xref: /freebsd/sys/kern/kern_ntptime.c (revision f35e5d0ef0a10ebda81a076bbd838d12b916dab5)
1 /***********************************************************************
2  *								       *
3  * Copyright (c) David L. Mills 1993-1999			       *
4  *								       *
5  * Permission to use, copy, modify, and distribute this software and   *
6  * its documentation for any purpose and without fee is hereby	       *
7  * granted, provided that the above copyright notice appears in all    *
8  * copies and that both the copyright notice and this permission       *
9  * notice appear in supporting documentation, and that the name	       *
10  * University of Delaware not be used in advertising or publicity      *
11  * pertaining to distribution of the software without specific,	       *
12  * written prior permission. The University of Delaware makes no       *
13  * representations about the suitability this software for any	       *
14  * purpose. It is provided "as is" without express or implied	       *
15  * warranty.							       *
16  *								       *
17  **********************************************************************/
18 
19 /*
20  * Adapted from the original sources for FreeBSD and timecounters by:
21  * Poul-Henning Kamp <phk@FreeBSD.org>.
22  *
23  * The 32bit version of the "LP" macros seems a bit past its "sell by"
24  * date so I have retained only the 64bit version and included it directly
25  * in this file.
26  *
27  * Only minor changes done to interface with the timecounters over in
28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29  * confusing and/or plain wrong in that context.
30  */
31 
32 #include "opt_ntp.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/sysproto.h>
37 #include <sys/kernel.h>
38 #include <sys/proc.h>
39 #include <sys/time.h>
40 #include <sys/timex.h>
41 #include <sys/timepps.h>
42 #include <sys/sysctl.h>
43 
44 /*
45  * Single-precision macros for 64-bit machines
46  */
47 typedef long long l_fp;
48 #define L_ADD(v, u)	((v) += (u))
49 #define L_SUB(v, u)	((v) -= (u))
50 #define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
51 #define L_NEG(v)	((v) = -(v))
52 #define L_RSHIFT(v, n) \
53 	do { \
54 		if ((v) < 0) \
55 			(v) = -(-(v) >> (n)); \
56 		else \
57 			(v) = (v) >> (n); \
58 	} while (0)
59 #define L_MPY(v, a)	((v) *= (a))
60 #define L_CLR(v)	((v) = 0)
61 #define L_ISNEG(v)	((v) < 0)
62 #define L_LINT(v, a)	((v) = (long long)(a) << 32)
63 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
64 
65 /*
66  * Generic NTP kernel interface
67  *
68  * These routines constitute the Network Time Protocol (NTP) interfaces
69  * for user and daemon application programs. The ntp_gettime() routine
70  * provides the time, maximum error (synch distance) and estimated error
71  * (dispersion) to client user application programs. The ntp_adjtime()
72  * routine is used by the NTP daemon to adjust the system clock to an
73  * externally derived time. The time offset and related variables set by
74  * this routine are used by other routines in this module to adjust the
75  * phase and frequency of the clock discipline loop which controls the
76  * system clock.
77  *
78  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
79  * defined), the time at each tick interrupt is derived directly from
80  * the kernel time variable. When the kernel time is reckoned in
81  * microseconds, (NTP_NANO undefined), the time is derived from the
82  * kernel time variable together with a variable representing the
83  * leftover nanoseconds at the last tick interrupt. In either case, the
84  * current nanosecond time is reckoned from these values plus an
85  * interpolated value derived by the clock routines in another
86  * architecture-specific module. The interpolation can use either a
87  * dedicated counter or a processor cycle counter (PCC) implemented in
88  * some architectures.
89  *
90  * Note that all routines must run at priority splclock or higher.
91  */
92 
93 /*
94  * Phase/frequency-lock loop (PLL/FLL) definitions
95  *
96  * The nanosecond clock discipline uses two variable types, time
97  * variables and frequency variables. Both types are represented as 64-
98  * bit fixed-point quantities with the decimal point between two 32-bit
99  * halves. On a 32-bit machine, each half is represented as a single
100  * word and mathematical operations are done using multiple-precision
101  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
102  * used.
103  *
104  * A time variable is a signed 64-bit fixed-point number in ns and
105  * fraction. It represents the remaining time offset to be amortized
106  * over succeeding tick interrupts. The maximum time offset is about
107  * 0.5 s and the resolution is about 2.3e-10 ns.
108  *
109  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
110  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
111  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
112  * |s s s|			 ns				   |
113  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
114  * |			    fraction				   |
115  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116  *
117  * A frequency variable is a signed 64-bit fixed-point number in ns/s
118  * and fraction. It represents the ns and fraction to be added to the
119  * kernel time variable at each second. The maximum frequency offset is
120  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
121  *
122  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125  * |s s s s s s s s s s s s s|	          ns/s			   |
126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127  * |			    fraction				   |
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  */
130 /*
131  * The following variables establish the state of the PLL/FLL and the
132  * residual time and frequency offset of the local clock.
133  */
134 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
135 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
136 
137 static int time_state = TIME_OK;	/* clock state */
138 static int time_status = STA_UNSYNC;	/* clock status bits */
139 static long time_constant;		/* poll interval (shift) (s) */
140 static long time_precision = 1;		/* clock precision (ns) */
141 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
142 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
143 static long time_reftime;		/* time at last adjustment (s) */
144 static long time_tick;			/* nanoseconds per tick (ns) */
145 static l_fp time_offset;		/* time offset (ns) */
146 static l_fp time_freq;			/* frequency offset (ns/s) */
147 
148 #ifdef PPS_SYNC
149 /*
150  * The following variables are used when a pulse-per-second (PPS) signal
151  * is available and connected via a modem control lead. They establish
152  * the engineering parameters of the clock discipline loop when
153  * controlled by the PPS signal.
154  */
155 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
156 #define PPS_FAVGDEF	7		/* default freq avg int (s) (shift) */
157 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
158 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
159 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
160 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
161 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
162 
163 static struct timespec pps_tf[3];	/* phase median filter */
164 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
165 static long pps_fcount;			/* frequency accumulator */
166 static long pps_jitter;			/* nominal jitter (ns) */
167 static long pps_stabil;			/* nominal stability (scaled ns/s) */
168 static long pps_lastsec;		/* time at last calibration (s) */
169 static int pps_valid;			/* signal watchdog counter */
170 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
171 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
172 static int pps_intcnt;			/* wander counter */
173 
174 /*
175  * PPS signal quality monitors
176  */
177 static long pps_calcnt;			/* calibration intervals */
178 static long pps_jitcnt;			/* jitter limit exceeded */
179 static long pps_stbcnt;			/* stability limit exceeded */
180 static long pps_errcnt;			/* calibration errors */
181 #endif /* PPS_SYNC */
182 /*
183  * End of phase/frequency-lock loop (PLL/FLL) definitions
184  */
185 
186 static void ntp_init(void);
187 static void hardupdate(long offset);
188 
189 /*
190  * ntp_gettime() - NTP user application interface
191  *
192  * See the timex.h header file for synopsis and API description.
193  */
194 static int
195 ntp_sysctl SYSCTL_HANDLER_ARGS
196 {
197 	struct ntptimeval ntv;	/* temporary structure */
198 	struct timespec atv;	/* nanosecond time */
199 
200 	nanotime(&atv);
201 	ntv.time.tv_sec = atv.tv_sec;
202 	ntv.time.tv_nsec = atv.tv_nsec;
203 	ntv.maxerror = time_maxerror;
204 	ntv.esterror = time_esterror;
205 	ntv.time_state = time_state;
206 
207 	/*
208 	 * Status word error decode. If any of these conditions occur,
209 	 * an error is returned, instead of the status word. Most
210 	 * applications will care only about the fact the system clock
211 	 * may not be trusted, not about the details.
212 	 *
213 	 * Hardware or software error
214 	 */
215 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
216 
217 	/*
218 	 * PPS signal lost when either time or frequency synchronization
219 	 * requested
220 	 */
221 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
222 	    !(time_status & STA_PPSSIGNAL)) ||
223 
224 	/*
225 	 * PPS jitter exceeded when time synchronization requested
226 	 */
227 	    (time_status & STA_PPSTIME &&
228 	    time_status & STA_PPSJITTER) ||
229 
230 	/*
231 	 * PPS wander exceeded or calibration error when frequency
232 	 * synchronization requested
233 	 */
234 	    (time_status & STA_PPSFREQ &&
235 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
236 		ntv.time_state = TIME_ERROR;
237 	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
238 }
239 
240 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
241 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
242 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
243 
244 #ifdef PPS_SYNC
245 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
246 #endif
247 /*
248  * ntp_adjtime() - NTP daemon application interface
249  *
250  * See the timex.h header file for synopsis and API description.
251  */
252 #ifndef _SYS_SYSPROTO_H_
253 struct ntp_adjtime_args {
254 	struct timex *tp;
255 };
256 #endif
257 
258 int
259 ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
260 {
261 	struct timex ntv;	/* temporary structure */
262 	long freq;		/* frequency ns/s) */
263 	int modes;		/* mode bits from structure */
264 	int s;			/* caller priority */
265 	int error;
266 
267 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
268 	if (error)
269 		return(error);
270 
271 	/*
272 	 * Update selected clock variables - only the superuser can
273 	 * change anything. Note that there is no error checking here on
274 	 * the assumption the superuser should know what it is doing.
275 	 */
276 	modes = ntv.modes;
277 	if (modes)
278 		error = suser(p);
279 	if (error)
280 		return (error);
281 	s = splclock();
282 	if (modes & MOD_FREQUENCY) {
283 		freq = (ntv.freq * 1000LL) >> 16;
284 		if (freq > MAXFREQ)
285 			L_LINT(time_freq, MAXFREQ);
286 		else if (freq < -MAXFREQ)
287 			L_LINT(time_freq, -MAXFREQ);
288 		else
289 			L_LINT(time_freq, freq);
290 
291 #ifdef PPS_SYNC
292 		pps_freq = time_freq;
293 #endif /* PPS_SYNC */
294 	}
295 	if (modes & MOD_MAXERROR)
296 		time_maxerror = ntv.maxerror;
297 	if (modes & MOD_ESTERROR)
298 		time_esterror = ntv.esterror;
299 	if (modes & MOD_STATUS) {
300 		time_status &= STA_RONLY;
301 		time_status |= ntv.status & ~STA_RONLY;
302 	}
303 	if (modes & MOD_TIMECONST) {
304 		if (ntv.constant < 0)
305 			time_constant = 0;
306 		else if (ntv.constant > MAXTC)
307 			time_constant = MAXTC;
308 		else
309 			time_constant = ntv.constant;
310 	}
311 #ifdef PPS_SYNC
312 	if (modes & MOD_PPSMAX) {
313 		if (ntv.shift < PPS_FAVG)
314 			pps_shiftmax = PPS_FAVG;
315 		else if (ntv.shift > PPS_FAVGMAX)
316 			pps_shiftmax = PPS_FAVGMAX;
317 		else
318 			pps_shiftmax = ntv.shift;
319 	}
320 #endif /* PPS_SYNC */
321 	if (modes & MOD_NANO)
322 		time_status |= STA_NANO;
323 	if (modes & MOD_MICRO)
324 		time_status &= ~STA_NANO;
325 	if (modes & MOD_CLKB)
326 		time_status |= STA_CLK;
327 	if (modes & MOD_CLKA)
328 		time_status &= ~STA_CLK;
329 	if (modes & MOD_OFFSET) {
330 		if (time_status & STA_NANO)
331 			hardupdate(ntv.offset);
332 		else
333 			hardupdate(ntv.offset * 1000);
334 	}
335 
336 	/*
337 	 * Retrieve all clock variables
338 	 */
339 	if (time_status & STA_NANO)
340 		ntv.offset = L_GINT(time_offset);
341 	else
342 		ntv.offset = L_GINT(time_offset) / 1000;
343 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
344 	ntv.maxerror = time_maxerror;
345 	ntv.esterror = time_esterror;
346 	ntv.status = time_status;
347 	ntv.constant = time_constant;
348 	if (time_status & STA_NANO)
349 		ntv.precision = time_precision;
350 	else
351 		ntv.precision = time_precision / 1000;
352 	ntv.tolerance = MAXFREQ * SCALE_PPM;
353 #ifdef PPS_SYNC
354 	ntv.shift = pps_shift;
355 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
356 	if (time_status & STA_NANO)
357 		ntv.jitter = pps_jitter;
358 	else
359 		ntv.jitter = pps_jitter / 1000;
360 	ntv.stabil = pps_stabil;
361 	ntv.calcnt = pps_calcnt;
362 	ntv.errcnt = pps_errcnt;
363 	ntv.jitcnt = pps_jitcnt;
364 	ntv.stbcnt = pps_stbcnt;
365 #endif /* PPS_SYNC */
366 	splx(s);
367 
368 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
369 	if (error)
370 		return (error);
371 
372 	/*
373 	 * Status word error decode. See comments in
374 	 * ntp_gettime() routine.
375 	 */
376 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
377 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
378 	    !(time_status & STA_PPSSIGNAL)) ||
379 	    (time_status & STA_PPSTIME &&
380 	    time_status & STA_PPSJITTER) ||
381 	    (time_status & STA_PPSFREQ &&
382 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
383 		p->p_retval[0] = TIME_ERROR;
384 	else
385 		p->p_retval[0] = time_state;
386 	return (error);
387 }
388 
389 /*
390  * second_overflow() - called after ntp_tick_adjust()
391  *
392  * This routine is ordinarily called immediately following the above
393  * routine ntp_tick_adjust(). While these two routines are normally
394  * combined, they are separated here only for the purposes of
395  * simulation.
396  */
397 void
398 ntp_update_second(struct timecounter *tcp)
399 {
400 	u_int32_t *newsec;
401 	l_fp ftemp, time_adj;		/* 32/64-bit temporaries */
402 
403 	newsec = &tcp->tc_offset_sec;
404 	/*
405 	 * On rollover of the second both the nanosecond and microsecond
406 	 * clocks are updated and the state machine cranked as
407 	 * necessary. The phase adjustment to be used for the next
408 	 * second is calculated and the maximum error is increased by
409 	 * the tolerance.
410 	 */
411 	time_maxerror += MAXFREQ / 1000;
412 
413 	/*
414 	 * Leap second processing. If in leap-insert state at
415 	 * the end of the day, the system clock is set back one
416 	 * second; if in leap-delete state, the system clock is
417 	 * set ahead one second. The nano_time() routine or
418 	 * external clock driver will insure that reported time
419 	 * is always monotonic.
420 	 */
421 	switch (time_state) {
422 
423 		/*
424 		 * No warning.
425 		 */
426 		case TIME_OK:
427 		if (time_status & STA_INS)
428 			time_state = TIME_INS;
429 		else if (time_status & STA_DEL)
430 			time_state = TIME_DEL;
431 		break;
432 
433 		/*
434 		 * Insert second 23:59:60 following second
435 		 * 23:59:59.
436 		 */
437 		case TIME_INS:
438 		if (!(time_status & STA_INS))
439 			time_state = TIME_OK;
440 		else if ((*newsec) % 86400 == 0) {
441 			(*newsec)--;
442 			time_state = TIME_OOP;
443 		}
444 		break;
445 
446 		/*
447 		 * Delete second 23:59:59.
448 		 */
449 		case TIME_DEL:
450 		if (!(time_status & STA_DEL))
451 			time_state = TIME_OK;
452 		else if (((*newsec) + 1) % 86400 == 0) {
453 			(*newsec)++;
454 			time_state = TIME_WAIT;
455 		}
456 		break;
457 
458 		/*
459 		 * Insert second in progress.
460 		 */
461 		case TIME_OOP:
462 		time_state = TIME_WAIT;
463 		break;
464 
465 		/*
466 		 * Wait for status bits to clear.
467 		 */
468 		case TIME_WAIT:
469 		if (!(time_status & (STA_INS | STA_DEL)))
470 			time_state = TIME_OK;
471 	}
472 
473 	/*
474 	 * Compute the total time adjustment for the next second
475 	 * in ns. The offset is reduced by a factor depending on
476 	 * whether the PPS signal is operating. Note that the
477 	 * value is in effect scaled by the clock frequency,
478 	 * since the adjustment is added at each tick interrupt.
479 	 */
480 	ftemp = time_offset;
481 #ifdef PPS_SYNC
482 	if (time_status & STA_PPSTIME && time_status &
483 	    STA_PPSSIGNAL)
484 		L_RSHIFT(ftemp, PPS_FAVG);
485 	else
486 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
487 #else
488 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
489 #endif /* PPS_SYNC */
490 	time_adj = ftemp;
491 	L_SUB(time_offset, ftemp);
492 	L_ADD(time_adj, time_freq);
493 	tcp->tc_adjustment = time_adj;
494 #ifdef PPS_SYNC
495 	if (pps_valid > 0)
496 		pps_valid--;
497 	else
498 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
499 		    STA_PPSWANDER | STA_PPSERROR);
500 #endif /* PPS_SYNC */
501 }
502 
503 /*
504  * ntp_init() - initialize variables and structures
505  *
506  * This routine must be called after the kernel variables hz and tick
507  * are set or changed and before the next tick interrupt. In this
508  * particular implementation, these values are assumed set elsewhere in
509  * the kernel. The design allows the clock frequency and tick interval
510  * to be changed while the system is running. So, this routine should
511  * probably be integrated with the code that does that.
512  */
513 static void
514 ntp_init()
515 {
516 
517 	/*
518 	 * The following variable must be initialized any time the
519 	 * kernel variable hz is changed.
520 	 */
521 	time_tick = NANOSECOND / hz;
522 
523 	/*
524 	 * The following variables are initialized only at startup. Only
525 	 * those structures not cleared by the compiler need to be
526 	 * initialized, and these only in the simulator. In the actual
527 	 * kernel, any nonzero values here will quickly evaporate.
528 	 */
529 	L_CLR(time_offset);
530 	L_CLR(time_freq);
531 #ifdef PPS_SYNC
532 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
533 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
534 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
535 	pps_fcount = 0;
536 	L_CLR(pps_freq);
537 #endif /* PPS_SYNC */
538 }
539 
540 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
541 
542 /*
543  * hardupdate() - local clock update
544  *
545  * This routine is called by ntp_adjtime() to update the local clock
546  * phase and frequency. The implementation is of an adaptive-parameter,
547  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
548  * time and frequency offset estimates for each call. If the kernel PPS
549  * discipline code is configured (PPS_SYNC), the PPS signal itself
550  * determines the new time offset, instead of the calling argument.
551  * Presumably, calls to ntp_adjtime() occur only when the caller
552  * believes the local clock is valid within some bound (+-128 ms with
553  * NTP). If the caller's time is far different than the PPS time, an
554  * argument will ensue, and it's not clear who will lose.
555  *
556  * For uncompensated quartz crystal oscillators and nominal update
557  * intervals less than 256 s, operation should be in phase-lock mode,
558  * where the loop is disciplined to phase. For update intervals greater
559  * than 1024 s, operation should be in frequency-lock mode, where the
560  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
561  * is selected by the STA_MODE status bit.
562  */
563 static void
564 hardupdate(offset)
565 	long offset;		/* clock offset (ns) */
566 {
567 	long ltemp, mtemp;
568 	l_fp ftemp;
569 
570 	/*
571 	 * Select how the phase is to be controlled and from which
572 	 * source. If the PPS signal is present and enabled to
573 	 * discipline the time, the PPS offset is used; otherwise, the
574 	 * argument offset is used.
575 	 */
576 	if (!(time_status & STA_PLL))
577 		return;
578 	ltemp = offset;
579 	if (ltemp > MAXPHASE)
580 		ltemp = MAXPHASE;
581 	else if (ltemp < -MAXPHASE)
582 		ltemp = -MAXPHASE;
583 	if (!(time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL))
584 		L_LINT(time_offset, ltemp);
585 
586 	/*
587 	 * Select how the frequency is to be controlled and in which
588 	 * mode (PLL or FLL). If the PPS signal is present and enabled
589 	 * to discipline the frequency, the PPS frequency is used;
590 	 * otherwise, the argument offset is used to compute it.
591 	 */
592 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
593 		time_reftime = time_second;
594 		return;
595 	}
596 	if (time_status & STA_FREQHOLD || time_reftime == 0)
597 		time_reftime = time_second;
598 	mtemp = time_second - time_reftime;
599 	L_LINT(ftemp, ltemp);
600 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
601 	L_MPY(ftemp, mtemp);
602 	L_ADD(time_freq, ftemp);
603 	time_status &= ~STA_MODE;
604 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
605 		L_LINT(ftemp, (ltemp << 4) / mtemp);
606 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
607 		L_ADD(time_freq, ftemp);
608 		time_status |= STA_MODE;
609 	}
610 	time_reftime = time_second;
611 	if (L_GINT(time_freq) > MAXFREQ)
612 		L_LINT(time_freq, MAXFREQ);
613 	else if (L_GINT(time_freq) < -MAXFREQ)
614 		L_LINT(time_freq, -MAXFREQ);
615 }
616 
617 #ifdef PPS_SYNC
618 /*
619  * hardpps() - discipline CPU clock oscillator to external PPS signal
620  *
621  * This routine is called at each PPS interrupt in order to discipline
622  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
623  * and leaves it in a handy spot for the hardclock() routine. It
624  * integrates successive PPS phase differences and calculates the
625  * frequency offset. This is used in hardclock() to discipline the CPU
626  * clock oscillator so that the intrinsic frequency error is cancelled
627  * out. The code requires the caller to capture the time and
628  * architecture-dependent hardware counter values in nanoseconds at the
629  * on-time PPS signal transition.
630  *
631  * Note that, on some Unix systems this routine runs at an interrupt
632  * priority level higher than the timer interrupt routine hardclock().
633  * Therefore, the variables used are distinct from the hardclock()
634  * variables, except for the actual time and frequency variables, which
635  * are determined by this routine and updated atomically.
636  */
637 void
638 hardpps(tsp, nsec)
639 	struct timespec *tsp;	/* time at PPS */
640 	long nsec;		/* hardware counter at PPS */
641 {
642 	long u_sec, u_nsec, v_nsec; /* temps */
643 	l_fp ftemp;
644 
645 	/*
646 	 * The signal is first processed by a frequency discriminator
647 	 * which rejects noise and input signals with frequencies
648 	 * outside the range 1 +-MAXFREQ PPS. If two hits occur in the
649 	 * same second, we ignore the later hit; if not and a hit occurs
650 	 * outside the range gate, keep the later hit but do not
651 	 * process it.
652 	 */
653 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
654 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
655 	pps_valid = PPS_VALID;
656 	u_sec = tsp->tv_sec;
657 	u_nsec = tsp->tv_nsec;
658 	if (u_nsec >= (NANOSECOND >> 1)) {
659 		u_nsec -= NANOSECOND;
660 		u_sec++;
661 	}
662 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
663 	if (u_sec == pps_tf[0].tv_sec && v_nsec < -MAXFREQ) {
664 		return;
665 	}
666 	pps_tf[2] = pps_tf[1];
667 	pps_tf[1] = pps_tf[0];
668 	pps_tf[0].tv_sec = u_sec;
669 	pps_tf[0].tv_nsec = u_nsec;
670 
671 	/*
672 	 * Compute the difference between the current and previous
673 	 * counter values. If the difference exceeds 0.5 s, assume it
674 	 * has wrapped around, so correct 1.0 s. If the result exceeds
675 	 * the tick interval, the sample point has crossed a tick
676 	 * boundary during the last second, so correct the tick. Very
677 	 * intricate.
678 	 */
679 	u_nsec = nsec;
680 	if (u_nsec > (NANOSECOND >> 1))
681 		u_nsec -= NANOSECOND;
682 	else if (u_nsec < -(NANOSECOND >> 1))
683 		u_nsec += NANOSECOND;
684 	pps_fcount += u_nsec;
685 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) {
686 		return;
687 	}
688 	time_status &= ~STA_PPSJITTER;
689 
690 	/*
691 	 * A three-stage median filter is used to help denoise the PPS
692 	 * time. The median sample becomes the time offset estimate; the
693 	 * difference between the other two samples becomes the time
694 	 * dispersion (jitter) estimate.
695 	 */
696 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
697 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
698 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
699 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
700 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
701 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
702 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
703 		} else {
704 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
705 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
706 		}
707 	} else {
708 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
709 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
710 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
711 		} else  if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
712 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
713 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
714 		} else {
715 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
716 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
717 		}
718 	}
719 
720 	/*
721 	 * Nominal jitter is due to PPS signal noise and  interrupt
722 	 * latency. If it exceeds the popcorn threshold,
723 	 * the sample is discarded. otherwise, if so enabled, the time
724 	 * offset is updated. We can tolerate a modest loss of data here
725 	 * without degrading time accuracy.
726 	 */
727 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
728 		time_status |= STA_PPSJITTER;
729 		pps_jitcnt++;
730 	} else if (time_status & STA_PPSTIME) {
731 		L_LINT(ftemp, v_nsec);
732 		L_SUB(ftemp, time_offset);
733 		L_RSHIFT(ftemp, pps_shift);
734 		L_SUB(time_offset, ftemp);
735 	}
736 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
737 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
738 	if (u_sec < (1 << pps_shift))
739 		return;
740 
741 	/*
742 	 * At the end of the calibration interval the difference between
743 	 * the first and last counter values becomes the scaled
744 	 * frequency. It will later be divided by the length of the
745 	 * interval to determine the frequency update. If the frequency
746 	 * exceeds a sanity threshold, or if the actual calibration
747 	 * interval is not equal to the expected length, the data are
748 	 * discarded. We can tolerate a modest loss of data here without
749 	 * degrading frequency ccuracy.
750 	 */
751 	pps_calcnt++;
752 	v_nsec = -pps_fcount;
753 	pps_lastsec = pps_tf[0].tv_sec;
754 	pps_fcount = 0;
755 	u_nsec = MAXFREQ << pps_shift;
756 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
757 	    pps_shift)) {
758 		time_status |= STA_PPSERROR;
759 		pps_errcnt++;
760 		return;
761 	}
762 
763 	/*
764 	 * Here the raw frequency offset and wander (stability) is
765 	 * calculated. If the wander is less than the wander threshold
766 	 * for four consecutive averaging intervals, the interval is
767 	 * doubled; if it is greater than the threshold for four
768 	 * consecutive intervals, the interval is halved. The scaled
769 	 * frequency offset is converted to frequency offset. The
770 	 * stability metric is calculated as the average of recent
771 	 * frequency changes, but is used only for performance
772 	 * monitoring.
773 	 */
774 	L_LINT(ftemp, v_nsec);
775 	L_RSHIFT(ftemp, pps_shift);
776 	L_SUB(ftemp, pps_freq);
777 	u_nsec = L_GINT(ftemp);
778 	if (u_nsec > PPS_MAXWANDER) {
779 		L_LINT(ftemp, PPS_MAXWANDER);
780 		pps_intcnt--;
781 		time_status |= STA_PPSWANDER;
782 		pps_stbcnt++;
783 	} else if (u_nsec < -PPS_MAXWANDER) {
784 		L_LINT(ftemp, -PPS_MAXWANDER);
785 		pps_intcnt--;
786 		time_status |= STA_PPSWANDER;
787 		pps_stbcnt++;
788 	} else {
789 		pps_intcnt++;
790 	}
791 	if (pps_intcnt >= 4) {
792 		pps_intcnt = 4;
793 		if (pps_shift < pps_shiftmax) {
794 			pps_shift++;
795 			pps_intcnt = 0;
796 		}
797 	} else if (pps_intcnt <= -4) {
798 		pps_intcnt = -4;
799 		if (pps_shift > PPS_FAVG) {
800 			pps_shift--;
801 			pps_intcnt = 0;
802 		}
803 	}
804 	if (u_nsec < 0)
805 		u_nsec = -u_nsec;
806 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
807 
808 	/*
809 	 * The PPS frequency is recalculated and clamped to the maximum
810 	 * MAXFREQ. If enabled, the system clock frequency is updated as
811 	 * well.
812 	 */
813 	L_ADD(pps_freq, ftemp);
814 	u_nsec = L_GINT(pps_freq);
815 	if (u_nsec > MAXFREQ)
816 		L_LINT(pps_freq, MAXFREQ);
817 	else if (u_nsec < -MAXFREQ)
818 		L_LINT(pps_freq, -MAXFREQ);
819 	if (time_status & STA_PPSFREQ)
820 		time_freq = pps_freq;
821 }
822 #endif /* PPS_SYNC */
823