xref: /freebsd/sys/kern/kern_ntptime.c (revision f5147e312f43a9050468de539aeafa072caa1a60)
1 /*-
2  ***********************************************************************
3  *								       *
4  * Copyright (c) David L. Mills 1993-2001			       *
5  *								       *
6  * Permission to use, copy, modify, and distribute this software and   *
7  * its documentation for any purpose and without fee is hereby	       *
8  * granted, provided that the above copyright notice appears in all    *
9  * copies and that both the copyright notice and this permission       *
10  * notice appear in supporting documentation, and that the name	       *
11  * University of Delaware not be used in advertising or publicity      *
12  * pertaining to distribution of the software without specific,	       *
13  * written prior permission. The University of Delaware makes no       *
14  * representations about the suitability this software for any	       *
15  * purpose. It is provided "as is" without express or implied	       *
16  * warranty.							       *
17  *								       *
18  **********************************************************************/
19 
20 /*
21  * Adapted from the original sources for FreeBSD and timecounters by:
22  * Poul-Henning Kamp <phk@FreeBSD.org>.
23  *
24  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25  * date so I have retained only the 64bit version and included it directly
26  * in this file.
27  *
28  * Only minor changes done to interface with the timecounters over in
29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30  * confusing and/or plain wrong in that context.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ntp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/eventhandler.h>
42 #include <sys/kernel.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/time.h>
48 #include <sys/timex.h>
49 #include <sys/timetc.h>
50 #include <sys/timepps.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysctl.h>
53 
54 #ifdef PPS_SYNC
55 FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
56 #endif
57 
58 /*
59  * Single-precision macros for 64-bit machines
60  */
61 typedef int64_t l_fp;
62 #define L_ADD(v, u)	((v) += (u))
63 #define L_SUB(v, u)	((v) -= (u))
64 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
65 #define L_NEG(v)	((v) = -(v))
66 #define L_RSHIFT(v, n) \
67 	do { \
68 		if ((v) < 0) \
69 			(v) = -(-(v) >> (n)); \
70 		else \
71 			(v) = (v) >> (n); \
72 	} while (0)
73 #define L_MPY(v, a)	((v) *= (a))
74 #define L_CLR(v)	((v) = 0)
75 #define L_ISNEG(v)	((v) < 0)
76 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
77 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
78 
79 /*
80  * Generic NTP kernel interface
81  *
82  * These routines constitute the Network Time Protocol (NTP) interfaces
83  * for user and daemon application programs. The ntp_gettime() routine
84  * provides the time, maximum error (synch distance) and estimated error
85  * (dispersion) to client user application programs. The ntp_adjtime()
86  * routine is used by the NTP daemon to adjust the system clock to an
87  * externally derived time. The time offset and related variables set by
88  * this routine are used by other routines in this module to adjust the
89  * phase and frequency of the clock discipline loop which controls the
90  * system clock.
91  *
92  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
93  * defined), the time at each tick interrupt is derived directly from
94  * the kernel time variable. When the kernel time is reckoned in
95  * microseconds, (NTP_NANO undefined), the time is derived from the
96  * kernel time variable together with a variable representing the
97  * leftover nanoseconds at the last tick interrupt. In either case, the
98  * current nanosecond time is reckoned from these values plus an
99  * interpolated value derived by the clock routines in another
100  * architecture-specific module. The interpolation can use either a
101  * dedicated counter or a processor cycle counter (PCC) implemented in
102  * some architectures.
103  *
104  * Note that all routines must run at priority splclock or higher.
105  */
106 /*
107  * Phase/frequency-lock loop (PLL/FLL) definitions
108  *
109  * The nanosecond clock discipline uses two variable types, time
110  * variables and frequency variables. Both types are represented as 64-
111  * bit fixed-point quantities with the decimal point between two 32-bit
112  * halves. On a 32-bit machine, each half is represented as a single
113  * word and mathematical operations are done using multiple-precision
114  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
115  * used.
116  *
117  * A time variable is a signed 64-bit fixed-point number in ns and
118  * fraction. It represents the remaining time offset to be amortized
119  * over succeeding tick interrupts. The maximum time offset is about
120  * 0.5 s and the resolution is about 2.3e-10 ns.
121  *
122  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125  * |s s s|			 ns				   |
126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127  * |			    fraction				   |
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  *
130  * A frequency variable is a signed 64-bit fixed-point number in ns/s
131  * and fraction. It represents the ns and fraction to be added to the
132  * kernel time variable at each second. The maximum frequency offset is
133  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
134  *
135  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
136  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
137  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138  * |s s s s s s s s s s s s s|	          ns/s			   |
139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140  * |			    fraction				   |
141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142  */
143 /*
144  * The following variables establish the state of the PLL/FLL and the
145  * residual time and frequency offset of the local clock.
146  */
147 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
148 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
149 
150 static int time_state = TIME_OK;	/* clock state */
151 int time_status = STA_UNSYNC;	/* clock status bits */
152 static long time_tai;			/* TAI offset (s) */
153 static long time_monitor;		/* last time offset scaled (ns) */
154 static long time_constant;		/* poll interval (shift) (s) */
155 static long time_precision = 1;		/* clock precision (ns) */
156 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
157 long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
158 static long time_reftime;		/* uptime at last adjustment (s) */
159 static l_fp time_offset;		/* time offset (ns) */
160 static l_fp time_freq;			/* frequency offset (ns/s) */
161 static l_fp time_adj;			/* tick adjust (ns/s) */
162 
163 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
164 
165 static struct mtx ntp_lock;
166 MTX_SYSINIT(ntp, &ntp_lock, "ntp", MTX_SPIN);
167 
168 #define	NTP_LOCK()		mtx_lock_spin(&ntp_lock)
169 #define	NTP_UNLOCK()		mtx_unlock_spin(&ntp_lock)
170 #define	NTP_ASSERT_LOCKED()	mtx_assert(&ntp_lock, MA_OWNED)
171 
172 #ifdef PPS_SYNC
173 /*
174  * The following variables are used when a pulse-per-second (PPS) signal
175  * is available and connected via a modem control lead. They establish
176  * the engineering parameters of the clock discipline loop when
177  * controlled by the PPS signal.
178  */
179 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
180 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
181 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
182 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
183 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
184 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
185 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
186 
187 static struct timespec pps_tf[3];	/* phase median filter */
188 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
189 static long pps_fcount;			/* frequency accumulator */
190 static long pps_jitter;			/* nominal jitter (ns) */
191 static long pps_stabil;			/* nominal stability (scaled ns/s) */
192 static long pps_lastsec;		/* time at last calibration (s) */
193 static int pps_valid;			/* signal watchdog counter */
194 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
195 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
196 static int pps_intcnt;			/* wander counter */
197 
198 /*
199  * PPS signal quality monitors
200  */
201 static long pps_calcnt;			/* calibration intervals */
202 static long pps_jitcnt;			/* jitter limit exceeded */
203 static long pps_stbcnt;			/* stability limit exceeded */
204 static long pps_errcnt;			/* calibration errors */
205 #endif /* PPS_SYNC */
206 /*
207  * End of phase/frequency-lock loop (PLL/FLL) definitions
208  */
209 
210 static void ntp_init(void);
211 static void hardupdate(long offset);
212 static void ntp_gettime1(struct ntptimeval *ntvp);
213 static bool ntp_is_time_error(int tsl);
214 
215 static bool
216 ntp_is_time_error(int tsl)
217 {
218 
219 	/*
220 	 * Status word error decode. If any of these conditions occur,
221 	 * an error is returned, instead of the status word. Most
222 	 * applications will care only about the fact the system clock
223 	 * may not be trusted, not about the details.
224 	 *
225 	 * Hardware or software error
226 	 */
227 	if ((tsl & (STA_UNSYNC | STA_CLOCKERR)) ||
228 
229 	/*
230 	 * PPS signal lost when either time or frequency synchronization
231 	 * requested
232 	 */
233 	    (tsl & (STA_PPSFREQ | STA_PPSTIME) &&
234 	    !(tsl & STA_PPSSIGNAL)) ||
235 
236 	/*
237 	 * PPS jitter exceeded when time synchronization requested
238 	 */
239 	    (tsl & STA_PPSTIME && tsl & STA_PPSJITTER) ||
240 
241 	/*
242 	 * PPS wander exceeded or calibration error when frequency
243 	 * synchronization requested
244 	 */
245 	    (tsl & STA_PPSFREQ &&
246 	    tsl & (STA_PPSWANDER | STA_PPSERROR)))
247 		return (true);
248 
249 	return (false);
250 }
251 
252 static void
253 ntp_gettime1(struct ntptimeval *ntvp)
254 {
255 	struct timespec atv;	/* nanosecond time */
256 
257 	NTP_ASSERT_LOCKED();
258 
259 	nanotime(&atv);
260 	ntvp->time.tv_sec = atv.tv_sec;
261 	ntvp->time.tv_nsec = atv.tv_nsec;
262 	ntvp->maxerror = time_maxerror;
263 	ntvp->esterror = time_esterror;
264 	ntvp->tai = time_tai;
265 	ntvp->time_state = time_state;
266 
267 	if (ntp_is_time_error(time_status))
268 		ntvp->time_state = TIME_ERROR;
269 }
270 
271 /*
272  * ntp_gettime() - NTP user application interface
273  *
274  * See the timex.h header file for synopsis and API description.  Note that
275  * the TAI offset is returned in the ntvtimeval.tai structure member.
276  */
277 #ifndef _SYS_SYSPROTO_H_
278 struct ntp_gettime_args {
279 	struct ntptimeval *ntvp;
280 };
281 #endif
282 /* ARGSUSED */
283 int
284 sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
285 {
286 	struct ntptimeval ntv;
287 
288 	NTP_LOCK();
289 	ntp_gettime1(&ntv);
290 	NTP_UNLOCK();
291 
292 	td->td_retval[0] = ntv.time_state;
293 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
294 }
295 
296 static int
297 ntp_sysctl(SYSCTL_HANDLER_ARGS)
298 {
299 	struct ntptimeval ntv;	/* temporary structure */
300 
301 	NTP_LOCK();
302 	ntp_gettime1(&ntv);
303 	NTP_UNLOCK();
304 
305 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
306 }
307 
308 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
309 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE | CTLFLAG_RD |
310     CTLFLAG_MPSAFE, 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval",
311     "");
312 
313 #ifdef PPS_SYNC
314 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
315     &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
316 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
317     &pps_shift, 0, "Interval duration (sec) (shift)");
318 SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
319     &time_monitor, 0, "Last time offset scaled (ns)");
320 
321 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
322     &pps_freq, 0,
323     "Scaled frequency offset (ns/sec)");
324 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
325     &time_freq, 0,
326     "Frequency offset (ns/sec)");
327 #endif
328 
329 /*
330  * ntp_adjtime() - NTP daemon application interface
331  *
332  * See the timex.h header file for synopsis and API description.  Note that
333  * the timex.constant structure member has a dual purpose to set the time
334  * constant and to set the TAI offset.
335  */
336 #ifndef _SYS_SYSPROTO_H_
337 struct ntp_adjtime_args {
338 	struct timex *tp;
339 };
340 #endif
341 
342 int
343 sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
344 {
345 	struct timex ntv;	/* temporary structure */
346 	long freq;		/* frequency ns/s) */
347 	int modes;		/* mode bits from structure */
348 	int error, retval;
349 
350 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
351 	if (error)
352 		return (error);
353 
354 	/*
355 	 * Update selected clock variables - only the superuser can
356 	 * change anything. Note that there is no error checking here on
357 	 * the assumption the superuser should know what it is doing.
358 	 * Note that either the time constant or TAI offset are loaded
359 	 * from the ntv.constant member, depending on the mode bits. If
360 	 * the STA_PLL bit in the status word is cleared, the state and
361 	 * status words are reset to the initial values at boot.
362 	 */
363 	modes = ntv.modes;
364 	if (modes)
365 		error = priv_check(td, PRIV_NTP_ADJTIME);
366 	if (error != 0)
367 		return (error);
368 	NTP_LOCK();
369 	if (modes & MOD_MAXERROR)
370 		time_maxerror = ntv.maxerror;
371 	if (modes & MOD_ESTERROR)
372 		time_esterror = ntv.esterror;
373 	if (modes & MOD_STATUS) {
374 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
375 			time_state = TIME_OK;
376 			time_status = STA_UNSYNC;
377 #ifdef PPS_SYNC
378 			pps_shift = PPS_FAVG;
379 #endif /* PPS_SYNC */
380 		}
381 		time_status &= STA_RONLY;
382 		time_status |= ntv.status & ~STA_RONLY;
383 	}
384 	if (modes & MOD_TIMECONST) {
385 		if (ntv.constant < 0)
386 			time_constant = 0;
387 		else if (ntv.constant > MAXTC)
388 			time_constant = MAXTC;
389 		else
390 			time_constant = ntv.constant;
391 	}
392 	if (modes & MOD_TAI) {
393 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
394 			time_tai = ntv.constant;
395 	}
396 #ifdef PPS_SYNC
397 	if (modes & MOD_PPSMAX) {
398 		if (ntv.shift < PPS_FAVG)
399 			pps_shiftmax = PPS_FAVG;
400 		else if (ntv.shift > PPS_FAVGMAX)
401 			pps_shiftmax = PPS_FAVGMAX;
402 		else
403 			pps_shiftmax = ntv.shift;
404 	}
405 #endif /* PPS_SYNC */
406 	if (modes & MOD_NANO)
407 		time_status |= STA_NANO;
408 	if (modes & MOD_MICRO)
409 		time_status &= ~STA_NANO;
410 	if (modes & MOD_CLKB)
411 		time_status |= STA_CLK;
412 	if (modes & MOD_CLKA)
413 		time_status &= ~STA_CLK;
414 	if (modes & MOD_FREQUENCY) {
415 		freq = (ntv.freq * 1000LL) >> 16;
416 		if (freq > MAXFREQ)
417 			L_LINT(time_freq, MAXFREQ);
418 		else if (freq < -MAXFREQ)
419 			L_LINT(time_freq, -MAXFREQ);
420 		else {
421 			/*
422 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
423 			 * time_freq is [ns/s * 2^32]
424 			 */
425 			time_freq = ntv.freq * 1000LL * 65536LL;
426 		}
427 #ifdef PPS_SYNC
428 		pps_freq = time_freq;
429 #endif /* PPS_SYNC */
430 	}
431 	if (modes & MOD_OFFSET) {
432 		if (time_status & STA_NANO)
433 			hardupdate(ntv.offset);
434 		else
435 			hardupdate(ntv.offset * 1000);
436 	}
437 
438 	/*
439 	 * Retrieve all clock variables. Note that the TAI offset is
440 	 * returned only by ntp_gettime();
441 	 */
442 	if (time_status & STA_NANO)
443 		ntv.offset = L_GINT(time_offset);
444 	else
445 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
446 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
447 	ntv.maxerror = time_maxerror;
448 	ntv.esterror = time_esterror;
449 	ntv.status = time_status;
450 	ntv.constant = time_constant;
451 	if (time_status & STA_NANO)
452 		ntv.precision = time_precision;
453 	else
454 		ntv.precision = time_precision / 1000;
455 	ntv.tolerance = MAXFREQ * SCALE_PPM;
456 #ifdef PPS_SYNC
457 	ntv.shift = pps_shift;
458 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
459 	if (time_status & STA_NANO)
460 		ntv.jitter = pps_jitter;
461 	else
462 		ntv.jitter = pps_jitter / 1000;
463 	ntv.stabil = pps_stabil;
464 	ntv.calcnt = pps_calcnt;
465 	ntv.errcnt = pps_errcnt;
466 	ntv.jitcnt = pps_jitcnt;
467 	ntv.stbcnt = pps_stbcnt;
468 #endif /* PPS_SYNC */
469 	retval = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
470 	NTP_UNLOCK();
471 
472 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
473 	if (error == 0)
474 		td->td_retval[0] = retval;
475 	return (error);
476 }
477 
478 /*
479  * second_overflow() - called after ntp_tick_adjust()
480  *
481  * This routine is ordinarily called immediately following the above
482  * routine ntp_tick_adjust(). While these two routines are normally
483  * combined, they are separated here only for the purposes of
484  * simulation.
485  */
486 void
487 ntp_update_second(int64_t *adjustment, time_t *newsec)
488 {
489 	int tickrate;
490 	l_fp ftemp;		/* 32/64-bit temporary */
491 
492 	NTP_LOCK();
493 
494 	/*
495 	 * On rollover of the second both the nanosecond and microsecond
496 	 * clocks are updated and the state machine cranked as
497 	 * necessary. The phase adjustment to be used for the next
498 	 * second is calculated and the maximum error is increased by
499 	 * the tolerance.
500 	 */
501 	time_maxerror += MAXFREQ / 1000;
502 
503 	/*
504 	 * Leap second processing. If in leap-insert state at
505 	 * the end of the day, the system clock is set back one
506 	 * second; if in leap-delete state, the system clock is
507 	 * set ahead one second. The nano_time() routine or
508 	 * external clock driver will insure that reported time
509 	 * is always monotonic.
510 	 */
511 	switch (time_state) {
512 
513 		/*
514 		 * No warning.
515 		 */
516 		case TIME_OK:
517 		if (time_status & STA_INS)
518 			time_state = TIME_INS;
519 		else if (time_status & STA_DEL)
520 			time_state = TIME_DEL;
521 		break;
522 
523 		/*
524 		 * Insert second 23:59:60 following second
525 		 * 23:59:59.
526 		 */
527 		case TIME_INS:
528 		if (!(time_status & STA_INS))
529 			time_state = TIME_OK;
530 		else if ((*newsec) % 86400 == 0) {
531 			(*newsec)--;
532 			time_state = TIME_OOP;
533 			time_tai++;
534 		}
535 		break;
536 
537 		/*
538 		 * Delete second 23:59:59.
539 		 */
540 		case TIME_DEL:
541 		if (!(time_status & STA_DEL))
542 			time_state = TIME_OK;
543 		else if (((*newsec) + 1) % 86400 == 0) {
544 			(*newsec)++;
545 			time_tai--;
546 			time_state = TIME_WAIT;
547 		}
548 		break;
549 
550 		/*
551 		 * Insert second in progress.
552 		 */
553 		case TIME_OOP:
554 			time_state = TIME_WAIT;
555 		break;
556 
557 		/*
558 		 * Wait for status bits to clear.
559 		 */
560 		case TIME_WAIT:
561 		if (!(time_status & (STA_INS | STA_DEL)))
562 			time_state = TIME_OK;
563 	}
564 
565 	/*
566 	 * Compute the total time adjustment for the next second
567 	 * in ns. The offset is reduced by a factor depending on
568 	 * whether the PPS signal is operating. Note that the
569 	 * value is in effect scaled by the clock frequency,
570 	 * since the adjustment is added at each tick interrupt.
571 	 */
572 	ftemp = time_offset;
573 #ifdef PPS_SYNC
574 	/* XXX even if PPS signal dies we should finish adjustment ? */
575 	if (time_status & STA_PPSTIME && time_status &
576 	    STA_PPSSIGNAL)
577 		L_RSHIFT(ftemp, pps_shift);
578 	else
579 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
580 #else
581 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
582 #endif /* PPS_SYNC */
583 	time_adj = ftemp;
584 	L_SUB(time_offset, ftemp);
585 	L_ADD(time_adj, time_freq);
586 
587 	/*
588 	 * Apply any correction from adjtime(2).  If more than one second
589 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
590 	 * until the last second is slewed the final < 500 usecs.
591 	 */
592 	if (time_adjtime != 0) {
593 		if (time_adjtime > 1000000)
594 			tickrate = 5000;
595 		else if (time_adjtime < -1000000)
596 			tickrate = -5000;
597 		else if (time_adjtime > 500)
598 			tickrate = 500;
599 		else if (time_adjtime < -500)
600 			tickrate = -500;
601 		else
602 			tickrate = time_adjtime;
603 		time_adjtime -= tickrate;
604 		L_LINT(ftemp, tickrate * 1000);
605 		L_ADD(time_adj, ftemp);
606 	}
607 	*adjustment = time_adj;
608 
609 #ifdef PPS_SYNC
610 	if (pps_valid > 0)
611 		pps_valid--;
612 	else
613 		time_status &= ~STA_PPSSIGNAL;
614 #endif /* PPS_SYNC */
615 
616 	NTP_UNLOCK();
617 }
618 
619 /*
620  * ntp_init() - initialize variables and structures
621  *
622  * This routine must be called after the kernel variables hz and tick
623  * are set or changed and before the next tick interrupt. In this
624  * particular implementation, these values are assumed set elsewhere in
625  * the kernel. The design allows the clock frequency and tick interval
626  * to be changed while the system is running. So, this routine should
627  * probably be integrated with the code that does that.
628  */
629 static void
630 ntp_init(void)
631 {
632 
633 	/*
634 	 * The following variables are initialized only at startup. Only
635 	 * those structures not cleared by the compiler need to be
636 	 * initialized, and these only in the simulator. In the actual
637 	 * kernel, any nonzero values here will quickly evaporate.
638 	 */
639 	L_CLR(time_offset);
640 	L_CLR(time_freq);
641 #ifdef PPS_SYNC
642 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
643 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
644 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
645 	pps_fcount = 0;
646 	L_CLR(pps_freq);
647 #endif /* PPS_SYNC */
648 }
649 
650 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
651 
652 /*
653  * hardupdate() - local clock update
654  *
655  * This routine is called by ntp_adjtime() to update the local clock
656  * phase and frequency. The implementation is of an adaptive-parameter,
657  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
658  * time and frequency offset estimates for each call. If the kernel PPS
659  * discipline code is configured (PPS_SYNC), the PPS signal itself
660  * determines the new time offset, instead of the calling argument.
661  * Presumably, calls to ntp_adjtime() occur only when the caller
662  * believes the local clock is valid within some bound (+-128 ms with
663  * NTP). If the caller's time is far different than the PPS time, an
664  * argument will ensue, and it's not clear who will lose.
665  *
666  * For uncompensated quartz crystal oscillators and nominal update
667  * intervals less than 256 s, operation should be in phase-lock mode,
668  * where the loop is disciplined to phase. For update intervals greater
669  * than 1024 s, operation should be in frequency-lock mode, where the
670  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
671  * is selected by the STA_MODE status bit.
672  */
673 static void
674 hardupdate(offset)
675 	long offset;		/* clock offset (ns) */
676 {
677 	long mtemp;
678 	l_fp ftemp;
679 
680 	NTP_ASSERT_LOCKED();
681 
682 	/*
683 	 * Select how the phase is to be controlled and from which
684 	 * source. If the PPS signal is present and enabled to
685 	 * discipline the time, the PPS offset is used; otherwise, the
686 	 * argument offset is used.
687 	 */
688 	if (!(time_status & STA_PLL))
689 		return;
690 	if (!(time_status & STA_PPSTIME && time_status &
691 	    STA_PPSSIGNAL)) {
692 		if (offset > MAXPHASE)
693 			time_monitor = MAXPHASE;
694 		else if (offset < -MAXPHASE)
695 			time_monitor = -MAXPHASE;
696 		else
697 			time_monitor = offset;
698 		L_LINT(time_offset, time_monitor);
699 	}
700 
701 	/*
702 	 * Select how the frequency is to be controlled and in which
703 	 * mode (PLL or FLL). If the PPS signal is present and enabled
704 	 * to discipline the frequency, the PPS frequency is used;
705 	 * otherwise, the argument offset is used to compute it.
706 	 */
707 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
708 		time_reftime = time_uptime;
709 		return;
710 	}
711 	if (time_status & STA_FREQHOLD || time_reftime == 0)
712 		time_reftime = time_uptime;
713 	mtemp = time_uptime - time_reftime;
714 	L_LINT(ftemp, time_monitor);
715 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
716 	L_MPY(ftemp, mtemp);
717 	L_ADD(time_freq, ftemp);
718 	time_status &= ~STA_MODE;
719 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
720 	    MAXSEC)) {
721 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
722 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
723 		L_ADD(time_freq, ftemp);
724 		time_status |= STA_MODE;
725 	}
726 	time_reftime = time_uptime;
727 	if (L_GINT(time_freq) > MAXFREQ)
728 		L_LINT(time_freq, MAXFREQ);
729 	else if (L_GINT(time_freq) < -MAXFREQ)
730 		L_LINT(time_freq, -MAXFREQ);
731 }
732 
733 #ifdef PPS_SYNC
734 /*
735  * hardpps() - discipline CPU clock oscillator to external PPS signal
736  *
737  * This routine is called at each PPS interrupt in order to discipline
738  * the CPU clock oscillator to the PPS signal. There are two independent
739  * first-order feedback loops, one for the phase, the other for the
740  * frequency. The phase loop measures and grooms the PPS phase offset
741  * and leaves it in a handy spot for the seconds overflow routine. The
742  * frequency loop averages successive PPS phase differences and
743  * calculates the PPS frequency offset, which is also processed by the
744  * seconds overflow routine. The code requires the caller to capture the
745  * time and architecture-dependent hardware counter values in
746  * nanoseconds at the on-time PPS signal transition.
747  *
748  * Note that, on some Unix systems this routine runs at an interrupt
749  * priority level higher than the timer interrupt routine hardclock().
750  * Therefore, the variables used are distinct from the hardclock()
751  * variables, except for the actual time and frequency variables, which
752  * are determined by this routine and updated atomically.
753  *
754  * tsp  - time at PPS
755  * nsec - hardware counter at PPS
756  */
757 void
758 hardpps(struct timespec *tsp, long nsec)
759 {
760 	long u_sec, u_nsec, v_nsec; /* temps */
761 	l_fp ftemp;
762 
763 	NTP_LOCK();
764 
765 	/*
766 	 * The signal is first processed by a range gate and frequency
767 	 * discriminator. The range gate rejects noise spikes outside
768 	 * the range +-500 us. The frequency discriminator rejects input
769 	 * signals with apparent frequency outside the range 1 +-500
770 	 * PPM. If two hits occur in the same second, we ignore the
771 	 * later hit; if not and a hit occurs outside the range gate,
772 	 * keep the later hit for later comparison, but do not process
773 	 * it.
774 	 */
775 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
776 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
777 	pps_valid = PPS_VALID;
778 	u_sec = tsp->tv_sec;
779 	u_nsec = tsp->tv_nsec;
780 	if (u_nsec >= (NANOSECOND >> 1)) {
781 		u_nsec -= NANOSECOND;
782 		u_sec++;
783 	}
784 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
785 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - MAXFREQ)
786 		goto out;
787 	pps_tf[2] = pps_tf[1];
788 	pps_tf[1] = pps_tf[0];
789 	pps_tf[0].tv_sec = u_sec;
790 	pps_tf[0].tv_nsec = u_nsec;
791 
792 	/*
793 	 * Compute the difference between the current and previous
794 	 * counter values. If the difference exceeds 0.5 s, assume it
795 	 * has wrapped around, so correct 1.0 s. If the result exceeds
796 	 * the tick interval, the sample point has crossed a tick
797 	 * boundary during the last second, so correct the tick. Very
798 	 * intricate.
799 	 */
800 	u_nsec = nsec;
801 	if (u_nsec > (NANOSECOND >> 1))
802 		u_nsec -= NANOSECOND;
803 	else if (u_nsec < -(NANOSECOND >> 1))
804 		u_nsec += NANOSECOND;
805 	pps_fcount += u_nsec;
806 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
807 		goto out;
808 	time_status &= ~STA_PPSJITTER;
809 
810 	/*
811 	 * A three-stage median filter is used to help denoise the PPS
812 	 * time. The median sample becomes the time offset estimate; the
813 	 * difference between the other two samples becomes the time
814 	 * dispersion (jitter) estimate.
815 	 */
816 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
817 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
818 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
819 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
820 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
821 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
822 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
823 		} else {
824 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
825 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
826 		}
827 	} else {
828 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
829 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
830 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
831 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
832 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
833 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
834 		} else {
835 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
836 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
837 		}
838 	}
839 
840 	/*
841 	 * Nominal jitter is due to PPS signal noise and interrupt
842 	 * latency. If it exceeds the popcorn threshold, the sample is
843 	 * discarded. otherwise, if so enabled, the time offset is
844 	 * updated. We can tolerate a modest loss of data here without
845 	 * much degrading time accuracy.
846 	 *
847 	 * The measurements being checked here were made with the system
848 	 * timecounter, so the popcorn threshold is not allowed to fall below
849 	 * the number of nanoseconds in two ticks of the timecounter.  For a
850 	 * timecounter running faster than 1 GHz the lower bound is 2ns, just
851 	 * to avoid a nonsensical threshold of zero.
852 	*/
853 	if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
854 	    2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
855 		time_status |= STA_PPSJITTER;
856 		pps_jitcnt++;
857 	} else if (time_status & STA_PPSTIME) {
858 		time_monitor = -v_nsec;
859 		L_LINT(time_offset, time_monitor);
860 	}
861 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
862 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
863 	if (u_sec < (1 << pps_shift))
864 		goto out;
865 
866 	/*
867 	 * At the end of the calibration interval the difference between
868 	 * the first and last counter values becomes the scaled
869 	 * frequency. It will later be divided by the length of the
870 	 * interval to determine the frequency update. If the frequency
871 	 * exceeds a sanity threshold, or if the actual calibration
872 	 * interval is not equal to the expected length, the data are
873 	 * discarded. We can tolerate a modest loss of data here without
874 	 * much degrading frequency accuracy.
875 	 */
876 	pps_calcnt++;
877 	v_nsec = -pps_fcount;
878 	pps_lastsec = pps_tf[0].tv_sec;
879 	pps_fcount = 0;
880 	u_nsec = MAXFREQ << pps_shift;
881 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << pps_shift)) {
882 		time_status |= STA_PPSERROR;
883 		pps_errcnt++;
884 		goto out;
885 	}
886 
887 	/*
888 	 * Here the raw frequency offset and wander (stability) is
889 	 * calculated. If the wander is less than the wander threshold
890 	 * for four consecutive averaging intervals, the interval is
891 	 * doubled; if it is greater than the threshold for four
892 	 * consecutive intervals, the interval is halved. The scaled
893 	 * frequency offset is converted to frequency offset. The
894 	 * stability metric is calculated as the average of recent
895 	 * frequency changes, but is used only for performance
896 	 * monitoring.
897 	 */
898 	L_LINT(ftemp, v_nsec);
899 	L_RSHIFT(ftemp, pps_shift);
900 	L_SUB(ftemp, pps_freq);
901 	u_nsec = L_GINT(ftemp);
902 	if (u_nsec > PPS_MAXWANDER) {
903 		L_LINT(ftemp, PPS_MAXWANDER);
904 		pps_intcnt--;
905 		time_status |= STA_PPSWANDER;
906 		pps_stbcnt++;
907 	} else if (u_nsec < -PPS_MAXWANDER) {
908 		L_LINT(ftemp, -PPS_MAXWANDER);
909 		pps_intcnt--;
910 		time_status |= STA_PPSWANDER;
911 		pps_stbcnt++;
912 	} else {
913 		pps_intcnt++;
914 	}
915 	if (pps_intcnt >= 4) {
916 		pps_intcnt = 4;
917 		if (pps_shift < pps_shiftmax) {
918 			pps_shift++;
919 			pps_intcnt = 0;
920 		}
921 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
922 		pps_intcnt = -4;
923 		if (pps_shift > PPS_FAVG) {
924 			pps_shift--;
925 			pps_intcnt = 0;
926 		}
927 	}
928 	if (u_nsec < 0)
929 		u_nsec = -u_nsec;
930 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
931 
932 	/*
933 	 * The PPS frequency is recalculated and clamped to the maximum
934 	 * MAXFREQ. If enabled, the system clock frequency is updated as
935 	 * well.
936 	 */
937 	L_ADD(pps_freq, ftemp);
938 	u_nsec = L_GINT(pps_freq);
939 	if (u_nsec > MAXFREQ)
940 		L_LINT(pps_freq, MAXFREQ);
941 	else if (u_nsec < -MAXFREQ)
942 		L_LINT(pps_freq, -MAXFREQ);
943 	if (time_status & STA_PPSFREQ)
944 		time_freq = pps_freq;
945 
946 out:
947 	NTP_UNLOCK();
948 }
949 #endif /* PPS_SYNC */
950 
951 #ifndef _SYS_SYSPROTO_H_
952 struct adjtime_args {
953 	struct timeval *delta;
954 	struct timeval *olddelta;
955 };
956 #endif
957 /* ARGSUSED */
958 int
959 sys_adjtime(struct thread *td, struct adjtime_args *uap)
960 {
961 	struct timeval delta, olddelta, *deltap;
962 	int error;
963 
964 	if (uap->delta) {
965 		error = copyin(uap->delta, &delta, sizeof(delta));
966 		if (error)
967 			return (error);
968 		deltap = &delta;
969 	} else
970 		deltap = NULL;
971 	error = kern_adjtime(td, deltap, &olddelta);
972 	if (uap->olddelta && error == 0)
973 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
974 	return (error);
975 }
976 
977 int
978 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
979 {
980 	struct timeval atv;
981 	int64_t ltr, ltw;
982 	int error;
983 
984 	if (delta != NULL) {
985 		error = priv_check(td, PRIV_ADJTIME);
986 		if (error != 0)
987 			return (error);
988 		ltw = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
989 	}
990 	NTP_LOCK();
991 	ltr = time_adjtime;
992 	if (delta != NULL)
993 		time_adjtime = ltw;
994 	NTP_UNLOCK();
995 	if (olddelta != NULL) {
996 		atv.tv_sec = ltr / 1000000;
997 		atv.tv_usec = ltr % 1000000;
998 		if (atv.tv_usec < 0) {
999 			atv.tv_usec += 1000000;
1000 			atv.tv_sec--;
1001 		}
1002 		*olddelta = atv;
1003 	}
1004 	return (0);
1005 }
1006 
1007 static struct callout resettodr_callout;
1008 static int resettodr_period = 1800;
1009 
1010 static void
1011 periodic_resettodr(void *arg __unused)
1012 {
1013 
1014 	/*
1015 	 * Read of time_status is lock-less, which is fine since
1016 	 * ntp_is_time_error() operates on the consistent read value.
1017 	 */
1018 	if (!ntp_is_time_error(time_status))
1019 		resettodr();
1020 	if (resettodr_period > 0)
1021 		callout_schedule(&resettodr_callout, resettodr_period * hz);
1022 }
1023 
1024 static void
1025 shutdown_resettodr(void *arg __unused, int howto __unused)
1026 {
1027 
1028 	callout_drain(&resettodr_callout);
1029 	/* Another unlocked read of time_status */
1030 	if (resettodr_period > 0 && !ntp_is_time_error(time_status))
1031 		resettodr();
1032 }
1033 
1034 static int
1035 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1036 {
1037 	int error;
1038 
1039 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1040 	if (error || !req->newptr)
1041 		return (error);
1042 	if (cold)
1043 		goto done;
1044 	if (resettodr_period == 0)
1045 		callout_stop(&resettodr_callout);
1046 	else
1047 		callout_reset(&resettodr_callout, resettodr_period * hz,
1048 		    periodic_resettodr, NULL);
1049 done:
1050 	return (0);
1051 }
1052 
1053 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT | CTLFLAG_RWTUN |
1054     CTLFLAG_MPSAFE, &resettodr_period, 1800, sysctl_resettodr_period, "I",
1055     "Save system time to RTC with this period (in seconds)");
1056 
1057 static void
1058 start_periodic_resettodr(void *arg __unused)
1059 {
1060 
1061 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1062 	    SHUTDOWN_PRI_FIRST);
1063 	callout_init(&resettodr_callout, 1);
1064 	if (resettodr_period == 0)
1065 		return;
1066 	callout_reset(&resettodr_callout, resettodr_period * hz,
1067 	    periodic_resettodr, NULL);
1068 }
1069 
1070 SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
1071 	start_periodic_resettodr, NULL);
1072