188 error = sysctl_out_proc(p, req, flags | doingzomb); 1189 if (error) { 1190 sx_sunlock(&allproc_lock); 1191 return (error); 1192 } 1193 } 1194 } 1195 sx_sunlock(&allproc_lock); 1196 return (0); 1197 } 1198 1199 struct pargs * 1200 pargs_alloc(int len) 1201 { 1202 struct pargs *pa; 1203 1204 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1205 M_WAITOK); 1206 refcount_init(&pa->ar_ref, 1); 1207 pa->ar_length = len; 1208 return (pa); 1209 } 1210 1211 static void 1212 pargs_free(struct pargs *pa) 1213 { 1214 1215 free(pa, M_PARGS); 1216 } 1217 1218 void 1219 pargs_hold(struct pargs *pa) 1220 { 1221 1222 if (pa == NULL) 1223 return; 1224 refcount_acquire(&pa->ar_ref); 1225 } 1226 1227 void 1228 pargs_drop(struct pargs *pa) 1229 { 1230 1231 if (pa == NULL) 1232 return; 1233 if (refcount_release(&pa->ar_ref)) 1234 pargs_free(pa); 1235 } 1236 1237 /* 1238 * This sysctl allows a process to retrieve the argument list or process 1239 * title for another process without groping around in the address space 1240 * of the other process. It also allow a process to set its own "process 1241 * title to a string of its own choice. 1242 */ 1243 static int 1244 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1245 { 1246 int *name = (int*) arg1; 1247 u_int namelen = arg2; 1248 struct pargs *newpa, *pa; 1249 struct proc *p; 1250 int error = 0; 1251 1252 if (namelen != 1) 1253 return (EINVAL); 1254 1255 p = pfind((pid_t)name[0]); 1256 if (!p) 1257 return (ESRCH); 1258 1259 if ((error = p_cansee(curthread, p)) != 0) { 1260 PROC_UNLOCK(p); 1261 return (error); 1262 } 1263 1264 if (req->newptr && curproc != p) { 1265 PROC_UNLOCK(p); 1266 return (EPERM); 1267 } 1268 1269 pa = p->p_args; 1270 pargs_hold(pa); 1271 PROC_UNLOCK(p); 1272 if (req->oldptr != NULL && pa != NULL) 1273 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1274 pargs_drop(pa); 1275 if (error != 0 || req->newptr == NULL) 1276 return (error); 1277 1278 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1279 return (ENOMEM); 1280 newpa = pargs_alloc(req->newlen); 1281 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1282 if (error != 0) { 1283 pargs_free(newpa); 1284 return (error); 1285 } 1286 PROC_LOCK(p); 1287 pa = p->p_args; 1288 p->p_args = newpa; 1289 PROC_UNLOCK(p); 1290 pargs_drop(pa); 1291 return (0); 1292 } 1293 1294 /* 1295 * This sysctl allows a process to retrieve the path of the executable for 1296 * itself or another process. 1297 */ 1298 static int 1299 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1300 { 1301 pid_t *pidp = (pid_t *)arg1; 1302 unsigned int arglen = arg2; 1303 struct proc *p; 1304 struct vnode *vp; 1305 char *retbuf, *freebuf; 1306 int error, vfslocked; 1307 1308 if (arglen != 1) 1309 return (EINVAL); 1310 if (*pidp == -1) { /* -1 means this process */ 1311 p = req->td->td_proc; 1312 } else { 1313 p = pfind(*pidp); 1314 if (p == NULL) 1315 return (ESRCH); 1316 if ((error = p_cansee(curthread, p)) != 0) { 1317 PROC_UNLOCK(p); 1318 return (error); 1319 } 1320 } 1321 1322 vp = p->p_textvp; 1323 if (vp == NULL) { 1324 if (*pidp != -1) 1325 PROC_UNLOCK(p); 1326 return (0); 1327 } 1328 vref(vp); 1329 if (*pidp != -1) 1330 PROC_UNLOCK(p); 1331 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1332 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1333 vrele(vp); 1334 VFS_UNLOCK_GIANT(vfslocked); 1335 if (error) 1336 return (error); 1337 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1338 free(freebuf, M_TEMP); 1339 return (error); 1340 } 1341 1342 static int 1343 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1344 { 1345 struct proc *p; 1346 char *sv_name; 1347 int *name; 1348 int namelen; 1349 int error; 1350 1351 namelen = arg2; 1352 if (namelen != 1) 1353 return (EINVAL); 1354 1355 name = (int *)arg1; 1356 if ((p = pfind((pid_t)name[0])) == NULL) 1357 return (ESRCH); 1358 if ((error = p_cansee(curthread, p))) { 1359 PROC_UNLOCK(p); 1360 return (error); 1361 } 1362 sv_name = p->p_sysent->sv_name; 1363 PROC_UNLOCK(p); 1364 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1365 } 1366 1367 #ifdef KINFO_OVMENTRY_SIZE 1368 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1369 #endif 1370 1371 #ifdef COMPAT_FREEBSD7 1372 static int 1373 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1374 { 1375 vm_map_entry_t entry, tmp_entry; 1376 unsigned int last_timestamp; 1377 char *fullpath, *freepath; 1378 struct kinfo_ovmentry *kve; 1379 struct vattr va; 1380 struct ucred *cred; 1381 int error, *name; 1382 struct vnode *vp; 1383 struct proc *p; 1384 vm_map_t map; 1385 struct vmspace *vm; 1386 1387 name = (int *)arg1; 1388 if ((p = pfind((pid_t)name[0])) == NULL) 1389 return (ESRCH); 1390 if (p->p_flag & P_WEXIT) { 1391 PROC_UNLOCK(p); 1392 return (ESRCH); 1393 } 1394 if ((error = p_candebug(curthread, p))) { 1395 PROC_UNLOCK(p); 1396 return (error); 1397 } 1398 _PHOLD(p); 1399 PROC_UNLOCK(p); 1400 vm = vmspace_acquire_ref(p); 1401 if (vm == NULL) { 1402 PRELE(p); 1403 return (ESRCH); 1404 } 1405 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1406 1407 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1408 vm_map_lock_read(map); 1409 for (entry = map->header.next; entry != &map->header; 1410 entry = entry->next) { 1411 vm_object_t obj, tobj, lobj; 1412 vm_offset_t addr; 1413 int vfslocked; 1414 1415 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1416 continue; 1417 1418 bzero(kve, sizeof(*kve)); 1419 kve->kve_structsize = sizeof(*kve); 1420 1421 kve->kve_private_resident = 0; 1422 obj = entry->object.vm_object; 1423 if (obj != NULL) { 1424 VM_OBJECT_LOCK(obj); 1425 if (obj->shadow_count == 1) 1426 kve->kve_private_resident = 1427 obj->resident_page_count; 1428 } 1429 kve->kve_resident = 0; 1430 addr = entry->start; 1431 while (addr < entry->end) { 1432 if (pmap_extract(map->pmap, addr)) 1433 kve->kve_resident++; 1434 addr += PAGE_SIZE; 1435 } 1436 1437 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1438 if (tobj != obj) 1439 VM_OBJECT_LOCK(tobj); 1440 if (lobj != obj) 1441 VM_OBJECT_UNLOCK(lobj); 1442 lobj = tobj; 1443 } 1444 1445 kve->kve_start = (void*)entry->start; 1446 kve->kve_end = (void*)entry->end; 1447 kve->kve_offset = (off_t)entry->offset; 1448 1449 if (entry->protection & VM_PROT_READ) 1450 kve->kve_protection |= KVME_PROT_READ; 1451 if (entry->protection & VM_PROT_WRITE) 1452 kve->kve_protection |= KVME_PROT_WRITE; 1453 if (entry->protection & VM_PROT_EXECUTE) 1454 kve->kve_protection |= KVME_PROT_EXEC; 1455 1456 if (entry->eflags & MAP_ENTRY_COW) 1457 kve->kve_flags |= KVME_FLAG_COW; 1458 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1459 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1460 1461 last_timestamp = map->timestamp; 1462 vm_map_unlock_read(map); 1463 1464 kve->kve_fileid = 0; 1465 kve->kve_fsid = 0; 1466 freepath = NULL; 1467 fullpath = ""; 1468 if (lobj) { 1469 vp = NULL; 1470 switch (lobj->type) { 1471 case OBJT_DEFAULT: 1472 kve->kve_type = KVME_TYPE_DEFAULT; 1473 break; 1474 case OBJT_VNODE: 1475 kve->kve_type = KVME_TYPE_VNODE; 1476 vp = lobj->handle; 1477 vref(vp); 1478 break; 1479 case OBJT_SWAP: 1480 kve->kve_type = KVME_TYPE_SWAP; 1481 break; 1482 case OBJT_DEVICE: 1483 kve->kve_type = KVME_TYPE_DEVICE; 1484 break; 1485 case OBJT_PHYS: 1486 kve->kve_type = KVME_TYPE_PHYS; 1487 break; 1488 case OBJT_DEAD: 1489 kve->kve_type = KVME_TYPE_DEAD; 1490 break; 1491 default: 1492 kve->kve_type = KVME_TYPE_UNKNOWN; 1493 break; 1494 } 1495 if (lobj != obj) 1496 VM_OBJECT_UNLOCK(lobj); 1497 1498 kve->kve_ref_count = obj->ref_count; 1499 kve->kve_shadow_count = obj->shadow_count; 1500 VM_OBJECT_UNLOCK(obj); 1501 if (vp != NULL) { 1502 vn_fullpath(curthread, vp, &fullpath, 1503 &freepath); 1504 cred = curthread->td_ucred; 1505 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1506 vn_lock(vp, LK_SHARED | LK_RETRY); 1507 if (VOP_GETATTR(vp, &va, cred) == 0) { 1508 kve->kve_fileid = va.va_fileid; 1509 kve->kve_fsid = va.va_fsid; 1510 } 1511 vput(vp); 1512 VFS_UNLOCK_GIANT(vfslocked); 1513 } 1514 } else { 1515 kve->kve_type = KVME_TYPE_NONE; 1516 kve->kve_ref_count = 0; 1517 kve->kve_shadow_count = 0; 1518 } 1519 1520 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1521 if (freepath != NULL) 1522 free(freepath, M_TEMP); 1523 1524 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1525 vm_map_lock_read(map); 1526 if (error) 1527 break; 1528 if (last_timestamp != map->timestamp) { 1529 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1530 entry = tmp_entry; 1531 } 1532 } 1533 vm_map_unlock_read(map); 1534 vmspace_free(vm); 1535 PRELE(p); 1536 free(kve, M_TEMP); 1537 return (error); 1538 } 1539 #endif /* COMPAT_FREEBSD7 */ 1540 1541 #ifdef KINFO_VMENTRY_SIZE 1542 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1543 #endif 1544 1545 static int 1546 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1547 { 1548 vm_map_entry_t entry, tmp_entry; 1549 unsigned int last_timestamp; 1550 char *fullpath, *freepath; 1551 struct kinfo_vmentry *kve; 1552 struct vattr va; 1553 struct ucred *cred; 1554 int error, *name; 1555 struct vnode *vp; 1556 struct proc *p; 1557 struct vmspace *vm; 1558 vm_map_t map; 1559 1560 name = (int *)arg1; 1561 if ((p = pfind((pid_t)name[0])) == NULL) 1562 return (ESRCH); 1563 if (p->p_flag & P_WEXIT) { 1564 PROC_UNLOCK(p); 1565 return (ESRCH); 1566 } 1567 if ((error = p_candebug(curthread, p))) { 1568 PROC_UNLOCK(p); 1569 return (error); 1570 } 1571 _PHOLD(p); 1572 PROC_UNLOCK(p); 1573 vm = vmspace_acquire_ref(p); 1574 if (vm == NULL) { 1575 PRELE(p); 1576 return (ESRCH); 1577 } 1578 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1579 1580 map = &vm->vm_map; /* XXXRW: More locking required? */ 1581 vm_map_lock_read(map); 1582 for (entry = map->header.next; entry != &map->header; 1583 entry = entry->next) { 1584 vm_object_t obj, tobj, lobj; 1585 vm_offset_t addr; 1586 int vfslocked; 1587 1588 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1589 continue; 1590 1591 bzero(kve, sizeof(*kve)); 1592 1593 kve->kve_private_resident = 0; 1594 obj = entry->object.vm_object; 1595 if (obj != NULL) { 1596 VM_OBJECT_LOCK(obj); 1597 if (obj->shadow_count == 1) 1598 kve->kve_private_resident = 1599 obj->resident_page_count; 1600 } 1601 kve->kve_resident = 0; 1602 addr = entry->start; 1603 while (addr < entry->end) { 1604 if (pmap_extract(map->pmap, addr)) 1605 kve->kve_resident++; 1606 addr += PAGE_SIZE; 1607 } 1608 1609 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1610 if (tobj != obj) 1611 VM_OBJECT_LOCK(tobj); 1612 if (lobj != obj) 1613 VM_OBJECT_UNLOCK(lobj); 1614 lobj = tobj; 1615 } 1616 1617 kve->kve_start = entry->start; 1618 kve->kve_end = entry->end; 1619 kve->kve_offset = entry->offset; 1620 1621 if (entry->protection & VM_PROT_READ) 1622 kve->kve_protection |= KVME_PROT_READ; 1623 if (entry->protection & VM_PROT_WRITE) 1624 kve->kve_protection |= KVME_PROT_WRITE; 1625 if (entry->protection & VM_PROT_EXECUTE) 1626 kve->kve_protection |= KVME_PROT_EXEC; 1627 1628 if (entry->eflags & MAP_ENTRY_COW) 1629 kve->kve_flags |= KVME_FLAG_COW; 1630 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1631 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1632 1633 last_timestamp = map->timestamp; 1634 vm_map_unlock_read(map); 1635 1636 kve->kve_fileid = 0; 1637 kve->kve_fsid = 0; 1638 freepath = NULL; 1639 fullpath = ""; 1640 if (lobj) { 1641 vp = NULL; 1642 switch (lobj->type) { 1643 case OBJT_DEFAULT: 1644 kve->kve_type = KVME_TYPE_DEFAULT; 1645 break; 1646 case OBJT_VNODE: 1647 kve->kve_type = KVME_TYPE_VNODE; 1648 vp = lobj->handle; 1649 vref(vp); 1650 break; 1651 case OBJT_SWAP: 1652 kve->kve_type = KVME_TYPE_SWAP; 1653 break; 1654 case OBJT_DEVICE: 1655 kve->kve_type = KVME_TYPE_DEVICE; 1656 break; 1657 case OBJT_PHYS: 1658 kve->kve_type = KVME_TYPE_PHYS; 1659 break; 1660 case OBJT_DEAD: 1661 kve->kve_type = KVME_TYPE_DEAD; 1662 break; 1663 default: 1664 kve->kve_type = KVME_TYPE_UNKNOWN; 1665 break; 1666 } 1667 if (lobj != obj) 1668 VM_OBJECT_UNLOCK(lobj); 1669 1670 kve->kve_ref_count = obj->ref_count; 1671 kve->kve_shadow_count = obj->shadow_count; 1672 VM_OBJECT_UNLOCK(obj); 1673 if (vp != NULL) { 1674 vn_fullpath(curthread, vp, &fullpath, 1675 &freepath); 1676 cred = curthread->td_ucred; 1677 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1678 vn_lock(vp, LK_SHARED | LK_RETRY); 1679 if (VOP_GETATTR(vp, &va, cred) == 0) { 1680 kve->kve_fileid = va.va_fileid; 1681 kve->kve_fsid = va.va_fsid; 1682 } 1683 vput(vp); 1684 VFS_UNLOCK_GIANT(vfslocked); 1685 } 1686 } else { 1687 kve->kve_type = KVME_TYPE_NONE; 1688 kve->kve_ref_count = 0; 1689 kve->kve_shadow_count = 0; 1690 } 1691 1692 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1693 if (freepath != NULL) 1694 free(freepath, M_TEMP); 1695 1696 /* Pack record size down */ 1697 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 1698 strlen(kve->kve_path) + 1; 1699 kve->kve_structsize = roundup(kve->kve_structsize, 1700 sizeof(uint64_t)); 1701 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 1702 vm_map_lock_read(map); 1703 if (error) 1704 break; 1705 if (last_timestamp != map->timestamp) { 1706 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1707 entry = tmp_entry; 1708 } 1709 } 1710 vm_map_unlock_read(map); 1711 vmspace_free(vm); 1712 PRELE(p); 1713 free(kve, M_TEMP); 1714 return (error); 1715 } 1716 1717 #if defined(STACK) || defined(DDB) 1718 static int 1719 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1720 { 1721 struct kinfo_kstack *kkstp; 1722 int error, i, *name, numthreads; 1723 lwpid_t *lwpidarray; 1724 struct thread *td; 1725 struct stack *st; 1726 struct sbuf sb; 1727 struct proc *p; 1728 1729 name = (int *)arg1; 1730 if ((p = pfind((pid_t)name[0])) == NULL) 1731 return (ESRCH); 1732 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1733 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1734 PROC_UNLOCK(p); 1735 return (ESRCH); 1736 } 1737 if ((error = p_candebug(curthread, p))) { 1738 PROC_UNLOCK(p); 1739 return (error); 1740 } 1741 _PHOLD(p); 1742 PROC_UNLOCK(p); 1743 1744 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1745 st = stack_create(); 1746 1747 lwpidarray = NULL; 1748 numthreads = 0; 1749 PROC_LOCK(p); 1750 repeat: 1751 if (numthreads < p->p_numthreads) { 1752 if (lwpidarray != NULL) { 1753 free(lwpidarray, M_TEMP); 1754 lwpidarray = NULL; 1755 } 1756 numthreads = p->p_numthreads; 1757 PROC_UNLOCK(p); 1758 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1759 M_WAITOK | M_ZERO); 1760 PROC_LOCK(p); 1761 goto repeat; 1762 } 1763 i = 0; 1764 1765 /* 1766 * XXXRW: During the below loop, execve(2) and countless other sorts 1767 * of changes could have taken place. Should we check to see if the 1768 * vmspace has been replaced, or the like, in order to prevent 1769 * giving a snapshot that spans, say, execve(2), with some threads 1770 * before and some after? Among other things, the credentials could 1771 * have changed, in which case the right to extract debug info might 1772 * no longer be assured. 1773 */ 1774 FOREACH_THREAD_IN_PROC(p, td) { 1775 KASSERT(i < numthreads, 1776 ("sysctl_kern_proc_kstack: numthreads")); 1777 lwpidarray[i] = td->td_tid; 1778 i++; 1779 } 1780 numthreads = i; 1781 for (i = 0; i < numthreads; i++) { 1782 td = thread_find(p, lwpidarray[i]); 1783 if (td == NULL) { 1784 continue; 1785 } 1786 bzero(kkstp, sizeof(*kkstp)); 1787 (void)sbuf_new(&sb, kkstp->kkst_trace, 1788 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1789 thread_lock(td); 1790 kkstp->kkst_tid = td->td_tid; 1791 if (TD_IS_SWAPPED(td)) 1792 kkstp->kkst_state = KKST_STATE_SWAPPED; 1793 else if (TD_IS_RUNNING(td)) 1794 kkstp->kkst_state = KKST_STATE_RUNNING; 1795 else { 1796 kkstp->kkst_state = KKST_STATE_STACKOK; 1797 stack_save_td(st, td); 1798 } 1799 thread_unlock(td); 1800 PROC_UNLOCK(p); 1801 stack_sbuf_print(&sb, st); 1802 sbuf_finish(&sb); 1803 sbuf_delete(&sb); 1804 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1805 PROC_LOCK(p); 1806 if (error) 1807 break; 1808 } 1809 _PRELE(p); 1810 PROC_UNLOCK(p); 1811 if (lwpidarray != NULL) 1812 free(lwpidarray, M_TEMP); 1813 stack_destroy(st); 1814 free(kkstp, M_TEMP); 1815 return (error); 1816 } 1817 #endif 1818 1819 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1820 1821 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 1822 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 1823 "Return entire process table"); 1824 1825 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1826 sysctl_kern_proc, "Process table"); 1827 1828 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 1829 sysctl_kern_proc, "Process table"); 1830 1831 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1832 sysctl_kern_proc, "Process table"); 1833 1834 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 1835 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1836 1837 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 1838 sysctl_kern_proc, "Process table"); 1839 1840 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1841 sysctl_kern_proc, "Process table"); 1842 1843 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1844 sysctl_kern_proc, "Process table"); 1845 1846 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1847 sysctl_kern_proc, "Process table"); 1848 1849 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 1850 sysctl_kern_proc, "Return process table, no threads"); 1851 1852 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1853 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 1854 sysctl_kern_proc_args, "Process argument list"); 1855 1856 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 1857 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 1858 1859 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 1860 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 1861 "Process syscall vector name (ABI type)"); 1862 1863 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1864 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1865 1866 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1867 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1868 1869 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1870 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1871 1872 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1873 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1874 1875 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1876 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1877 1878 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1879 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1880 1881 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1882 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1883 1884 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1885 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1886 1887 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1888 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 1889 "Return process table, no threads"); 1890 1891 #ifdef COMPAT_FREEBSD7 1892 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 1893 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 1894 #endif 1895 1896 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 1897 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 1898 1899 #if defined(STACK) || defined(DDB) 1900 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 1901 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 1902 #endif 1903