1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001-2002 Luigi Rizzo 5 * 6 * Supported by: the Xorp Project (www.xorp.org) 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_device_polling.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/kthread.h> 39 #include <sys/proc.h> 40 #include <sys/eventhandler.h> 41 #include <sys/resourcevar.h> 42 #include <sys/socket.h> /* needed by net/if.h */ 43 #include <sys/sockio.h> 44 #include <sys/sysctl.h> 45 #include <sys/syslog.h> 46 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/netisr.h> /* for NETISR_POLL */ 50 #include <net/vnet.h> 51 52 void hardclock_device_poll(void); /* hook from hardclock */ 53 54 static struct mtx poll_mtx; 55 56 /* 57 * Polling support for [network] device drivers. 58 * 59 * Drivers which support this feature can register with the 60 * polling code. 61 * 62 * If registration is successful, the driver must disable interrupts, 63 * and further I/O is performed through the handler, which is invoked 64 * (at least once per clock tick) with 3 arguments: the "arg" passed at 65 * register time (a struct ifnet pointer), a command, and a "count" limit. 66 * 67 * The command can be one of the following: 68 * POLL_ONLY: quick move of "count" packets from input/output queues. 69 * POLL_AND_CHECK_STATUS: as above, plus check status registers or do 70 * other more expensive operations. This command is issued periodically 71 * but less frequently than POLL_ONLY. 72 * 73 * The count limit specifies how much work the handler can do during the 74 * call -- typically this is the number of packets to be received, or 75 * transmitted, etc. (drivers are free to interpret this number, as long 76 * as the max time spent in the function grows roughly linearly with the 77 * count). 78 * 79 * Polling is enabled and disabled via setting IFCAP_POLLING flag on 80 * the interface. The driver ioctl handler should register interface 81 * with polling and disable interrupts, if registration was successful. 82 * 83 * A second variable controls the sharing of CPU between polling/kernel 84 * network processing, and other activities (typically userlevel tasks): 85 * kern.polling.user_frac (between 0 and 100, default 50) sets the share 86 * of CPU allocated to user tasks. CPU is allocated proportionally to the 87 * shares, by dynamically adjusting the "count" (poll_burst). 88 * 89 * Other parameters can should be left to their default values. 90 * The following constraints hold 91 * 92 * 1 <= poll_each_burst <= poll_burst <= poll_burst_max 93 * MIN_POLL_BURST_MAX <= poll_burst_max <= MAX_POLL_BURST_MAX 94 */ 95 96 #define MIN_POLL_BURST_MAX 10 97 #define MAX_POLL_BURST_MAX 20000 98 99 static uint32_t poll_burst = 5; 100 static uint32_t poll_burst_max = 150; /* good for 100Mbit net and HZ=1000 */ 101 static uint32_t poll_each_burst = 5; 102 103 static SYSCTL_NODE(_kern, OID_AUTO, polling, CTLFLAG_RW, 0, 104 "Device polling parameters"); 105 106 SYSCTL_UINT(_kern_polling, OID_AUTO, burst, CTLFLAG_RD, 107 &poll_burst, 0, "Current polling burst size"); 108 109 static int netisr_poll_scheduled; 110 static int netisr_pollmore_scheduled; 111 static int poll_shutting_down; 112 113 static int poll_burst_max_sysctl(SYSCTL_HANDLER_ARGS) 114 { 115 uint32_t val = poll_burst_max; 116 int error; 117 118 error = sysctl_handle_int(oidp, &val, 0, req); 119 if (error || !req->newptr ) 120 return (error); 121 if (val < MIN_POLL_BURST_MAX || val > MAX_POLL_BURST_MAX) 122 return (EINVAL); 123 124 mtx_lock(&poll_mtx); 125 poll_burst_max = val; 126 if (poll_burst > poll_burst_max) 127 poll_burst = poll_burst_max; 128 if (poll_each_burst > poll_burst_max) 129 poll_each_burst = MIN_POLL_BURST_MAX; 130 mtx_unlock(&poll_mtx); 131 132 return (0); 133 } 134 SYSCTL_PROC(_kern_polling, OID_AUTO, burst_max, CTLTYPE_UINT | CTLFLAG_RW, 135 0, sizeof(uint32_t), poll_burst_max_sysctl, "I", "Max Polling burst size"); 136 137 static int poll_each_burst_sysctl(SYSCTL_HANDLER_ARGS) 138 { 139 uint32_t val = poll_each_burst; 140 int error; 141 142 error = sysctl_handle_int(oidp, &val, 0, req); 143 if (error || !req->newptr ) 144 return (error); 145 if (val < 1) 146 return (EINVAL); 147 148 mtx_lock(&poll_mtx); 149 if (val > poll_burst_max) { 150 mtx_unlock(&poll_mtx); 151 return (EINVAL); 152 } 153 poll_each_burst = val; 154 mtx_unlock(&poll_mtx); 155 156 return (0); 157 } 158 SYSCTL_PROC(_kern_polling, OID_AUTO, each_burst, CTLTYPE_UINT | CTLFLAG_RW, 159 0, sizeof(uint32_t), poll_each_burst_sysctl, "I", 160 "Max size of each burst"); 161 162 static uint32_t poll_in_idle_loop=0; /* do we poll in idle loop ? */ 163 SYSCTL_UINT(_kern_polling, OID_AUTO, idle_poll, CTLFLAG_RW, 164 &poll_in_idle_loop, 0, "Enable device polling in idle loop"); 165 166 static uint32_t user_frac = 50; 167 static int user_frac_sysctl(SYSCTL_HANDLER_ARGS) 168 { 169 uint32_t val = user_frac; 170 int error; 171 172 error = sysctl_handle_int(oidp, &val, 0, req); 173 if (error || !req->newptr ) 174 return (error); 175 if (val > 99) 176 return (EINVAL); 177 178 mtx_lock(&poll_mtx); 179 user_frac = val; 180 mtx_unlock(&poll_mtx); 181 182 return (0); 183 } 184 SYSCTL_PROC(_kern_polling, OID_AUTO, user_frac, CTLTYPE_UINT | CTLFLAG_RW, 185 0, sizeof(uint32_t), user_frac_sysctl, "I", 186 "Desired user fraction of cpu time"); 187 188 static uint32_t reg_frac_count = 0; 189 static uint32_t reg_frac = 20 ; 190 static int reg_frac_sysctl(SYSCTL_HANDLER_ARGS) 191 { 192 uint32_t val = reg_frac; 193 int error; 194 195 error = sysctl_handle_int(oidp, &val, 0, req); 196 if (error || !req->newptr ) 197 return (error); 198 if (val < 1 || val > hz) 199 return (EINVAL); 200 201 mtx_lock(&poll_mtx); 202 reg_frac = val; 203 if (reg_frac_count >= reg_frac) 204 reg_frac_count = 0; 205 mtx_unlock(&poll_mtx); 206 207 return (0); 208 } 209 SYSCTL_PROC(_kern_polling, OID_AUTO, reg_frac, CTLTYPE_UINT | CTLFLAG_RW, 210 0, sizeof(uint32_t), reg_frac_sysctl, "I", 211 "Every this many cycles check registers"); 212 213 static uint32_t short_ticks; 214 SYSCTL_UINT(_kern_polling, OID_AUTO, short_ticks, CTLFLAG_RD, 215 &short_ticks, 0, "Hardclock ticks shorter than they should be"); 216 217 static uint32_t lost_polls; 218 SYSCTL_UINT(_kern_polling, OID_AUTO, lost_polls, CTLFLAG_RD, 219 &lost_polls, 0, "How many times we would have lost a poll tick"); 220 221 static uint32_t pending_polls; 222 SYSCTL_UINT(_kern_polling, OID_AUTO, pending_polls, CTLFLAG_RD, 223 &pending_polls, 0, "Do we need to poll again"); 224 225 static int residual_burst = 0; 226 SYSCTL_INT(_kern_polling, OID_AUTO, residual_burst, CTLFLAG_RD, 227 &residual_burst, 0, "# of residual cycles in burst"); 228 229 static uint32_t poll_handlers; /* next free entry in pr[]. */ 230 SYSCTL_UINT(_kern_polling, OID_AUTO, handlers, CTLFLAG_RD, 231 &poll_handlers, 0, "Number of registered poll handlers"); 232 233 static uint32_t phase; 234 SYSCTL_UINT(_kern_polling, OID_AUTO, phase, CTLFLAG_RD, 235 &phase, 0, "Polling phase"); 236 237 static uint32_t suspect; 238 SYSCTL_UINT(_kern_polling, OID_AUTO, suspect, CTLFLAG_RD, 239 &suspect, 0, "suspect event"); 240 241 static uint32_t stalled; 242 SYSCTL_UINT(_kern_polling, OID_AUTO, stalled, CTLFLAG_RD, 243 &stalled, 0, "potential stalls"); 244 245 static uint32_t idlepoll_sleeping; /* idlepoll is sleeping */ 246 SYSCTL_UINT(_kern_polling, OID_AUTO, idlepoll_sleeping, CTLFLAG_RD, 247 &idlepoll_sleeping, 0, "idlepoll is sleeping"); 248 249 250 #define POLL_LIST_LEN 128 251 struct pollrec { 252 poll_handler_t *handler; 253 struct ifnet *ifp; 254 }; 255 256 static struct pollrec pr[POLL_LIST_LEN]; 257 258 static void 259 poll_shutdown(void *arg, int howto) 260 { 261 262 poll_shutting_down = 1; 263 } 264 265 static void 266 init_device_poll(void) 267 { 268 269 mtx_init(&poll_mtx, "polling", NULL, MTX_DEF); 270 EVENTHANDLER_REGISTER(shutdown_post_sync, poll_shutdown, NULL, 271 SHUTDOWN_PRI_LAST); 272 } 273 SYSINIT(device_poll, SI_SUB_SOFTINTR, SI_ORDER_MIDDLE, init_device_poll, NULL); 274 275 276 /* 277 * Hook from hardclock. Tries to schedule a netisr, but keeps track 278 * of lost ticks due to the previous handler taking too long. 279 * Normally, this should not happen, because polling handler should 280 * run for a short time. However, in some cases (e.g. when there are 281 * changes in link status etc.) the drivers take a very long time 282 * (even in the order of milliseconds) to reset and reconfigure the 283 * device, causing apparent lost polls. 284 * 285 * The first part of the code is just for debugging purposes, and tries 286 * to count how often hardclock ticks are shorter than they should, 287 * meaning either stray interrupts or delayed events. 288 */ 289 void 290 hardclock_device_poll(void) 291 { 292 static struct timeval prev_t, t; 293 int delta; 294 295 if (poll_handlers == 0 || poll_shutting_down) 296 return; 297 298 microuptime(&t); 299 delta = (t.tv_usec - prev_t.tv_usec) + 300 (t.tv_sec - prev_t.tv_sec)*1000000; 301 if (delta * hz < 500000) 302 short_ticks++; 303 else 304 prev_t = t; 305 306 if (pending_polls > 100) { 307 /* 308 * Too much, assume it has stalled (not always true 309 * see comment above). 310 */ 311 stalled++; 312 pending_polls = 0; 313 phase = 0; 314 } 315 316 if (phase <= 2) { 317 if (phase != 0) 318 suspect++; 319 phase = 1; 320 netisr_poll_scheduled = 1; 321 netisr_pollmore_scheduled = 1; 322 netisr_sched_poll(); 323 phase = 2; 324 } 325 if (pending_polls++ > 0) 326 lost_polls++; 327 } 328 329 /* 330 * ether_poll is called from the idle loop. 331 */ 332 static void 333 ether_poll(int count) 334 { 335 int i; 336 337 mtx_lock(&poll_mtx); 338 339 if (count > poll_each_burst) 340 count = poll_each_burst; 341 342 for (i = 0 ; i < poll_handlers ; i++) 343 pr[i].handler(pr[i].ifp, POLL_ONLY, count); 344 345 mtx_unlock(&poll_mtx); 346 } 347 348 /* 349 * netisr_pollmore is called after other netisr's, possibly scheduling 350 * another NETISR_POLL call, or adapting the burst size for the next cycle. 351 * 352 * It is very bad to fetch large bursts of packets from a single card at once, 353 * because the burst could take a long time to be completely processed, or 354 * could saturate the intermediate queue (ipintrq or similar) leading to 355 * losses or unfairness. To reduce the problem, and also to account better for 356 * time spent in network-related processing, we split the burst in smaller 357 * chunks of fixed size, giving control to the other netisr's between chunks. 358 * This helps in improving the fairness, reducing livelock (because we 359 * emulate more closely the "process to completion" that we have with 360 * fastforwarding) and accounting for the work performed in low level 361 * handling and forwarding. 362 */ 363 364 static struct timeval poll_start_t; 365 366 void 367 netisr_pollmore() 368 { 369 struct timeval t; 370 int kern_load; 371 372 if (poll_handlers == 0) 373 return; 374 375 mtx_lock(&poll_mtx); 376 if (!netisr_pollmore_scheduled) { 377 mtx_unlock(&poll_mtx); 378 return; 379 } 380 netisr_pollmore_scheduled = 0; 381 phase = 5; 382 if (residual_burst > 0) { 383 netisr_poll_scheduled = 1; 384 netisr_pollmore_scheduled = 1; 385 netisr_sched_poll(); 386 mtx_unlock(&poll_mtx); 387 /* will run immediately on return, followed by netisrs */ 388 return; 389 } 390 /* here we can account time spent in netisr's in this tick */ 391 microuptime(&t); 392 kern_load = (t.tv_usec - poll_start_t.tv_usec) + 393 (t.tv_sec - poll_start_t.tv_sec)*1000000; /* us */ 394 kern_load = (kern_load * hz) / 10000; /* 0..100 */ 395 if (kern_load > (100 - user_frac)) { /* try decrease ticks */ 396 if (poll_burst > 1) 397 poll_burst--; 398 } else { 399 if (poll_burst < poll_burst_max) 400 poll_burst++; 401 } 402 403 pending_polls--; 404 if (pending_polls == 0) /* we are done */ 405 phase = 0; 406 else { 407 /* 408 * Last cycle was long and caused us to miss one or more 409 * hardclock ticks. Restart processing again, but slightly 410 * reduce the burst size to prevent that this happens again. 411 */ 412 poll_burst -= (poll_burst / 8); 413 if (poll_burst < 1) 414 poll_burst = 1; 415 netisr_poll_scheduled = 1; 416 netisr_pollmore_scheduled = 1; 417 netisr_sched_poll(); 418 phase = 6; 419 } 420 mtx_unlock(&poll_mtx); 421 } 422 423 /* 424 * netisr_poll is typically scheduled once per tick. 425 */ 426 void 427 netisr_poll(void) 428 { 429 int i, cycles; 430 enum poll_cmd arg = POLL_ONLY; 431 432 if (poll_handlers == 0) 433 return; 434 435 mtx_lock(&poll_mtx); 436 if (!netisr_poll_scheduled) { 437 mtx_unlock(&poll_mtx); 438 return; 439 } 440 netisr_poll_scheduled = 0; 441 phase = 3; 442 if (residual_burst == 0) { /* first call in this tick */ 443 microuptime(&poll_start_t); 444 if (++reg_frac_count == reg_frac) { 445 arg = POLL_AND_CHECK_STATUS; 446 reg_frac_count = 0; 447 } 448 449 residual_burst = poll_burst; 450 } 451 cycles = (residual_burst < poll_each_burst) ? 452 residual_burst : poll_each_burst; 453 residual_burst -= cycles; 454 455 for (i = 0 ; i < poll_handlers ; i++) 456 pr[i].handler(pr[i].ifp, arg, cycles); 457 458 phase = 4; 459 mtx_unlock(&poll_mtx); 460 } 461 462 /* 463 * Try to register routine for polling. Returns 0 if successful 464 * (and polling should be enabled), error code otherwise. 465 * A device is not supposed to register itself multiple times. 466 * 467 * This is called from within the *_ioctl() functions. 468 */ 469 int 470 ether_poll_register(poll_handler_t *h, if_t ifp) 471 { 472 int i; 473 474 KASSERT(h != NULL, ("%s: handler is NULL", __func__)); 475 KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__)); 476 477 mtx_lock(&poll_mtx); 478 if (poll_handlers >= POLL_LIST_LEN) { 479 /* 480 * List full, cannot register more entries. 481 * This should never happen; if it does, it is probably a 482 * broken driver trying to register multiple times. Checking 483 * this at runtime is expensive, and won't solve the problem 484 * anyways, so just report a few times and then give up. 485 */ 486 static int verbose = 10 ; 487 if (verbose >0) { 488 log(LOG_ERR, "poll handlers list full, " 489 "maybe a broken driver ?\n"); 490 verbose--; 491 } 492 mtx_unlock(&poll_mtx); 493 return (ENOMEM); /* no polling for you */ 494 } 495 496 for (i = 0 ; i < poll_handlers ; i++) 497 if (pr[i].ifp == ifp && pr[i].handler != NULL) { 498 mtx_unlock(&poll_mtx); 499 log(LOG_DEBUG, "ether_poll_register: %s: handler" 500 " already registered\n", ifp->if_xname); 501 return (EEXIST); 502 } 503 504 pr[poll_handlers].handler = h; 505 pr[poll_handlers].ifp = ifp; 506 poll_handlers++; 507 mtx_unlock(&poll_mtx); 508 if (idlepoll_sleeping) 509 wakeup(&idlepoll_sleeping); 510 return (0); 511 } 512 513 /* 514 * Remove interface from the polling list. Called from *_ioctl(), too. 515 */ 516 int 517 ether_poll_deregister(if_t ifp) 518 { 519 int i; 520 521 KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__)); 522 523 mtx_lock(&poll_mtx); 524 525 for (i = 0 ; i < poll_handlers ; i++) 526 if (pr[i].ifp == ifp) /* found it */ 527 break; 528 if (i == poll_handlers) { 529 log(LOG_DEBUG, "ether_poll_deregister: %s: not found!\n", 530 ifp->if_xname); 531 mtx_unlock(&poll_mtx); 532 return (ENOENT); 533 } 534 poll_handlers--; 535 if (i < poll_handlers) { /* Last entry replaces this one. */ 536 pr[i].handler = pr[poll_handlers].handler; 537 pr[i].ifp = pr[poll_handlers].ifp; 538 } 539 mtx_unlock(&poll_mtx); 540 return (0); 541 } 542 543 static void 544 poll_idle(void) 545 { 546 struct thread *td = curthread; 547 struct rtprio rtp; 548 549 rtp.prio = RTP_PRIO_MAX; /* lowest priority */ 550 rtp.type = RTP_PRIO_IDLE; 551 PROC_SLOCK(td->td_proc); 552 rtp_to_pri(&rtp, td); 553 PROC_SUNLOCK(td->td_proc); 554 555 for (;;) { 556 if (poll_in_idle_loop && poll_handlers > 0) { 557 idlepoll_sleeping = 0; 558 ether_poll(poll_each_burst); 559 thread_lock(td); 560 mi_switch(SW_VOL); 561 } else { 562 idlepoll_sleeping = 1; 563 tsleep(&idlepoll_sleeping, 0, "pollid", hz * 3); 564 } 565 } 566 } 567 568 static struct proc *idlepoll; 569 static struct kproc_desc idlepoll_kp = { 570 "idlepoll", 571 poll_idle, 572 &idlepoll 573 }; 574 SYSINIT(idlepoll, SI_SUB_KTHREAD_VM, SI_ORDER_ANY, kproc_start, 575 &idlepoll_kp); 576