1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/loginclass.h> 48 #include <sys/malloc.h> 49 #include <sys/mman.h> 50 #include <sys/mount.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/refcount.h> 54 #include <sys/sbuf.h> 55 #include <sys/sysent.h> 56 #include <sys/sched.h> 57 #include <sys/smp.h> 58 #include <sys/stack.h> 59 #include <sys/sysctl.h> 60 #include <sys/filedesc.h> 61 #include <sys/tty.h> 62 #include <sys/signalvar.h> 63 #include <sys/sdt.h> 64 #include <sys/sx.h> 65 #include <sys/user.h> 66 #include <sys/jail.h> 67 #include <sys/vnode.h> 68 #include <sys/eventhandler.h> 69 70 #ifdef DDB 71 #include <ddb/ddb.h> 72 #endif 73 74 #include <vm/vm.h> 75 #include <vm/vm_extern.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_page.h> 80 #include <vm/uma.h> 81 82 #ifdef COMPAT_FREEBSD32 83 #include <compat/freebsd32/freebsd32.h> 84 #include <compat/freebsd32/freebsd32_util.h> 85 #endif 86 87 SDT_PROVIDER_DEFINE(proc); 88 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 93 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 98 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 102 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 103 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 104 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 107 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 108 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 109 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 110 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 111 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 112 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 113 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 114 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 115 116 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 117 MALLOC_DEFINE(M_SESSION, "session", "session header"); 118 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 119 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 120 121 static void doenterpgrp(struct proc *, struct pgrp *); 122 static void orphanpg(struct pgrp *pg); 123 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 124 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 125 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 126 int preferthread); 127 static void pgadjustjobc(struct pgrp *pgrp, int entering); 128 static void pgdelete(struct pgrp *); 129 static int proc_ctor(void *mem, int size, void *arg, int flags); 130 static void proc_dtor(void *mem, int size, void *arg); 131 static int proc_init(void *mem, int size, int flags); 132 static void proc_fini(void *mem, int size); 133 static void pargs_free(struct pargs *pa); 134 135 /* 136 * Other process lists 137 */ 138 struct pidhashhead *pidhashtbl; 139 u_long pidhash; 140 struct pgrphashhead *pgrphashtbl; 141 u_long pgrphash; 142 struct proclist allproc; 143 struct proclist zombproc; 144 struct sx allproc_lock; 145 struct sx proctree_lock; 146 struct mtx ppeers_lock; 147 uma_zone_t proc_zone; 148 149 int kstack_pages = KSTACK_PAGES; 150 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 151 "Kernel stack size in pages"); 152 153 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 154 #ifdef COMPAT_FREEBSD32 155 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 156 #endif 157 158 /* 159 * Initialize global process hashing structures. 160 */ 161 void 162 procinit() 163 { 164 165 sx_init(&allproc_lock, "allproc"); 166 sx_init(&proctree_lock, "proctree"); 167 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 168 LIST_INIT(&allproc); 169 LIST_INIT(&zombproc); 170 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 171 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 172 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 173 proc_ctor, proc_dtor, proc_init, proc_fini, 174 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 175 uihashinit(); 176 } 177 178 /* 179 * Prepare a proc for use. 180 */ 181 static int 182 proc_ctor(void *mem, int size, void *arg, int flags) 183 { 184 struct proc *p; 185 186 p = (struct proc *)mem; 187 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 188 EVENTHANDLER_INVOKE(process_ctor, p); 189 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 190 return (0); 191 } 192 193 /* 194 * Reclaim a proc after use. 195 */ 196 static void 197 proc_dtor(void *mem, int size, void *arg) 198 { 199 struct proc *p; 200 struct thread *td; 201 202 /* INVARIANTS checks go here */ 203 p = (struct proc *)mem; 204 td = FIRST_THREAD_IN_PROC(p); 205 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 206 if (td != NULL) { 207 #ifdef INVARIANTS 208 KASSERT((p->p_numthreads == 1), 209 ("bad number of threads in exiting process")); 210 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 211 #endif 212 /* Free all OSD associated to this thread. */ 213 osd_thread_exit(td); 214 } 215 EVENTHANDLER_INVOKE(process_dtor, p); 216 if (p->p_ksi != NULL) 217 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 218 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 219 } 220 221 /* 222 * Initialize type-stable parts of a proc (when newly created). 223 */ 224 static int 225 proc_init(void *mem, int size, int flags) 226 { 227 struct proc *p; 228 229 p = (struct proc *)mem; 230 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 231 p->p_sched = (struct p_sched *)&p[1]; 232 bzero(&p->p_mtx, sizeof(struct mtx)); 233 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 234 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 235 cv_init(&p->p_pwait, "ppwait"); 236 cv_init(&p->p_dbgwait, "dbgwait"); 237 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 238 EVENTHANDLER_INVOKE(process_init, p); 239 p->p_stats = pstats_alloc(); 240 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 241 return (0); 242 } 243 244 /* 245 * UMA should ensure that this function is never called. 246 * Freeing a proc structure would violate type stability. 247 */ 248 static void 249 proc_fini(void *mem, int size) 250 { 251 #ifdef notnow 252 struct proc *p; 253 254 p = (struct proc *)mem; 255 EVENTHANDLER_INVOKE(process_fini, p); 256 pstats_free(p->p_stats); 257 thread_free(FIRST_THREAD_IN_PROC(p)); 258 mtx_destroy(&p->p_mtx); 259 if (p->p_ksi != NULL) 260 ksiginfo_free(p->p_ksi); 261 #else 262 panic("proc reclaimed"); 263 #endif 264 } 265 266 /* 267 * Is p an inferior of the current process? 268 */ 269 int 270 inferior(p) 271 register struct proc *p; 272 { 273 274 sx_assert(&proctree_lock, SX_LOCKED); 275 for (; p != curproc; p = p->p_pptr) 276 if (p->p_pid == 0) 277 return (0); 278 return (1); 279 } 280 281 /* 282 * Locate a process by number; return only "live" processes -- i.e., neither 283 * zombies nor newly born but incompletely initialized processes. By not 284 * returning processes in the PRS_NEW state, we allow callers to avoid 285 * testing for that condition to avoid dereferencing p_ucred, et al. 286 */ 287 struct proc * 288 pfind(pid) 289 register pid_t pid; 290 { 291 register struct proc *p; 292 293 sx_slock(&allproc_lock); 294 LIST_FOREACH(p, PIDHASH(pid), p_hash) 295 if (p->p_pid == pid) { 296 PROC_LOCK(p); 297 if (p->p_state == PRS_NEW) { 298 PROC_UNLOCK(p); 299 p = NULL; 300 } 301 break; 302 } 303 sx_sunlock(&allproc_lock); 304 return (p); 305 } 306 307 /* 308 * Locate a process group by number. 309 * The caller must hold proctree_lock. 310 */ 311 struct pgrp * 312 pgfind(pgid) 313 register pid_t pgid; 314 { 315 register struct pgrp *pgrp; 316 317 sx_assert(&proctree_lock, SX_LOCKED); 318 319 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 320 if (pgrp->pg_id == pgid) { 321 PGRP_LOCK(pgrp); 322 return (pgrp); 323 } 324 } 325 return (NULL); 326 } 327 328 /* 329 * Create a new process group. 330 * pgid must be equal to the pid of p. 331 * Begin a new session if required. 332 */ 333 int 334 enterpgrp(p, pgid, pgrp, sess) 335 register struct proc *p; 336 pid_t pgid; 337 struct pgrp *pgrp; 338 struct session *sess; 339 { 340 struct pgrp *pgrp2; 341 342 sx_assert(&proctree_lock, SX_XLOCKED); 343 344 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 345 KASSERT(p->p_pid == pgid, 346 ("enterpgrp: new pgrp and pid != pgid")); 347 348 pgrp2 = pgfind(pgid); 349 350 KASSERT(pgrp2 == NULL, 351 ("enterpgrp: pgrp with pgid exists")); 352 KASSERT(!SESS_LEADER(p), 353 ("enterpgrp: session leader attempted setpgrp")); 354 355 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 356 357 if (sess != NULL) { 358 /* 359 * new session 360 */ 361 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 362 PROC_LOCK(p); 363 p->p_flag &= ~P_CONTROLT; 364 PROC_UNLOCK(p); 365 PGRP_LOCK(pgrp); 366 sess->s_leader = p; 367 sess->s_sid = p->p_pid; 368 refcount_init(&sess->s_count, 1); 369 sess->s_ttyvp = NULL; 370 sess->s_ttydp = NULL; 371 sess->s_ttyp = NULL; 372 bcopy(p->p_session->s_login, sess->s_login, 373 sizeof(sess->s_login)); 374 pgrp->pg_session = sess; 375 KASSERT(p == curproc, 376 ("enterpgrp: mksession and p != curproc")); 377 } else { 378 pgrp->pg_session = p->p_session; 379 sess_hold(pgrp->pg_session); 380 PGRP_LOCK(pgrp); 381 } 382 pgrp->pg_id = pgid; 383 LIST_INIT(&pgrp->pg_members); 384 385 /* 386 * As we have an exclusive lock of proctree_lock, 387 * this should not deadlock. 388 */ 389 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 390 pgrp->pg_jobc = 0; 391 SLIST_INIT(&pgrp->pg_sigiolst); 392 PGRP_UNLOCK(pgrp); 393 394 doenterpgrp(p, pgrp); 395 396 return (0); 397 } 398 399 /* 400 * Move p to an existing process group 401 */ 402 int 403 enterthispgrp(p, pgrp) 404 register struct proc *p; 405 struct pgrp *pgrp; 406 { 407 408 sx_assert(&proctree_lock, SX_XLOCKED); 409 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 410 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 411 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 412 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 413 KASSERT(pgrp->pg_session == p->p_session, 414 ("%s: pgrp's session %p, p->p_session %p.\n", 415 __func__, 416 pgrp->pg_session, 417 p->p_session)); 418 KASSERT(pgrp != p->p_pgrp, 419 ("%s: p belongs to pgrp.", __func__)); 420 421 doenterpgrp(p, pgrp); 422 423 return (0); 424 } 425 426 /* 427 * Move p to a process group 428 */ 429 static void 430 doenterpgrp(p, pgrp) 431 struct proc *p; 432 struct pgrp *pgrp; 433 { 434 struct pgrp *savepgrp; 435 436 sx_assert(&proctree_lock, SX_XLOCKED); 437 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 438 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 439 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 440 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 441 442 savepgrp = p->p_pgrp; 443 444 /* 445 * Adjust eligibility of affected pgrps to participate in job control. 446 * Increment eligibility counts before decrementing, otherwise we 447 * could reach 0 spuriously during the first call. 448 */ 449 fixjobc(p, pgrp, 1); 450 fixjobc(p, p->p_pgrp, 0); 451 452 PGRP_LOCK(pgrp); 453 PGRP_LOCK(savepgrp); 454 PROC_LOCK(p); 455 LIST_REMOVE(p, p_pglist); 456 p->p_pgrp = pgrp; 457 PROC_UNLOCK(p); 458 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 459 PGRP_UNLOCK(savepgrp); 460 PGRP_UNLOCK(pgrp); 461 if (LIST_EMPTY(&savepgrp->pg_members)) 462 pgdelete(savepgrp); 463 } 464 465 /* 466 * remove process from process group 467 */ 468 int 469 leavepgrp(p) 470 register struct proc *p; 471 { 472 struct pgrp *savepgrp; 473 474 sx_assert(&proctree_lock, SX_XLOCKED); 475 savepgrp = p->p_pgrp; 476 PGRP_LOCK(savepgrp); 477 PROC_LOCK(p); 478 LIST_REMOVE(p, p_pglist); 479 p->p_pgrp = NULL; 480 PROC_UNLOCK(p); 481 PGRP_UNLOCK(savepgrp); 482 if (LIST_EMPTY(&savepgrp->pg_members)) 483 pgdelete(savepgrp); 484 return (0); 485 } 486 487 /* 488 * delete a process group 489 */ 490 static void 491 pgdelete(pgrp) 492 register struct pgrp *pgrp; 493 { 494 struct session *savesess; 495 struct tty *tp; 496 497 sx_assert(&proctree_lock, SX_XLOCKED); 498 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 499 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 500 501 /* 502 * Reset any sigio structures pointing to us as a result of 503 * F_SETOWN with our pgid. 504 */ 505 funsetownlst(&pgrp->pg_sigiolst); 506 507 PGRP_LOCK(pgrp); 508 tp = pgrp->pg_session->s_ttyp; 509 LIST_REMOVE(pgrp, pg_hash); 510 savesess = pgrp->pg_session; 511 PGRP_UNLOCK(pgrp); 512 513 /* Remove the reference to the pgrp before deallocating it. */ 514 if (tp != NULL) { 515 tty_lock(tp); 516 tty_rel_pgrp(tp, pgrp); 517 } 518 519 mtx_destroy(&pgrp->pg_mtx); 520 free(pgrp, M_PGRP); 521 sess_release(savesess); 522 } 523 524 static void 525 pgadjustjobc(pgrp, entering) 526 struct pgrp *pgrp; 527 int entering; 528 { 529 530 PGRP_LOCK(pgrp); 531 if (entering) 532 pgrp->pg_jobc++; 533 else { 534 --pgrp->pg_jobc; 535 if (pgrp->pg_jobc == 0) 536 orphanpg(pgrp); 537 } 538 PGRP_UNLOCK(pgrp); 539 } 540 541 /* 542 * Adjust pgrp jobc counters when specified process changes process group. 543 * We count the number of processes in each process group that "qualify" 544 * the group for terminal job control (those with a parent in a different 545 * process group of the same session). If that count reaches zero, the 546 * process group becomes orphaned. Check both the specified process' 547 * process group and that of its children. 548 * entering == 0 => p is leaving specified group. 549 * entering == 1 => p is entering specified group. 550 */ 551 void 552 fixjobc(p, pgrp, entering) 553 register struct proc *p; 554 register struct pgrp *pgrp; 555 int entering; 556 { 557 register struct pgrp *hispgrp; 558 register struct session *mysession; 559 560 sx_assert(&proctree_lock, SX_LOCKED); 561 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 562 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 563 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 564 565 /* 566 * Check p's parent to see whether p qualifies its own process 567 * group; if so, adjust count for p's process group. 568 */ 569 mysession = pgrp->pg_session; 570 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 571 hispgrp->pg_session == mysession) 572 pgadjustjobc(pgrp, entering); 573 574 /* 575 * Check this process' children to see whether they qualify 576 * their process groups; if so, adjust counts for children's 577 * process groups. 578 */ 579 LIST_FOREACH(p, &p->p_children, p_sibling) { 580 hispgrp = p->p_pgrp; 581 if (hispgrp == pgrp || 582 hispgrp->pg_session != mysession) 583 continue; 584 PROC_LOCK(p); 585 if (p->p_state == PRS_ZOMBIE) { 586 PROC_UNLOCK(p); 587 continue; 588 } 589 PROC_UNLOCK(p); 590 pgadjustjobc(hispgrp, entering); 591 } 592 } 593 594 /* 595 * A process group has become orphaned; 596 * if there are any stopped processes in the group, 597 * hang-up all process in that group. 598 */ 599 static void 600 orphanpg(pg) 601 struct pgrp *pg; 602 { 603 register struct proc *p; 604 605 PGRP_LOCK_ASSERT(pg, MA_OWNED); 606 607 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 608 PROC_LOCK(p); 609 if (P_SHOULDSTOP(p)) { 610 PROC_UNLOCK(p); 611 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 612 PROC_LOCK(p); 613 kern_psignal(p, SIGHUP); 614 kern_psignal(p, SIGCONT); 615 PROC_UNLOCK(p); 616 } 617 return; 618 } 619 PROC_UNLOCK(p); 620 } 621 } 622 623 void 624 sess_hold(struct session *s) 625 { 626 627 refcount_acquire(&s->s_count); 628 } 629 630 void 631 sess_release(struct session *s) 632 { 633 634 if (refcount_release(&s->s_count)) { 635 if (s->s_ttyp != NULL) { 636 tty_lock(s->s_ttyp); 637 tty_rel_sess(s->s_ttyp, s); 638 } 639 mtx_destroy(&s->s_mtx); 640 free(s, M_SESSION); 641 } 642 } 643 644 #include "opt_ddb.h" 645 #ifdef DDB 646 #include <ddb/ddb.h> 647 648 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 649 { 650 register struct pgrp *pgrp; 651 register struct proc *p; 652 register int i; 653 654 for (i = 0; i <= pgrphash; i++) { 655 if (!LIST_EMPTY(&pgrphashtbl[i])) { 656 printf("\tindx %d\n", i); 657 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 658 printf( 659 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 660 (void *)pgrp, (long)pgrp->pg_id, 661 (void *)pgrp->pg_session, 662 pgrp->pg_session->s_count, 663 (void *)LIST_FIRST(&pgrp->pg_members)); 664 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 665 printf("\t\tpid %ld addr %p pgrp %p\n", 666 (long)p->p_pid, (void *)p, 667 (void *)p->p_pgrp); 668 } 669 } 670 } 671 } 672 } 673 #endif /* DDB */ 674 675 /* 676 * Calculate the kinfo_proc members which contain process-wide 677 * informations. 678 * Must be called with the target process locked. 679 */ 680 static void 681 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 682 { 683 struct thread *td; 684 685 PROC_LOCK_ASSERT(p, MA_OWNED); 686 687 kp->ki_estcpu = 0; 688 kp->ki_pctcpu = 0; 689 FOREACH_THREAD_IN_PROC(p, td) { 690 thread_lock(td); 691 kp->ki_pctcpu += sched_pctcpu(td); 692 kp->ki_estcpu += td->td_estcpu; 693 thread_unlock(td); 694 } 695 } 696 697 /* 698 * Clear kinfo_proc and fill in any information that is common 699 * to all threads in the process. 700 * Must be called with the target process locked. 701 */ 702 static void 703 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 704 { 705 struct thread *td0; 706 struct tty *tp; 707 struct session *sp; 708 struct ucred *cred; 709 struct sigacts *ps; 710 711 PROC_LOCK_ASSERT(p, MA_OWNED); 712 bzero(kp, sizeof(*kp)); 713 714 kp->ki_structsize = sizeof(*kp); 715 kp->ki_paddr = p; 716 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 717 kp->ki_args = p->p_args; 718 kp->ki_textvp = p->p_textvp; 719 #ifdef KTRACE 720 kp->ki_tracep = p->p_tracevp; 721 kp->ki_traceflag = p->p_traceflag; 722 #endif 723 kp->ki_fd = p->p_fd; 724 kp->ki_vmspace = p->p_vmspace; 725 kp->ki_flag = p->p_flag; 726 cred = p->p_ucred; 727 if (cred) { 728 kp->ki_uid = cred->cr_uid; 729 kp->ki_ruid = cred->cr_ruid; 730 kp->ki_svuid = cred->cr_svuid; 731 kp->ki_cr_flags = 0; 732 if (cred->cr_flags & CRED_FLAG_CAPMODE) 733 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 734 /* XXX bde doesn't like KI_NGROUPS */ 735 if (cred->cr_ngroups > KI_NGROUPS) { 736 kp->ki_ngroups = KI_NGROUPS; 737 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 738 } else 739 kp->ki_ngroups = cred->cr_ngroups; 740 bcopy(cred->cr_groups, kp->ki_groups, 741 kp->ki_ngroups * sizeof(gid_t)); 742 kp->ki_rgid = cred->cr_rgid; 743 kp->ki_svgid = cred->cr_svgid; 744 /* If jailed(cred), emulate the old P_JAILED flag. */ 745 if (jailed(cred)) { 746 kp->ki_flag |= P_JAILED; 747 /* If inside the jail, use 0 as a jail ID. */ 748 if (cred->cr_prison != curthread->td_ucred->cr_prison) 749 kp->ki_jid = cred->cr_prison->pr_id; 750 } 751 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 752 sizeof(kp->ki_loginclass)); 753 } 754 ps = p->p_sigacts; 755 if (ps) { 756 mtx_lock(&ps->ps_mtx); 757 kp->ki_sigignore = ps->ps_sigignore; 758 kp->ki_sigcatch = ps->ps_sigcatch; 759 mtx_unlock(&ps->ps_mtx); 760 } 761 if (p->p_state != PRS_NEW && 762 p->p_state != PRS_ZOMBIE && 763 p->p_vmspace != NULL) { 764 struct vmspace *vm = p->p_vmspace; 765 766 kp->ki_size = vm->vm_map.size; 767 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 768 FOREACH_THREAD_IN_PROC(p, td0) { 769 if (!TD_IS_SWAPPED(td0)) 770 kp->ki_rssize += td0->td_kstack_pages; 771 } 772 kp->ki_swrss = vm->vm_swrss; 773 kp->ki_tsize = vm->vm_tsize; 774 kp->ki_dsize = vm->vm_dsize; 775 kp->ki_ssize = vm->vm_ssize; 776 } else if (p->p_state == PRS_ZOMBIE) 777 kp->ki_stat = SZOMB; 778 if (kp->ki_flag & P_INMEM) 779 kp->ki_sflag = PS_INMEM; 780 else 781 kp->ki_sflag = 0; 782 /* Calculate legacy swtime as seconds since 'swtick'. */ 783 kp->ki_swtime = (ticks - p->p_swtick) / hz; 784 kp->ki_pid = p->p_pid; 785 kp->ki_nice = p->p_nice; 786 kp->ki_start = p->p_stats->p_start; 787 timevaladd(&kp->ki_start, &boottime); 788 PROC_SLOCK(p); 789 rufetch(p, &kp->ki_rusage); 790 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 791 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 792 PROC_SUNLOCK(p); 793 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 794 /* Some callers want child times in a single value. */ 795 kp->ki_childtime = kp->ki_childstime; 796 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 797 798 tp = NULL; 799 if (p->p_pgrp) { 800 kp->ki_pgid = p->p_pgrp->pg_id; 801 kp->ki_jobc = p->p_pgrp->pg_jobc; 802 sp = p->p_pgrp->pg_session; 803 804 if (sp != NULL) { 805 kp->ki_sid = sp->s_sid; 806 SESS_LOCK(sp); 807 strlcpy(kp->ki_login, sp->s_login, 808 sizeof(kp->ki_login)); 809 if (sp->s_ttyvp) 810 kp->ki_kiflag |= KI_CTTY; 811 if (SESS_LEADER(p)) 812 kp->ki_kiflag |= KI_SLEADER; 813 /* XXX proctree_lock */ 814 tp = sp->s_ttyp; 815 SESS_UNLOCK(sp); 816 } 817 } 818 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 819 kp->ki_tdev = tty_udev(tp); 820 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 821 if (tp->t_session) 822 kp->ki_tsid = tp->t_session->s_sid; 823 } else 824 kp->ki_tdev = NODEV; 825 if (p->p_comm[0] != '\0') 826 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 827 if (p->p_sysent && p->p_sysent->sv_name != NULL && 828 p->p_sysent->sv_name[0] != '\0') 829 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 830 kp->ki_siglist = p->p_siglist; 831 kp->ki_xstat = p->p_xstat; 832 kp->ki_acflag = p->p_acflag; 833 kp->ki_lock = p->p_lock; 834 if (p->p_pptr) 835 kp->ki_ppid = p->p_pptr->p_pid; 836 } 837 838 /* 839 * Fill in information that is thread specific. Must be called with 840 * target process locked. If 'preferthread' is set, overwrite certain 841 * process-related fields that are maintained for both threads and 842 * processes. 843 */ 844 static void 845 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 846 { 847 struct proc *p; 848 849 p = td->td_proc; 850 kp->ki_tdaddr = td; 851 PROC_LOCK_ASSERT(p, MA_OWNED); 852 853 if (preferthread) 854 PROC_SLOCK(p); 855 thread_lock(td); 856 if (td->td_wmesg != NULL) 857 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 858 else 859 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 860 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 861 if (TD_ON_LOCK(td)) { 862 kp->ki_kiflag |= KI_LOCKBLOCK; 863 strlcpy(kp->ki_lockname, td->td_lockname, 864 sizeof(kp->ki_lockname)); 865 } else { 866 kp->ki_kiflag &= ~KI_LOCKBLOCK; 867 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 868 } 869 870 if (p->p_state == PRS_NORMAL) { /* approximate. */ 871 if (TD_ON_RUNQ(td) || 872 TD_CAN_RUN(td) || 873 TD_IS_RUNNING(td)) { 874 kp->ki_stat = SRUN; 875 } else if (P_SHOULDSTOP(p)) { 876 kp->ki_stat = SSTOP; 877 } else if (TD_IS_SLEEPING(td)) { 878 kp->ki_stat = SSLEEP; 879 } else if (TD_ON_LOCK(td)) { 880 kp->ki_stat = SLOCK; 881 } else { 882 kp->ki_stat = SWAIT; 883 } 884 } else if (p->p_state == PRS_ZOMBIE) { 885 kp->ki_stat = SZOMB; 886 } else { 887 kp->ki_stat = SIDL; 888 } 889 890 /* Things in the thread */ 891 kp->ki_wchan = td->td_wchan; 892 kp->ki_pri.pri_level = td->td_priority; 893 kp->ki_pri.pri_native = td->td_base_pri; 894 kp->ki_lastcpu = td->td_lastcpu; 895 kp->ki_oncpu = td->td_oncpu; 896 kp->ki_tdflags = td->td_flags; 897 kp->ki_tid = td->td_tid; 898 kp->ki_numthreads = p->p_numthreads; 899 kp->ki_pcb = td->td_pcb; 900 kp->ki_kstack = (void *)td->td_kstack; 901 kp->ki_slptime = (ticks - td->td_slptick) / hz; 902 kp->ki_pri.pri_class = td->td_pri_class; 903 kp->ki_pri.pri_user = td->td_user_pri; 904 905 if (preferthread) { 906 rufetchtd(td, &kp->ki_rusage); 907 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 908 kp->ki_pctcpu = sched_pctcpu(td); 909 kp->ki_estcpu = td->td_estcpu; 910 } 911 912 /* We can't get this anymore but ps etc never used it anyway. */ 913 kp->ki_rqindex = 0; 914 915 if (preferthread) 916 kp->ki_siglist = td->td_siglist; 917 kp->ki_sigmask = td->td_sigmask; 918 thread_unlock(td); 919 if (preferthread) 920 PROC_SUNLOCK(p); 921 } 922 923 /* 924 * Fill in a kinfo_proc structure for the specified process. 925 * Must be called with the target process locked. 926 */ 927 void 928 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 929 { 930 931 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 932 933 fill_kinfo_proc_only(p, kp); 934 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 935 fill_kinfo_aggregate(p, kp); 936 } 937 938 struct pstats * 939 pstats_alloc(void) 940 { 941 942 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 943 } 944 945 /* 946 * Copy parts of p_stats; zero the rest of p_stats (statistics). 947 */ 948 void 949 pstats_fork(struct pstats *src, struct pstats *dst) 950 { 951 952 bzero(&dst->pstat_startzero, 953 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 954 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 955 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 956 } 957 958 void 959 pstats_free(struct pstats *ps) 960 { 961 962 free(ps, M_SUBPROC); 963 } 964 965 /* 966 * Locate a zombie process by number 967 */ 968 struct proc * 969 zpfind(pid_t pid) 970 { 971 struct proc *p; 972 973 sx_slock(&allproc_lock); 974 LIST_FOREACH(p, &zombproc, p_list) 975 if (p->p_pid == pid) { 976 PROC_LOCK(p); 977 break; 978 } 979 sx_sunlock(&allproc_lock); 980 return (p); 981 } 982 983 #define KERN_PROC_ZOMBMASK 0x3 984 #define KERN_PROC_NOTHREADS 0x4 985 986 #ifdef COMPAT_FREEBSD32 987 988 /* 989 * This function is typically used to copy out the kernel address, so 990 * it can be replaced by assignment of zero. 991 */ 992 static inline uint32_t 993 ptr32_trim(void *ptr) 994 { 995 uintptr_t uptr; 996 997 uptr = (uintptr_t)ptr; 998 return ((uptr > UINT_MAX) ? 0 : uptr); 999 } 1000 1001 #define PTRTRIM_CP(src,dst,fld) \ 1002 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1003 1004 static void 1005 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1006 { 1007 int i; 1008 1009 bzero(ki32, sizeof(struct kinfo_proc32)); 1010 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1011 CP(*ki, *ki32, ki_layout); 1012 PTRTRIM_CP(*ki, *ki32, ki_args); 1013 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1014 PTRTRIM_CP(*ki, *ki32, ki_addr); 1015 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1016 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1017 PTRTRIM_CP(*ki, *ki32, ki_fd); 1018 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1019 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1020 CP(*ki, *ki32, ki_pid); 1021 CP(*ki, *ki32, ki_ppid); 1022 CP(*ki, *ki32, ki_pgid); 1023 CP(*ki, *ki32, ki_tpgid); 1024 CP(*ki, *ki32, ki_sid); 1025 CP(*ki, *ki32, ki_tsid); 1026 CP(*ki, *ki32, ki_jobc); 1027 CP(*ki, *ki32, ki_tdev); 1028 CP(*ki, *ki32, ki_siglist); 1029 CP(*ki, *ki32, ki_sigmask); 1030 CP(*ki, *ki32, ki_sigignore); 1031 CP(*ki, *ki32, ki_sigcatch); 1032 CP(*ki, *ki32, ki_uid); 1033 CP(*ki, *ki32, ki_ruid); 1034 CP(*ki, *ki32, ki_svuid); 1035 CP(*ki, *ki32, ki_rgid); 1036 CP(*ki, *ki32, ki_svgid); 1037 CP(*ki, *ki32, ki_ngroups); 1038 for (i = 0; i < KI_NGROUPS; i++) 1039 CP(*ki, *ki32, ki_groups[i]); 1040 CP(*ki, *ki32, ki_size); 1041 CP(*ki, *ki32, ki_rssize); 1042 CP(*ki, *ki32, ki_swrss); 1043 CP(*ki, *ki32, ki_tsize); 1044 CP(*ki, *ki32, ki_dsize); 1045 CP(*ki, *ki32, ki_ssize); 1046 CP(*ki, *ki32, ki_xstat); 1047 CP(*ki, *ki32, ki_acflag); 1048 CP(*ki, *ki32, ki_pctcpu); 1049 CP(*ki, *ki32, ki_estcpu); 1050 CP(*ki, *ki32, ki_slptime); 1051 CP(*ki, *ki32, ki_swtime); 1052 CP(*ki, *ki32, ki_runtime); 1053 TV_CP(*ki, *ki32, ki_start); 1054 TV_CP(*ki, *ki32, ki_childtime); 1055 CP(*ki, *ki32, ki_flag); 1056 CP(*ki, *ki32, ki_kiflag); 1057 CP(*ki, *ki32, ki_traceflag); 1058 CP(*ki, *ki32, ki_stat); 1059 CP(*ki, *ki32, ki_nice); 1060 CP(*ki, *ki32, ki_lock); 1061 CP(*ki, *ki32, ki_rqindex); 1062 CP(*ki, *ki32, ki_oncpu); 1063 CP(*ki, *ki32, ki_lastcpu); 1064 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1065 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1066 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1067 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1068 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1069 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1070 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1071 CP(*ki, *ki32, ki_cr_flags); 1072 CP(*ki, *ki32, ki_jid); 1073 CP(*ki, *ki32, ki_numthreads); 1074 CP(*ki, *ki32, ki_tid); 1075 CP(*ki, *ki32, ki_pri); 1076 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1077 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1078 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1079 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1080 PTRTRIM_CP(*ki, *ki32, ki_udata); 1081 CP(*ki, *ki32, ki_sflag); 1082 CP(*ki, *ki32, ki_tdflags); 1083 } 1084 1085 static int 1086 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1087 { 1088 struct kinfo_proc32 ki32; 1089 int error; 1090 1091 if (req->flags & SCTL_MASK32) { 1092 freebsd32_kinfo_proc_out(ki, &ki32); 1093 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1094 } else 1095 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1096 return (error); 1097 } 1098 #else 1099 static int 1100 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1101 { 1102 1103 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1104 } 1105 #endif 1106 1107 /* 1108 * Must be called with the process locked and will return with it unlocked. 1109 */ 1110 static int 1111 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1112 { 1113 struct thread *td; 1114 struct kinfo_proc kinfo_proc; 1115 int error = 0; 1116 struct proc *np; 1117 pid_t pid = p->p_pid; 1118 1119 PROC_LOCK_ASSERT(p, MA_OWNED); 1120 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1121 1122 fill_kinfo_proc(p, &kinfo_proc); 1123 if (flags & KERN_PROC_NOTHREADS) 1124 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1125 else { 1126 FOREACH_THREAD_IN_PROC(p, td) { 1127 fill_kinfo_thread(td, &kinfo_proc, 1); 1128 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1129 if (error) 1130 break; 1131 } 1132 } 1133 PROC_UNLOCK(p); 1134 if (error) 1135 return (error); 1136 if (flags & KERN_PROC_ZOMBMASK) 1137 np = zpfind(pid); 1138 else { 1139 if (pid == 0) 1140 return (0); 1141 np = pfind(pid); 1142 } 1143 if (np == NULL) 1144 return (ESRCH); 1145 if (np != p) { 1146 PROC_UNLOCK(np); 1147 return (ESRCH); 1148 } 1149 PROC_UNLOCK(np); 1150 return (0); 1151 } 1152 1153 static int 1154 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1155 { 1156 int *name = (int*) arg1; 1157 u_int namelen = arg2; 1158 struct proc *p; 1159 int flags, doingzomb, oid_number; 1160 int error = 0; 1161 1162 oid_number = oidp->oid_number; 1163 if (oid_number != KERN_PROC_ALL && 1164 (oid_number & KERN_PROC_INC_THREAD) == 0) 1165 flags = KERN_PROC_NOTHREADS; 1166 else { 1167 flags = 0; 1168 oid_number &= ~KERN_PROC_INC_THREAD; 1169 } 1170 if (oid_number == KERN_PROC_PID) { 1171 if (namelen != 1) 1172 return (EINVAL); 1173 error = sysctl_wire_old_buffer(req, 0); 1174 if (error) 1175 return (error); 1176 p = pfind((pid_t)name[0]); 1177 if (!p) 1178 return (ESRCH); 1179 if ((error = p_cansee(curthread, p))) { 1180 PROC_UNLOCK(p); 1181 return (error); 1182 } 1183 error = sysctl_out_proc(p, req, flags); 1184 return (error); 1185 } 1186 1187 switch (oid_number) { 1188 case KERN_PROC_ALL: 1189 if (namelen != 0) 1190 return (EINVAL); 1191 break; 1192 case KERN_PROC_PROC: 1193 if (namelen != 0 && namelen != 1) 1194 return (EINVAL); 1195 break; 1196 default: 1197 if (namelen != 1) 1198 return (EINVAL); 1199 break; 1200 } 1201 1202 if (!req->oldptr) { 1203 /* overestimate by 5 procs */ 1204 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1205 if (error) 1206 return (error); 1207 } 1208 error = sysctl_wire_old_buffer(req, 0); 1209 if (error != 0) 1210 return (error); 1211 sx_slock(&allproc_lock); 1212 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1213 if (!doingzomb) 1214 p = LIST_FIRST(&allproc); 1215 else 1216 p = LIST_FIRST(&zombproc); 1217 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1218 /* 1219 * Skip embryonic processes. 1220 */ 1221 PROC_LOCK(p); 1222 if (p->p_state == PRS_NEW) { 1223 PROC_UNLOCK(p); 1224 continue; 1225 } 1226 KASSERT(p->p_ucred != NULL, 1227 ("process credential is NULL for non-NEW proc")); 1228 /* 1229 * Show a user only appropriate processes. 1230 */ 1231 if (p_cansee(curthread, p)) { 1232 PROC_UNLOCK(p); 1233 continue; 1234 } 1235 /* 1236 * TODO - make more efficient (see notes below). 1237 * do by session. 1238 */ 1239 switch (oid_number) { 1240 1241 case KERN_PROC_GID: 1242 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1243 PROC_UNLOCK(p); 1244 continue; 1245 } 1246 break; 1247 1248 case KERN_PROC_PGRP: 1249 /* could do this by traversing pgrp */ 1250 if (p->p_pgrp == NULL || 1251 p->p_pgrp->pg_id != (pid_t)name[0]) { 1252 PROC_UNLOCK(p); 1253 continue; 1254 } 1255 break; 1256 1257 case KERN_PROC_RGID: 1258 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1259 PROC_UNLOCK(p); 1260 continue; 1261 } 1262 break; 1263 1264 case KERN_PROC_SESSION: 1265 if (p->p_session == NULL || 1266 p->p_session->s_sid != (pid_t)name[0]) { 1267 PROC_UNLOCK(p); 1268 continue; 1269 } 1270 break; 1271 1272 case KERN_PROC_TTY: 1273 if ((p->p_flag & P_CONTROLT) == 0 || 1274 p->p_session == NULL) { 1275 PROC_UNLOCK(p); 1276 continue; 1277 } 1278 /* XXX proctree_lock */ 1279 SESS_LOCK(p->p_session); 1280 if (p->p_session->s_ttyp == NULL || 1281 tty_udev(p->p_session->s_ttyp) != 1282 (dev_t)name[0]) { 1283 SESS_UNLOCK(p->p_session); 1284 PROC_UNLOCK(p); 1285 continue; 1286 } 1287 SESS_UNLOCK(p->p_session); 1288 break; 1289 1290 case KERN_PROC_UID: 1291 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1292 PROC_UNLOCK(p); 1293 continue; 1294 } 1295 break; 1296 1297 case KERN_PROC_RUID: 1298 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1299 PROC_UNLOCK(p); 1300 continue; 1301 } 1302 break; 1303 1304 case KERN_PROC_PROC: 1305 break; 1306 1307 default: 1308 break; 1309 1310 } 1311 1312 error = sysctl_out_proc(p, req, flags | doingzomb); 1313 if (error) { 1314 sx_sunlock(&allproc_lock); 1315 return (error); 1316 } 1317 } 1318 } 1319 sx_sunlock(&allproc_lock); 1320 return (0); 1321 } 1322 1323 struct pargs * 1324 pargs_alloc(int len) 1325 { 1326 struct pargs *pa; 1327 1328 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1329 M_WAITOK); 1330 refcount_init(&pa->ar_ref, 1); 1331 pa->ar_length = len; 1332 return (pa); 1333 } 1334 1335 static void 1336 pargs_free(struct pargs *pa) 1337 { 1338 1339 free(pa, M_PARGS); 1340 } 1341 1342 void 1343 pargs_hold(struct pargs *pa) 1344 { 1345 1346 if (pa == NULL) 1347 return; 1348 refcount_acquire(&pa->ar_ref); 1349 } 1350 1351 void 1352 pargs_drop(struct pargs *pa) 1353 { 1354 1355 if (pa == NULL) 1356 return; 1357 if (refcount_release(&pa->ar_ref)) 1358 pargs_free(pa); 1359 } 1360 1361 /* 1362 * This sysctl allows a process to retrieve the argument list or process 1363 * title for another process without groping around in the address space 1364 * of the other process. It also allow a process to set its own "process 1365 * title to a string of its own choice. 1366 */ 1367 static int 1368 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1369 { 1370 int *name = (int*) arg1; 1371 u_int namelen = arg2; 1372 struct pargs *newpa, *pa; 1373 struct proc *p; 1374 int error = 0; 1375 1376 if (namelen != 1) 1377 return (EINVAL); 1378 1379 p = pfind((pid_t)name[0]); 1380 if (!p) 1381 return (ESRCH); 1382 1383 if ((error = p_cansee(curthread, p)) != 0) { 1384 PROC_UNLOCK(p); 1385 return (error); 1386 } 1387 1388 if (req->newptr && curproc != p) { 1389 PROC_UNLOCK(p); 1390 return (EPERM); 1391 } 1392 1393 pa = p->p_args; 1394 pargs_hold(pa); 1395 PROC_UNLOCK(p); 1396 if (pa != NULL) 1397 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1398 pargs_drop(pa); 1399 if (error != 0 || req->newptr == NULL) 1400 return (error); 1401 1402 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1403 return (ENOMEM); 1404 newpa = pargs_alloc(req->newlen); 1405 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1406 if (error != 0) { 1407 pargs_free(newpa); 1408 return (error); 1409 } 1410 PROC_LOCK(p); 1411 pa = p->p_args; 1412 p->p_args = newpa; 1413 PROC_UNLOCK(p); 1414 pargs_drop(pa); 1415 return (0); 1416 } 1417 1418 /* 1419 * This sysctl allows a process to retrieve the path of the executable for 1420 * itself or another process. 1421 */ 1422 static int 1423 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1424 { 1425 pid_t *pidp = (pid_t *)arg1; 1426 unsigned int arglen = arg2; 1427 struct proc *p; 1428 struct vnode *vp; 1429 char *retbuf, *freebuf; 1430 int error, vfslocked; 1431 1432 if (arglen != 1) 1433 return (EINVAL); 1434 if (*pidp == -1) { /* -1 means this process */ 1435 p = req->td->td_proc; 1436 } else { 1437 p = pfind(*pidp); 1438 if (p == NULL) 1439 return (ESRCH); 1440 if ((error = p_cansee(curthread, p)) != 0) { 1441 PROC_UNLOCK(p); 1442 return (error); 1443 } 1444 } 1445 1446 vp = p->p_textvp; 1447 if (vp == NULL) { 1448 if (*pidp != -1) 1449 PROC_UNLOCK(p); 1450 return (0); 1451 } 1452 vref(vp); 1453 if (*pidp != -1) 1454 PROC_UNLOCK(p); 1455 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1456 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1457 vrele(vp); 1458 VFS_UNLOCK_GIANT(vfslocked); 1459 if (error) 1460 return (error); 1461 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1462 free(freebuf, M_TEMP); 1463 return (error); 1464 } 1465 1466 static int 1467 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1468 { 1469 struct proc *p; 1470 char *sv_name; 1471 int *name; 1472 int namelen; 1473 int error; 1474 1475 namelen = arg2; 1476 if (namelen != 1) 1477 return (EINVAL); 1478 1479 name = (int *)arg1; 1480 if ((p = pfind((pid_t)name[0])) == NULL) 1481 return (ESRCH); 1482 if ((error = p_cansee(curthread, p))) { 1483 PROC_UNLOCK(p); 1484 return (error); 1485 } 1486 sv_name = p->p_sysent->sv_name; 1487 PROC_UNLOCK(p); 1488 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1489 } 1490 1491 #ifdef KINFO_OVMENTRY_SIZE 1492 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1493 #endif 1494 1495 #ifdef COMPAT_FREEBSD7 1496 static int 1497 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1498 { 1499 vm_map_entry_t entry, tmp_entry; 1500 unsigned int last_timestamp; 1501 char *fullpath, *freepath; 1502 struct kinfo_ovmentry *kve; 1503 struct vattr va; 1504 struct ucred *cred; 1505 int error, *name; 1506 struct vnode *vp; 1507 struct proc *p; 1508 vm_map_t map; 1509 struct vmspace *vm; 1510 1511 name = (int *)arg1; 1512 if ((p = pfind((pid_t)name[0])) == NULL) 1513 return (ESRCH); 1514 if (p->p_flag & P_WEXIT) { 1515 PROC_UNLOCK(p); 1516 return (ESRCH); 1517 } 1518 if ((error = p_candebug(curthread, p))) { 1519 PROC_UNLOCK(p); 1520 return (error); 1521 } 1522 _PHOLD(p); 1523 PROC_UNLOCK(p); 1524 vm = vmspace_acquire_ref(p); 1525 if (vm == NULL) { 1526 PRELE(p); 1527 return (ESRCH); 1528 } 1529 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1530 1531 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1532 vm_map_lock_read(map); 1533 for (entry = map->header.next; entry != &map->header; 1534 entry = entry->next) { 1535 vm_object_t obj, tobj, lobj; 1536 vm_offset_t addr; 1537 int vfslocked; 1538 1539 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1540 continue; 1541 1542 bzero(kve, sizeof(*kve)); 1543 kve->kve_structsize = sizeof(*kve); 1544 1545 kve->kve_private_resident = 0; 1546 obj = entry->object.vm_object; 1547 if (obj != NULL) { 1548 VM_OBJECT_LOCK(obj); 1549 if (obj->shadow_count == 1) 1550 kve->kve_private_resident = 1551 obj->resident_page_count; 1552 } 1553 kve->kve_resident = 0; 1554 addr = entry->start; 1555 while (addr < entry->end) { 1556 if (pmap_extract(map->pmap, addr)) 1557 kve->kve_resident++; 1558 addr += PAGE_SIZE; 1559 } 1560 1561 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1562 if (tobj != obj) 1563 VM_OBJECT_LOCK(tobj); 1564 if (lobj != obj) 1565 VM_OBJECT_UNLOCK(lobj); 1566 lobj = tobj; 1567 } 1568 1569 kve->kve_start = (void*)entry->start; 1570 kve->kve_end = (void*)entry->end; 1571 kve->kve_offset = (off_t)entry->offset; 1572 1573 if (entry->protection & VM_PROT_READ) 1574 kve->kve_protection |= KVME_PROT_READ; 1575 if (entry->protection & VM_PROT_WRITE) 1576 kve->kve_protection |= KVME_PROT_WRITE; 1577 if (entry->protection & VM_PROT_EXECUTE) 1578 kve->kve_protection |= KVME_PROT_EXEC; 1579 1580 if (entry->eflags & MAP_ENTRY_COW) 1581 kve->kve_flags |= KVME_FLAG_COW; 1582 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1583 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1584 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1585 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1586 1587 last_timestamp = map->timestamp; 1588 vm_map_unlock_read(map); 1589 1590 kve->kve_fileid = 0; 1591 kve->kve_fsid = 0; 1592 freepath = NULL; 1593 fullpath = ""; 1594 if (lobj) { 1595 vp = NULL; 1596 switch (lobj->type) { 1597 case OBJT_DEFAULT: 1598 kve->kve_type = KVME_TYPE_DEFAULT; 1599 break; 1600 case OBJT_VNODE: 1601 kve->kve_type = KVME_TYPE_VNODE; 1602 vp = lobj->handle; 1603 vref(vp); 1604 break; 1605 case OBJT_SWAP: 1606 kve->kve_type = KVME_TYPE_SWAP; 1607 break; 1608 case OBJT_DEVICE: 1609 kve->kve_type = KVME_TYPE_DEVICE; 1610 break; 1611 case OBJT_PHYS: 1612 kve->kve_type = KVME_TYPE_PHYS; 1613 break; 1614 case OBJT_DEAD: 1615 kve->kve_type = KVME_TYPE_DEAD; 1616 break; 1617 case OBJT_SG: 1618 kve->kve_type = KVME_TYPE_SG; 1619 break; 1620 default: 1621 kve->kve_type = KVME_TYPE_UNKNOWN; 1622 break; 1623 } 1624 if (lobj != obj) 1625 VM_OBJECT_UNLOCK(lobj); 1626 1627 kve->kve_ref_count = obj->ref_count; 1628 kve->kve_shadow_count = obj->shadow_count; 1629 VM_OBJECT_UNLOCK(obj); 1630 if (vp != NULL) { 1631 vn_fullpath(curthread, vp, &fullpath, 1632 &freepath); 1633 cred = curthread->td_ucred; 1634 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1635 vn_lock(vp, LK_SHARED | LK_RETRY); 1636 if (VOP_GETATTR(vp, &va, cred) == 0) { 1637 kve->kve_fileid = va.va_fileid; 1638 kve->kve_fsid = va.va_fsid; 1639 } 1640 vput(vp); 1641 VFS_UNLOCK_GIANT(vfslocked); 1642 } 1643 } else { 1644 kve->kve_type = KVME_TYPE_NONE; 1645 kve->kve_ref_count = 0; 1646 kve->kve_shadow_count = 0; 1647 } 1648 1649 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1650 if (freepath != NULL) 1651 free(freepath, M_TEMP); 1652 1653 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1654 vm_map_lock_read(map); 1655 if (error) 1656 break; 1657 if (last_timestamp != map->timestamp) { 1658 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1659 entry = tmp_entry; 1660 } 1661 } 1662 vm_map_unlock_read(map); 1663 vmspace_free(vm); 1664 PRELE(p); 1665 free(kve, M_TEMP); 1666 return (error); 1667 } 1668 #endif /* COMPAT_FREEBSD7 */ 1669 1670 #ifdef KINFO_VMENTRY_SIZE 1671 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1672 #endif 1673 1674 static int 1675 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1676 { 1677 vm_map_entry_t entry, tmp_entry; 1678 unsigned int last_timestamp; 1679 char *fullpath, *freepath; 1680 struct kinfo_vmentry *kve; 1681 struct vattr va; 1682 struct ucred *cred; 1683 int error, *name; 1684 struct vnode *vp; 1685 struct proc *p; 1686 struct vmspace *vm; 1687 vm_map_t map; 1688 1689 name = (int *)arg1; 1690 if ((p = pfind((pid_t)name[0])) == NULL) 1691 return (ESRCH); 1692 if (p->p_flag & P_WEXIT) { 1693 PROC_UNLOCK(p); 1694 return (ESRCH); 1695 } 1696 if ((error = p_candebug(curthread, p))) { 1697 PROC_UNLOCK(p); 1698 return (error); 1699 } 1700 _PHOLD(p); 1701 PROC_UNLOCK(p); 1702 vm = vmspace_acquire_ref(p); 1703 if (vm == NULL) { 1704 PRELE(p); 1705 return (ESRCH); 1706 } 1707 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1708 1709 map = &vm->vm_map; /* XXXRW: More locking required? */ 1710 vm_map_lock_read(map); 1711 for (entry = map->header.next; entry != &map->header; 1712 entry = entry->next) { 1713 vm_object_t obj, tobj, lobj; 1714 vm_offset_t addr; 1715 vm_paddr_t locked_pa; 1716 int vfslocked, mincoreinfo; 1717 1718 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1719 continue; 1720 1721 bzero(kve, sizeof(*kve)); 1722 1723 kve->kve_private_resident = 0; 1724 obj = entry->object.vm_object; 1725 if (obj != NULL) { 1726 VM_OBJECT_LOCK(obj); 1727 if (obj->shadow_count == 1) 1728 kve->kve_private_resident = 1729 obj->resident_page_count; 1730 } 1731 kve->kve_resident = 0; 1732 addr = entry->start; 1733 while (addr < entry->end) { 1734 locked_pa = 0; 1735 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 1736 if (locked_pa != 0) 1737 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 1738 if (mincoreinfo & MINCORE_INCORE) 1739 kve->kve_resident++; 1740 if (mincoreinfo & MINCORE_SUPER) 1741 kve->kve_flags |= KVME_FLAG_SUPER; 1742 addr += PAGE_SIZE; 1743 } 1744 1745 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1746 if (tobj != obj) 1747 VM_OBJECT_LOCK(tobj); 1748 if (lobj != obj) 1749 VM_OBJECT_UNLOCK(lobj); 1750 lobj = tobj; 1751 } 1752 1753 kve->kve_start = entry->start; 1754 kve->kve_end = entry->end; 1755 kve->kve_offset = entry->offset; 1756 1757 if (entry->protection & VM_PROT_READ) 1758 kve->kve_protection |= KVME_PROT_READ; 1759 if (entry->protection & VM_PROT_WRITE) 1760 kve->kve_protection |= KVME_PROT_WRITE; 1761 if (entry->protection & VM_PROT_EXECUTE) 1762 kve->kve_protection |= KVME_PROT_EXEC; 1763 1764 if (entry->eflags & MAP_ENTRY_COW) 1765 kve->kve_flags |= KVME_FLAG_COW; 1766 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1767 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1768 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1769 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1770 1771 last_timestamp = map->timestamp; 1772 vm_map_unlock_read(map); 1773 1774 freepath = NULL; 1775 fullpath = ""; 1776 if (lobj) { 1777 vp = NULL; 1778 switch (lobj->type) { 1779 case OBJT_DEFAULT: 1780 kve->kve_type = KVME_TYPE_DEFAULT; 1781 break; 1782 case OBJT_VNODE: 1783 kve->kve_type = KVME_TYPE_VNODE; 1784 vp = lobj->handle; 1785 vref(vp); 1786 break; 1787 case OBJT_SWAP: 1788 kve->kve_type = KVME_TYPE_SWAP; 1789 break; 1790 case OBJT_DEVICE: 1791 kve->kve_type = KVME_TYPE_DEVICE; 1792 break; 1793 case OBJT_PHYS: 1794 kve->kve_type = KVME_TYPE_PHYS; 1795 break; 1796 case OBJT_DEAD: 1797 kve->kve_type = KVME_TYPE_DEAD; 1798 break; 1799 case OBJT_SG: 1800 kve->kve_type = KVME_TYPE_SG; 1801 break; 1802 default: 1803 kve->kve_type = KVME_TYPE_UNKNOWN; 1804 break; 1805 } 1806 if (lobj != obj) 1807 VM_OBJECT_UNLOCK(lobj); 1808 1809 kve->kve_ref_count = obj->ref_count; 1810 kve->kve_shadow_count = obj->shadow_count; 1811 VM_OBJECT_UNLOCK(obj); 1812 if (vp != NULL) { 1813 vn_fullpath(curthread, vp, &fullpath, 1814 &freepath); 1815 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 1816 cred = curthread->td_ucred; 1817 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1818 vn_lock(vp, LK_SHARED | LK_RETRY); 1819 if (VOP_GETATTR(vp, &va, cred) == 0) { 1820 kve->kve_vn_fileid = va.va_fileid; 1821 kve->kve_vn_fsid = va.va_fsid; 1822 kve->kve_vn_mode = 1823 MAKEIMODE(va.va_type, va.va_mode); 1824 kve->kve_vn_size = va.va_size; 1825 kve->kve_vn_rdev = va.va_rdev; 1826 kve->kve_status = KF_ATTR_VALID; 1827 } 1828 vput(vp); 1829 VFS_UNLOCK_GIANT(vfslocked); 1830 } 1831 } else { 1832 kve->kve_type = KVME_TYPE_NONE; 1833 kve->kve_ref_count = 0; 1834 kve->kve_shadow_count = 0; 1835 } 1836 1837 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1838 if (freepath != NULL) 1839 free(freepath, M_TEMP); 1840 1841 /* Pack record size down */ 1842 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 1843 strlen(kve->kve_path) + 1; 1844 kve->kve_structsize = roundup(kve->kve_structsize, 1845 sizeof(uint64_t)); 1846 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 1847 vm_map_lock_read(map); 1848 if (error) 1849 break; 1850 if (last_timestamp != map->timestamp) { 1851 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1852 entry = tmp_entry; 1853 } 1854 } 1855 vm_map_unlock_read(map); 1856 vmspace_free(vm); 1857 PRELE(p); 1858 free(kve, M_TEMP); 1859 return (error); 1860 } 1861 1862 #if defined(STACK) || defined(DDB) 1863 static int 1864 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1865 { 1866 struct kinfo_kstack *kkstp; 1867 int error, i, *name, numthreads; 1868 lwpid_t *lwpidarray; 1869 struct thread *td; 1870 struct stack *st; 1871 struct sbuf sb; 1872 struct proc *p; 1873 1874 name = (int *)arg1; 1875 if ((p = pfind((pid_t)name[0])) == NULL) 1876 return (ESRCH); 1877 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1878 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1879 PROC_UNLOCK(p); 1880 return (ESRCH); 1881 } 1882 if ((error = p_candebug(curthread, p))) { 1883 PROC_UNLOCK(p); 1884 return (error); 1885 } 1886 _PHOLD(p); 1887 PROC_UNLOCK(p); 1888 1889 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1890 st = stack_create(); 1891 1892 lwpidarray = NULL; 1893 numthreads = 0; 1894 PROC_LOCK(p); 1895 repeat: 1896 if (numthreads < p->p_numthreads) { 1897 if (lwpidarray != NULL) { 1898 free(lwpidarray, M_TEMP); 1899 lwpidarray = NULL; 1900 } 1901 numthreads = p->p_numthreads; 1902 PROC_UNLOCK(p); 1903 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1904 M_WAITOK | M_ZERO); 1905 PROC_LOCK(p); 1906 goto repeat; 1907 } 1908 i = 0; 1909 1910 /* 1911 * XXXRW: During the below loop, execve(2) and countless other sorts 1912 * of changes could have taken place. Should we check to see if the 1913 * vmspace has been replaced, or the like, in order to prevent 1914 * giving a snapshot that spans, say, execve(2), with some threads 1915 * before and some after? Among other things, the credentials could 1916 * have changed, in which case the right to extract debug info might 1917 * no longer be assured. 1918 */ 1919 FOREACH_THREAD_IN_PROC(p, td) { 1920 KASSERT(i < numthreads, 1921 ("sysctl_kern_proc_kstack: numthreads")); 1922 lwpidarray[i] = td->td_tid; 1923 i++; 1924 } 1925 numthreads = i; 1926 for (i = 0; i < numthreads; i++) { 1927 td = thread_find(p, lwpidarray[i]); 1928 if (td == NULL) { 1929 continue; 1930 } 1931 bzero(kkstp, sizeof(*kkstp)); 1932 (void)sbuf_new(&sb, kkstp->kkst_trace, 1933 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1934 thread_lock(td); 1935 kkstp->kkst_tid = td->td_tid; 1936 if (TD_IS_SWAPPED(td)) 1937 kkstp->kkst_state = KKST_STATE_SWAPPED; 1938 else if (TD_IS_RUNNING(td)) 1939 kkstp->kkst_state = KKST_STATE_RUNNING; 1940 else { 1941 kkstp->kkst_state = KKST_STATE_STACKOK; 1942 stack_save_td(st, td); 1943 } 1944 thread_unlock(td); 1945 PROC_UNLOCK(p); 1946 stack_sbuf_print(&sb, st); 1947 sbuf_finish(&sb); 1948 sbuf_delete(&sb); 1949 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1950 PROC_LOCK(p); 1951 if (error) 1952 break; 1953 } 1954 _PRELE(p); 1955 PROC_UNLOCK(p); 1956 if (lwpidarray != NULL) 1957 free(lwpidarray, M_TEMP); 1958 stack_destroy(st); 1959 free(kkstp, M_TEMP); 1960 return (error); 1961 } 1962 #endif 1963 1964 /* 1965 * This sysctl allows a process to retrieve the full list of groups from 1966 * itself or another process. 1967 */ 1968 static int 1969 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 1970 { 1971 pid_t *pidp = (pid_t *)arg1; 1972 unsigned int arglen = arg2; 1973 struct proc *p; 1974 struct ucred *cred; 1975 int error; 1976 1977 if (arglen != 1) 1978 return (EINVAL); 1979 if (*pidp == -1) { /* -1 means this process */ 1980 p = req->td->td_proc; 1981 } else { 1982 p = pfind(*pidp); 1983 if (p == NULL) 1984 return (ESRCH); 1985 if ((error = p_cansee(curthread, p)) != 0) { 1986 PROC_UNLOCK(p); 1987 return (error); 1988 } 1989 } 1990 1991 cred = crhold(p->p_ucred); 1992 if (*pidp != -1) 1993 PROC_UNLOCK(p); 1994 1995 error = SYSCTL_OUT(req, cred->cr_groups, 1996 cred->cr_ngroups * sizeof(gid_t)); 1997 crfree(cred); 1998 return (error); 1999 } 2000 2001 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2002 2003 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2004 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2005 "Return entire process table"); 2006 2007 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2008 sysctl_kern_proc, "Process table"); 2009 2010 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2011 sysctl_kern_proc, "Process table"); 2012 2013 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2014 sysctl_kern_proc, "Process table"); 2015 2016 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2017 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2018 2019 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2020 sysctl_kern_proc, "Process table"); 2021 2022 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2023 sysctl_kern_proc, "Process table"); 2024 2025 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2026 sysctl_kern_proc, "Process table"); 2027 2028 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2029 sysctl_kern_proc, "Process table"); 2030 2031 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2032 sysctl_kern_proc, "Return process table, no threads"); 2033 2034 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2035 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2036 sysctl_kern_proc_args, "Process argument list"); 2037 2038 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2039 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2040 2041 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2042 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2043 "Process syscall vector name (ABI type)"); 2044 2045 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2046 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2047 2048 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2049 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2050 2051 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2052 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2053 2054 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2055 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2056 2057 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2058 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2059 2060 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2061 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2062 2063 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2064 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2065 2066 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2067 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2068 2069 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2070 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2071 "Return process table, no threads"); 2072 2073 #ifdef COMPAT_FREEBSD7 2074 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2075 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2076 #endif 2077 2078 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2079 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2080 2081 #if defined(STACK) || defined(DDB) 2082 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2083 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2084 #endif 2085 2086 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2087 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2088