xref: /freebsd/sys/kern/kern_ntptime.c (revision ceaec73d406831b1251babb61675df0a1aa54a31)
1 /*-
2  ***********************************************************************
3  *								       *
4  * Copyright (c) David L. Mills 1993-2001			       *
5  *								       *
6  * Permission to use, copy, modify, and distribute this software and   *
7  * its documentation for any purpose and without fee is hereby	       *
8  * granted, provided that the above copyright notice appears in all    *
9  * copies and that both the copyright notice and this permission       *
10  * notice appear in supporting documentation, and that the name	       *
11  * University of Delaware not be used in advertising or publicity      *
12  * pertaining to distribution of the software without specific,	       *
13  * written prior permission. The University of Delaware makes no       *
14  * representations about the suitability this software for any	       *
15  * purpose. It is provided "as is" without express or implied	       *
16  * warranty.							       *
17  *								       *
18  **********************************************************************/
19 
20 /*
21  * Adapted from the original sources for FreeBSD and timecounters by:
22  * Poul-Henning Kamp <phk@FreeBSD.org>.
23  *
24  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25  * date so I have retained only the 64bit version and included it directly
26  * in this file.
27  *
28  * Only minor changes done to interface with the timecounters over in
29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30  * confusing and/or plain wrong in that context.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ntp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/time.h>
46 #include <sys/timex.h>
47 #include <sys/timetc.h>
48 #include <sys/timepps.h>
49 #include <sys/syscallsubr.h>
50 #include <sys/sysctl.h>
51 
52 /*
53  * Single-precision macros for 64-bit machines
54  */
55 typedef int64_t l_fp;
56 #define L_ADD(v, u)	((v) += (u))
57 #define L_SUB(v, u)	((v) -= (u))
58 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
59 #define L_NEG(v)	((v) = -(v))
60 #define L_RSHIFT(v, n) \
61 	do { \
62 		if ((v) < 0) \
63 			(v) = -(-(v) >> (n)); \
64 		else \
65 			(v) = (v) >> (n); \
66 	} while (0)
67 #define L_MPY(v, a)	((v) *= (a))
68 #define L_CLR(v)	((v) = 0)
69 #define L_ISNEG(v)	((v) < 0)
70 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
71 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
72 
73 /*
74  * Generic NTP kernel interface
75  *
76  * These routines constitute the Network Time Protocol (NTP) interfaces
77  * for user and daemon application programs. The ntp_gettime() routine
78  * provides the time, maximum error (synch distance) and estimated error
79  * (dispersion) to client user application programs. The ntp_adjtime()
80  * routine is used by the NTP daemon to adjust the system clock to an
81  * externally derived time. The time offset and related variables set by
82  * this routine are used by other routines in this module to adjust the
83  * phase and frequency of the clock discipline loop which controls the
84  * system clock.
85  *
86  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
87  * defined), the time at each tick interrupt is derived directly from
88  * the kernel time variable. When the kernel time is reckoned in
89  * microseconds, (NTP_NANO undefined), the time is derived from the
90  * kernel time variable together with a variable representing the
91  * leftover nanoseconds at the last tick interrupt. In either case, the
92  * current nanosecond time is reckoned from these values plus an
93  * interpolated value derived by the clock routines in another
94  * architecture-specific module. The interpolation can use either a
95  * dedicated counter or a processor cycle counter (PCC) implemented in
96  * some architectures.
97  *
98  * Note that all routines must run at priority splclock or higher.
99  */
100 /*
101  * Phase/frequency-lock loop (PLL/FLL) definitions
102  *
103  * The nanosecond clock discipline uses two variable types, time
104  * variables and frequency variables. Both types are represented as 64-
105  * bit fixed-point quantities with the decimal point between two 32-bit
106  * halves. On a 32-bit machine, each half is represented as a single
107  * word and mathematical operations are done using multiple-precision
108  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
109  * used.
110  *
111  * A time variable is a signed 64-bit fixed-point number in ns and
112  * fraction. It represents the remaining time offset to be amortized
113  * over succeeding tick interrupts. The maximum time offset is about
114  * 0.5 s and the resolution is about 2.3e-10 ns.
115  *
116  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
117  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
118  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119  * |s s s|			 ns				   |
120  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121  * |			    fraction				   |
122  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
123  *
124  * A frequency variable is a signed 64-bit fixed-point number in ns/s
125  * and fraction. It represents the ns and fraction to be added to the
126  * kernel time variable at each second. The maximum frequency offset is
127  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
128  *
129  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
130  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132  * |s s s s s s s s s s s s s|	          ns/s			   |
133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134  * |			    fraction				   |
135  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136  */
137 /*
138  * The following variables establish the state of the PLL/FLL and the
139  * residual time and frequency offset of the local clock.
140  */
141 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
142 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
143 
144 static int time_state = TIME_OK;	/* clock state */
145 static int time_status = STA_UNSYNC;	/* clock status bits */
146 static long time_tai;			/* TAI offset (s) */
147 static long time_monitor;		/* last time offset scaled (ns) */
148 static long time_constant;		/* poll interval (shift) (s) */
149 static long time_precision = 1;		/* clock precision (ns) */
150 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
151 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
152 static long time_reftime;		/* time at last adjustment (s) */
153 static l_fp time_offset;		/* time offset (ns) */
154 static l_fp time_freq;			/* frequency offset (ns/s) */
155 static l_fp time_adj;			/* tick adjust (ns/s) */
156 
157 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
158 
159 #ifdef PPS_SYNC
160 /*
161  * The following variables are used when a pulse-per-second (PPS) signal
162  * is available and connected via a modem control lead. They establish
163  * the engineering parameters of the clock discipline loop when
164  * controlled by the PPS signal.
165  */
166 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
167 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
168 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
169 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
170 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
171 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
172 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
173 
174 static struct timespec pps_tf[3];	/* phase median filter */
175 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
176 static long pps_fcount;			/* frequency accumulator */
177 static long pps_jitter;			/* nominal jitter (ns) */
178 static long pps_stabil;			/* nominal stability (scaled ns/s) */
179 static long pps_lastsec;		/* time at last calibration (s) */
180 static int pps_valid;			/* signal watchdog counter */
181 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
182 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
183 static int pps_intcnt;			/* wander counter */
184 
185 /*
186  * PPS signal quality monitors
187  */
188 static long pps_calcnt;			/* calibration intervals */
189 static long pps_jitcnt;			/* jitter limit exceeded */
190 static long pps_stbcnt;			/* stability limit exceeded */
191 static long pps_errcnt;			/* calibration errors */
192 #endif /* PPS_SYNC */
193 /*
194  * End of phase/frequency-lock loop (PLL/FLL) definitions
195  */
196 
197 static void ntp_init(void);
198 static void hardupdate(long offset);
199 static void ntp_gettime1(struct ntptimeval *ntvp);
200 
201 static void
202 ntp_gettime1(struct ntptimeval *ntvp)
203 {
204 	struct timespec atv;	/* nanosecond time */
205 
206 	nanotime(&atv);
207 	ntvp->time.tv_sec = atv.tv_sec;
208 	ntvp->time.tv_nsec = atv.tv_nsec;
209 	ntvp->maxerror = time_maxerror;
210 	ntvp->esterror = time_esterror;
211 	ntvp->tai = time_tai;
212 	ntvp->time_state = time_state;
213 
214 	/*
215 	 * Status word error decode. If any of these conditions occur,
216 	 * an error is returned, instead of the status word. Most
217 	 * applications will care only about the fact the system clock
218 	 * may not be trusted, not about the details.
219 	 *
220 	 * Hardware or software error
221 	 */
222 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
223 
224 	/*
225 	 * PPS signal lost when either time or frequency synchronization
226 	 * requested
227 	 */
228 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
229 	    !(time_status & STA_PPSSIGNAL)) ||
230 
231 	/*
232 	 * PPS jitter exceeded when time synchronization requested
233 	 */
234 	    (time_status & STA_PPSTIME &&
235 	    time_status & STA_PPSJITTER) ||
236 
237 	/*
238 	 * PPS wander exceeded or calibration error when frequency
239 	 * synchronization requested
240 	 */
241 	    (time_status & STA_PPSFREQ &&
242 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
243 		ntvp->time_state = TIME_ERROR;
244 }
245 
246 /*
247  * ntp_gettime() - NTP user application interface
248  *
249  * See the timex.h header file for synopsis and API description. Note
250  * that the TAI offset is returned in the ntvtimeval.tai structure
251  * member.
252  */
253 #ifndef _SYS_SYSPROTO_H_
254 struct ntp_gettime_args {
255 	struct ntptimeval *ntvp;
256 };
257 #endif
258 /* ARGSUSED */
259 int
260 ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
261 {
262 	struct ntptimeval ntv;
263 
264 	ntp_gettime1(&ntv);
265 
266 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
267 }
268 
269 static int
270 ntp_sysctl(SYSCTL_HANDLER_ARGS)
271 {
272 	struct ntptimeval ntv;	/* temporary structure */
273 
274 	ntp_gettime1(&ntv);
275 
276 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
277 }
278 
279 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
280 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
281 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
282 
283 #ifdef PPS_SYNC
284 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
285 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
286 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
287 
288 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
289 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
290 #endif
291 /*
292  * ntp_adjtime() - NTP daemon application interface
293  *
294  * See the timex.h header file for synopsis and API description. Note
295  * that the timex.constant structure member has a dual purpose to set
296  * the time constant and to set the TAI offset.
297  */
298 #ifndef _SYS_SYSPROTO_H_
299 struct ntp_adjtime_args {
300 	struct timex *tp;
301 };
302 #endif
303 
304 /*
305  * MPSAFE
306  */
307 int
308 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
309 {
310 	struct timex ntv;	/* temporary structure */
311 	long freq;		/* frequency ns/s) */
312 	int modes;		/* mode bits from structure */
313 	int s;			/* caller priority */
314 	int error;
315 
316 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
317 	if (error)
318 		return(error);
319 
320 	/*
321 	 * Update selected clock variables - only the superuser can
322 	 * change anything. Note that there is no error checking here on
323 	 * the assumption the superuser should know what it is doing.
324 	 * Note that either the time constant or TAI offset are loaded
325 	 * from the ntv.constant member, depending on the mode bits. If
326 	 * the STA_PLL bit in the status word is cleared, the state and
327 	 * status words are reset to the initial values at boot.
328 	 */
329 	mtx_lock(&Giant);
330 	modes = ntv.modes;
331 	if (modes)
332 		error = suser(td);
333 	if (error)
334 		goto done2;
335 	s = splclock();
336 	if (modes & MOD_MAXERROR)
337 		time_maxerror = ntv.maxerror;
338 	if (modes & MOD_ESTERROR)
339 		time_esterror = ntv.esterror;
340 	if (modes & MOD_STATUS) {
341 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
342 			time_state = TIME_OK;
343 			time_status = STA_UNSYNC;
344 #ifdef PPS_SYNC
345 			pps_shift = PPS_FAVG;
346 #endif /* PPS_SYNC */
347 		}
348 		time_status &= STA_RONLY;
349 		time_status |= ntv.status & ~STA_RONLY;
350 	}
351 	if (modes & MOD_TIMECONST) {
352 		if (ntv.constant < 0)
353 			time_constant = 0;
354 		else if (ntv.constant > MAXTC)
355 			time_constant = MAXTC;
356 		else
357 			time_constant = ntv.constant;
358 	}
359 	if (modes & MOD_TAI) {
360 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
361 			time_tai = ntv.constant;
362 	}
363 #ifdef PPS_SYNC
364 	if (modes & MOD_PPSMAX) {
365 		if (ntv.shift < PPS_FAVG)
366 			pps_shiftmax = PPS_FAVG;
367 		else if (ntv.shift > PPS_FAVGMAX)
368 			pps_shiftmax = PPS_FAVGMAX;
369 		else
370 			pps_shiftmax = ntv.shift;
371 	}
372 #endif /* PPS_SYNC */
373 	if (modes & MOD_NANO)
374 		time_status |= STA_NANO;
375 	if (modes & MOD_MICRO)
376 		time_status &= ~STA_NANO;
377 	if (modes & MOD_CLKB)
378 		time_status |= STA_CLK;
379 	if (modes & MOD_CLKA)
380 		time_status &= ~STA_CLK;
381 	if (modes & MOD_FREQUENCY) {
382 		freq = (ntv.freq * 1000LL) >> 16;
383 		if (freq > MAXFREQ)
384 			L_LINT(time_freq, MAXFREQ);
385 		else if (freq < -MAXFREQ)
386 			L_LINT(time_freq, -MAXFREQ);
387 		else {
388 			/*
389 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
390 			 * time_freq is [ns/s * 2^32]
391 			 */
392 			time_freq = ntv.freq * 1000LL * 65536LL;
393 		}
394 #ifdef PPS_SYNC
395 		pps_freq = time_freq;
396 #endif /* PPS_SYNC */
397 	}
398 	if (modes & MOD_OFFSET) {
399 		if (time_status & STA_NANO)
400 			hardupdate(ntv.offset);
401 		else
402 			hardupdate(ntv.offset * 1000);
403 	}
404 
405 	/*
406 	 * Retrieve all clock variables. Note that the TAI offset is
407 	 * returned only by ntp_gettime();
408 	 */
409 	if (time_status & STA_NANO)
410 		ntv.offset = L_GINT(time_offset);
411 	else
412 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
413 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
414 	ntv.maxerror = time_maxerror;
415 	ntv.esterror = time_esterror;
416 	ntv.status = time_status;
417 	ntv.constant = time_constant;
418 	if (time_status & STA_NANO)
419 		ntv.precision = time_precision;
420 	else
421 		ntv.precision = time_precision / 1000;
422 	ntv.tolerance = MAXFREQ * SCALE_PPM;
423 #ifdef PPS_SYNC
424 	ntv.shift = pps_shift;
425 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
426 	if (time_status & STA_NANO)
427 		ntv.jitter = pps_jitter;
428 	else
429 		ntv.jitter = pps_jitter / 1000;
430 	ntv.stabil = pps_stabil;
431 	ntv.calcnt = pps_calcnt;
432 	ntv.errcnt = pps_errcnt;
433 	ntv.jitcnt = pps_jitcnt;
434 	ntv.stbcnt = pps_stbcnt;
435 #endif /* PPS_SYNC */
436 	splx(s);
437 
438 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
439 	if (error)
440 		goto done2;
441 
442 	/*
443 	 * Status word error decode. See comments in
444 	 * ntp_gettime() routine.
445 	 */
446 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
447 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
448 	    !(time_status & STA_PPSSIGNAL)) ||
449 	    (time_status & STA_PPSTIME &&
450 	    time_status & STA_PPSJITTER) ||
451 	    (time_status & STA_PPSFREQ &&
452 	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
453 		td->td_retval[0] = TIME_ERROR;
454 	} else {
455 		td->td_retval[0] = time_state;
456 	}
457 done2:
458 	mtx_unlock(&Giant);
459 	return (error);
460 }
461 
462 /*
463  * second_overflow() - called after ntp_tick_adjust()
464  *
465  * This routine is ordinarily called immediately following the above
466  * routine ntp_tick_adjust(). While these two routines are normally
467  * combined, they are separated here only for the purposes of
468  * simulation.
469  */
470 void
471 ntp_update_second(int64_t *adjustment, time_t *newsec)
472 {
473 	int tickrate;
474 	l_fp ftemp;		/* 32/64-bit temporary */
475 
476 	/*
477 	 * On rollover of the second both the nanosecond and microsecond
478 	 * clocks are updated and the state machine cranked as
479 	 * necessary. The phase adjustment to be used for the next
480 	 * second is calculated and the maximum error is increased by
481 	 * the tolerance.
482 	 */
483 	time_maxerror += MAXFREQ / 1000;
484 
485 	/*
486 	 * Leap second processing. If in leap-insert state at
487 	 * the end of the day, the system clock is set back one
488 	 * second; if in leap-delete state, the system clock is
489 	 * set ahead one second. The nano_time() routine or
490 	 * external clock driver will insure that reported time
491 	 * is always monotonic.
492 	 */
493 	switch (time_state) {
494 
495 		/*
496 		 * No warning.
497 		 */
498 		case TIME_OK:
499 		if (time_status & STA_INS)
500 			time_state = TIME_INS;
501 		else if (time_status & STA_DEL)
502 			time_state = TIME_DEL;
503 		break;
504 
505 		/*
506 		 * Insert second 23:59:60 following second
507 		 * 23:59:59.
508 		 */
509 		case TIME_INS:
510 		if (!(time_status & STA_INS))
511 			time_state = TIME_OK;
512 		else if ((*newsec) % 86400 == 0) {
513 			(*newsec)--;
514 			time_state = TIME_OOP;
515 			time_tai++;
516 		}
517 		break;
518 
519 		/*
520 		 * Delete second 23:59:59.
521 		 */
522 		case TIME_DEL:
523 		if (!(time_status & STA_DEL))
524 			time_state = TIME_OK;
525 		else if (((*newsec) + 1) % 86400 == 0) {
526 			(*newsec)++;
527 			time_tai--;
528 			time_state = TIME_WAIT;
529 		}
530 		break;
531 
532 		/*
533 		 * Insert second in progress.
534 		 */
535 		case TIME_OOP:
536 			time_state = TIME_WAIT;
537 		break;
538 
539 		/*
540 		 * Wait for status bits to clear.
541 		 */
542 		case TIME_WAIT:
543 		if (!(time_status & (STA_INS | STA_DEL)))
544 			time_state = TIME_OK;
545 	}
546 
547 	/*
548 	 * Compute the total time adjustment for the next second
549 	 * in ns. The offset is reduced by a factor depending on
550 	 * whether the PPS signal is operating. Note that the
551 	 * value is in effect scaled by the clock frequency,
552 	 * since the adjustment is added at each tick interrupt.
553 	 */
554 	ftemp = time_offset;
555 #ifdef PPS_SYNC
556 	/* XXX even if PPS signal dies we should finish adjustment ? */
557 	if (time_status & STA_PPSTIME && time_status &
558 	    STA_PPSSIGNAL)
559 		L_RSHIFT(ftemp, pps_shift);
560 	else
561 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
562 #else
563 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
564 #endif /* PPS_SYNC */
565 	time_adj = ftemp;
566 	L_SUB(time_offset, ftemp);
567 	L_ADD(time_adj, time_freq);
568 
569 	/*
570 	 * Apply any correction from adjtime(2).  If more than one second
571 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
572 	 * until the last second is slewed the final < 500 usecs.
573 	 */
574 	if (time_adjtime != 0) {
575 		if (time_adjtime > 1000000)
576 			tickrate = 5000;
577 		else if (time_adjtime < -1000000)
578 			tickrate = -5000;
579 		else if (time_adjtime > 500)
580 			tickrate = 500;
581 		else if (time_adjtime < -500)
582 			tickrate = -500;
583 		else
584 			tickrate = time_adjtime;
585 		time_adjtime -= tickrate;
586 		L_LINT(ftemp, tickrate * 1000);
587 		L_ADD(time_adj, ftemp);
588 	}
589 	*adjustment = time_adj;
590 
591 #ifdef PPS_SYNC
592 	if (pps_valid > 0)
593 		pps_valid--;
594 	else
595 		time_status &= ~STA_PPSSIGNAL;
596 #endif /* PPS_SYNC */
597 }
598 
599 /*
600  * ntp_init() - initialize variables and structures
601  *
602  * This routine must be called after the kernel variables hz and tick
603  * are set or changed and before the next tick interrupt. In this
604  * particular implementation, these values are assumed set elsewhere in
605  * the kernel. The design allows the clock frequency and tick interval
606  * to be changed while the system is running. So, this routine should
607  * probably be integrated with the code that does that.
608  */
609 static void
610 ntp_init()
611 {
612 
613 	/*
614 	 * The following variables are initialized only at startup. Only
615 	 * those structures not cleared by the compiler need to be
616 	 * initialized, and these only in the simulator. In the actual
617 	 * kernel, any nonzero values here will quickly evaporate.
618 	 */
619 	L_CLR(time_offset);
620 	L_CLR(time_freq);
621 #ifdef PPS_SYNC
622 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
623 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
624 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
625 	pps_fcount = 0;
626 	L_CLR(pps_freq);
627 #endif /* PPS_SYNC */
628 }
629 
630 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
631 
632 /*
633  * hardupdate() - local clock update
634  *
635  * This routine is called by ntp_adjtime() to update the local clock
636  * phase and frequency. The implementation is of an adaptive-parameter,
637  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
638  * time and frequency offset estimates for each call. If the kernel PPS
639  * discipline code is configured (PPS_SYNC), the PPS signal itself
640  * determines the new time offset, instead of the calling argument.
641  * Presumably, calls to ntp_adjtime() occur only when the caller
642  * believes the local clock is valid within some bound (+-128 ms with
643  * NTP). If the caller's time is far different than the PPS time, an
644  * argument will ensue, and it's not clear who will lose.
645  *
646  * For uncompensated quartz crystal oscillators and nominal update
647  * intervals less than 256 s, operation should be in phase-lock mode,
648  * where the loop is disciplined to phase. For update intervals greater
649  * than 1024 s, operation should be in frequency-lock mode, where the
650  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
651  * is selected by the STA_MODE status bit.
652  */
653 static void
654 hardupdate(offset)
655 	long offset;		/* clock offset (ns) */
656 {
657 	long mtemp;
658 	l_fp ftemp;
659 
660 	/*
661 	 * Select how the phase is to be controlled and from which
662 	 * source. If the PPS signal is present and enabled to
663 	 * discipline the time, the PPS offset is used; otherwise, the
664 	 * argument offset is used.
665 	 */
666 	if (!(time_status & STA_PLL))
667 		return;
668 	if (!(time_status & STA_PPSTIME && time_status &
669 	    STA_PPSSIGNAL)) {
670 		if (offset > MAXPHASE)
671 			time_monitor = MAXPHASE;
672 		else if (offset < -MAXPHASE)
673 			time_monitor = -MAXPHASE;
674 		else
675 			time_monitor = offset;
676 		L_LINT(time_offset, time_monitor);
677 	}
678 
679 	/*
680 	 * Select how the frequency is to be controlled and in which
681 	 * mode (PLL or FLL). If the PPS signal is present and enabled
682 	 * to discipline the frequency, the PPS frequency is used;
683 	 * otherwise, the argument offset is used to compute it.
684 	 */
685 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
686 		time_reftime = time_second;
687 		return;
688 	}
689 	if (time_status & STA_FREQHOLD || time_reftime == 0)
690 		time_reftime = time_second;
691 	mtemp = time_second - time_reftime;
692 	L_LINT(ftemp, time_monitor);
693 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
694 	L_MPY(ftemp, mtemp);
695 	L_ADD(time_freq, ftemp);
696 	time_status &= ~STA_MODE;
697 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
698 	    MAXSEC)) {
699 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
700 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
701 		L_ADD(time_freq, ftemp);
702 		time_status |= STA_MODE;
703 	}
704 	time_reftime = time_second;
705 	if (L_GINT(time_freq) > MAXFREQ)
706 		L_LINT(time_freq, MAXFREQ);
707 	else if (L_GINT(time_freq) < -MAXFREQ)
708 		L_LINT(time_freq, -MAXFREQ);
709 }
710 
711 #ifdef PPS_SYNC
712 /*
713  * hardpps() - discipline CPU clock oscillator to external PPS signal
714  *
715  * This routine is called at each PPS interrupt in order to discipline
716  * the CPU clock oscillator to the PPS signal. There are two independent
717  * first-order feedback loops, one for the phase, the other for the
718  * frequency. The phase loop measures and grooms the PPS phase offset
719  * and leaves it in a handy spot for the seconds overflow routine. The
720  * frequency loop averages successive PPS phase differences and
721  * calculates the PPS frequency offset, which is also processed by the
722  * seconds overflow routine. The code requires the caller to capture the
723  * time and architecture-dependent hardware counter values in
724  * nanoseconds at the on-time PPS signal transition.
725  *
726  * Note that, on some Unix systems this routine runs at an interrupt
727  * priority level higher than the timer interrupt routine hardclock().
728  * Therefore, the variables used are distinct from the hardclock()
729  * variables, except for the actual time and frequency variables, which
730  * are determined by this routine and updated atomically.
731  */
732 void
733 hardpps(tsp, nsec)
734 	struct timespec *tsp;	/* time at PPS */
735 	long nsec;		/* hardware counter at PPS */
736 {
737 	long u_sec, u_nsec, v_nsec; /* temps */
738 	l_fp ftemp;
739 
740 	/*
741 	 * The signal is first processed by a range gate and frequency
742 	 * discriminator. The range gate rejects noise spikes outside
743 	 * the range +-500 us. The frequency discriminator rejects input
744 	 * signals with apparent frequency outside the range 1 +-500
745 	 * PPM. If two hits occur in the same second, we ignore the
746 	 * later hit; if not and a hit occurs outside the range gate,
747 	 * keep the later hit for later comparison, but do not process
748 	 * it.
749 	 */
750 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
751 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
752 	pps_valid = PPS_VALID;
753 	u_sec = tsp->tv_sec;
754 	u_nsec = tsp->tv_nsec;
755 	if (u_nsec >= (NANOSECOND >> 1)) {
756 		u_nsec -= NANOSECOND;
757 		u_sec++;
758 	}
759 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
760 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
761 	    MAXFREQ)
762 		return;
763 	pps_tf[2] = pps_tf[1];
764 	pps_tf[1] = pps_tf[0];
765 	pps_tf[0].tv_sec = u_sec;
766 	pps_tf[0].tv_nsec = u_nsec;
767 
768 	/*
769 	 * Compute the difference between the current and previous
770 	 * counter values. If the difference exceeds 0.5 s, assume it
771 	 * has wrapped around, so correct 1.0 s. If the result exceeds
772 	 * the tick interval, the sample point has crossed a tick
773 	 * boundary during the last second, so correct the tick. Very
774 	 * intricate.
775 	 */
776 	u_nsec = nsec;
777 	if (u_nsec > (NANOSECOND >> 1))
778 		u_nsec -= NANOSECOND;
779 	else if (u_nsec < -(NANOSECOND >> 1))
780 		u_nsec += NANOSECOND;
781 	pps_fcount += u_nsec;
782 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
783 		return;
784 	time_status &= ~STA_PPSJITTER;
785 
786 	/*
787 	 * A three-stage median filter is used to help denoise the PPS
788 	 * time. The median sample becomes the time offset estimate; the
789 	 * difference between the other two samples becomes the time
790 	 * dispersion (jitter) estimate.
791 	 */
792 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
793 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
794 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
795 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
796 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
797 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
798 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
799 		} else {
800 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
801 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
802 		}
803 	} else {
804 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
805 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
806 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
807 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
808 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
809 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
810 		} else {
811 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
812 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
813 		}
814 	}
815 
816 	/*
817 	 * Nominal jitter is due to PPS signal noise and interrupt
818 	 * latency. If it exceeds the popcorn threshold, the sample is
819 	 * discarded. otherwise, if so enabled, the time offset is
820 	 * updated. We can tolerate a modest loss of data here without
821 	 * much degrading time accuracy.
822 	 */
823 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
824 		time_status |= STA_PPSJITTER;
825 		pps_jitcnt++;
826 	} else if (time_status & STA_PPSTIME) {
827 		time_monitor = -v_nsec;
828 		L_LINT(time_offset, time_monitor);
829 	}
830 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
831 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
832 	if (u_sec < (1 << pps_shift))
833 		return;
834 
835 	/*
836 	 * At the end of the calibration interval the difference between
837 	 * the first and last counter values becomes the scaled
838 	 * frequency. It will later be divided by the length of the
839 	 * interval to determine the frequency update. If the frequency
840 	 * exceeds a sanity threshold, or if the actual calibration
841 	 * interval is not equal to the expected length, the data are
842 	 * discarded. We can tolerate a modest loss of data here without
843 	 * much degrading frequency accuracy.
844 	 */
845 	pps_calcnt++;
846 	v_nsec = -pps_fcount;
847 	pps_lastsec = pps_tf[0].tv_sec;
848 	pps_fcount = 0;
849 	u_nsec = MAXFREQ << pps_shift;
850 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
851 	    pps_shift)) {
852 		time_status |= STA_PPSERROR;
853 		pps_errcnt++;
854 		return;
855 	}
856 
857 	/*
858 	 * Here the raw frequency offset and wander (stability) is
859 	 * calculated. If the wander is less than the wander threshold
860 	 * for four consecutive averaging intervals, the interval is
861 	 * doubled; if it is greater than the threshold for four
862 	 * consecutive intervals, the interval is halved. The scaled
863 	 * frequency offset is converted to frequency offset. The
864 	 * stability metric is calculated as the average of recent
865 	 * frequency changes, but is used only for performance
866 	 * monitoring.
867 	 */
868 	L_LINT(ftemp, v_nsec);
869 	L_RSHIFT(ftemp, pps_shift);
870 	L_SUB(ftemp, pps_freq);
871 	u_nsec = L_GINT(ftemp);
872 	if (u_nsec > PPS_MAXWANDER) {
873 		L_LINT(ftemp, PPS_MAXWANDER);
874 		pps_intcnt--;
875 		time_status |= STA_PPSWANDER;
876 		pps_stbcnt++;
877 	} else if (u_nsec < -PPS_MAXWANDER) {
878 		L_LINT(ftemp, -PPS_MAXWANDER);
879 		pps_intcnt--;
880 		time_status |= STA_PPSWANDER;
881 		pps_stbcnt++;
882 	} else {
883 		pps_intcnt++;
884 	}
885 	if (pps_intcnt >= 4) {
886 		pps_intcnt = 4;
887 		if (pps_shift < pps_shiftmax) {
888 			pps_shift++;
889 			pps_intcnt = 0;
890 		}
891 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
892 		pps_intcnt = -4;
893 		if (pps_shift > PPS_FAVG) {
894 			pps_shift--;
895 			pps_intcnt = 0;
896 		}
897 	}
898 	if (u_nsec < 0)
899 		u_nsec = -u_nsec;
900 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
901 
902 	/*
903 	 * The PPS frequency is recalculated and clamped to the maximum
904 	 * MAXFREQ. If enabled, the system clock frequency is updated as
905 	 * well.
906 	 */
907 	L_ADD(pps_freq, ftemp);
908 	u_nsec = L_GINT(pps_freq);
909 	if (u_nsec > MAXFREQ)
910 		L_LINT(pps_freq, MAXFREQ);
911 	else if (u_nsec < -MAXFREQ)
912 		L_LINT(pps_freq, -MAXFREQ);
913 	if (time_status & STA_PPSFREQ)
914 		time_freq = pps_freq;
915 }
916 #endif /* PPS_SYNC */
917 
918 #ifndef _SYS_SYSPROTO_H_
919 struct adjtime_args {
920 	struct timeval *delta;
921 	struct timeval *olddelta;
922 };
923 #endif
924 /*
925  * MPSAFE
926  */
927 /* ARGSUSED */
928 int
929 adjtime(struct thread *td, struct adjtime_args *uap)
930 {
931 	struct timeval delta, olddelta, *deltap;
932 	int error;
933 
934 	if (uap->delta) {
935 		error = copyin(uap->delta, &delta, sizeof(delta));
936 		if (error)
937 			return (error);
938 		deltap = &delta;
939 	} else
940 		deltap = NULL;
941 	error = kern_adjtime(td, deltap, &olddelta);
942 	if (uap->olddelta && error == 0)
943 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
944 	return (error);
945 }
946 
947 int
948 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
949 {
950 	struct timeval atv;
951 	int error;
952 
953 	if ((error = suser(td)))
954 		return (error);
955 
956 	mtx_lock(&Giant);
957 	if (olddelta) {
958 		atv.tv_sec = time_adjtime / 1000000;
959 		atv.tv_usec = time_adjtime % 1000000;
960 		if (atv.tv_usec < 0) {
961 			atv.tv_usec += 1000000;
962 			atv.tv_sec--;
963 		}
964 		*olddelta = atv;
965 	}
966 	if (delta)
967 		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
968 		    delta->tv_usec;
969 	mtx_unlock(&Giant);
970 	return (error);
971 }
972 
973