1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/sysproto.h> 47 #include <sys/sysctl.h> 48 #include <sys/filedesc.h> 49 #include <sys/tty.h> 50 #include <sys/signalvar.h> 51 #include <sys/sx.h> 52 #include <sys/user.h> 53 #include <sys/jail.h> 54 #ifdef KTRACE 55 #include <sys/uio.h> 56 #include <sys/ktrace.h> 57 #endif 58 59 #include <vm/vm.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <vm/uma.h> 63 #include <machine/critical.h> 64 65 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 66 MALLOC_DEFINE(M_SESSION, "session", "session header"); 67 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 68 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 69 70 static struct proc *dopfind(register pid_t); 71 72 static void doenterpgrp(struct proc *, struct pgrp *); 73 74 static void pgdelete(struct pgrp *); 75 76 static void orphanpg(struct pgrp *pg); 77 78 /* 79 * Other process lists 80 */ 81 struct pidhashhead *pidhashtbl; 82 u_long pidhash; 83 struct pgrphashhead *pgrphashtbl; 84 u_long pgrphash; 85 struct proclist allproc; 86 struct proclist zombproc; 87 struct sx allproc_lock; 88 struct sx proctree_lock; 89 struct mtx pargs_ref_lock; 90 uma_zone_t proc_zone; 91 uma_zone_t ithread_zone; 92 93 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 94 95 /* 96 * Initialize global process hashing structures. 97 */ 98 void 99 procinit() 100 { 101 102 sx_init(&allproc_lock, "allproc"); 103 sx_init(&proctree_lock, "proctree"); 104 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); 105 LIST_INIT(&allproc); 106 LIST_INIT(&zombproc); 107 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 108 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 109 proc_zone = uma_zcreate("PROC", sizeof (struct proc), NULL, NULL, 110 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 111 uihashinit(); 112 } 113 114 /* 115 * Note that we do not link to the proc's ucred here 116 * The thread is linked as if running but no KSE assigned 117 */ 118 static void 119 thread_link(struct thread *td, struct ksegrp *kg) 120 { 121 struct proc *p = kg->kg_proc; 122 123 td->td_proc = p; 124 td->td_ksegrp = kg; 125 td->td_last_kse = &p->p_kse; 126 127 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 128 TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist); 129 td->td_critnest = 0; 130 td->td_kse = NULL; 131 cpu_thread_link(td); 132 } 133 134 /* 135 * KSE is linked onto the idle queue. 136 */ 137 static void 138 kse_link(struct kse *ke, struct ksegrp *kg) 139 { 140 struct proc *p = kg->kg_proc; 141 142 TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist); 143 kg->kg_kses++; 144 TAILQ_INSERT_HEAD(&kg->kg_iq, ke, ke_kgrlist); 145 ke->ke_proc = p; 146 ke->ke_ksegrp = kg; 147 ke->ke_thread = NULL; 148 ke->ke_oncpu = NOCPU; 149 } 150 151 static void 152 ksegrp_link(struct ksegrp *kg, struct proc *p) 153 { 154 155 TAILQ_INIT(&kg->kg_threads); 156 TAILQ_INIT(&kg->kg_runq); /* links with td_runq */ 157 TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */ 158 TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */ 159 TAILQ_INIT(&kg->kg_iq); /* all kses in ksegrp */ 160 kg->kg_proc = p; 161 /* the following counters are in the -zero- section and may not need clearing */ 162 kg->kg_runnable = 0; 163 kg->kg_kses = 0; 164 kg->kg_runq_kses = 0; /* XXXKSE change name */ 165 /* link it in now that it's consitant */ 166 TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp); 167 } 168 169 /* 170 * for a newly created process, 171 * link up a the structure and its initial threads etc. 172 */ 173 void 174 proc_linkup(struct proc *p, struct ksegrp *kg, 175 struct kse *ke, struct thread *td) 176 { 177 178 TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */ 179 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 180 181 ksegrp_link(kg, p); 182 kse_link(ke, kg); 183 thread_link(td, kg); 184 /* link them together for 1:1 */ 185 td->td_kse = ke; 186 ke->ke_thread = td; 187 } 188 189 /* temporary version is ultra simple while we are in 1:1 mode */ 190 struct thread * 191 thread_get(struct proc *p) 192 { 193 struct thread *td = &p->p_xxthread; 194 195 return (td); 196 } 197 198 199 /********************* 200 * STUB KSE syscalls 201 *********************/ 202 203 /* struct thread_wakeup_args { struct thread_mailbox *tmbx; }; */ 204 int 205 thread_wakeup(struct thread *td, struct thread_wakeup_args *uap) 206 { 207 208 return(ENOSYS); 209 } 210 211 int 212 kse_exit(struct thread *td, struct kse_exit_args *uap) 213 { 214 215 return(ENOSYS); 216 } 217 218 int 219 kse_yield(struct thread *td, struct kse_yield_args *uap) 220 { 221 222 return(ENOSYS); 223 } 224 225 int kse_wakeup(struct thread *td, struct kse_wakeup_args *uap) 226 { 227 228 return(ENOSYS); 229 } 230 231 232 int 233 kse_new(struct thread *td, struct kse_new_args *uap) 234 /* struct kse_new_args { 235 struct kse_mailbox *mbx; 236 int new_grp_flag; 237 }; */ 238 { 239 240 return (ENOSYS); 241 } 242 243 /* 244 * Is p an inferior of the current process? 245 */ 246 int 247 inferior(p) 248 register struct proc *p; 249 { 250 251 sx_assert(&proctree_lock, SX_LOCKED); 252 for (; p != curproc; p = p->p_pptr) 253 if (p->p_pid == 0) 254 return (0); 255 return (1); 256 } 257 258 /* 259 * Locate a process by number 260 */ 261 struct proc * 262 pfind(pid) 263 register pid_t pid; 264 { 265 register struct proc *p; 266 267 sx_slock(&allproc_lock); 268 p = dopfind(pid); 269 sx_sunlock(&allproc_lock); 270 return (p); 271 } 272 273 static struct proc * 274 dopfind(pid) 275 register pid_t pid; 276 { 277 register struct proc *p; 278 279 sx_assert(&allproc_lock, SX_LOCKED); 280 281 LIST_FOREACH(p, PIDHASH(pid), p_hash) 282 if (p->p_pid == pid) { 283 PROC_LOCK(p); 284 break; 285 } 286 return (p); 287 } 288 289 /* 290 * Locate a process group by number. 291 * The caller must hold proctree_lock. 292 */ 293 struct pgrp * 294 pgfind(pgid) 295 register pid_t pgid; 296 { 297 register struct pgrp *pgrp; 298 299 sx_assert(&proctree_lock, SX_LOCKED); 300 301 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 302 if (pgrp->pg_id == pgid) { 303 PGRP_LOCK(pgrp); 304 return (pgrp); 305 } 306 } 307 return (NULL); 308 } 309 310 /* 311 * Create a new process group. 312 * pgid must be equal to the pid of p. 313 * Begin a new session if required. 314 */ 315 int 316 enterpgrp(p, pgid, pgrp, sess) 317 register struct proc *p; 318 pid_t pgid; 319 struct pgrp *pgrp; 320 struct session *sess; 321 { 322 struct pgrp *pgrp2; 323 324 sx_assert(&proctree_lock, SX_XLOCKED); 325 326 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 327 KASSERT(p->p_pid == pgid, 328 ("enterpgrp: new pgrp and pid != pgid")); 329 330 pgrp2 = pgfind(pgid); 331 332 KASSERT(pgrp2 == NULL, 333 ("enterpgrp: pgrp with pgid exists")); 334 KASSERT(!SESS_LEADER(p), 335 ("enterpgrp: session leader attempted setpgrp")); 336 337 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 338 339 if (sess != NULL) { 340 /* 341 * new session 342 */ 343 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 344 PROC_LOCK(p); 345 p->p_flag &= ~P_CONTROLT; 346 PROC_UNLOCK(p); 347 PGRP_LOCK(pgrp); 348 sess->s_leader = p; 349 sess->s_sid = p->p_pid; 350 sess->s_count = 1; 351 sess->s_ttyvp = NULL; 352 sess->s_ttyp = NULL; 353 bcopy(p->p_session->s_login, sess->s_login, 354 sizeof(sess->s_login)); 355 pgrp->pg_session = sess; 356 KASSERT(p == curproc, 357 ("enterpgrp: mksession and p != curproc")); 358 } else { 359 pgrp->pg_session = p->p_session; 360 SESS_LOCK(pgrp->pg_session); 361 pgrp->pg_session->s_count++; 362 SESS_UNLOCK(pgrp->pg_session); 363 PGRP_LOCK(pgrp); 364 } 365 pgrp->pg_id = pgid; 366 LIST_INIT(&pgrp->pg_members); 367 368 /* 369 * As we have an exclusive lock of proctree_lock, 370 * this should not deadlock. 371 */ 372 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 373 pgrp->pg_jobc = 0; 374 SLIST_INIT(&pgrp->pg_sigiolst); 375 PGRP_UNLOCK(pgrp); 376 377 doenterpgrp(p, pgrp); 378 379 return (0); 380 } 381 382 /* 383 * Move p to an existing process group 384 */ 385 int 386 enterthispgrp(p, pgrp) 387 register struct proc *p; 388 struct pgrp *pgrp; 389 { 390 391 sx_assert(&proctree_lock, SX_XLOCKED); 392 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 393 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 394 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 395 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 396 KASSERT(pgrp->pg_session == p->p_session, 397 ("%s: pgrp's session %p, p->p_session %p.\n", 398 __func__, 399 pgrp->pg_session, 400 p->p_session)); 401 KASSERT(pgrp != p->p_pgrp, 402 ("%s: p belongs to pgrp.", __func__)); 403 404 doenterpgrp(p, pgrp); 405 406 return (0); 407 } 408 409 /* 410 * Move p to a process group 411 */ 412 static void 413 doenterpgrp(p, pgrp) 414 struct proc *p; 415 struct pgrp *pgrp; 416 { 417 struct pgrp *savepgrp; 418 419 sx_assert(&proctree_lock, SX_XLOCKED); 420 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 421 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 422 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 423 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 424 425 savepgrp = p->p_pgrp; 426 427 /* 428 * Adjust eligibility of affected pgrps to participate in job control. 429 * Increment eligibility counts before decrementing, otherwise we 430 * could reach 0 spuriously during the first call. 431 */ 432 fixjobc(p, pgrp, 1); 433 fixjobc(p, p->p_pgrp, 0); 434 435 PGRP_LOCK(pgrp); 436 PGRP_LOCK(savepgrp); 437 PROC_LOCK(p); 438 LIST_REMOVE(p, p_pglist); 439 p->p_pgrp = pgrp; 440 PROC_UNLOCK(p); 441 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 442 PGRP_UNLOCK(savepgrp); 443 PGRP_UNLOCK(pgrp); 444 if (LIST_EMPTY(&savepgrp->pg_members)) 445 pgdelete(savepgrp); 446 } 447 448 /* 449 * remove process from process group 450 */ 451 int 452 leavepgrp(p) 453 register struct proc *p; 454 { 455 struct pgrp *savepgrp; 456 457 sx_assert(&proctree_lock, SX_XLOCKED); 458 savepgrp = p->p_pgrp; 459 PGRP_LOCK(savepgrp); 460 PROC_LOCK(p); 461 LIST_REMOVE(p, p_pglist); 462 p->p_pgrp = NULL; 463 PROC_UNLOCK(p); 464 PGRP_UNLOCK(savepgrp); 465 if (LIST_EMPTY(&savepgrp->pg_members)) 466 pgdelete(savepgrp); 467 return (0); 468 } 469 470 /* 471 * delete a process group 472 */ 473 static void 474 pgdelete(pgrp) 475 register struct pgrp *pgrp; 476 { 477 struct session *savesess; 478 479 sx_assert(&proctree_lock, SX_XLOCKED); 480 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 481 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 482 483 /* 484 * Reset any sigio structures pointing to us as a result of 485 * F_SETOWN with our pgid. 486 */ 487 funsetownlst(&pgrp->pg_sigiolst); 488 489 PGRP_LOCK(pgrp); 490 if (pgrp->pg_session->s_ttyp != NULL && 491 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 492 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 493 LIST_REMOVE(pgrp, pg_hash); 494 savesess = pgrp->pg_session; 495 SESS_LOCK(savesess); 496 savesess->s_count--; 497 SESS_UNLOCK(savesess); 498 PGRP_UNLOCK(pgrp); 499 if (savesess->s_count == 0) { 500 mtx_destroy(&savesess->s_mtx); 501 FREE(pgrp->pg_session, M_SESSION); 502 } 503 mtx_destroy(&pgrp->pg_mtx); 504 FREE(pgrp, M_PGRP); 505 } 506 507 /* 508 * Adjust pgrp jobc counters when specified process changes process group. 509 * We count the number of processes in each process group that "qualify" 510 * the group for terminal job control (those with a parent in a different 511 * process group of the same session). If that count reaches zero, the 512 * process group becomes orphaned. Check both the specified process' 513 * process group and that of its children. 514 * entering == 0 => p is leaving specified group. 515 * entering == 1 => p is entering specified group. 516 */ 517 void 518 fixjobc(p, pgrp, entering) 519 register struct proc *p; 520 register struct pgrp *pgrp; 521 int entering; 522 { 523 register struct pgrp *hispgrp; 524 register struct session *mysession; 525 526 sx_assert(&proctree_lock, SX_LOCKED); 527 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 528 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 529 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 530 531 /* 532 * Check p's parent to see whether p qualifies its own process 533 * group; if so, adjust count for p's process group. 534 */ 535 mysession = pgrp->pg_session; 536 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 537 hispgrp->pg_session == mysession) { 538 PGRP_LOCK(pgrp); 539 if (entering) 540 pgrp->pg_jobc++; 541 else { 542 --pgrp->pg_jobc; 543 if (pgrp->pg_jobc == 0) 544 orphanpg(pgrp); 545 } 546 PGRP_UNLOCK(pgrp); 547 } 548 549 /* 550 * Check this process' children to see whether they qualify 551 * their process groups; if so, adjust counts for children's 552 * process groups. 553 */ 554 LIST_FOREACH(p, &p->p_children, p_sibling) { 555 if ((hispgrp = p->p_pgrp) != pgrp && 556 hispgrp->pg_session == mysession && 557 p->p_stat != SZOMB) { 558 PGRP_LOCK(hispgrp); 559 if (entering) 560 hispgrp->pg_jobc++; 561 else { 562 --hispgrp->pg_jobc; 563 if (hispgrp->pg_jobc == 0) 564 orphanpg(hispgrp); 565 } 566 PGRP_UNLOCK(hispgrp); 567 } 568 } 569 } 570 571 /* 572 * A process group has become orphaned; 573 * if there are any stopped processes in the group, 574 * hang-up all process in that group. 575 */ 576 static void 577 orphanpg(pg) 578 struct pgrp *pg; 579 { 580 register struct proc *p; 581 582 PGRP_LOCK_ASSERT(pg, MA_OWNED); 583 584 mtx_lock_spin(&sched_lock); 585 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 586 if (p->p_stat == SSTOP) { 587 mtx_unlock_spin(&sched_lock); 588 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 589 PROC_LOCK(p); 590 psignal(p, SIGHUP); 591 psignal(p, SIGCONT); 592 PROC_UNLOCK(p); 593 } 594 return; 595 } 596 } 597 mtx_unlock_spin(&sched_lock); 598 } 599 600 #include "opt_ddb.h" 601 #ifdef DDB 602 #include <ddb/ddb.h> 603 604 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 605 { 606 register struct pgrp *pgrp; 607 register struct proc *p; 608 register int i; 609 610 for (i = 0; i <= pgrphash; i++) { 611 if (!LIST_EMPTY(&pgrphashtbl[i])) { 612 printf("\tindx %d\n", i); 613 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 614 printf( 615 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 616 (void *)pgrp, (long)pgrp->pg_id, 617 (void *)pgrp->pg_session, 618 pgrp->pg_session->s_count, 619 (void *)LIST_FIRST(&pgrp->pg_members)); 620 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 621 printf("\t\tpid %ld addr %p pgrp %p\n", 622 (long)p->p_pid, (void *)p, 623 (void *)p->p_pgrp); 624 } 625 } 626 } 627 } 628 } 629 #endif /* DDB */ 630 631 /* 632 * Fill in an kinfo_proc structure for the specified process. 633 * Must be called with the target process locked. 634 */ 635 void 636 fill_kinfo_proc(p, kp) 637 struct proc *p; 638 struct kinfo_proc *kp; 639 { 640 struct thread *td; 641 struct tty *tp; 642 struct session *sp; 643 struct timeval tv; 644 645 bzero(kp, sizeof(*kp)); 646 647 kp->ki_structsize = sizeof(*kp); 648 kp->ki_paddr = p; 649 PROC_LOCK_ASSERT(p, MA_OWNED); 650 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 651 kp->ki_args = p->p_args; 652 kp->ki_textvp = p->p_textvp; 653 #ifdef KTRACE 654 kp->ki_tracep = p->p_tracep; 655 mtx_lock(&ktrace_mtx); 656 kp->ki_traceflag = p->p_traceflag; 657 mtx_unlock(&ktrace_mtx); 658 #endif 659 kp->ki_fd = p->p_fd; 660 kp->ki_vmspace = p->p_vmspace; 661 if (p->p_ucred) { 662 kp->ki_uid = p->p_ucred->cr_uid; 663 kp->ki_ruid = p->p_ucred->cr_ruid; 664 kp->ki_svuid = p->p_ucred->cr_svuid; 665 /* XXX bde doesn't like KI_NGROUPS */ 666 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); 667 bcopy(p->p_ucred->cr_groups, kp->ki_groups, 668 kp->ki_ngroups * sizeof(gid_t)); 669 kp->ki_rgid = p->p_ucred->cr_rgid; 670 kp->ki_svgid = p->p_ucred->cr_svgid; 671 } 672 if (p->p_procsig) { 673 kp->ki_sigignore = p->p_procsig->ps_sigignore; 674 kp->ki_sigcatch = p->p_procsig->ps_sigcatch; 675 } 676 mtx_lock_spin(&sched_lock); 677 if (p->p_stat != SIDL && p->p_stat != SZOMB && p->p_vmspace != NULL) { 678 struct vmspace *vm = p->p_vmspace; 679 680 kp->ki_size = vm->vm_map.size; 681 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 682 if (p->p_sflag & PS_INMEM) 683 kp->ki_rssize += UAREA_PAGES; 684 FOREACH_THREAD_IN_PROC(p, td) /* XXXKSE: thread swapout check */ 685 kp->ki_rssize += KSTACK_PAGES; 686 kp->ki_swrss = vm->vm_swrss; 687 kp->ki_tsize = vm->vm_tsize; 688 kp->ki_dsize = vm->vm_dsize; 689 kp->ki_ssize = vm->vm_ssize; 690 } 691 if ((p->p_sflag & PS_INMEM) && p->p_stats) { 692 kp->ki_start = p->p_stats->p_start; 693 kp->ki_rusage = p->p_stats->p_ru; 694 kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec + 695 p->p_stats->p_cru.ru_stime.tv_sec; 696 kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec + 697 p->p_stats->p_cru.ru_stime.tv_usec; 698 } 699 td = FIRST_THREAD_IN_PROC(p); 700 if (td->td_wmesg != NULL) 701 strncpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg) - 1); 702 if (p->p_stat == SMTX) { 703 kp->ki_kiflag |= KI_MTXBLOCK; 704 strncpy(kp->ki_mtxname, td->td_mtxname, 705 sizeof(kp->ki_mtxname) - 1); 706 } 707 kp->ki_stat = p->p_stat; 708 kp->ki_sflag = p->p_sflag; 709 kp->ki_swtime = p->p_swtime; 710 kp->ki_pid = p->p_pid; 711 /* vvv XXXKSE */ 712 bintime2timeval(&p->p_runtime, &tv); 713 kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 714 kp->ki_pctcpu = p->p_kse.ke_pctcpu; 715 kp->ki_estcpu = td->td_ksegrp->kg_estcpu; 716 kp->ki_slptime = td->td_ksegrp->kg_slptime; 717 kp->ki_wchan = td->td_wchan; 718 kp->ki_pri.pri_level = td->td_priority; 719 kp->ki_pri.pri_user = td->td_ksegrp->kg_user_pri; 720 kp->ki_pri.pri_class = td->td_ksegrp->kg_pri_class; 721 kp->ki_pri.pri_native = td->td_base_pri; 722 kp->ki_nice = td->td_ksegrp->kg_nice; 723 kp->ki_rqindex = p->p_kse.ke_rqindex; 724 kp->ki_oncpu = p->p_kse.ke_oncpu; 725 kp->ki_lastcpu = td->td_lastcpu; 726 kp->ki_tdflags = td->td_flags; 727 kp->ki_pcb = td->td_pcb; 728 kp->ki_kstack = (void *)td->td_kstack; 729 /* ^^^ XXXKSE */ 730 mtx_unlock_spin(&sched_lock); 731 sp = NULL; 732 tp = NULL; 733 if (p->p_pgrp) { 734 kp->ki_pgid = p->p_pgrp->pg_id; 735 kp->ki_jobc = p->p_pgrp->pg_jobc; 736 sp = p->p_pgrp->pg_session; 737 738 if (sp != NULL) { 739 kp->ki_sid = sp->s_sid; 740 SESS_LOCK(sp); 741 strncpy(kp->ki_login, sp->s_login, 742 sizeof(kp->ki_login) - 1); 743 if (sp->s_ttyvp) 744 kp->ki_kiflag |= KI_CTTY; 745 if (SESS_LEADER(p)) 746 kp->ki_kiflag |= KI_SLEADER; 747 tp = sp->s_ttyp; 748 SESS_UNLOCK(sp); 749 } 750 } 751 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 752 kp->ki_tdev = dev2udev(tp->t_dev); 753 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 754 if (tp->t_session) 755 kp->ki_tsid = tp->t_session->s_sid; 756 } else 757 kp->ki_tdev = NOUDEV; 758 if (p->p_comm[0] != '\0') { 759 strncpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm) - 1); 760 strncpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm) - 1); 761 } 762 kp->ki_siglist = p->p_siglist; 763 kp->ki_sigmask = p->p_sigmask; 764 kp->ki_xstat = p->p_xstat; 765 kp->ki_acflag = p->p_acflag; 766 kp->ki_flag = p->p_flag; 767 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ 768 if (jailed(p->p_ucred)) 769 kp->ki_flag |= P_JAILED; 770 kp->ki_lock = p->p_lock; 771 if (p->p_pptr) 772 kp->ki_ppid = p->p_pptr->p_pid; 773 } 774 775 /* 776 * Locate a zombie process by number 777 */ 778 struct proc * 779 zpfind(pid_t pid) 780 { 781 struct proc *p; 782 783 sx_slock(&allproc_lock); 784 LIST_FOREACH(p, &zombproc, p_list) 785 if (p->p_pid == pid) { 786 PROC_LOCK(p); 787 break; 788 } 789 sx_sunlock(&allproc_lock); 790 return (p); 791 } 792 793 794 /* 795 * Must be called with the process locked and will return with it unlocked. 796 */ 797 static int 798 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb) 799 { 800 struct kinfo_proc kinfo_proc; 801 int error; 802 struct proc *np; 803 pid_t pid = p->p_pid; 804 805 PROC_LOCK_ASSERT(p, MA_OWNED); 806 fill_kinfo_proc(p, &kinfo_proc); 807 PROC_UNLOCK(p); 808 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc)); 809 if (error) 810 return (error); 811 if (doingzomb) 812 np = zpfind(pid); 813 else { 814 if (pid == 0) 815 return (0); 816 np = pfind(pid); 817 } 818 if (np == NULL) 819 return EAGAIN; 820 if (np != p) { 821 PROC_UNLOCK(np); 822 return EAGAIN; 823 } 824 PROC_UNLOCK(np); 825 return (0); 826 } 827 828 static int 829 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 830 { 831 int *name = (int*) arg1; 832 u_int namelen = arg2; 833 struct proc *p; 834 int doingzomb; 835 int error = 0; 836 837 if (oidp->oid_number == KERN_PROC_PID) { 838 if (namelen != 1) 839 return (EINVAL); 840 p = pfind((pid_t)name[0]); 841 if (!p) 842 return (0); 843 if (p_cansee(curthread, p)) { 844 PROC_UNLOCK(p); 845 return (0); 846 } 847 error = sysctl_out_proc(p, req, 0); 848 return (error); 849 } 850 if (oidp->oid_number == KERN_PROC_ALL && !namelen) 851 ; 852 else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) 853 ; 854 else 855 return (EINVAL); 856 857 if (!req->oldptr) { 858 /* overestimate by 5 procs */ 859 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 860 if (error) 861 return (error); 862 } 863 sx_slock(&allproc_lock); 864 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 865 if (!doingzomb) 866 p = LIST_FIRST(&allproc); 867 else 868 p = LIST_FIRST(&zombproc); 869 for (; p != 0; p = LIST_NEXT(p, p_list)) { 870 PROC_LOCK(p); 871 /* 872 * Show a user only appropriate processes. 873 */ 874 if (p_cansee(curthread, p)) { 875 PROC_UNLOCK(p); 876 continue; 877 } 878 /* 879 * Skip embryonic processes. 880 */ 881 if (p->p_stat == SIDL) { 882 PROC_UNLOCK(p); 883 continue; 884 } 885 /* 886 * TODO - make more efficient (see notes below). 887 * do by session. 888 */ 889 switch (oidp->oid_number) { 890 891 case KERN_PROC_PGRP: 892 /* could do this by traversing pgrp */ 893 if (p->p_pgrp == NULL || 894 p->p_pgrp->pg_id != (pid_t)name[0]) { 895 PROC_UNLOCK(p); 896 continue; 897 } 898 break; 899 900 case KERN_PROC_TTY: 901 if ((p->p_flag & P_CONTROLT) == 0 || 902 p->p_session == NULL) { 903 PROC_UNLOCK(p); 904 continue; 905 } 906 SESS_LOCK(p->p_session); 907 if (p->p_session->s_ttyp == NULL || 908 dev2udev(p->p_session->s_ttyp->t_dev) != 909 (udev_t)name[0]) { 910 SESS_UNLOCK(p->p_session); 911 PROC_UNLOCK(p); 912 continue; 913 } 914 SESS_UNLOCK(p->p_session); 915 break; 916 917 case KERN_PROC_UID: 918 if (p->p_ucred == NULL || 919 p->p_ucred->cr_uid != (uid_t)name[0]) { 920 PROC_UNLOCK(p); 921 continue; 922 } 923 break; 924 925 case KERN_PROC_RUID: 926 if (p->p_ucred == NULL || 927 p->p_ucred->cr_ruid != (uid_t)name[0]) { 928 PROC_UNLOCK(p); 929 continue; 930 } 931 break; 932 } 933 934 error = sysctl_out_proc(p, req, doingzomb); 935 if (error) { 936 sx_sunlock(&allproc_lock); 937 return (error); 938 } 939 } 940 } 941 sx_sunlock(&allproc_lock); 942 return (0); 943 } 944 945 struct pargs * 946 pargs_alloc(int len) 947 { 948 struct pargs *pa; 949 950 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 951 M_WAITOK); 952 pa->ar_ref = 1; 953 pa->ar_length = len; 954 return (pa); 955 } 956 957 void 958 pargs_free(struct pargs *pa) 959 { 960 961 FREE(pa, M_PARGS); 962 } 963 964 void 965 pargs_hold(struct pargs *pa) 966 { 967 968 if (pa == NULL) 969 return; 970 PARGS_LOCK(pa); 971 pa->ar_ref++; 972 PARGS_UNLOCK(pa); 973 } 974 975 void 976 pargs_drop(struct pargs *pa) 977 { 978 979 if (pa == NULL) 980 return; 981 PARGS_LOCK(pa); 982 if (--pa->ar_ref == 0) { 983 PARGS_UNLOCK(pa); 984 pargs_free(pa); 985 } else 986 PARGS_UNLOCK(pa); 987 } 988 989 /* 990 * This sysctl allows a process to retrieve the argument list or process 991 * title for another process without groping around in the address space 992 * of the other process. It also allow a process to set its own "process 993 * title to a string of its own choice. 994 */ 995 static int 996 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 997 { 998 int *name = (int*) arg1; 999 u_int namelen = arg2; 1000 struct proc *p; 1001 struct pargs *pa; 1002 int error = 0; 1003 1004 if (namelen != 1) 1005 return (EINVAL); 1006 1007 p = pfind((pid_t)name[0]); 1008 if (!p) 1009 return (0); 1010 1011 if ((!ps_argsopen) && p_cansee(curthread, p)) { 1012 PROC_UNLOCK(p); 1013 return (0); 1014 } 1015 PROC_UNLOCK(p); 1016 1017 if (req->newptr && curproc != p) 1018 return (EPERM); 1019 1020 PROC_LOCK(p); 1021 pa = p->p_args; 1022 pargs_hold(pa); 1023 PROC_UNLOCK(p); 1024 if (req->oldptr && pa != NULL) { 1025 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1026 } 1027 pargs_drop(pa); 1028 if (req->newptr == NULL) 1029 return (error); 1030 1031 PROC_LOCK(p); 1032 pa = p->p_args; 1033 p->p_args = NULL; 1034 PROC_UNLOCK(p); 1035 pargs_drop(pa); 1036 1037 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1038 return (error); 1039 1040 pa = pargs_alloc(req->newlen); 1041 error = SYSCTL_IN(req, pa->ar_args, req->newlen); 1042 if (!error) { 1043 PROC_LOCK(p); 1044 p->p_args = pa; 1045 PROC_UNLOCK(p); 1046 } else 1047 pargs_free(pa); 1048 return (error); 1049 } 1050 1051 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1052 1053 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1054 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1055 1056 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1057 sysctl_kern_proc, "Process table"); 1058 1059 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1060 sysctl_kern_proc, "Process table"); 1061 1062 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1063 sysctl_kern_proc, "Process table"); 1064 1065 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1066 sysctl_kern_proc, "Process table"); 1067 1068 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1069 sysctl_kern_proc, "Process table"); 1070 1071 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 1072 sysctl_kern_proc_args, "Process argument list"); 1073