xref: /freebsd/sys/kern/kern_ntptime.c (revision f4dc9bf43457515e5c88d1400d4f5ff70a82d9c7)
1 /*-
2  ***********************************************************************
3  *								       *
4  * Copyright (c) David L. Mills 1993-2001			       *
5  *								       *
6  * Permission to use, copy, modify, and distribute this software and   *
7  * its documentation for any purpose and without fee is hereby	       *
8  * granted, provided that the above copyright notice appears in all    *
9  * copies and that both the copyright notice and this permission       *
10  * notice appear in supporting documentation, and that the name	       *
11  * University of Delaware not be used in advertising or publicity      *
12  * pertaining to distribution of the software without specific,	       *
13  * written prior permission. The University of Delaware makes no       *
14  * representations about the suitability this software for any	       *
15  * purpose. It is provided "as is" without express or implied	       *
16  * warranty.							       *
17  *								       *
18  **********************************************************************/
19 
20 /*
21  * Adapted from the original sources for FreeBSD and timecounters by:
22  * Poul-Henning Kamp <phk@FreeBSD.org>.
23  *
24  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25  * date so I have retained only the 64bit version and included it directly
26  * in this file.
27  *
28  * Only minor changes done to interface with the timecounters over in
29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30  * confusing and/or plain wrong in that context.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ntp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/eventhandler.h>
42 #include <sys/kernel.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/time.h>
48 #include <sys/timex.h>
49 #include <sys/timetc.h>
50 #include <sys/timepps.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysctl.h>
53 
54 #ifdef PPS_SYNC
55 FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
56 #endif
57 
58 /*
59  * Single-precision macros for 64-bit machines
60  */
61 typedef int64_t l_fp;
62 #define L_ADD(v, u)	((v) += (u))
63 #define L_SUB(v, u)	((v) -= (u))
64 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
65 #define L_NEG(v)	((v) = -(v))
66 #define L_RSHIFT(v, n) \
67 	do { \
68 		if ((v) < 0) \
69 			(v) = -(-(v) >> (n)); \
70 		else \
71 			(v) = (v) >> (n); \
72 	} while (0)
73 #define L_MPY(v, a)	((v) *= (a))
74 #define L_CLR(v)	((v) = 0)
75 #define L_ISNEG(v)	((v) < 0)
76 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
77 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
78 
79 /*
80  * Generic NTP kernel interface
81  *
82  * These routines constitute the Network Time Protocol (NTP) interfaces
83  * for user and daemon application programs. The ntp_gettime() routine
84  * provides the time, maximum error (synch distance) and estimated error
85  * (dispersion) to client user application programs. The ntp_adjtime()
86  * routine is used by the NTP daemon to adjust the system clock to an
87  * externally derived time. The time offset and related variables set by
88  * this routine are used by other routines in this module to adjust the
89  * phase and frequency of the clock discipline loop which controls the
90  * system clock.
91  *
92  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
93  * defined), the time at each tick interrupt is derived directly from
94  * the kernel time variable. When the kernel time is reckoned in
95  * microseconds, (NTP_NANO undefined), the time is derived from the
96  * kernel time variable together with a variable representing the
97  * leftover nanoseconds at the last tick interrupt. In either case, the
98  * current nanosecond time is reckoned from these values plus an
99  * interpolated value derived by the clock routines in another
100  * architecture-specific module. The interpolation can use either a
101  * dedicated counter or a processor cycle counter (PCC) implemented in
102  * some architectures.
103  *
104  * Note that all routines must run at priority splclock or higher.
105  */
106 /*
107  * Phase/frequency-lock loop (PLL/FLL) definitions
108  *
109  * The nanosecond clock discipline uses two variable types, time
110  * variables and frequency variables. Both types are represented as 64-
111  * bit fixed-point quantities with the decimal point between two 32-bit
112  * halves. On a 32-bit machine, each half is represented as a single
113  * word and mathematical operations are done using multiple-precision
114  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
115  * used.
116  *
117  * A time variable is a signed 64-bit fixed-point number in ns and
118  * fraction. It represents the remaining time offset to be amortized
119  * over succeeding tick interrupts. The maximum time offset is about
120  * 0.5 s and the resolution is about 2.3e-10 ns.
121  *
122  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125  * |s s s|			 ns				   |
126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127  * |			    fraction				   |
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  *
130  * A frequency variable is a signed 64-bit fixed-point number in ns/s
131  * and fraction. It represents the ns and fraction to be added to the
132  * kernel time variable at each second. The maximum frequency offset is
133  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
134  *
135  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
136  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
137  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138  * |s s s s s s s s s s s s s|	          ns/s			   |
139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140  * |			    fraction				   |
141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142  */
143 /*
144  * The following variables establish the state of the PLL/FLL and the
145  * residual time and frequency offset of the local clock.
146  */
147 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
148 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
149 
150 static int time_state = TIME_OK;	/* clock state */
151 int time_status = STA_UNSYNC;	/* clock status bits */
152 static long time_tai;			/* TAI offset (s) */
153 static long time_monitor;		/* last time offset scaled (ns) */
154 static long time_constant;		/* poll interval (shift) (s) */
155 static long time_precision = 1;		/* clock precision (ns) */
156 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
157 long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
158 static long time_reftime;		/* uptime at last adjustment (s) */
159 static l_fp time_offset;		/* time offset (ns) */
160 static l_fp time_freq;			/* frequency offset (ns/s) */
161 static l_fp time_adj;			/* tick adjust (ns/s) */
162 
163 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
164 
165 static struct mtx ntpadj_lock;
166 MTX_SYSINIT(ntpadj, &ntpadj_lock, "ntpadj",
167 #ifdef PPS_SYNC
168     MTX_SPIN
169 #else
170     MTX_DEF
171 #endif
172 );
173 
174 /*
175  * When PPS_SYNC is defined, hardpps() function is provided which can
176  * be legitimately called from interrupt filters.  Due to this, use
177  * spinlock for ntptime state protection, otherwise sleepable mutex is
178  * adequate.
179  */
180 #ifdef PPS_SYNC
181 #define	NTPADJ_LOCK()		mtx_lock_spin(&ntpadj_lock)
182 #define	NTPADJ_UNLOCK()		mtx_unlock_spin(&ntpadj_lock)
183 #else
184 #define	NTPADJ_LOCK()		mtx_lock(&ntpadj_lock)
185 #define	NTPADJ_UNLOCK()		mtx_unlock(&ntpadj_lock)
186 #endif
187 #define	NTPADJ_ASSERT_LOCKED()	mtx_assert(&ntpadj_lock, MA_OWNED)
188 
189 #ifdef PPS_SYNC
190 /*
191  * The following variables are used when a pulse-per-second (PPS) signal
192  * is available and connected via a modem control lead. They establish
193  * the engineering parameters of the clock discipline loop when
194  * controlled by the PPS signal.
195  */
196 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
197 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
198 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
199 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
200 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
201 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
202 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
203 
204 static struct timespec pps_tf[3];	/* phase median filter */
205 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
206 static long pps_fcount;			/* frequency accumulator */
207 static long pps_jitter;			/* nominal jitter (ns) */
208 static long pps_stabil;			/* nominal stability (scaled ns/s) */
209 static long pps_lastsec;		/* time at last calibration (s) */
210 static int pps_valid;			/* signal watchdog counter */
211 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
212 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
213 static int pps_intcnt;			/* wander counter */
214 
215 /*
216  * PPS signal quality monitors
217  */
218 static long pps_calcnt;			/* calibration intervals */
219 static long pps_jitcnt;			/* jitter limit exceeded */
220 static long pps_stbcnt;			/* stability limit exceeded */
221 static long pps_errcnt;			/* calibration errors */
222 #endif /* PPS_SYNC */
223 /*
224  * End of phase/frequency-lock loop (PLL/FLL) definitions
225  */
226 
227 static void ntp_init(void);
228 static void hardupdate(long offset);
229 static void ntp_gettime1(struct ntptimeval *ntvp);
230 static bool ntp_is_time_error(int tsl);
231 
232 static bool
233 ntp_is_time_error(int tsl)
234 {
235 
236 	/*
237 	 * Status word error decode. If any of these conditions occur,
238 	 * an error is returned, instead of the status word. Most
239 	 * applications will care only about the fact the system clock
240 	 * may not be trusted, not about the details.
241 	 *
242 	 * Hardware or software error
243 	 */
244 	if ((tsl & (STA_UNSYNC | STA_CLOCKERR)) ||
245 
246 	/*
247 	 * PPS signal lost when either time or frequency synchronization
248 	 * requested
249 	 */
250 	    (tsl & (STA_PPSFREQ | STA_PPSTIME) &&
251 	    !(tsl & STA_PPSSIGNAL)) ||
252 
253 	/*
254 	 * PPS jitter exceeded when time synchronization requested
255 	 */
256 	    (tsl & STA_PPSTIME && tsl & STA_PPSJITTER) ||
257 
258 	/*
259 	 * PPS wander exceeded or calibration error when frequency
260 	 * synchronization requested
261 	 */
262 	    (tsl & STA_PPSFREQ &&
263 	    tsl & (STA_PPSWANDER | STA_PPSERROR)))
264 		return (true);
265 
266 	return (false);
267 }
268 
269 static void
270 ntp_gettime1(struct ntptimeval *ntvp)
271 {
272 	struct timespec atv;	/* nanosecond time */
273 
274 	NTPADJ_ASSERT_LOCKED();
275 
276 	nanotime(&atv);
277 	ntvp->time.tv_sec = atv.tv_sec;
278 	ntvp->time.tv_nsec = atv.tv_nsec;
279 	ntvp->maxerror = time_maxerror;
280 	ntvp->esterror = time_esterror;
281 	ntvp->tai = time_tai;
282 	ntvp->time_state = time_state;
283 
284 	if (ntp_is_time_error(time_status))
285 		ntvp->time_state = TIME_ERROR;
286 }
287 
288 /*
289  * ntp_gettime() - NTP user application interface
290  *
291  * See the timex.h header file for synopsis and API description.  Note that
292  * the TAI offset is returned in the ntvtimeval.tai structure member.
293  */
294 #ifndef _SYS_SYSPROTO_H_
295 struct ntp_gettime_args {
296 	struct ntptimeval *ntvp;
297 };
298 #endif
299 /* ARGSUSED */
300 int
301 sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
302 {
303 	struct ntptimeval ntv;
304 
305 	NTPADJ_LOCK();
306 	ntp_gettime1(&ntv);
307 	NTPADJ_UNLOCK();
308 
309 	td->td_retval[0] = ntv.time_state;
310 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
311 }
312 
313 static int
314 ntp_sysctl(SYSCTL_HANDLER_ARGS)
315 {
316 	struct ntptimeval ntv;	/* temporary structure */
317 
318 	NTPADJ_LOCK();
319 	ntp_gettime1(&ntv);
320 	NTPADJ_UNLOCK();
321 
322 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
323 }
324 
325 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
326 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE | CTLFLAG_RD |
327     CTLFLAG_MPSAFE, 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval",
328     "");
329 
330 #ifdef PPS_SYNC
331 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
332     &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
333 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
334     &pps_shift, 0, "Interval duration (sec) (shift)");
335 SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
336     &time_monitor, 0, "Last time offset scaled (ns)");
337 
338 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
339     &pps_freq, 0,
340     "Scaled frequency offset (ns/sec)");
341 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
342     &time_freq, 0,
343     "Frequency offset (ns/sec)");
344 #endif
345 
346 /*
347  * ntp_adjtime() - NTP daemon application interface
348  *
349  * See the timex.h header file for synopsis and API description.  Note that
350  * the timex.constant structure member has a dual purpose to set the time
351  * constant and to set the TAI offset.
352  */
353 #ifndef _SYS_SYSPROTO_H_
354 struct ntp_adjtime_args {
355 	struct timex *tp;
356 };
357 #endif
358 
359 int
360 sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
361 {
362 	struct timex ntv;	/* temporary structure */
363 	long freq;		/* frequency ns/s) */
364 	int modes;		/* mode bits from structure */
365 	int error, retval;
366 
367 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
368 	if (error)
369 		return (error);
370 
371 	/*
372 	 * Update selected clock variables - only the superuser can
373 	 * change anything. Note that there is no error checking here on
374 	 * the assumption the superuser should know what it is doing.
375 	 * Note that either the time constant or TAI offset are loaded
376 	 * from the ntv.constant member, depending on the mode bits. If
377 	 * the STA_PLL bit in the status word is cleared, the state and
378 	 * status words are reset to the initial values at boot.
379 	 */
380 	modes = ntv.modes;
381 	if (modes)
382 		error = priv_check(td, PRIV_NTP_ADJTIME);
383 	if (error != 0)
384 		return (error);
385 	NTPADJ_LOCK();
386 	if (modes & MOD_MAXERROR)
387 		time_maxerror = ntv.maxerror;
388 	if (modes & MOD_ESTERROR)
389 		time_esterror = ntv.esterror;
390 	if (modes & MOD_STATUS) {
391 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
392 			time_state = TIME_OK;
393 			time_status = STA_UNSYNC;
394 #ifdef PPS_SYNC
395 			pps_shift = PPS_FAVG;
396 #endif /* PPS_SYNC */
397 		}
398 		time_status &= STA_RONLY;
399 		time_status |= ntv.status & ~STA_RONLY;
400 	}
401 	if (modes & MOD_TIMECONST) {
402 		if (ntv.constant < 0)
403 			time_constant = 0;
404 		else if (ntv.constant > MAXTC)
405 			time_constant = MAXTC;
406 		else
407 			time_constant = ntv.constant;
408 	}
409 	if (modes & MOD_TAI) {
410 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
411 			time_tai = ntv.constant;
412 	}
413 #ifdef PPS_SYNC
414 	if (modes & MOD_PPSMAX) {
415 		if (ntv.shift < PPS_FAVG)
416 			pps_shiftmax = PPS_FAVG;
417 		else if (ntv.shift > PPS_FAVGMAX)
418 			pps_shiftmax = PPS_FAVGMAX;
419 		else
420 			pps_shiftmax = ntv.shift;
421 	}
422 #endif /* PPS_SYNC */
423 	if (modes & MOD_NANO)
424 		time_status |= STA_NANO;
425 	if (modes & MOD_MICRO)
426 		time_status &= ~STA_NANO;
427 	if (modes & MOD_CLKB)
428 		time_status |= STA_CLK;
429 	if (modes & MOD_CLKA)
430 		time_status &= ~STA_CLK;
431 	if (modes & MOD_FREQUENCY) {
432 		freq = (ntv.freq * 1000LL) >> 16;
433 		if (freq > MAXFREQ)
434 			L_LINT(time_freq, MAXFREQ);
435 		else if (freq < -MAXFREQ)
436 			L_LINT(time_freq, -MAXFREQ);
437 		else {
438 			/*
439 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
440 			 * time_freq is [ns/s * 2^32]
441 			 */
442 			time_freq = ntv.freq * 1000LL * 65536LL;
443 		}
444 #ifdef PPS_SYNC
445 		pps_freq = time_freq;
446 #endif /* PPS_SYNC */
447 	}
448 	if (modes & MOD_OFFSET) {
449 		if (time_status & STA_NANO)
450 			hardupdate(ntv.offset);
451 		else
452 			hardupdate(ntv.offset * 1000);
453 	}
454 
455 	/*
456 	 * Retrieve all clock variables. Note that the TAI offset is
457 	 * returned only by ntp_gettime();
458 	 */
459 	if (time_status & STA_NANO)
460 		ntv.offset = L_GINT(time_offset);
461 	else
462 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
463 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
464 	ntv.maxerror = time_maxerror;
465 	ntv.esterror = time_esterror;
466 	ntv.status = time_status;
467 	ntv.constant = time_constant;
468 	if (time_status & STA_NANO)
469 		ntv.precision = time_precision;
470 	else
471 		ntv.precision = time_precision / 1000;
472 	ntv.tolerance = MAXFREQ * SCALE_PPM;
473 #ifdef PPS_SYNC
474 	ntv.shift = pps_shift;
475 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
476 	if (time_status & STA_NANO)
477 		ntv.jitter = pps_jitter;
478 	else
479 		ntv.jitter = pps_jitter / 1000;
480 	ntv.stabil = pps_stabil;
481 	ntv.calcnt = pps_calcnt;
482 	ntv.errcnt = pps_errcnt;
483 	ntv.jitcnt = pps_jitcnt;
484 	ntv.stbcnt = pps_stbcnt;
485 #endif /* PPS_SYNC */
486 	retval = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
487 	NTPADJ_UNLOCK();
488 
489 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
490 	if (error == 0)
491 		td->td_retval[0] = retval;
492 	return (error);
493 }
494 
495 /*
496  * second_overflow() - called after ntp_tick_adjust()
497  *
498  * This routine is ordinarily called immediately following the above
499  * routine ntp_tick_adjust(). While these two routines are normally
500  * combined, they are separated here only for the purposes of
501  * simulation.
502  */
503 void
504 ntp_update_second(int64_t *adjustment, time_t *newsec)
505 {
506 	int tickrate;
507 	l_fp ftemp;		/* 32/64-bit temporary */
508 
509 	/*
510 	 * On rollover of the second both the nanosecond and microsecond
511 	 * clocks are updated and the state machine cranked as
512 	 * necessary. The phase adjustment to be used for the next
513 	 * second is calculated and the maximum error is increased by
514 	 * the tolerance.
515 	 */
516 	time_maxerror += MAXFREQ / 1000;
517 
518 	/*
519 	 * Leap second processing. If in leap-insert state at
520 	 * the end of the day, the system clock is set back one
521 	 * second; if in leap-delete state, the system clock is
522 	 * set ahead one second. The nano_time() routine or
523 	 * external clock driver will insure that reported time
524 	 * is always monotonic.
525 	 */
526 	switch (time_state) {
527 
528 		/*
529 		 * No warning.
530 		 */
531 		case TIME_OK:
532 		if (time_status & STA_INS)
533 			time_state = TIME_INS;
534 		else if (time_status & STA_DEL)
535 			time_state = TIME_DEL;
536 		break;
537 
538 		/*
539 		 * Insert second 23:59:60 following second
540 		 * 23:59:59.
541 		 */
542 		case TIME_INS:
543 		if (!(time_status & STA_INS))
544 			time_state = TIME_OK;
545 		else if ((*newsec) % 86400 == 0) {
546 			(*newsec)--;
547 			time_state = TIME_OOP;
548 			time_tai++;
549 		}
550 		break;
551 
552 		/*
553 		 * Delete second 23:59:59.
554 		 */
555 		case TIME_DEL:
556 		if (!(time_status & STA_DEL))
557 			time_state = TIME_OK;
558 		else if (((*newsec) + 1) % 86400 == 0) {
559 			(*newsec)++;
560 			time_tai--;
561 			time_state = TIME_WAIT;
562 		}
563 		break;
564 
565 		/*
566 		 * Insert second in progress.
567 		 */
568 		case TIME_OOP:
569 			time_state = TIME_WAIT;
570 		break;
571 
572 		/*
573 		 * Wait for status bits to clear.
574 		 */
575 		case TIME_WAIT:
576 		if (!(time_status & (STA_INS | STA_DEL)))
577 			time_state = TIME_OK;
578 	}
579 
580 	/*
581 	 * Compute the total time adjustment for the next second
582 	 * in ns. The offset is reduced by a factor depending on
583 	 * whether the PPS signal is operating. Note that the
584 	 * value is in effect scaled by the clock frequency,
585 	 * since the adjustment is added at each tick interrupt.
586 	 */
587 	ftemp = time_offset;
588 #ifdef PPS_SYNC
589 	/* XXX even if PPS signal dies we should finish adjustment ? */
590 	if (time_status & STA_PPSTIME && time_status &
591 	    STA_PPSSIGNAL)
592 		L_RSHIFT(ftemp, pps_shift);
593 	else
594 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
595 #else
596 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
597 #endif /* PPS_SYNC */
598 	time_adj = ftemp;
599 	L_SUB(time_offset, ftemp);
600 	L_ADD(time_adj, time_freq);
601 
602 	/*
603 	 * Apply any correction from adjtime(2).  If more than one second
604 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
605 	 * until the last second is slewed the final < 500 usecs.
606 	 */
607 	if (time_adjtime != 0) {
608 		if (time_adjtime > 1000000)
609 			tickrate = 5000;
610 		else if (time_adjtime < -1000000)
611 			tickrate = -5000;
612 		else if (time_adjtime > 500)
613 			tickrate = 500;
614 		else if (time_adjtime < -500)
615 			tickrate = -500;
616 		else
617 			tickrate = time_adjtime;
618 		time_adjtime -= tickrate;
619 		L_LINT(ftemp, tickrate * 1000);
620 		L_ADD(time_adj, ftemp);
621 	}
622 	*adjustment = time_adj;
623 
624 #ifdef PPS_SYNC
625 	if (pps_valid > 0)
626 		pps_valid--;
627 	else
628 		time_status &= ~STA_PPSSIGNAL;
629 #endif /* PPS_SYNC */
630 }
631 
632 /*
633  * ntp_init() - initialize variables and structures
634  *
635  * This routine must be called after the kernel variables hz and tick
636  * are set or changed and before the next tick interrupt. In this
637  * particular implementation, these values are assumed set elsewhere in
638  * the kernel. The design allows the clock frequency and tick interval
639  * to be changed while the system is running. So, this routine should
640  * probably be integrated with the code that does that.
641  */
642 static void
643 ntp_init(void)
644 {
645 
646 	/*
647 	 * The following variables are initialized only at startup. Only
648 	 * those structures not cleared by the compiler need to be
649 	 * initialized, and these only in the simulator. In the actual
650 	 * kernel, any nonzero values here will quickly evaporate.
651 	 */
652 	L_CLR(time_offset);
653 	L_CLR(time_freq);
654 #ifdef PPS_SYNC
655 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
656 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
657 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
658 	pps_fcount = 0;
659 	L_CLR(pps_freq);
660 #endif /* PPS_SYNC */
661 }
662 
663 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
664 
665 /*
666  * hardupdate() - local clock update
667  *
668  * This routine is called by ntp_adjtime() to update the local clock
669  * phase and frequency. The implementation is of an adaptive-parameter,
670  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
671  * time and frequency offset estimates for each call. If the kernel PPS
672  * discipline code is configured (PPS_SYNC), the PPS signal itself
673  * determines the new time offset, instead of the calling argument.
674  * Presumably, calls to ntp_adjtime() occur only when the caller
675  * believes the local clock is valid within some bound (+-128 ms with
676  * NTP). If the caller's time is far different than the PPS time, an
677  * argument will ensue, and it's not clear who will lose.
678  *
679  * For uncompensated quartz crystal oscillators and nominal update
680  * intervals less than 256 s, operation should be in phase-lock mode,
681  * where the loop is disciplined to phase. For update intervals greater
682  * than 1024 s, operation should be in frequency-lock mode, where the
683  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
684  * is selected by the STA_MODE status bit.
685  */
686 static void
687 hardupdate(offset)
688 	long offset;		/* clock offset (ns) */
689 {
690 	long mtemp;
691 	l_fp ftemp;
692 
693 	NTPADJ_ASSERT_LOCKED();
694 
695 	/*
696 	 * Select how the phase is to be controlled and from which
697 	 * source. If the PPS signal is present and enabled to
698 	 * discipline the time, the PPS offset is used; otherwise, the
699 	 * argument offset is used.
700 	 */
701 	if (!(time_status & STA_PLL))
702 		return;
703 	if (!(time_status & STA_PPSTIME && time_status &
704 	    STA_PPSSIGNAL)) {
705 		if (offset > MAXPHASE)
706 			time_monitor = MAXPHASE;
707 		else if (offset < -MAXPHASE)
708 			time_monitor = -MAXPHASE;
709 		else
710 			time_monitor = offset;
711 		L_LINT(time_offset, time_monitor);
712 	}
713 
714 	/*
715 	 * Select how the frequency is to be controlled and in which
716 	 * mode (PLL or FLL). If the PPS signal is present and enabled
717 	 * to discipline the frequency, the PPS frequency is used;
718 	 * otherwise, the argument offset is used to compute it.
719 	 */
720 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
721 		time_reftime = time_uptime;
722 		return;
723 	}
724 	if (time_status & STA_FREQHOLD || time_reftime == 0)
725 		time_reftime = time_uptime;
726 	mtemp = time_uptime - time_reftime;
727 	L_LINT(ftemp, time_monitor);
728 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
729 	L_MPY(ftemp, mtemp);
730 	L_ADD(time_freq, ftemp);
731 	time_status &= ~STA_MODE;
732 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
733 	    MAXSEC)) {
734 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
735 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
736 		L_ADD(time_freq, ftemp);
737 		time_status |= STA_MODE;
738 	}
739 	time_reftime = time_uptime;
740 	if (L_GINT(time_freq) > MAXFREQ)
741 		L_LINT(time_freq, MAXFREQ);
742 	else if (L_GINT(time_freq) < -MAXFREQ)
743 		L_LINT(time_freq, -MAXFREQ);
744 }
745 
746 #ifdef PPS_SYNC
747 /*
748  * hardpps() - discipline CPU clock oscillator to external PPS signal
749  *
750  * This routine is called at each PPS interrupt in order to discipline
751  * the CPU clock oscillator to the PPS signal. There are two independent
752  * first-order feedback loops, one for the phase, the other for the
753  * frequency. The phase loop measures and grooms the PPS phase offset
754  * and leaves it in a handy spot for the seconds overflow routine. The
755  * frequency loop averages successive PPS phase differences and
756  * calculates the PPS frequency offset, which is also processed by the
757  * seconds overflow routine. The code requires the caller to capture the
758  * time and architecture-dependent hardware counter values in
759  * nanoseconds at the on-time PPS signal transition.
760  *
761  * Note that, on some Unix systems this routine runs at an interrupt
762  * priority level higher than the timer interrupt routine hardclock().
763  * Therefore, the variables used are distinct from the hardclock()
764  * variables, except for the actual time and frequency variables, which
765  * are determined by this routine and updated atomically.
766  */
767 void
768 hardpps(tsp, nsec)
769 	struct timespec *tsp;	/* time at PPS */
770 	long nsec;		/* hardware counter at PPS */
771 {
772 	long u_sec, u_nsec, v_nsec; /* temps */
773 	l_fp ftemp;
774 
775 	NTPADJ_LOCK();
776 
777 	/*
778 	 * The signal is first processed by a range gate and frequency
779 	 * discriminator. The range gate rejects noise spikes outside
780 	 * the range +-500 us. The frequency discriminator rejects input
781 	 * signals with apparent frequency outside the range 1 +-500
782 	 * PPM. If two hits occur in the same second, we ignore the
783 	 * later hit; if not and a hit occurs outside the range gate,
784 	 * keep the later hit for later comparison, but do not process
785 	 * it.
786 	 */
787 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
788 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
789 	pps_valid = PPS_VALID;
790 	u_sec = tsp->tv_sec;
791 	u_nsec = tsp->tv_nsec;
792 	if (u_nsec >= (NANOSECOND >> 1)) {
793 		u_nsec -= NANOSECOND;
794 		u_sec++;
795 	}
796 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
797 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - MAXFREQ)
798 		goto out;
799 	pps_tf[2] = pps_tf[1];
800 	pps_tf[1] = pps_tf[0];
801 	pps_tf[0].tv_sec = u_sec;
802 	pps_tf[0].tv_nsec = u_nsec;
803 
804 	/*
805 	 * Compute the difference between the current and previous
806 	 * counter values. If the difference exceeds 0.5 s, assume it
807 	 * has wrapped around, so correct 1.0 s. If the result exceeds
808 	 * the tick interval, the sample point has crossed a tick
809 	 * boundary during the last second, so correct the tick. Very
810 	 * intricate.
811 	 */
812 	u_nsec = nsec;
813 	if (u_nsec > (NANOSECOND >> 1))
814 		u_nsec -= NANOSECOND;
815 	else if (u_nsec < -(NANOSECOND >> 1))
816 		u_nsec += NANOSECOND;
817 	pps_fcount += u_nsec;
818 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
819 		goto out;
820 	time_status &= ~STA_PPSJITTER;
821 
822 	/*
823 	 * A three-stage median filter is used to help denoise the PPS
824 	 * time. The median sample becomes the time offset estimate; the
825 	 * difference between the other two samples becomes the time
826 	 * dispersion (jitter) estimate.
827 	 */
828 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
829 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
830 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
831 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
832 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
833 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
834 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
835 		} else {
836 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
837 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
838 		}
839 	} else {
840 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
841 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
842 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
843 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
844 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
845 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
846 		} else {
847 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
848 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
849 		}
850 	}
851 
852 	/*
853 	 * Nominal jitter is due to PPS signal noise and interrupt
854 	 * latency. If it exceeds the popcorn threshold, the sample is
855 	 * discarded. otherwise, if so enabled, the time offset is
856 	 * updated. We can tolerate a modest loss of data here without
857 	 * much degrading time accuracy.
858 	 *
859 	 * The measurements being checked here were made with the system
860 	 * timecounter, so the popcorn threshold is not allowed to fall below
861 	 * the number of nanoseconds in two ticks of the timecounter.  For a
862 	 * timecounter running faster than 1 GHz the lower bound is 2ns, just
863 	 * to avoid a nonsensical threshold of zero.
864 	*/
865 	if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
866 	    2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
867 		time_status |= STA_PPSJITTER;
868 		pps_jitcnt++;
869 	} else if (time_status & STA_PPSTIME) {
870 		time_monitor = -v_nsec;
871 		L_LINT(time_offset, time_monitor);
872 	}
873 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
874 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
875 	if (u_sec < (1 << pps_shift))
876 		goto out;
877 
878 	/*
879 	 * At the end of the calibration interval the difference between
880 	 * the first and last counter values becomes the scaled
881 	 * frequency. It will later be divided by the length of the
882 	 * interval to determine the frequency update. If the frequency
883 	 * exceeds a sanity threshold, or if the actual calibration
884 	 * interval is not equal to the expected length, the data are
885 	 * discarded. We can tolerate a modest loss of data here without
886 	 * much degrading frequency accuracy.
887 	 */
888 	pps_calcnt++;
889 	v_nsec = -pps_fcount;
890 	pps_lastsec = pps_tf[0].tv_sec;
891 	pps_fcount = 0;
892 	u_nsec = MAXFREQ << pps_shift;
893 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << pps_shift)) {
894 		time_status |= STA_PPSERROR;
895 		pps_errcnt++;
896 		goto out;
897 	}
898 
899 	/*
900 	 * Here the raw frequency offset and wander (stability) is
901 	 * calculated. If the wander is less than the wander threshold
902 	 * for four consecutive averaging intervals, the interval is
903 	 * doubled; if it is greater than the threshold for four
904 	 * consecutive intervals, the interval is halved. The scaled
905 	 * frequency offset is converted to frequency offset. The
906 	 * stability metric is calculated as the average of recent
907 	 * frequency changes, but is used only for performance
908 	 * monitoring.
909 	 */
910 	L_LINT(ftemp, v_nsec);
911 	L_RSHIFT(ftemp, pps_shift);
912 	L_SUB(ftemp, pps_freq);
913 	u_nsec = L_GINT(ftemp);
914 	if (u_nsec > PPS_MAXWANDER) {
915 		L_LINT(ftemp, PPS_MAXWANDER);
916 		pps_intcnt--;
917 		time_status |= STA_PPSWANDER;
918 		pps_stbcnt++;
919 	} else if (u_nsec < -PPS_MAXWANDER) {
920 		L_LINT(ftemp, -PPS_MAXWANDER);
921 		pps_intcnt--;
922 		time_status |= STA_PPSWANDER;
923 		pps_stbcnt++;
924 	} else {
925 		pps_intcnt++;
926 	}
927 	if (pps_intcnt >= 4) {
928 		pps_intcnt = 4;
929 		if (pps_shift < pps_shiftmax) {
930 			pps_shift++;
931 			pps_intcnt = 0;
932 		}
933 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
934 		pps_intcnt = -4;
935 		if (pps_shift > PPS_FAVG) {
936 			pps_shift--;
937 			pps_intcnt = 0;
938 		}
939 	}
940 	if (u_nsec < 0)
941 		u_nsec = -u_nsec;
942 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
943 
944 	/*
945 	 * The PPS frequency is recalculated and clamped to the maximum
946 	 * MAXFREQ. If enabled, the system clock frequency is updated as
947 	 * well.
948 	 */
949 	L_ADD(pps_freq, ftemp);
950 	u_nsec = L_GINT(pps_freq);
951 	if (u_nsec > MAXFREQ)
952 		L_LINT(pps_freq, MAXFREQ);
953 	else if (u_nsec < -MAXFREQ)
954 		L_LINT(pps_freq, -MAXFREQ);
955 	if (time_status & STA_PPSFREQ)
956 		time_freq = pps_freq;
957 
958 out:
959 	NTPADJ_UNLOCK();
960 }
961 #endif /* PPS_SYNC */
962 
963 #ifndef _SYS_SYSPROTO_H_
964 struct adjtime_args {
965 	struct timeval *delta;
966 	struct timeval *olddelta;
967 };
968 #endif
969 /* ARGSUSED */
970 int
971 sys_adjtime(struct thread *td, struct adjtime_args *uap)
972 {
973 	struct timeval delta, olddelta, *deltap;
974 	int error;
975 
976 	if (uap->delta) {
977 		error = copyin(uap->delta, &delta, sizeof(delta));
978 		if (error)
979 			return (error);
980 		deltap = &delta;
981 	} else
982 		deltap = NULL;
983 	error = kern_adjtime(td, deltap, &olddelta);
984 	if (uap->olddelta && error == 0)
985 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
986 	return (error);
987 }
988 
989 int
990 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
991 {
992 	struct timeval atv;
993 	int64_t ltr, ltw;
994 	int error;
995 
996 	if (delta != NULL) {
997 		error = priv_check(td, PRIV_ADJTIME);
998 		if (error != 0)
999 			return (error);
1000 		ltw = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
1001 	}
1002 	NTPADJ_LOCK();
1003 	ltr = time_adjtime;
1004 	if (delta != NULL)
1005 		time_adjtime = ltw;
1006 	NTPADJ_UNLOCK();
1007 	if (olddelta != NULL) {
1008 		atv.tv_sec = ltr / 1000000;
1009 		atv.tv_usec = ltr % 1000000;
1010 		if (atv.tv_usec < 0) {
1011 			atv.tv_usec += 1000000;
1012 			atv.tv_sec--;
1013 		}
1014 		*olddelta = atv;
1015 	}
1016 	return (0);
1017 }
1018 
1019 static struct callout resettodr_callout;
1020 static int resettodr_period = 1800;
1021 
1022 static void
1023 periodic_resettodr(void *arg __unused)
1024 {
1025 
1026 	/*
1027 	 * Read of time_status is lock-less, which is fine since
1028 	 * ntp_is_time_error() operates on the consistent read value.
1029 	 */
1030 	if (!ntp_is_time_error(time_status))
1031 		resettodr();
1032 	if (resettodr_period > 0)
1033 		callout_schedule(&resettodr_callout, resettodr_period * hz);
1034 }
1035 
1036 static void
1037 shutdown_resettodr(void *arg __unused, int howto __unused)
1038 {
1039 
1040 	callout_drain(&resettodr_callout);
1041 	/* Another unlocked read of time_status */
1042 	if (resettodr_period > 0 && !ntp_is_time_error(time_status))
1043 		resettodr();
1044 }
1045 
1046 static int
1047 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1048 {
1049 	int error;
1050 
1051 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1052 	if (error || !req->newptr)
1053 		return (error);
1054 	if (cold)
1055 		goto done;
1056 	if (resettodr_period == 0)
1057 		callout_stop(&resettodr_callout);
1058 	else
1059 		callout_reset(&resettodr_callout, resettodr_period * hz,
1060 		    periodic_resettodr, NULL);
1061 done:
1062 	return (0);
1063 }
1064 
1065 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT | CTLFLAG_RWTUN |
1066     CTLFLAG_MPSAFE, &resettodr_period, 1800, sysctl_resettodr_period, "I",
1067     "Save system time to RTC with this period (in seconds)");
1068 
1069 static void
1070 start_periodic_resettodr(void *arg __unused)
1071 {
1072 
1073 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1074 	    SHUTDOWN_PRI_FIRST);
1075 	callout_init(&resettodr_callout, 1);
1076 	if (resettodr_period == 0)
1077 		return;
1078 	callout_reset(&resettodr_callout, resettodr_period * hz,
1079 	    periodic_resettodr, NULL);
1080 }
1081 
1082 SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
1083 	start_periodic_resettodr, NULL);
1084