1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bitstring.h> 45 #include <sys/elf.h> 46 #include <sys/eventhandler.h> 47 #include <sys/exec.h> 48 #include <sys/jail.h> 49 #include <sys/kernel.h> 50 #include <sys/limits.h> 51 #include <sys/lock.h> 52 #include <sys/loginclass.h> 53 #include <sys/malloc.h> 54 #include <sys/mman.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/smp.h> 66 #include <sys/stack.h> 67 #include <sys/stat.h> 68 #include <sys/sysctl.h> 69 #include <sys/filedesc.h> 70 #include <sys/tty.h> 71 #include <sys/signalvar.h> 72 #include <sys/sdt.h> 73 #include <sys/sx.h> 74 #include <sys/user.h> 75 #include <sys/vnode.h> 76 #include <sys/wait.h> 77 78 #ifdef DDB 79 #include <ddb/ddb.h> 80 #endif 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/vm_extern.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #ifdef COMPAT_FREEBSD32 92 #include <compat/freebsd32/freebsd32.h> 93 #include <compat/freebsd32/freebsd32_util.h> 94 #endif 95 96 SDT_PROVIDER_DEFINE(proc); 97 98 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 99 MALLOC_DEFINE(M_SESSION, "session", "session header"); 100 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 101 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 102 103 static void doenterpgrp(struct proc *, struct pgrp *); 104 static void orphanpg(struct pgrp *pg); 105 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 106 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 107 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 108 int preferthread); 109 static void pgadjustjobc(struct pgrp *pgrp, int entering); 110 static void pgdelete(struct pgrp *); 111 static int proc_ctor(void *mem, int size, void *arg, int flags); 112 static void proc_dtor(void *mem, int size, void *arg); 113 static int proc_init(void *mem, int size, int flags); 114 static void proc_fini(void *mem, int size); 115 static void pargs_free(struct pargs *pa); 116 117 /* 118 * Other process lists 119 */ 120 struct pidhashhead *pidhashtbl; 121 struct sx *pidhashtbl_lock; 122 u_long pidhash; 123 u_long pidhashlock; 124 struct pgrphashhead *pgrphashtbl; 125 u_long pgrphash; 126 struct proclist allproc; 127 struct proclist zombproc; 128 struct sx __exclusive_cache_line allproc_lock; 129 struct sx __exclusive_cache_line zombproc_lock; 130 struct sx __exclusive_cache_line proctree_lock; 131 struct mtx __exclusive_cache_line ppeers_lock; 132 struct mtx __exclusive_cache_line procid_lock; 133 uma_zone_t proc_zone; 134 135 /* 136 * The offset of various fields in struct proc and struct thread. 137 * These are used by kernel debuggers to enumerate kernel threads and 138 * processes. 139 */ 140 const int proc_off_p_pid = offsetof(struct proc, p_pid); 141 const int proc_off_p_comm = offsetof(struct proc, p_comm); 142 const int proc_off_p_list = offsetof(struct proc, p_list); 143 const int proc_off_p_threads = offsetof(struct proc, p_threads); 144 const int thread_off_td_tid = offsetof(struct thread, td_tid); 145 const int thread_off_td_name = offsetof(struct thread, td_name); 146 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 147 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 148 const int thread_off_td_plist = offsetof(struct thread, td_plist); 149 150 EVENTHANDLER_LIST_DEFINE(process_ctor); 151 EVENTHANDLER_LIST_DEFINE(process_dtor); 152 EVENTHANDLER_LIST_DEFINE(process_init); 153 EVENTHANDLER_LIST_DEFINE(process_fini); 154 EVENTHANDLER_LIST_DEFINE(process_exit); 155 EVENTHANDLER_LIST_DEFINE(process_fork); 156 EVENTHANDLER_LIST_DEFINE(process_exec); 157 158 EVENTHANDLER_LIST_DECLARE(thread_ctor); 159 EVENTHANDLER_LIST_DECLARE(thread_dtor); 160 161 int kstack_pages = KSTACK_PAGES; 162 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 163 "Kernel stack size in pages"); 164 static int vmmap_skip_res_cnt = 0; 165 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 166 &vmmap_skip_res_cnt, 0, 167 "Skip calculation of the pages resident count in kern.proc.vmmap"); 168 169 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 170 #ifdef COMPAT_FREEBSD32 171 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 172 #endif 173 174 /* 175 * Initialize global process hashing structures. 176 */ 177 void 178 procinit(void) 179 { 180 u_long i; 181 182 sx_init(&allproc_lock, "allproc"); 183 sx_init(&zombproc_lock, "zombproc"); 184 sx_init(&proctree_lock, "proctree"); 185 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 186 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 187 LIST_INIT(&allproc); 188 LIST_INIT(&zombproc); 189 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 190 pidhashlock = (pidhash + 1) / 64; 191 if (pidhashlock > 0) 192 pidhashlock--; 193 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 194 M_PROC, M_WAITOK | M_ZERO); 195 for (i = 0; i < pidhashlock + 1; i++) 196 sx_init(&pidhashtbl_lock[i], "pidhash"); 197 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 198 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 199 proc_ctor, proc_dtor, proc_init, proc_fini, 200 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 201 uihashinit(); 202 } 203 204 /* 205 * Prepare a proc for use. 206 */ 207 static int 208 proc_ctor(void *mem, int size, void *arg, int flags) 209 { 210 struct proc *p; 211 struct thread *td; 212 213 p = (struct proc *)mem; 214 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 215 td = FIRST_THREAD_IN_PROC(p); 216 if (td != NULL) { 217 /* Make sure all thread constructors are executed */ 218 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 219 } 220 return (0); 221 } 222 223 /* 224 * Reclaim a proc after use. 225 */ 226 static void 227 proc_dtor(void *mem, int size, void *arg) 228 { 229 struct proc *p; 230 struct thread *td; 231 232 /* INVARIANTS checks go here */ 233 p = (struct proc *)mem; 234 td = FIRST_THREAD_IN_PROC(p); 235 if (td != NULL) { 236 #ifdef INVARIANTS 237 KASSERT((p->p_numthreads == 1), 238 ("bad number of threads in exiting process")); 239 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 240 #endif 241 /* Free all OSD associated to this thread. */ 242 osd_thread_exit(td); 243 td_softdep_cleanup(td); 244 MPASS(td->td_su == NULL); 245 246 /* Make sure all thread destructors are executed */ 247 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 248 } 249 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 250 if (p->p_ksi != NULL) 251 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 252 } 253 254 /* 255 * Initialize type-stable parts of a proc (when newly created). 256 */ 257 static int 258 proc_init(void *mem, int size, int flags) 259 { 260 struct proc *p; 261 262 p = (struct proc *)mem; 263 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 264 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 265 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 266 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 267 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 268 cv_init(&p->p_pwait, "ppwait"); 269 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 270 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 271 p->p_stats = pstats_alloc(); 272 p->p_pgrp = NULL; 273 return (0); 274 } 275 276 /* 277 * UMA should ensure that this function is never called. 278 * Freeing a proc structure would violate type stability. 279 */ 280 static void 281 proc_fini(void *mem, int size) 282 { 283 #ifdef notnow 284 struct proc *p; 285 286 p = (struct proc *)mem; 287 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 288 pstats_free(p->p_stats); 289 thread_free(FIRST_THREAD_IN_PROC(p)); 290 mtx_destroy(&p->p_mtx); 291 if (p->p_ksi != NULL) 292 ksiginfo_free(p->p_ksi); 293 #else 294 panic("proc reclaimed"); 295 #endif 296 } 297 298 /* 299 * PID space management. 300 * 301 * These bitmaps are used by fork_findpid. 302 */ 303 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 304 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 305 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 306 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 307 308 static bitstr_t *proc_id_array[] = { 309 proc_id_pidmap, 310 proc_id_grpidmap, 311 proc_id_sessidmap, 312 proc_id_reapmap, 313 }; 314 315 void 316 proc_id_set(int type, pid_t id) 317 { 318 319 KASSERT(type >= 0 && type < nitems(proc_id_array), 320 ("invalid type %d\n", type)); 321 mtx_lock(&procid_lock); 322 KASSERT(bit_test(proc_id_array[type], id) == 0, 323 ("bit %d already set in %d\n", id, type)); 324 bit_set(proc_id_array[type], id); 325 mtx_unlock(&procid_lock); 326 } 327 328 void 329 proc_id_set_cond(int type, pid_t id) 330 { 331 332 KASSERT(type >= 0 && type < nitems(proc_id_array), 333 ("invalid type %d\n", type)); 334 if (bit_test(proc_id_array[type], id)) 335 return; 336 mtx_lock(&procid_lock); 337 bit_set(proc_id_array[type], id); 338 mtx_unlock(&procid_lock); 339 } 340 341 void 342 proc_id_clear(int type, pid_t id) 343 { 344 345 KASSERT(type >= 0 && type < nitems(proc_id_array), 346 ("invalid type %d\n", type)); 347 mtx_lock(&procid_lock); 348 KASSERT(bit_test(proc_id_array[type], id) != 0, 349 ("bit %d not set in %d\n", id, type)); 350 bit_clear(proc_id_array[type], id); 351 mtx_unlock(&procid_lock); 352 } 353 354 /* 355 * Is p an inferior of the current process? 356 */ 357 int 358 inferior(struct proc *p) 359 { 360 361 sx_assert(&proctree_lock, SX_LOCKED); 362 PROC_LOCK_ASSERT(p, MA_OWNED); 363 for (; p != curproc; p = proc_realparent(p)) { 364 if (p->p_pid == 0) 365 return (0); 366 } 367 return (1); 368 } 369 370 /* 371 * Locate a process by number. 372 * 373 * By not returning processes in the PRS_NEW state, we allow callers to avoid 374 * testing for that condition to avoid dereferencing p_ucred, et al. 375 */ 376 static __always_inline struct proc * 377 _pfind(pid_t pid, bool zombie) 378 { 379 struct proc *p; 380 381 p = curproc; 382 if (p->p_pid == pid) { 383 PROC_LOCK(p); 384 return (p); 385 } 386 sx_slock(PIDHASHLOCK(pid)); 387 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 388 if (p->p_pid == pid) { 389 PROC_LOCK(p); 390 if (p->p_state == PRS_NEW || 391 (zombie && p->p_state == PRS_ZOMBIE)) { 392 PROC_UNLOCK(p); 393 p = NULL; 394 } 395 break; 396 } 397 } 398 sx_sunlock(PIDHASHLOCK(pid)); 399 return (p); 400 } 401 402 struct proc * 403 pfind(pid_t pid) 404 { 405 406 return (_pfind(pid, false)); 407 } 408 409 /* 410 * Same as pfind but allow zombies. 411 */ 412 struct proc * 413 pfind_any(pid_t pid) 414 { 415 416 return (_pfind(pid, true)); 417 } 418 419 static struct proc * 420 pfind_tid(pid_t tid) 421 { 422 struct proc *p; 423 struct thread *td; 424 425 sx_slock(&allproc_lock); 426 FOREACH_PROC_IN_SYSTEM(p) { 427 PROC_LOCK(p); 428 if (p->p_state == PRS_NEW) { 429 PROC_UNLOCK(p); 430 continue; 431 } 432 FOREACH_THREAD_IN_PROC(p, td) { 433 if (td->td_tid == tid) 434 goto found; 435 } 436 PROC_UNLOCK(p); 437 } 438 found: 439 sx_sunlock(&allproc_lock); 440 return (p); 441 } 442 443 /* 444 * Locate a process group by number. 445 * The caller must hold proctree_lock. 446 */ 447 struct pgrp * 448 pgfind(pid_t pgid) 449 { 450 struct pgrp *pgrp; 451 452 sx_assert(&proctree_lock, SX_LOCKED); 453 454 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 455 if (pgrp->pg_id == pgid) { 456 PGRP_LOCK(pgrp); 457 return (pgrp); 458 } 459 } 460 return (NULL); 461 } 462 463 /* 464 * Locate process and do additional manipulations, depending on flags. 465 */ 466 int 467 pget(pid_t pid, int flags, struct proc **pp) 468 { 469 struct proc *p; 470 int error; 471 472 p = curproc; 473 if (p->p_pid == pid) { 474 PROC_LOCK(p); 475 } else { 476 p = NULL; 477 if (pid <= PID_MAX) { 478 if ((flags & PGET_NOTWEXIT) == 0) 479 p = pfind_any(pid); 480 else 481 p = pfind(pid); 482 } else if ((flags & PGET_NOTID) == 0) { 483 p = pfind_tid(pid); 484 } 485 if (p == NULL) 486 return (ESRCH); 487 if ((flags & PGET_CANSEE) != 0) { 488 error = p_cansee(curthread, p); 489 if (error != 0) 490 goto errout; 491 } 492 } 493 if ((flags & PGET_CANDEBUG) != 0) { 494 error = p_candebug(curthread, p); 495 if (error != 0) 496 goto errout; 497 } 498 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 499 error = EPERM; 500 goto errout; 501 } 502 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 503 error = ESRCH; 504 goto errout; 505 } 506 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 507 /* 508 * XXXRW: Not clear ESRCH is the right error during proc 509 * execve(). 510 */ 511 error = ESRCH; 512 goto errout; 513 } 514 if ((flags & PGET_HOLD) != 0) { 515 _PHOLD(p); 516 PROC_UNLOCK(p); 517 } 518 *pp = p; 519 return (0); 520 errout: 521 PROC_UNLOCK(p); 522 return (error); 523 } 524 525 /* 526 * Create a new process group. 527 * pgid must be equal to the pid of p. 528 * Begin a new session if required. 529 */ 530 int 531 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 532 { 533 534 sx_assert(&proctree_lock, SX_XLOCKED); 535 536 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 537 KASSERT(p->p_pid == pgid, 538 ("enterpgrp: new pgrp and pid != pgid")); 539 KASSERT(pgfind(pgid) == NULL, 540 ("enterpgrp: pgrp with pgid exists")); 541 KASSERT(!SESS_LEADER(p), 542 ("enterpgrp: session leader attempted setpgrp")); 543 544 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 545 546 if (sess != NULL) { 547 /* 548 * new session 549 */ 550 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 551 PROC_LOCK(p); 552 p->p_flag &= ~P_CONTROLT; 553 PROC_UNLOCK(p); 554 PGRP_LOCK(pgrp); 555 sess->s_leader = p; 556 sess->s_sid = p->p_pid; 557 proc_id_set(PROC_ID_SESSION, p->p_pid); 558 refcount_init(&sess->s_count, 1); 559 sess->s_ttyvp = NULL; 560 sess->s_ttydp = NULL; 561 sess->s_ttyp = NULL; 562 bcopy(p->p_session->s_login, sess->s_login, 563 sizeof(sess->s_login)); 564 pgrp->pg_session = sess; 565 KASSERT(p == curproc, 566 ("enterpgrp: mksession and p != curproc")); 567 } else { 568 pgrp->pg_session = p->p_session; 569 sess_hold(pgrp->pg_session); 570 PGRP_LOCK(pgrp); 571 } 572 pgrp->pg_id = pgid; 573 proc_id_set(PROC_ID_GROUP, p->p_pid); 574 LIST_INIT(&pgrp->pg_members); 575 576 /* 577 * As we have an exclusive lock of proctree_lock, 578 * this should not deadlock. 579 */ 580 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 581 pgrp->pg_jobc = 0; 582 SLIST_INIT(&pgrp->pg_sigiolst); 583 PGRP_UNLOCK(pgrp); 584 585 doenterpgrp(p, pgrp); 586 587 return (0); 588 } 589 590 /* 591 * Move p to an existing process group 592 */ 593 int 594 enterthispgrp(struct proc *p, struct pgrp *pgrp) 595 { 596 597 sx_assert(&proctree_lock, SX_XLOCKED); 598 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 599 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 600 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 601 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 602 KASSERT(pgrp->pg_session == p->p_session, 603 ("%s: pgrp's session %p, p->p_session %p.\n", 604 __func__, 605 pgrp->pg_session, 606 p->p_session)); 607 KASSERT(pgrp != p->p_pgrp, 608 ("%s: p belongs to pgrp.", __func__)); 609 610 doenterpgrp(p, pgrp); 611 612 return (0); 613 } 614 615 /* 616 * Move p to a process group 617 */ 618 static void 619 doenterpgrp(struct proc *p, struct pgrp *pgrp) 620 { 621 struct pgrp *savepgrp; 622 623 sx_assert(&proctree_lock, SX_XLOCKED); 624 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 625 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 626 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 627 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 628 629 savepgrp = p->p_pgrp; 630 631 /* 632 * Adjust eligibility of affected pgrps to participate in job control. 633 * Increment eligibility counts before decrementing, otherwise we 634 * could reach 0 spuriously during the first call. 635 */ 636 fixjobc(p, pgrp, 1); 637 fixjobc(p, p->p_pgrp, 0); 638 639 PGRP_LOCK(pgrp); 640 PGRP_LOCK(savepgrp); 641 PROC_LOCK(p); 642 LIST_REMOVE(p, p_pglist); 643 p->p_pgrp = pgrp; 644 PROC_UNLOCK(p); 645 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 646 PGRP_UNLOCK(savepgrp); 647 PGRP_UNLOCK(pgrp); 648 if (LIST_EMPTY(&savepgrp->pg_members)) 649 pgdelete(savepgrp); 650 } 651 652 /* 653 * remove process from process group 654 */ 655 int 656 leavepgrp(struct proc *p) 657 { 658 struct pgrp *savepgrp; 659 660 sx_assert(&proctree_lock, SX_XLOCKED); 661 savepgrp = p->p_pgrp; 662 PGRP_LOCK(savepgrp); 663 PROC_LOCK(p); 664 LIST_REMOVE(p, p_pglist); 665 p->p_pgrp = NULL; 666 PROC_UNLOCK(p); 667 PGRP_UNLOCK(savepgrp); 668 if (LIST_EMPTY(&savepgrp->pg_members)) 669 pgdelete(savepgrp); 670 return (0); 671 } 672 673 /* 674 * delete a process group 675 */ 676 static void 677 pgdelete(struct pgrp *pgrp) 678 { 679 struct session *savesess; 680 struct tty *tp; 681 682 sx_assert(&proctree_lock, SX_XLOCKED); 683 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 684 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 685 686 /* 687 * Reset any sigio structures pointing to us as a result of 688 * F_SETOWN with our pgid. 689 */ 690 funsetownlst(&pgrp->pg_sigiolst); 691 692 PGRP_LOCK(pgrp); 693 tp = pgrp->pg_session->s_ttyp; 694 LIST_REMOVE(pgrp, pg_hash); 695 savesess = pgrp->pg_session; 696 PGRP_UNLOCK(pgrp); 697 698 /* Remove the reference to the pgrp before deallocating it. */ 699 if (tp != NULL) { 700 tty_lock(tp); 701 tty_rel_pgrp(tp, pgrp); 702 } 703 704 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 705 mtx_destroy(&pgrp->pg_mtx); 706 free(pgrp, M_PGRP); 707 sess_release(savesess); 708 } 709 710 static void 711 pgadjustjobc(struct pgrp *pgrp, int entering) 712 { 713 714 PGRP_LOCK(pgrp); 715 if (entering) 716 pgrp->pg_jobc++; 717 else { 718 --pgrp->pg_jobc; 719 if (pgrp->pg_jobc == 0) 720 orphanpg(pgrp); 721 } 722 PGRP_UNLOCK(pgrp); 723 } 724 725 /* 726 * Adjust pgrp jobc counters when specified process changes process group. 727 * We count the number of processes in each process group that "qualify" 728 * the group for terminal job control (those with a parent in a different 729 * process group of the same session). If that count reaches zero, the 730 * process group becomes orphaned. Check both the specified process' 731 * process group and that of its children. 732 * entering == 0 => p is leaving specified group. 733 * entering == 1 => p is entering specified group. 734 */ 735 void 736 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 737 { 738 struct pgrp *hispgrp; 739 struct session *mysession; 740 struct proc *q; 741 742 sx_assert(&proctree_lock, SX_LOCKED); 743 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 744 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 745 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 746 747 /* 748 * Check p's parent to see whether p qualifies its own process 749 * group; if so, adjust count for p's process group. 750 */ 751 mysession = pgrp->pg_session; 752 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 753 hispgrp->pg_session == mysession) 754 pgadjustjobc(pgrp, entering); 755 756 /* 757 * Check this process' children to see whether they qualify 758 * their process groups; if so, adjust counts for children's 759 * process groups. 760 */ 761 LIST_FOREACH(q, &p->p_children, p_sibling) { 762 hispgrp = q->p_pgrp; 763 if (hispgrp == pgrp || 764 hispgrp->pg_session != mysession) 765 continue; 766 if (q->p_state == PRS_ZOMBIE) 767 continue; 768 pgadjustjobc(hispgrp, entering); 769 } 770 } 771 772 void 773 killjobc(void) 774 { 775 struct session *sp; 776 struct tty *tp; 777 struct proc *p; 778 struct vnode *ttyvp; 779 780 p = curproc; 781 MPASS(p->p_flag & P_WEXIT); 782 /* 783 * Do a quick check to see if there is anything to do with the 784 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 785 */ 786 PROC_LOCK(p); 787 if (!SESS_LEADER(p) && 788 (p->p_pgrp == p->p_pptr->p_pgrp) && 789 LIST_EMPTY(&p->p_children)) { 790 PROC_UNLOCK(p); 791 return; 792 } 793 PROC_UNLOCK(p); 794 795 sx_xlock(&proctree_lock); 796 if (SESS_LEADER(p)) { 797 sp = p->p_session; 798 799 /* 800 * s_ttyp is not zero'd; we use this to indicate that 801 * the session once had a controlling terminal. (for 802 * logging and informational purposes) 803 */ 804 SESS_LOCK(sp); 805 ttyvp = sp->s_ttyvp; 806 tp = sp->s_ttyp; 807 sp->s_ttyvp = NULL; 808 sp->s_ttydp = NULL; 809 sp->s_leader = NULL; 810 SESS_UNLOCK(sp); 811 812 /* 813 * Signal foreground pgrp and revoke access to 814 * controlling terminal if it has not been revoked 815 * already. 816 * 817 * Because the TTY may have been revoked in the mean 818 * time and could already have a new session associated 819 * with it, make sure we don't send a SIGHUP to a 820 * foreground process group that does not belong to this 821 * session. 822 */ 823 824 if (tp != NULL) { 825 tty_lock(tp); 826 if (tp->t_session == sp) 827 tty_signal_pgrp(tp, SIGHUP); 828 tty_unlock(tp); 829 } 830 831 if (ttyvp != NULL) { 832 sx_xunlock(&proctree_lock); 833 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 834 VOP_REVOKE(ttyvp, REVOKEALL); 835 VOP_UNLOCK(ttyvp, 0); 836 } 837 vrele(ttyvp); 838 sx_xlock(&proctree_lock); 839 } 840 } 841 fixjobc(p, p->p_pgrp, 0); 842 sx_xunlock(&proctree_lock); 843 } 844 845 /* 846 * A process group has become orphaned; 847 * if there are any stopped processes in the group, 848 * hang-up all process in that group. 849 */ 850 static void 851 orphanpg(struct pgrp *pg) 852 { 853 struct proc *p; 854 855 PGRP_LOCK_ASSERT(pg, MA_OWNED); 856 857 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 858 PROC_LOCK(p); 859 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 860 PROC_UNLOCK(p); 861 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 862 PROC_LOCK(p); 863 kern_psignal(p, SIGHUP); 864 kern_psignal(p, SIGCONT); 865 PROC_UNLOCK(p); 866 } 867 return; 868 } 869 PROC_UNLOCK(p); 870 } 871 } 872 873 void 874 sess_hold(struct session *s) 875 { 876 877 refcount_acquire(&s->s_count); 878 } 879 880 void 881 sess_release(struct session *s) 882 { 883 884 if (refcount_release(&s->s_count)) { 885 if (s->s_ttyp != NULL) { 886 tty_lock(s->s_ttyp); 887 tty_rel_sess(s->s_ttyp, s); 888 } 889 proc_id_clear(PROC_ID_SESSION, s->s_sid); 890 mtx_destroy(&s->s_mtx); 891 free(s, M_SESSION); 892 } 893 } 894 895 #ifdef DDB 896 897 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 898 { 899 struct pgrp *pgrp; 900 struct proc *p; 901 int i; 902 903 for (i = 0; i <= pgrphash; i++) { 904 if (!LIST_EMPTY(&pgrphashtbl[i])) { 905 printf("\tindx %d\n", i); 906 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 907 printf( 908 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 909 (void *)pgrp, (long)pgrp->pg_id, 910 (void *)pgrp->pg_session, 911 pgrp->pg_session->s_count, 912 (void *)LIST_FIRST(&pgrp->pg_members)); 913 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 914 printf("\t\tpid %ld addr %p pgrp %p\n", 915 (long)p->p_pid, (void *)p, 916 (void *)p->p_pgrp); 917 } 918 } 919 } 920 } 921 } 922 #endif /* DDB */ 923 924 /* 925 * Calculate the kinfo_proc members which contain process-wide 926 * informations. 927 * Must be called with the target process locked. 928 */ 929 static void 930 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 931 { 932 struct thread *td; 933 934 PROC_LOCK_ASSERT(p, MA_OWNED); 935 936 kp->ki_estcpu = 0; 937 kp->ki_pctcpu = 0; 938 FOREACH_THREAD_IN_PROC(p, td) { 939 thread_lock(td); 940 kp->ki_pctcpu += sched_pctcpu(td); 941 kp->ki_estcpu += sched_estcpu(td); 942 thread_unlock(td); 943 } 944 } 945 946 /* 947 * Clear kinfo_proc and fill in any information that is common 948 * to all threads in the process. 949 * Must be called with the target process locked. 950 */ 951 static void 952 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 953 { 954 struct thread *td0; 955 struct tty *tp; 956 struct session *sp; 957 struct ucred *cred; 958 struct sigacts *ps; 959 struct timeval boottime; 960 961 PROC_LOCK_ASSERT(p, MA_OWNED); 962 bzero(kp, sizeof(*kp)); 963 964 kp->ki_structsize = sizeof(*kp); 965 kp->ki_paddr = p; 966 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 967 kp->ki_args = p->p_args; 968 kp->ki_textvp = p->p_textvp; 969 #ifdef KTRACE 970 kp->ki_tracep = p->p_tracevp; 971 kp->ki_traceflag = p->p_traceflag; 972 #endif 973 kp->ki_fd = p->p_fd; 974 kp->ki_vmspace = p->p_vmspace; 975 kp->ki_flag = p->p_flag; 976 kp->ki_flag2 = p->p_flag2; 977 cred = p->p_ucred; 978 if (cred) { 979 kp->ki_uid = cred->cr_uid; 980 kp->ki_ruid = cred->cr_ruid; 981 kp->ki_svuid = cred->cr_svuid; 982 kp->ki_cr_flags = 0; 983 if (cred->cr_flags & CRED_FLAG_CAPMODE) 984 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 985 /* XXX bde doesn't like KI_NGROUPS */ 986 if (cred->cr_ngroups > KI_NGROUPS) { 987 kp->ki_ngroups = KI_NGROUPS; 988 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 989 } else 990 kp->ki_ngroups = cred->cr_ngroups; 991 bcopy(cred->cr_groups, kp->ki_groups, 992 kp->ki_ngroups * sizeof(gid_t)); 993 kp->ki_rgid = cred->cr_rgid; 994 kp->ki_svgid = cred->cr_svgid; 995 /* If jailed(cred), emulate the old P_JAILED flag. */ 996 if (jailed(cred)) { 997 kp->ki_flag |= P_JAILED; 998 /* If inside the jail, use 0 as a jail ID. */ 999 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1000 kp->ki_jid = cred->cr_prison->pr_id; 1001 } 1002 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1003 sizeof(kp->ki_loginclass)); 1004 } 1005 ps = p->p_sigacts; 1006 if (ps) { 1007 mtx_lock(&ps->ps_mtx); 1008 kp->ki_sigignore = ps->ps_sigignore; 1009 kp->ki_sigcatch = ps->ps_sigcatch; 1010 mtx_unlock(&ps->ps_mtx); 1011 } 1012 if (p->p_state != PRS_NEW && 1013 p->p_state != PRS_ZOMBIE && 1014 p->p_vmspace != NULL) { 1015 struct vmspace *vm = p->p_vmspace; 1016 1017 kp->ki_size = vm->vm_map.size; 1018 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1019 FOREACH_THREAD_IN_PROC(p, td0) { 1020 if (!TD_IS_SWAPPED(td0)) 1021 kp->ki_rssize += td0->td_kstack_pages; 1022 } 1023 kp->ki_swrss = vm->vm_swrss; 1024 kp->ki_tsize = vm->vm_tsize; 1025 kp->ki_dsize = vm->vm_dsize; 1026 kp->ki_ssize = vm->vm_ssize; 1027 } else if (p->p_state == PRS_ZOMBIE) 1028 kp->ki_stat = SZOMB; 1029 if (kp->ki_flag & P_INMEM) 1030 kp->ki_sflag = PS_INMEM; 1031 else 1032 kp->ki_sflag = 0; 1033 /* Calculate legacy swtime as seconds since 'swtick'. */ 1034 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1035 kp->ki_pid = p->p_pid; 1036 kp->ki_nice = p->p_nice; 1037 kp->ki_fibnum = p->p_fibnum; 1038 kp->ki_start = p->p_stats->p_start; 1039 getboottime(&boottime); 1040 timevaladd(&kp->ki_start, &boottime); 1041 PROC_STATLOCK(p); 1042 rufetch(p, &kp->ki_rusage); 1043 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1044 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1045 PROC_STATUNLOCK(p); 1046 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1047 /* Some callers want child times in a single value. */ 1048 kp->ki_childtime = kp->ki_childstime; 1049 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1050 1051 FOREACH_THREAD_IN_PROC(p, td0) 1052 kp->ki_cow += td0->td_cow; 1053 1054 tp = NULL; 1055 if (p->p_pgrp) { 1056 kp->ki_pgid = p->p_pgrp->pg_id; 1057 kp->ki_jobc = p->p_pgrp->pg_jobc; 1058 sp = p->p_pgrp->pg_session; 1059 1060 if (sp != NULL) { 1061 kp->ki_sid = sp->s_sid; 1062 SESS_LOCK(sp); 1063 strlcpy(kp->ki_login, sp->s_login, 1064 sizeof(kp->ki_login)); 1065 if (sp->s_ttyvp) 1066 kp->ki_kiflag |= KI_CTTY; 1067 if (SESS_LEADER(p)) 1068 kp->ki_kiflag |= KI_SLEADER; 1069 /* XXX proctree_lock */ 1070 tp = sp->s_ttyp; 1071 SESS_UNLOCK(sp); 1072 } 1073 } 1074 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1075 kp->ki_tdev = tty_udev(tp); 1076 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1077 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1078 if (tp->t_session) 1079 kp->ki_tsid = tp->t_session->s_sid; 1080 } else { 1081 kp->ki_tdev = NODEV; 1082 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1083 } 1084 if (p->p_comm[0] != '\0') 1085 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1086 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1087 p->p_sysent->sv_name[0] != '\0') 1088 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1089 kp->ki_siglist = p->p_siglist; 1090 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1091 kp->ki_acflag = p->p_acflag; 1092 kp->ki_lock = p->p_lock; 1093 if (p->p_pptr) { 1094 kp->ki_ppid = p->p_oppid; 1095 if (p->p_flag & P_TRACED) 1096 kp->ki_tracer = p->p_pptr->p_pid; 1097 } 1098 } 1099 1100 /* 1101 * Fill in information that is thread specific. Must be called with 1102 * target process locked. If 'preferthread' is set, overwrite certain 1103 * process-related fields that are maintained for both threads and 1104 * processes. 1105 */ 1106 static void 1107 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1108 { 1109 struct proc *p; 1110 1111 p = td->td_proc; 1112 kp->ki_tdaddr = td; 1113 PROC_LOCK_ASSERT(p, MA_OWNED); 1114 1115 if (preferthread) 1116 PROC_STATLOCK(p); 1117 thread_lock(td); 1118 if (td->td_wmesg != NULL) 1119 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1120 else 1121 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1122 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1123 sizeof(kp->ki_tdname)) { 1124 strlcpy(kp->ki_moretdname, 1125 td->td_name + sizeof(kp->ki_tdname) - 1, 1126 sizeof(kp->ki_moretdname)); 1127 } else { 1128 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1129 } 1130 if (TD_ON_LOCK(td)) { 1131 kp->ki_kiflag |= KI_LOCKBLOCK; 1132 strlcpy(kp->ki_lockname, td->td_lockname, 1133 sizeof(kp->ki_lockname)); 1134 } else { 1135 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1136 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1137 } 1138 1139 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1140 if (TD_ON_RUNQ(td) || 1141 TD_CAN_RUN(td) || 1142 TD_IS_RUNNING(td)) { 1143 kp->ki_stat = SRUN; 1144 } else if (P_SHOULDSTOP(p)) { 1145 kp->ki_stat = SSTOP; 1146 } else if (TD_IS_SLEEPING(td)) { 1147 kp->ki_stat = SSLEEP; 1148 } else if (TD_ON_LOCK(td)) { 1149 kp->ki_stat = SLOCK; 1150 } else { 1151 kp->ki_stat = SWAIT; 1152 } 1153 } else if (p->p_state == PRS_ZOMBIE) { 1154 kp->ki_stat = SZOMB; 1155 } else { 1156 kp->ki_stat = SIDL; 1157 } 1158 1159 /* Things in the thread */ 1160 kp->ki_wchan = td->td_wchan; 1161 kp->ki_pri.pri_level = td->td_priority; 1162 kp->ki_pri.pri_native = td->td_base_pri; 1163 1164 /* 1165 * Note: legacy fields; clamp at the old NOCPU value and/or 1166 * the maximum u_char CPU value. 1167 */ 1168 if (td->td_lastcpu == NOCPU) 1169 kp->ki_lastcpu_old = NOCPU_OLD; 1170 else if (td->td_lastcpu > MAXCPU_OLD) 1171 kp->ki_lastcpu_old = MAXCPU_OLD; 1172 else 1173 kp->ki_lastcpu_old = td->td_lastcpu; 1174 1175 if (td->td_oncpu == NOCPU) 1176 kp->ki_oncpu_old = NOCPU_OLD; 1177 else if (td->td_oncpu > MAXCPU_OLD) 1178 kp->ki_oncpu_old = MAXCPU_OLD; 1179 else 1180 kp->ki_oncpu_old = td->td_oncpu; 1181 1182 kp->ki_lastcpu = td->td_lastcpu; 1183 kp->ki_oncpu = td->td_oncpu; 1184 kp->ki_tdflags = td->td_flags; 1185 kp->ki_tid = td->td_tid; 1186 kp->ki_numthreads = p->p_numthreads; 1187 kp->ki_pcb = td->td_pcb; 1188 kp->ki_kstack = (void *)td->td_kstack; 1189 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1190 kp->ki_pri.pri_class = td->td_pri_class; 1191 kp->ki_pri.pri_user = td->td_user_pri; 1192 1193 if (preferthread) { 1194 rufetchtd(td, &kp->ki_rusage); 1195 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1196 kp->ki_pctcpu = sched_pctcpu(td); 1197 kp->ki_estcpu = sched_estcpu(td); 1198 kp->ki_cow = td->td_cow; 1199 } 1200 1201 /* We can't get this anymore but ps etc never used it anyway. */ 1202 kp->ki_rqindex = 0; 1203 1204 if (preferthread) 1205 kp->ki_siglist = td->td_siglist; 1206 kp->ki_sigmask = td->td_sigmask; 1207 thread_unlock(td); 1208 if (preferthread) 1209 PROC_STATUNLOCK(p); 1210 } 1211 1212 /* 1213 * Fill in a kinfo_proc structure for the specified process. 1214 * Must be called with the target process locked. 1215 */ 1216 void 1217 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1218 { 1219 1220 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1221 1222 fill_kinfo_proc_only(p, kp); 1223 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1224 fill_kinfo_aggregate(p, kp); 1225 } 1226 1227 struct pstats * 1228 pstats_alloc(void) 1229 { 1230 1231 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1232 } 1233 1234 /* 1235 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1236 */ 1237 void 1238 pstats_fork(struct pstats *src, struct pstats *dst) 1239 { 1240 1241 bzero(&dst->pstat_startzero, 1242 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1243 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1244 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1245 } 1246 1247 void 1248 pstats_free(struct pstats *ps) 1249 { 1250 1251 free(ps, M_SUBPROC); 1252 } 1253 1254 /* 1255 * Locate a zombie process by number 1256 */ 1257 struct proc * 1258 zpfind(pid_t pid) 1259 { 1260 struct proc *p; 1261 1262 sx_slock(&zombproc_lock); 1263 LIST_FOREACH(p, &zombproc, p_list) { 1264 if (p->p_pid == pid) { 1265 PROC_LOCK(p); 1266 break; 1267 } 1268 } 1269 sx_sunlock(&zombproc_lock); 1270 return (p); 1271 } 1272 1273 #ifdef COMPAT_FREEBSD32 1274 1275 /* 1276 * This function is typically used to copy out the kernel address, so 1277 * it can be replaced by assignment of zero. 1278 */ 1279 static inline uint32_t 1280 ptr32_trim(void *ptr) 1281 { 1282 uintptr_t uptr; 1283 1284 uptr = (uintptr_t)ptr; 1285 return ((uptr > UINT_MAX) ? 0 : uptr); 1286 } 1287 1288 #define PTRTRIM_CP(src,dst,fld) \ 1289 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1290 1291 static void 1292 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1293 { 1294 int i; 1295 1296 bzero(ki32, sizeof(struct kinfo_proc32)); 1297 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1298 CP(*ki, *ki32, ki_layout); 1299 PTRTRIM_CP(*ki, *ki32, ki_args); 1300 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1301 PTRTRIM_CP(*ki, *ki32, ki_addr); 1302 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1303 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1304 PTRTRIM_CP(*ki, *ki32, ki_fd); 1305 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1306 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1307 CP(*ki, *ki32, ki_pid); 1308 CP(*ki, *ki32, ki_ppid); 1309 CP(*ki, *ki32, ki_pgid); 1310 CP(*ki, *ki32, ki_tpgid); 1311 CP(*ki, *ki32, ki_sid); 1312 CP(*ki, *ki32, ki_tsid); 1313 CP(*ki, *ki32, ki_jobc); 1314 CP(*ki, *ki32, ki_tdev); 1315 CP(*ki, *ki32, ki_tdev_freebsd11); 1316 CP(*ki, *ki32, ki_siglist); 1317 CP(*ki, *ki32, ki_sigmask); 1318 CP(*ki, *ki32, ki_sigignore); 1319 CP(*ki, *ki32, ki_sigcatch); 1320 CP(*ki, *ki32, ki_uid); 1321 CP(*ki, *ki32, ki_ruid); 1322 CP(*ki, *ki32, ki_svuid); 1323 CP(*ki, *ki32, ki_rgid); 1324 CP(*ki, *ki32, ki_svgid); 1325 CP(*ki, *ki32, ki_ngroups); 1326 for (i = 0; i < KI_NGROUPS; i++) 1327 CP(*ki, *ki32, ki_groups[i]); 1328 CP(*ki, *ki32, ki_size); 1329 CP(*ki, *ki32, ki_rssize); 1330 CP(*ki, *ki32, ki_swrss); 1331 CP(*ki, *ki32, ki_tsize); 1332 CP(*ki, *ki32, ki_dsize); 1333 CP(*ki, *ki32, ki_ssize); 1334 CP(*ki, *ki32, ki_xstat); 1335 CP(*ki, *ki32, ki_acflag); 1336 CP(*ki, *ki32, ki_pctcpu); 1337 CP(*ki, *ki32, ki_estcpu); 1338 CP(*ki, *ki32, ki_slptime); 1339 CP(*ki, *ki32, ki_swtime); 1340 CP(*ki, *ki32, ki_cow); 1341 CP(*ki, *ki32, ki_runtime); 1342 TV_CP(*ki, *ki32, ki_start); 1343 TV_CP(*ki, *ki32, ki_childtime); 1344 CP(*ki, *ki32, ki_flag); 1345 CP(*ki, *ki32, ki_kiflag); 1346 CP(*ki, *ki32, ki_traceflag); 1347 CP(*ki, *ki32, ki_stat); 1348 CP(*ki, *ki32, ki_nice); 1349 CP(*ki, *ki32, ki_lock); 1350 CP(*ki, *ki32, ki_rqindex); 1351 CP(*ki, *ki32, ki_oncpu); 1352 CP(*ki, *ki32, ki_lastcpu); 1353 1354 /* XXX TODO: wrap cpu value as appropriate */ 1355 CP(*ki, *ki32, ki_oncpu_old); 1356 CP(*ki, *ki32, ki_lastcpu_old); 1357 1358 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1359 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1360 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1361 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1362 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1363 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1364 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1365 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1366 CP(*ki, *ki32, ki_tracer); 1367 CP(*ki, *ki32, ki_flag2); 1368 CP(*ki, *ki32, ki_fibnum); 1369 CP(*ki, *ki32, ki_cr_flags); 1370 CP(*ki, *ki32, ki_jid); 1371 CP(*ki, *ki32, ki_numthreads); 1372 CP(*ki, *ki32, ki_tid); 1373 CP(*ki, *ki32, ki_pri); 1374 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1375 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1376 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1377 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1378 PTRTRIM_CP(*ki, *ki32, ki_udata); 1379 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1380 CP(*ki, *ki32, ki_sflag); 1381 CP(*ki, *ki32, ki_tdflags); 1382 } 1383 #endif 1384 1385 static ssize_t 1386 kern_proc_out_size(struct proc *p, int flags) 1387 { 1388 ssize_t size = 0; 1389 1390 PROC_LOCK_ASSERT(p, MA_OWNED); 1391 1392 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1393 #ifdef COMPAT_FREEBSD32 1394 if ((flags & KERN_PROC_MASK32) != 0) { 1395 size += sizeof(struct kinfo_proc32); 1396 } else 1397 #endif 1398 size += sizeof(struct kinfo_proc); 1399 } else { 1400 #ifdef COMPAT_FREEBSD32 1401 if ((flags & KERN_PROC_MASK32) != 0) 1402 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1403 else 1404 #endif 1405 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1406 } 1407 PROC_UNLOCK(p); 1408 return (size); 1409 } 1410 1411 int 1412 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1413 { 1414 struct thread *td; 1415 struct kinfo_proc ki; 1416 #ifdef COMPAT_FREEBSD32 1417 struct kinfo_proc32 ki32; 1418 #endif 1419 int error; 1420 1421 PROC_LOCK_ASSERT(p, MA_OWNED); 1422 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1423 1424 error = 0; 1425 fill_kinfo_proc(p, &ki); 1426 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1427 #ifdef COMPAT_FREEBSD32 1428 if ((flags & KERN_PROC_MASK32) != 0) { 1429 freebsd32_kinfo_proc_out(&ki, &ki32); 1430 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1431 error = ENOMEM; 1432 } else 1433 #endif 1434 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1435 error = ENOMEM; 1436 } else { 1437 FOREACH_THREAD_IN_PROC(p, td) { 1438 fill_kinfo_thread(td, &ki, 1); 1439 #ifdef COMPAT_FREEBSD32 1440 if ((flags & KERN_PROC_MASK32) != 0) { 1441 freebsd32_kinfo_proc_out(&ki, &ki32); 1442 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1443 error = ENOMEM; 1444 } else 1445 #endif 1446 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1447 error = ENOMEM; 1448 if (error != 0) 1449 break; 1450 } 1451 } 1452 PROC_UNLOCK(p); 1453 return (error); 1454 } 1455 1456 static int 1457 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1458 { 1459 struct sbuf sb; 1460 struct kinfo_proc ki; 1461 int error, error2; 1462 1463 if (req->oldptr == NULL) 1464 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1465 1466 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1467 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1468 error = kern_proc_out(p, &sb, flags); 1469 error2 = sbuf_finish(&sb); 1470 sbuf_delete(&sb); 1471 if (error != 0) 1472 return (error); 1473 else if (error2 != 0) 1474 return (error2); 1475 return (0); 1476 } 1477 1478 int 1479 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1480 { 1481 struct proc *p; 1482 int error, i, j; 1483 1484 for (i = 0; i < pidhashlock + 1; i++) { 1485 sx_slock(&pidhashtbl_lock[i]); 1486 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1487 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1488 if (p->p_state == PRS_NEW) 1489 continue; 1490 error = cb(p, cbarg); 1491 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1492 if (error != 0) { 1493 sx_sunlock(&pidhashtbl_lock[i]); 1494 return (error); 1495 } 1496 } 1497 } 1498 sx_sunlock(&pidhashtbl_lock[i]); 1499 } 1500 return (0); 1501 } 1502 1503 struct kern_proc_out_args { 1504 struct sysctl_req *req; 1505 int flags; 1506 int oid_number; 1507 int *name; 1508 }; 1509 1510 static int 1511 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1512 { 1513 struct kern_proc_out_args *arg = origarg; 1514 int *name = arg->name; 1515 int oid_number = arg->oid_number; 1516 int flags = arg->flags; 1517 struct sysctl_req *req = arg->req; 1518 int error = 0; 1519 1520 PROC_LOCK(p); 1521 1522 KASSERT(p->p_ucred != NULL, 1523 ("process credential is NULL for non-NEW proc")); 1524 /* 1525 * Show a user only appropriate processes. 1526 */ 1527 if (p_cansee(curthread, p)) 1528 goto skip; 1529 /* 1530 * TODO - make more efficient (see notes below). 1531 * do by session. 1532 */ 1533 switch (oid_number) { 1534 1535 case KERN_PROC_GID: 1536 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1537 goto skip; 1538 break; 1539 1540 case KERN_PROC_PGRP: 1541 /* could do this by traversing pgrp */ 1542 if (p->p_pgrp == NULL || 1543 p->p_pgrp->pg_id != (pid_t)name[0]) 1544 goto skip; 1545 break; 1546 1547 case KERN_PROC_RGID: 1548 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1549 goto skip; 1550 break; 1551 1552 case KERN_PROC_SESSION: 1553 if (p->p_session == NULL || 1554 p->p_session->s_sid != (pid_t)name[0]) 1555 goto skip; 1556 break; 1557 1558 case KERN_PROC_TTY: 1559 if ((p->p_flag & P_CONTROLT) == 0 || 1560 p->p_session == NULL) 1561 goto skip; 1562 /* XXX proctree_lock */ 1563 SESS_LOCK(p->p_session); 1564 if (p->p_session->s_ttyp == NULL || 1565 tty_udev(p->p_session->s_ttyp) != 1566 (dev_t)name[0]) { 1567 SESS_UNLOCK(p->p_session); 1568 goto skip; 1569 } 1570 SESS_UNLOCK(p->p_session); 1571 break; 1572 1573 case KERN_PROC_UID: 1574 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1575 goto skip; 1576 break; 1577 1578 case KERN_PROC_RUID: 1579 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1580 goto skip; 1581 break; 1582 1583 case KERN_PROC_PROC: 1584 break; 1585 1586 default: 1587 break; 1588 1589 } 1590 error = sysctl_out_proc(p, req, flags); 1591 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1592 return (error); 1593 skip: 1594 PROC_UNLOCK(p); 1595 return (0); 1596 } 1597 1598 static int 1599 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1600 { 1601 struct kern_proc_out_args iterarg; 1602 int *name = (int *)arg1; 1603 u_int namelen = arg2; 1604 struct proc *p; 1605 int flags, oid_number; 1606 int error = 0; 1607 1608 oid_number = oidp->oid_number; 1609 if (oid_number != KERN_PROC_ALL && 1610 (oid_number & KERN_PROC_INC_THREAD) == 0) 1611 flags = KERN_PROC_NOTHREADS; 1612 else { 1613 flags = 0; 1614 oid_number &= ~KERN_PROC_INC_THREAD; 1615 } 1616 #ifdef COMPAT_FREEBSD32 1617 if (req->flags & SCTL_MASK32) 1618 flags |= KERN_PROC_MASK32; 1619 #endif 1620 if (oid_number == KERN_PROC_PID) { 1621 if (namelen != 1) 1622 return (EINVAL); 1623 error = sysctl_wire_old_buffer(req, 0); 1624 if (error) 1625 return (error); 1626 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1627 if (error == 0) 1628 error = sysctl_out_proc(p, req, flags); 1629 return (error); 1630 } 1631 1632 switch (oid_number) { 1633 case KERN_PROC_ALL: 1634 if (namelen != 0) 1635 return (EINVAL); 1636 break; 1637 case KERN_PROC_PROC: 1638 if (namelen != 0 && namelen != 1) 1639 return (EINVAL); 1640 break; 1641 default: 1642 if (namelen != 1) 1643 return (EINVAL); 1644 break; 1645 } 1646 1647 if (req->oldptr == NULL) { 1648 /* overestimate by 5 procs */ 1649 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1650 if (error) 1651 return (error); 1652 } else { 1653 error = sysctl_wire_old_buffer(req, 0); 1654 if (error != 0) 1655 return (error); 1656 } 1657 iterarg.flags = flags; 1658 iterarg.oid_number = oid_number; 1659 iterarg.req = req; 1660 iterarg.name = name; 1661 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1662 return (error); 1663 } 1664 1665 struct pargs * 1666 pargs_alloc(int len) 1667 { 1668 struct pargs *pa; 1669 1670 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1671 M_WAITOK); 1672 refcount_init(&pa->ar_ref, 1); 1673 pa->ar_length = len; 1674 return (pa); 1675 } 1676 1677 static void 1678 pargs_free(struct pargs *pa) 1679 { 1680 1681 free(pa, M_PARGS); 1682 } 1683 1684 void 1685 pargs_hold(struct pargs *pa) 1686 { 1687 1688 if (pa == NULL) 1689 return; 1690 refcount_acquire(&pa->ar_ref); 1691 } 1692 1693 void 1694 pargs_drop(struct pargs *pa) 1695 { 1696 1697 if (pa == NULL) 1698 return; 1699 if (refcount_release(&pa->ar_ref)) 1700 pargs_free(pa); 1701 } 1702 1703 static int 1704 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1705 size_t len) 1706 { 1707 ssize_t n; 1708 1709 /* 1710 * This may return a short read if the string is shorter than the chunk 1711 * and is aligned at the end of the page, and the following page is not 1712 * mapped. 1713 */ 1714 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1715 if (n <= 0) 1716 return (ENOMEM); 1717 return (0); 1718 } 1719 1720 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1721 1722 enum proc_vector_type { 1723 PROC_ARG, 1724 PROC_ENV, 1725 PROC_AUX, 1726 }; 1727 1728 #ifdef COMPAT_FREEBSD32 1729 static int 1730 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1731 size_t *vsizep, enum proc_vector_type type) 1732 { 1733 struct freebsd32_ps_strings pss; 1734 Elf32_Auxinfo aux; 1735 vm_offset_t vptr, ptr; 1736 uint32_t *proc_vector32; 1737 char **proc_vector; 1738 size_t vsize, size; 1739 int i, error; 1740 1741 error = 0; 1742 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1743 sizeof(pss)) != sizeof(pss)) 1744 return (ENOMEM); 1745 switch (type) { 1746 case PROC_ARG: 1747 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1748 vsize = pss.ps_nargvstr; 1749 if (vsize > ARG_MAX) 1750 return (ENOEXEC); 1751 size = vsize * sizeof(int32_t); 1752 break; 1753 case PROC_ENV: 1754 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1755 vsize = pss.ps_nenvstr; 1756 if (vsize > ARG_MAX) 1757 return (ENOEXEC); 1758 size = vsize * sizeof(int32_t); 1759 break; 1760 case PROC_AUX: 1761 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1762 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1763 if (vptr % 4 != 0) 1764 return (ENOEXEC); 1765 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1766 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1767 sizeof(aux)) 1768 return (ENOMEM); 1769 if (aux.a_type == AT_NULL) 1770 break; 1771 ptr += sizeof(aux); 1772 } 1773 if (aux.a_type != AT_NULL) 1774 return (ENOEXEC); 1775 vsize = i + 1; 1776 size = vsize * sizeof(aux); 1777 break; 1778 default: 1779 KASSERT(0, ("Wrong proc vector type: %d", type)); 1780 return (EINVAL); 1781 } 1782 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1783 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1784 error = ENOMEM; 1785 goto done; 1786 } 1787 if (type == PROC_AUX) { 1788 *proc_vectorp = (char **)proc_vector32; 1789 *vsizep = vsize; 1790 return (0); 1791 } 1792 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1793 for (i = 0; i < (int)vsize; i++) 1794 proc_vector[i] = PTRIN(proc_vector32[i]); 1795 *proc_vectorp = proc_vector; 1796 *vsizep = vsize; 1797 done: 1798 free(proc_vector32, M_TEMP); 1799 return (error); 1800 } 1801 #endif 1802 1803 static int 1804 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1805 size_t *vsizep, enum proc_vector_type type) 1806 { 1807 struct ps_strings pss; 1808 Elf_Auxinfo aux; 1809 vm_offset_t vptr, ptr; 1810 char **proc_vector; 1811 size_t vsize, size; 1812 int i; 1813 1814 #ifdef COMPAT_FREEBSD32 1815 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1816 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1817 #endif 1818 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1819 sizeof(pss)) != sizeof(pss)) 1820 return (ENOMEM); 1821 switch (type) { 1822 case PROC_ARG: 1823 vptr = (vm_offset_t)pss.ps_argvstr; 1824 vsize = pss.ps_nargvstr; 1825 if (vsize > ARG_MAX) 1826 return (ENOEXEC); 1827 size = vsize * sizeof(char *); 1828 break; 1829 case PROC_ENV: 1830 vptr = (vm_offset_t)pss.ps_envstr; 1831 vsize = pss.ps_nenvstr; 1832 if (vsize > ARG_MAX) 1833 return (ENOEXEC); 1834 size = vsize * sizeof(char *); 1835 break; 1836 case PROC_AUX: 1837 /* 1838 * The aux array is just above env array on the stack. Check 1839 * that the address is naturally aligned. 1840 */ 1841 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1842 * sizeof(char *); 1843 #if __ELF_WORD_SIZE == 64 1844 if (vptr % sizeof(uint64_t) != 0) 1845 #else 1846 if (vptr % sizeof(uint32_t) != 0) 1847 #endif 1848 return (ENOEXEC); 1849 /* 1850 * We count the array size reading the aux vectors from the 1851 * stack until AT_NULL vector is returned. So (to keep the code 1852 * simple) we read the process stack twice: the first time here 1853 * to find the size and the second time when copying the vectors 1854 * to the allocated proc_vector. 1855 */ 1856 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1857 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1858 sizeof(aux)) 1859 return (ENOMEM); 1860 if (aux.a_type == AT_NULL) 1861 break; 1862 ptr += sizeof(aux); 1863 } 1864 /* 1865 * If the PROC_AUXV_MAX entries are iterated over, and we have 1866 * not reached AT_NULL, it is most likely we are reading wrong 1867 * data: either the process doesn't have auxv array or data has 1868 * been modified. Return the error in this case. 1869 */ 1870 if (aux.a_type != AT_NULL) 1871 return (ENOEXEC); 1872 vsize = i + 1; 1873 size = vsize * sizeof(aux); 1874 break; 1875 default: 1876 KASSERT(0, ("Wrong proc vector type: %d", type)); 1877 return (EINVAL); /* In case we are built without INVARIANTS. */ 1878 } 1879 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1880 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1881 free(proc_vector, M_TEMP); 1882 return (ENOMEM); 1883 } 1884 *proc_vectorp = proc_vector; 1885 *vsizep = vsize; 1886 1887 return (0); 1888 } 1889 1890 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1891 1892 static int 1893 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1894 enum proc_vector_type type) 1895 { 1896 size_t done, len, nchr, vsize; 1897 int error, i; 1898 char **proc_vector, *sptr; 1899 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1900 1901 PROC_ASSERT_HELD(p); 1902 1903 /* 1904 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1905 */ 1906 nchr = 2 * (PATH_MAX + ARG_MAX); 1907 1908 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1909 if (error != 0) 1910 return (error); 1911 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1912 /* 1913 * The program may have scribbled into its argv array, e.g. to 1914 * remove some arguments. If that has happened, break out 1915 * before trying to read from NULL. 1916 */ 1917 if (proc_vector[i] == NULL) 1918 break; 1919 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1920 error = proc_read_string(td, p, sptr, pss_string, 1921 sizeof(pss_string)); 1922 if (error != 0) 1923 goto done; 1924 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1925 if (done + len >= nchr) 1926 len = nchr - done - 1; 1927 sbuf_bcat(sb, pss_string, len); 1928 if (len != GET_PS_STRINGS_CHUNK_SZ) 1929 break; 1930 done += GET_PS_STRINGS_CHUNK_SZ; 1931 } 1932 sbuf_bcat(sb, "", 1); 1933 done += len + 1; 1934 } 1935 done: 1936 free(proc_vector, M_TEMP); 1937 return (error); 1938 } 1939 1940 int 1941 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1942 { 1943 1944 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1945 } 1946 1947 int 1948 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1949 { 1950 1951 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1952 } 1953 1954 int 1955 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1956 { 1957 size_t vsize, size; 1958 char **auxv; 1959 int error; 1960 1961 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1962 if (error == 0) { 1963 #ifdef COMPAT_FREEBSD32 1964 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1965 size = vsize * sizeof(Elf32_Auxinfo); 1966 else 1967 #endif 1968 size = vsize * sizeof(Elf_Auxinfo); 1969 if (sbuf_bcat(sb, auxv, size) != 0) 1970 error = ENOMEM; 1971 free(auxv, M_TEMP); 1972 } 1973 return (error); 1974 } 1975 1976 /* 1977 * This sysctl allows a process to retrieve the argument list or process 1978 * title for another process without groping around in the address space 1979 * of the other process. It also allow a process to set its own "process 1980 * title to a string of its own choice. 1981 */ 1982 static int 1983 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1984 { 1985 int *name = (int *)arg1; 1986 u_int namelen = arg2; 1987 struct pargs *newpa, *pa; 1988 struct proc *p; 1989 struct sbuf sb; 1990 int flags, error = 0, error2; 1991 pid_t pid; 1992 1993 if (namelen != 1) 1994 return (EINVAL); 1995 1996 pid = (pid_t)name[0]; 1997 /* 1998 * If the query is for this process and it is single-threaded, there 1999 * is nobody to modify pargs, thus we can just read. 2000 */ 2001 p = curproc; 2002 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2003 (pa = p->p_args) != NULL) 2004 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2005 2006 flags = PGET_CANSEE; 2007 if (req->newptr != NULL) 2008 flags |= PGET_ISCURRENT; 2009 error = pget(pid, flags, &p); 2010 if (error) 2011 return (error); 2012 2013 pa = p->p_args; 2014 if (pa != NULL) { 2015 pargs_hold(pa); 2016 PROC_UNLOCK(p); 2017 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2018 pargs_drop(pa); 2019 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2020 _PHOLD(p); 2021 PROC_UNLOCK(p); 2022 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2023 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2024 error = proc_getargv(curthread, p, &sb); 2025 error2 = sbuf_finish(&sb); 2026 PRELE(p); 2027 sbuf_delete(&sb); 2028 if (error == 0 && error2 != 0) 2029 error = error2; 2030 } else { 2031 PROC_UNLOCK(p); 2032 } 2033 if (error != 0 || req->newptr == NULL) 2034 return (error); 2035 2036 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2037 return (ENOMEM); 2038 2039 if (req->newlen == 0) { 2040 /* 2041 * Clear the argument pointer, so that we'll fetch arguments 2042 * with proc_getargv() until further notice. 2043 */ 2044 newpa = NULL; 2045 } else { 2046 newpa = pargs_alloc(req->newlen); 2047 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2048 if (error != 0) { 2049 pargs_free(newpa); 2050 return (error); 2051 } 2052 } 2053 PROC_LOCK(p); 2054 pa = p->p_args; 2055 p->p_args = newpa; 2056 PROC_UNLOCK(p); 2057 pargs_drop(pa); 2058 return (0); 2059 } 2060 2061 /* 2062 * This sysctl allows a process to retrieve environment of another process. 2063 */ 2064 static int 2065 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2066 { 2067 int *name = (int *)arg1; 2068 u_int namelen = arg2; 2069 struct proc *p; 2070 struct sbuf sb; 2071 int error, error2; 2072 2073 if (namelen != 1) 2074 return (EINVAL); 2075 2076 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2077 if (error != 0) 2078 return (error); 2079 if ((p->p_flag & P_SYSTEM) != 0) { 2080 PRELE(p); 2081 return (0); 2082 } 2083 2084 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2085 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2086 error = proc_getenvv(curthread, p, &sb); 2087 error2 = sbuf_finish(&sb); 2088 PRELE(p); 2089 sbuf_delete(&sb); 2090 return (error != 0 ? error : error2); 2091 } 2092 2093 /* 2094 * This sysctl allows a process to retrieve ELF auxiliary vector of 2095 * another process. 2096 */ 2097 static int 2098 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2099 { 2100 int *name = (int *)arg1; 2101 u_int namelen = arg2; 2102 struct proc *p; 2103 struct sbuf sb; 2104 int error, error2; 2105 2106 if (namelen != 1) 2107 return (EINVAL); 2108 2109 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2110 if (error != 0) 2111 return (error); 2112 if ((p->p_flag & P_SYSTEM) != 0) { 2113 PRELE(p); 2114 return (0); 2115 } 2116 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2117 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2118 error = proc_getauxv(curthread, p, &sb); 2119 error2 = sbuf_finish(&sb); 2120 PRELE(p); 2121 sbuf_delete(&sb); 2122 return (error != 0 ? error : error2); 2123 } 2124 2125 /* 2126 * This sysctl allows a process to retrieve the path of the executable for 2127 * itself or another process. 2128 */ 2129 static int 2130 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2131 { 2132 pid_t *pidp = (pid_t *)arg1; 2133 unsigned int arglen = arg2; 2134 struct proc *p; 2135 struct vnode *vp; 2136 char *retbuf, *freebuf; 2137 int error; 2138 2139 if (arglen != 1) 2140 return (EINVAL); 2141 if (*pidp == -1) { /* -1 means this process */ 2142 p = req->td->td_proc; 2143 } else { 2144 error = pget(*pidp, PGET_CANSEE, &p); 2145 if (error != 0) 2146 return (error); 2147 } 2148 2149 vp = p->p_textvp; 2150 if (vp == NULL) { 2151 if (*pidp != -1) 2152 PROC_UNLOCK(p); 2153 return (0); 2154 } 2155 vref(vp); 2156 if (*pidp != -1) 2157 PROC_UNLOCK(p); 2158 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2159 vrele(vp); 2160 if (error) 2161 return (error); 2162 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2163 free(freebuf, M_TEMP); 2164 return (error); 2165 } 2166 2167 static int 2168 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2169 { 2170 struct proc *p; 2171 char *sv_name; 2172 int *name; 2173 int namelen; 2174 int error; 2175 2176 namelen = arg2; 2177 if (namelen != 1) 2178 return (EINVAL); 2179 2180 name = (int *)arg1; 2181 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2182 if (error != 0) 2183 return (error); 2184 sv_name = p->p_sysent->sv_name; 2185 PROC_UNLOCK(p); 2186 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2187 } 2188 2189 #ifdef KINFO_OVMENTRY_SIZE 2190 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2191 #endif 2192 2193 #ifdef COMPAT_FREEBSD7 2194 static int 2195 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2196 { 2197 vm_map_entry_t entry, tmp_entry; 2198 unsigned int last_timestamp; 2199 char *fullpath, *freepath; 2200 struct kinfo_ovmentry *kve; 2201 struct vattr va; 2202 struct ucred *cred; 2203 int error, *name; 2204 struct vnode *vp; 2205 struct proc *p; 2206 vm_map_t map; 2207 struct vmspace *vm; 2208 2209 name = (int *)arg1; 2210 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2211 if (error != 0) 2212 return (error); 2213 vm = vmspace_acquire_ref(p); 2214 if (vm == NULL) { 2215 PRELE(p); 2216 return (ESRCH); 2217 } 2218 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2219 2220 map = &vm->vm_map; 2221 vm_map_lock_read(map); 2222 for (entry = map->header.next; entry != &map->header; 2223 entry = entry->next) { 2224 vm_object_t obj, tobj, lobj; 2225 vm_offset_t addr; 2226 2227 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2228 continue; 2229 2230 bzero(kve, sizeof(*kve)); 2231 kve->kve_structsize = sizeof(*kve); 2232 2233 kve->kve_private_resident = 0; 2234 obj = entry->object.vm_object; 2235 if (obj != NULL) { 2236 VM_OBJECT_RLOCK(obj); 2237 if (obj->shadow_count == 1) 2238 kve->kve_private_resident = 2239 obj->resident_page_count; 2240 } 2241 kve->kve_resident = 0; 2242 addr = entry->start; 2243 while (addr < entry->end) { 2244 if (pmap_extract(map->pmap, addr)) 2245 kve->kve_resident++; 2246 addr += PAGE_SIZE; 2247 } 2248 2249 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2250 if (tobj != obj) { 2251 VM_OBJECT_RLOCK(tobj); 2252 kve->kve_offset += tobj->backing_object_offset; 2253 } 2254 if (lobj != obj) 2255 VM_OBJECT_RUNLOCK(lobj); 2256 lobj = tobj; 2257 } 2258 2259 kve->kve_start = (void*)entry->start; 2260 kve->kve_end = (void*)entry->end; 2261 kve->kve_offset += (off_t)entry->offset; 2262 2263 if (entry->protection & VM_PROT_READ) 2264 kve->kve_protection |= KVME_PROT_READ; 2265 if (entry->protection & VM_PROT_WRITE) 2266 kve->kve_protection |= KVME_PROT_WRITE; 2267 if (entry->protection & VM_PROT_EXECUTE) 2268 kve->kve_protection |= KVME_PROT_EXEC; 2269 2270 if (entry->eflags & MAP_ENTRY_COW) 2271 kve->kve_flags |= KVME_FLAG_COW; 2272 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2273 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2274 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2275 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2276 2277 last_timestamp = map->timestamp; 2278 vm_map_unlock_read(map); 2279 2280 kve->kve_fileid = 0; 2281 kve->kve_fsid = 0; 2282 freepath = NULL; 2283 fullpath = ""; 2284 if (lobj) { 2285 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2286 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2287 kve->kve_type = KVME_TYPE_UNKNOWN; 2288 if (vp != NULL) 2289 vref(vp); 2290 if (lobj != obj) 2291 VM_OBJECT_RUNLOCK(lobj); 2292 2293 kve->kve_ref_count = obj->ref_count; 2294 kve->kve_shadow_count = obj->shadow_count; 2295 VM_OBJECT_RUNLOCK(obj); 2296 if (vp != NULL) { 2297 vn_fullpath(curthread, vp, &fullpath, 2298 &freepath); 2299 cred = curthread->td_ucred; 2300 vn_lock(vp, LK_SHARED | LK_RETRY); 2301 if (VOP_GETATTR(vp, &va, cred) == 0) { 2302 kve->kve_fileid = va.va_fileid; 2303 /* truncate */ 2304 kve->kve_fsid = va.va_fsid; 2305 } 2306 vput(vp); 2307 } 2308 } else { 2309 kve->kve_type = KVME_TYPE_NONE; 2310 kve->kve_ref_count = 0; 2311 kve->kve_shadow_count = 0; 2312 } 2313 2314 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2315 if (freepath != NULL) 2316 free(freepath, M_TEMP); 2317 2318 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2319 vm_map_lock_read(map); 2320 if (error) 2321 break; 2322 if (last_timestamp != map->timestamp) { 2323 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2324 entry = tmp_entry; 2325 } 2326 } 2327 vm_map_unlock_read(map); 2328 vmspace_free(vm); 2329 PRELE(p); 2330 free(kve, M_TEMP); 2331 return (error); 2332 } 2333 #endif /* COMPAT_FREEBSD7 */ 2334 2335 #ifdef KINFO_VMENTRY_SIZE 2336 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2337 #endif 2338 2339 void 2340 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2341 int *resident_count, bool *super) 2342 { 2343 vm_object_t obj, tobj; 2344 vm_page_t m, m_adv; 2345 vm_offset_t addr; 2346 vm_paddr_t locked_pa; 2347 vm_pindex_t pi, pi_adv, pindex; 2348 2349 *super = false; 2350 *resident_count = 0; 2351 if (vmmap_skip_res_cnt) 2352 return; 2353 2354 locked_pa = 0; 2355 obj = entry->object.vm_object; 2356 addr = entry->start; 2357 m_adv = NULL; 2358 pi = OFF_TO_IDX(entry->offset); 2359 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2360 if (m_adv != NULL) { 2361 m = m_adv; 2362 } else { 2363 pi_adv = atop(entry->end - addr); 2364 pindex = pi; 2365 for (tobj = obj;; tobj = tobj->backing_object) { 2366 m = vm_page_find_least(tobj, pindex); 2367 if (m != NULL) { 2368 if (m->pindex == pindex) 2369 break; 2370 if (pi_adv > m->pindex - pindex) { 2371 pi_adv = m->pindex - pindex; 2372 m_adv = m; 2373 } 2374 } 2375 if (tobj->backing_object == NULL) 2376 goto next; 2377 pindex += OFF_TO_IDX(tobj-> 2378 backing_object_offset); 2379 } 2380 } 2381 m_adv = NULL; 2382 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2383 (addr & (pagesizes[1] - 1)) == 0 && 2384 (pmap_mincore(map->pmap, addr, &locked_pa) & 2385 MINCORE_SUPER) != 0) { 2386 *super = true; 2387 pi_adv = atop(pagesizes[1]); 2388 } else { 2389 /* 2390 * We do not test the found page on validity. 2391 * Either the page is busy and being paged in, 2392 * or it was invalidated. The first case 2393 * should be counted as resident, the second 2394 * is not so clear; we do account both. 2395 */ 2396 pi_adv = 1; 2397 } 2398 *resident_count += pi_adv; 2399 next:; 2400 } 2401 PA_UNLOCK_COND(locked_pa); 2402 } 2403 2404 /* 2405 * Must be called with the process locked and will return unlocked. 2406 */ 2407 int 2408 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2409 { 2410 vm_map_entry_t entry, tmp_entry; 2411 struct vattr va; 2412 vm_map_t map; 2413 vm_object_t obj, tobj, lobj; 2414 char *fullpath, *freepath; 2415 struct kinfo_vmentry *kve; 2416 struct ucred *cred; 2417 struct vnode *vp; 2418 struct vmspace *vm; 2419 vm_offset_t addr; 2420 unsigned int last_timestamp; 2421 int error; 2422 bool super; 2423 2424 PROC_LOCK_ASSERT(p, MA_OWNED); 2425 2426 _PHOLD(p); 2427 PROC_UNLOCK(p); 2428 vm = vmspace_acquire_ref(p); 2429 if (vm == NULL) { 2430 PRELE(p); 2431 return (ESRCH); 2432 } 2433 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2434 2435 error = 0; 2436 map = &vm->vm_map; 2437 vm_map_lock_read(map); 2438 for (entry = map->header.next; entry != &map->header; 2439 entry = entry->next) { 2440 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2441 continue; 2442 2443 addr = entry->end; 2444 bzero(kve, sizeof(*kve)); 2445 obj = entry->object.vm_object; 2446 if (obj != NULL) { 2447 for (tobj = obj; tobj != NULL; 2448 tobj = tobj->backing_object) { 2449 VM_OBJECT_RLOCK(tobj); 2450 kve->kve_offset += tobj->backing_object_offset; 2451 lobj = tobj; 2452 } 2453 if (obj->backing_object == NULL) 2454 kve->kve_private_resident = 2455 obj->resident_page_count; 2456 kern_proc_vmmap_resident(map, entry, 2457 &kve->kve_resident, &super); 2458 if (super) 2459 kve->kve_flags |= KVME_FLAG_SUPER; 2460 for (tobj = obj; tobj != NULL; 2461 tobj = tobj->backing_object) { 2462 if (tobj != obj && tobj != lobj) 2463 VM_OBJECT_RUNLOCK(tobj); 2464 } 2465 } else { 2466 lobj = NULL; 2467 } 2468 2469 kve->kve_start = entry->start; 2470 kve->kve_end = entry->end; 2471 kve->kve_offset += entry->offset; 2472 2473 if (entry->protection & VM_PROT_READ) 2474 kve->kve_protection |= KVME_PROT_READ; 2475 if (entry->protection & VM_PROT_WRITE) 2476 kve->kve_protection |= KVME_PROT_WRITE; 2477 if (entry->protection & VM_PROT_EXECUTE) 2478 kve->kve_protection |= KVME_PROT_EXEC; 2479 2480 if (entry->eflags & MAP_ENTRY_COW) 2481 kve->kve_flags |= KVME_FLAG_COW; 2482 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2483 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2484 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2485 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2486 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2487 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2488 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2489 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2490 2491 last_timestamp = map->timestamp; 2492 vm_map_unlock_read(map); 2493 2494 freepath = NULL; 2495 fullpath = ""; 2496 if (lobj != NULL) { 2497 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2498 if (vp != NULL) 2499 vref(vp); 2500 if (lobj != obj) 2501 VM_OBJECT_RUNLOCK(lobj); 2502 2503 kve->kve_ref_count = obj->ref_count; 2504 kve->kve_shadow_count = obj->shadow_count; 2505 VM_OBJECT_RUNLOCK(obj); 2506 if (vp != NULL) { 2507 vn_fullpath(curthread, vp, &fullpath, 2508 &freepath); 2509 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2510 cred = curthread->td_ucred; 2511 vn_lock(vp, LK_SHARED | LK_RETRY); 2512 if (VOP_GETATTR(vp, &va, cred) == 0) { 2513 kve->kve_vn_fileid = va.va_fileid; 2514 kve->kve_vn_fsid = va.va_fsid; 2515 kve->kve_vn_fsid_freebsd11 = 2516 kve->kve_vn_fsid; /* truncate */ 2517 kve->kve_vn_mode = 2518 MAKEIMODE(va.va_type, va.va_mode); 2519 kve->kve_vn_size = va.va_size; 2520 kve->kve_vn_rdev = va.va_rdev; 2521 kve->kve_vn_rdev_freebsd11 = 2522 kve->kve_vn_rdev; /* truncate */ 2523 kve->kve_status = KF_ATTR_VALID; 2524 } 2525 vput(vp); 2526 } 2527 } else { 2528 kve->kve_type = KVME_TYPE_NONE; 2529 kve->kve_ref_count = 0; 2530 kve->kve_shadow_count = 0; 2531 } 2532 2533 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2534 if (freepath != NULL) 2535 free(freepath, M_TEMP); 2536 2537 /* Pack record size down */ 2538 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2539 kve->kve_structsize = 2540 offsetof(struct kinfo_vmentry, kve_path) + 2541 strlen(kve->kve_path) + 1; 2542 else 2543 kve->kve_structsize = sizeof(*kve); 2544 kve->kve_structsize = roundup(kve->kve_structsize, 2545 sizeof(uint64_t)); 2546 2547 /* Halt filling and truncate rather than exceeding maxlen */ 2548 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2549 error = 0; 2550 vm_map_lock_read(map); 2551 break; 2552 } else if (maxlen != -1) 2553 maxlen -= kve->kve_structsize; 2554 2555 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2556 error = ENOMEM; 2557 vm_map_lock_read(map); 2558 if (error != 0) 2559 break; 2560 if (last_timestamp != map->timestamp) { 2561 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2562 entry = tmp_entry; 2563 } 2564 } 2565 vm_map_unlock_read(map); 2566 vmspace_free(vm); 2567 PRELE(p); 2568 free(kve, M_TEMP); 2569 return (error); 2570 } 2571 2572 static int 2573 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2574 { 2575 struct proc *p; 2576 struct sbuf sb; 2577 int error, error2, *name; 2578 2579 name = (int *)arg1; 2580 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2581 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2582 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2583 if (error != 0) { 2584 sbuf_delete(&sb); 2585 return (error); 2586 } 2587 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2588 error2 = sbuf_finish(&sb); 2589 sbuf_delete(&sb); 2590 return (error != 0 ? error : error2); 2591 } 2592 2593 #if defined(STACK) || defined(DDB) 2594 static int 2595 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2596 { 2597 struct kinfo_kstack *kkstp; 2598 int error, i, *name, numthreads; 2599 lwpid_t *lwpidarray; 2600 struct thread *td; 2601 struct stack *st; 2602 struct sbuf sb; 2603 struct proc *p; 2604 2605 name = (int *)arg1; 2606 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2607 if (error != 0) 2608 return (error); 2609 2610 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2611 st = stack_create(M_WAITOK); 2612 2613 lwpidarray = NULL; 2614 PROC_LOCK(p); 2615 do { 2616 if (lwpidarray != NULL) { 2617 free(lwpidarray, M_TEMP); 2618 lwpidarray = NULL; 2619 } 2620 numthreads = p->p_numthreads; 2621 PROC_UNLOCK(p); 2622 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2623 M_WAITOK | M_ZERO); 2624 PROC_LOCK(p); 2625 } while (numthreads < p->p_numthreads); 2626 2627 /* 2628 * XXXRW: During the below loop, execve(2) and countless other sorts 2629 * of changes could have taken place. Should we check to see if the 2630 * vmspace has been replaced, or the like, in order to prevent 2631 * giving a snapshot that spans, say, execve(2), with some threads 2632 * before and some after? Among other things, the credentials could 2633 * have changed, in which case the right to extract debug info might 2634 * no longer be assured. 2635 */ 2636 i = 0; 2637 FOREACH_THREAD_IN_PROC(p, td) { 2638 KASSERT(i < numthreads, 2639 ("sysctl_kern_proc_kstack: numthreads")); 2640 lwpidarray[i] = td->td_tid; 2641 i++; 2642 } 2643 numthreads = i; 2644 for (i = 0; i < numthreads; i++) { 2645 td = thread_find(p, lwpidarray[i]); 2646 if (td == NULL) { 2647 continue; 2648 } 2649 bzero(kkstp, sizeof(*kkstp)); 2650 (void)sbuf_new(&sb, kkstp->kkst_trace, 2651 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2652 thread_lock(td); 2653 kkstp->kkst_tid = td->td_tid; 2654 if (TD_IS_SWAPPED(td)) { 2655 kkstp->kkst_state = KKST_STATE_SWAPPED; 2656 } else if (TD_IS_RUNNING(td)) { 2657 if (stack_save_td_running(st, td) == 0) 2658 kkstp->kkst_state = KKST_STATE_STACKOK; 2659 else 2660 kkstp->kkst_state = KKST_STATE_RUNNING; 2661 } else { 2662 kkstp->kkst_state = KKST_STATE_STACKOK; 2663 stack_save_td(st, td); 2664 } 2665 thread_unlock(td); 2666 PROC_UNLOCK(p); 2667 stack_sbuf_print(&sb, st); 2668 sbuf_finish(&sb); 2669 sbuf_delete(&sb); 2670 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2671 PROC_LOCK(p); 2672 if (error) 2673 break; 2674 } 2675 _PRELE(p); 2676 PROC_UNLOCK(p); 2677 if (lwpidarray != NULL) 2678 free(lwpidarray, M_TEMP); 2679 stack_destroy(st); 2680 free(kkstp, M_TEMP); 2681 return (error); 2682 } 2683 #endif 2684 2685 /* 2686 * This sysctl allows a process to retrieve the full list of groups from 2687 * itself or another process. 2688 */ 2689 static int 2690 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2691 { 2692 pid_t *pidp = (pid_t *)arg1; 2693 unsigned int arglen = arg2; 2694 struct proc *p; 2695 struct ucred *cred; 2696 int error; 2697 2698 if (arglen != 1) 2699 return (EINVAL); 2700 if (*pidp == -1) { /* -1 means this process */ 2701 p = req->td->td_proc; 2702 PROC_LOCK(p); 2703 } else { 2704 error = pget(*pidp, PGET_CANSEE, &p); 2705 if (error != 0) 2706 return (error); 2707 } 2708 2709 cred = crhold(p->p_ucred); 2710 PROC_UNLOCK(p); 2711 2712 error = SYSCTL_OUT(req, cred->cr_groups, 2713 cred->cr_ngroups * sizeof(gid_t)); 2714 crfree(cred); 2715 return (error); 2716 } 2717 2718 /* 2719 * This sysctl allows a process to retrieve or/and set the resource limit for 2720 * another process. 2721 */ 2722 static int 2723 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2724 { 2725 int *name = (int *)arg1; 2726 u_int namelen = arg2; 2727 struct rlimit rlim; 2728 struct proc *p; 2729 u_int which; 2730 int flags, error; 2731 2732 if (namelen != 2) 2733 return (EINVAL); 2734 2735 which = (u_int)name[1]; 2736 if (which >= RLIM_NLIMITS) 2737 return (EINVAL); 2738 2739 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2740 return (EINVAL); 2741 2742 flags = PGET_HOLD | PGET_NOTWEXIT; 2743 if (req->newptr != NULL) 2744 flags |= PGET_CANDEBUG; 2745 else 2746 flags |= PGET_CANSEE; 2747 error = pget((pid_t)name[0], flags, &p); 2748 if (error != 0) 2749 return (error); 2750 2751 /* 2752 * Retrieve limit. 2753 */ 2754 if (req->oldptr != NULL) { 2755 PROC_LOCK(p); 2756 lim_rlimit_proc(p, which, &rlim); 2757 PROC_UNLOCK(p); 2758 } 2759 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2760 if (error != 0) 2761 goto errout; 2762 2763 /* 2764 * Set limit. 2765 */ 2766 if (req->newptr != NULL) { 2767 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2768 if (error == 0) 2769 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2770 } 2771 2772 errout: 2773 PRELE(p); 2774 return (error); 2775 } 2776 2777 /* 2778 * This sysctl allows a process to retrieve ps_strings structure location of 2779 * another process. 2780 */ 2781 static int 2782 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2783 { 2784 int *name = (int *)arg1; 2785 u_int namelen = arg2; 2786 struct proc *p; 2787 vm_offset_t ps_strings; 2788 int error; 2789 #ifdef COMPAT_FREEBSD32 2790 uint32_t ps_strings32; 2791 #endif 2792 2793 if (namelen != 1) 2794 return (EINVAL); 2795 2796 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2797 if (error != 0) 2798 return (error); 2799 #ifdef COMPAT_FREEBSD32 2800 if ((req->flags & SCTL_MASK32) != 0) { 2801 /* 2802 * We return 0 if the 32 bit emulation request is for a 64 bit 2803 * process. 2804 */ 2805 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2806 PTROUT(p->p_sysent->sv_psstrings) : 0; 2807 PROC_UNLOCK(p); 2808 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2809 return (error); 2810 } 2811 #endif 2812 ps_strings = p->p_sysent->sv_psstrings; 2813 PROC_UNLOCK(p); 2814 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2815 return (error); 2816 } 2817 2818 /* 2819 * This sysctl allows a process to retrieve umask of another process. 2820 */ 2821 static int 2822 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2823 { 2824 int *name = (int *)arg1; 2825 u_int namelen = arg2; 2826 struct proc *p; 2827 int error; 2828 u_short fd_cmask; 2829 pid_t pid; 2830 2831 if (namelen != 1) 2832 return (EINVAL); 2833 2834 pid = (pid_t)name[0]; 2835 p = curproc; 2836 if (pid == p->p_pid || pid == 0) { 2837 fd_cmask = p->p_fd->fd_cmask; 2838 goto out; 2839 } 2840 2841 error = pget(pid, PGET_WANTREAD, &p); 2842 if (error != 0) 2843 return (error); 2844 2845 fd_cmask = p->p_fd->fd_cmask; 2846 PRELE(p); 2847 out: 2848 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2849 return (error); 2850 } 2851 2852 /* 2853 * This sysctl allows a process to set and retrieve binary osreldate of 2854 * another process. 2855 */ 2856 static int 2857 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2858 { 2859 int *name = (int *)arg1; 2860 u_int namelen = arg2; 2861 struct proc *p; 2862 int flags, error, osrel; 2863 2864 if (namelen != 1) 2865 return (EINVAL); 2866 2867 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2868 return (EINVAL); 2869 2870 flags = PGET_HOLD | PGET_NOTWEXIT; 2871 if (req->newptr != NULL) 2872 flags |= PGET_CANDEBUG; 2873 else 2874 flags |= PGET_CANSEE; 2875 error = pget((pid_t)name[0], flags, &p); 2876 if (error != 0) 2877 return (error); 2878 2879 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2880 if (error != 0) 2881 goto errout; 2882 2883 if (req->newptr != NULL) { 2884 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2885 if (error != 0) 2886 goto errout; 2887 if (osrel < 0) { 2888 error = EINVAL; 2889 goto errout; 2890 } 2891 p->p_osrel = osrel; 2892 } 2893 errout: 2894 PRELE(p); 2895 return (error); 2896 } 2897 2898 static int 2899 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2900 { 2901 int *name = (int *)arg1; 2902 u_int namelen = arg2; 2903 struct proc *p; 2904 struct kinfo_sigtramp kst; 2905 const struct sysentvec *sv; 2906 int error; 2907 #ifdef COMPAT_FREEBSD32 2908 struct kinfo_sigtramp32 kst32; 2909 #endif 2910 2911 if (namelen != 1) 2912 return (EINVAL); 2913 2914 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2915 if (error != 0) 2916 return (error); 2917 sv = p->p_sysent; 2918 #ifdef COMPAT_FREEBSD32 2919 if ((req->flags & SCTL_MASK32) != 0) { 2920 bzero(&kst32, sizeof(kst32)); 2921 if (SV_PROC_FLAG(p, SV_ILP32)) { 2922 if (sv->sv_sigcode_base != 0) { 2923 kst32.ksigtramp_start = sv->sv_sigcode_base; 2924 kst32.ksigtramp_end = sv->sv_sigcode_base + 2925 *sv->sv_szsigcode; 2926 } else { 2927 kst32.ksigtramp_start = sv->sv_psstrings - 2928 *sv->sv_szsigcode; 2929 kst32.ksigtramp_end = sv->sv_psstrings; 2930 } 2931 } 2932 PROC_UNLOCK(p); 2933 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2934 return (error); 2935 } 2936 #endif 2937 bzero(&kst, sizeof(kst)); 2938 if (sv->sv_sigcode_base != 0) { 2939 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2940 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2941 *sv->sv_szsigcode; 2942 } else { 2943 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2944 *sv->sv_szsigcode; 2945 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2946 } 2947 PROC_UNLOCK(p); 2948 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2949 return (error); 2950 } 2951 2952 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2953 2954 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2955 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2956 "Return entire process table"); 2957 2958 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2959 sysctl_kern_proc, "Process table"); 2960 2961 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2962 sysctl_kern_proc, "Process table"); 2963 2964 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2965 sysctl_kern_proc, "Process table"); 2966 2967 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2968 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2969 2970 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2971 sysctl_kern_proc, "Process table"); 2972 2973 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2974 sysctl_kern_proc, "Process table"); 2975 2976 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2977 sysctl_kern_proc, "Process table"); 2978 2979 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2980 sysctl_kern_proc, "Process table"); 2981 2982 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2983 sysctl_kern_proc, "Return process table, no threads"); 2984 2985 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2986 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2987 sysctl_kern_proc_args, "Process argument list"); 2988 2989 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2990 sysctl_kern_proc_env, "Process environment"); 2991 2992 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2993 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2994 2995 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2996 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2997 2998 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2999 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3000 "Process syscall vector name (ABI type)"); 3001 3002 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3003 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3004 3005 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3006 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3007 3008 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3009 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3010 3011 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3012 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3013 3014 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3015 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3016 3017 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3018 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3019 3020 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3021 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3022 3023 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3024 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3025 3026 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3027 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3028 "Return process table, no threads"); 3029 3030 #ifdef COMPAT_FREEBSD7 3031 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3032 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3033 #endif 3034 3035 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3036 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3037 3038 #if defined(STACK) || defined(DDB) 3039 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3040 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3041 #endif 3042 3043 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3044 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3045 3046 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3047 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3048 "Process resource limits"); 3049 3050 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3051 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3052 "Process ps_strings location"); 3053 3054 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3055 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3056 3057 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3058 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3059 "Process binary osreldate"); 3060 3061 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3062 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3063 "Process signal trampoline location"); 3064 3065 int allproc_gen; 3066 3067 /* 3068 * stop_all_proc() purpose is to stop all process which have usermode, 3069 * except current process for obvious reasons. This makes it somewhat 3070 * unreliable when invoked from multithreaded process. The service 3071 * must not be user-callable anyway. 3072 */ 3073 void 3074 stop_all_proc(void) 3075 { 3076 struct proc *cp, *p; 3077 int r, gen; 3078 bool restart, seen_stopped, seen_exiting, stopped_some; 3079 3080 cp = curproc; 3081 allproc_loop: 3082 sx_xlock(&allproc_lock); 3083 gen = allproc_gen; 3084 seen_exiting = seen_stopped = stopped_some = restart = false; 3085 LIST_REMOVE(cp, p_list); 3086 LIST_INSERT_HEAD(&allproc, cp, p_list); 3087 for (;;) { 3088 p = LIST_NEXT(cp, p_list); 3089 if (p == NULL) 3090 break; 3091 LIST_REMOVE(cp, p_list); 3092 LIST_INSERT_AFTER(p, cp, p_list); 3093 PROC_LOCK(p); 3094 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3095 PROC_UNLOCK(p); 3096 continue; 3097 } 3098 if ((p->p_flag & P_WEXIT) != 0) { 3099 seen_exiting = true; 3100 PROC_UNLOCK(p); 3101 continue; 3102 } 3103 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3104 /* 3105 * Stopped processes are tolerated when there 3106 * are no other processes which might continue 3107 * them. P_STOPPED_SINGLE but not 3108 * P_TOTAL_STOP process still has at least one 3109 * thread running. 3110 */ 3111 seen_stopped = true; 3112 PROC_UNLOCK(p); 3113 continue; 3114 } 3115 _PHOLD(p); 3116 sx_xunlock(&allproc_lock); 3117 r = thread_single(p, SINGLE_ALLPROC); 3118 if (r != 0) 3119 restart = true; 3120 else 3121 stopped_some = true; 3122 _PRELE(p); 3123 PROC_UNLOCK(p); 3124 sx_xlock(&allproc_lock); 3125 } 3126 /* Catch forked children we did not see in iteration. */ 3127 if (gen != allproc_gen) 3128 restart = true; 3129 sx_xunlock(&allproc_lock); 3130 if (restart || stopped_some || seen_exiting || seen_stopped) { 3131 kern_yield(PRI_USER); 3132 goto allproc_loop; 3133 } 3134 } 3135 3136 void 3137 resume_all_proc(void) 3138 { 3139 struct proc *cp, *p; 3140 3141 cp = curproc; 3142 sx_xlock(&allproc_lock); 3143 again: 3144 LIST_REMOVE(cp, p_list); 3145 LIST_INSERT_HEAD(&allproc, cp, p_list); 3146 for (;;) { 3147 p = LIST_NEXT(cp, p_list); 3148 if (p == NULL) 3149 break; 3150 LIST_REMOVE(cp, p_list); 3151 LIST_INSERT_AFTER(p, cp, p_list); 3152 PROC_LOCK(p); 3153 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3154 sx_xunlock(&allproc_lock); 3155 _PHOLD(p); 3156 thread_single_end(p, SINGLE_ALLPROC); 3157 _PRELE(p); 3158 PROC_UNLOCK(p); 3159 sx_xlock(&allproc_lock); 3160 } else { 3161 PROC_UNLOCK(p); 3162 } 3163 } 3164 /* Did the loop above missed any stopped process ? */ 3165 FOREACH_PROC_IN_SYSTEM(p) { 3166 /* No need for proc lock. */ 3167 if ((p->p_flag & P_TOTAL_STOP) != 0) 3168 goto again; 3169 } 3170 sx_xunlock(&allproc_lock); 3171 } 3172 3173 /* #define TOTAL_STOP_DEBUG 1 */ 3174 #ifdef TOTAL_STOP_DEBUG 3175 volatile static int ap_resume; 3176 #include <sys/mount.h> 3177 3178 static int 3179 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3180 { 3181 int error, val; 3182 3183 val = 0; 3184 ap_resume = 0; 3185 error = sysctl_handle_int(oidp, &val, 0, req); 3186 if (error != 0 || req->newptr == NULL) 3187 return (error); 3188 if (val != 0) { 3189 stop_all_proc(); 3190 syncer_suspend(); 3191 while (ap_resume == 0) 3192 ; 3193 syncer_resume(); 3194 resume_all_proc(); 3195 } 3196 return (0); 3197 } 3198 3199 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3200 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3201 sysctl_debug_stop_all_proc, "I", 3202 ""); 3203 #endif 3204