xref: /freebsd/sys/kern/kern_ntptime.c (revision caf6fbd81a21a5bd5fac57a0163582bbc8968920)
1 /*-
2  ***********************************************************************
3  *								       *
4  * Copyright (c) David L. Mills 1993-2001			       *
5  *								       *
6  * Permission to use, copy, modify, and distribute this software and   *
7  * its documentation for any purpose and without fee is hereby	       *
8  * granted, provided that the above copyright notice appears in all    *
9  * copies and that both the copyright notice and this permission       *
10  * notice appear in supporting documentation, and that the name	       *
11  * University of Delaware not be used in advertising or publicity      *
12  * pertaining to distribution of the software without specific,	       *
13  * written prior permission. The University of Delaware makes no       *
14  * representations about the suitability this software for any	       *
15  * purpose. It is provided "as is" without express or implied	       *
16  * warranty.							       *
17  *								       *
18  **********************************************************************/
19 
20 /*
21  * Adapted from the original sources for FreeBSD and timecounters by:
22  * Poul-Henning Kamp <phk@FreeBSD.org>.
23  *
24  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25  * date so I have retained only the 64bit version and included it directly
26  * in this file.
27  *
28  * Only minor changes done to interface with the timecounters over in
29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30  * confusing and/or plain wrong in that context.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ntp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/eventhandler.h>
42 #include <sys/kernel.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/time.h>
48 #include <sys/timex.h>
49 #include <sys/timetc.h>
50 #include <sys/timepps.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysctl.h>
53 
54 #ifdef PPS_SYNC
55 FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
56 #endif
57 
58 /*
59  * Single-precision macros for 64-bit machines
60  */
61 typedef int64_t l_fp;
62 #define L_ADD(v, u)	((v) += (u))
63 #define L_SUB(v, u)	((v) -= (u))
64 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
65 #define L_NEG(v)	((v) = -(v))
66 #define L_RSHIFT(v, n) \
67 	do { \
68 		if ((v) < 0) \
69 			(v) = -(-(v) >> (n)); \
70 		else \
71 			(v) = (v) >> (n); \
72 	} while (0)
73 #define L_MPY(v, a)	((v) *= (a))
74 #define L_CLR(v)	((v) = 0)
75 #define L_ISNEG(v)	((v) < 0)
76 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
77 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
78 
79 /*
80  * Generic NTP kernel interface
81  *
82  * These routines constitute the Network Time Protocol (NTP) interfaces
83  * for user and daemon application programs. The ntp_gettime() routine
84  * provides the time, maximum error (synch distance) and estimated error
85  * (dispersion) to client user application programs. The ntp_adjtime()
86  * routine is used by the NTP daemon to adjust the system clock to an
87  * externally derived time. The time offset and related variables set by
88  * this routine are used by other routines in this module to adjust the
89  * phase and frequency of the clock discipline loop which controls the
90  * system clock.
91  *
92  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
93  * defined), the time at each tick interrupt is derived directly from
94  * the kernel time variable. When the kernel time is reckoned in
95  * microseconds, (NTP_NANO undefined), the time is derived from the
96  * kernel time variable together with a variable representing the
97  * leftover nanoseconds at the last tick interrupt. In either case, the
98  * current nanosecond time is reckoned from these values plus an
99  * interpolated value derived by the clock routines in another
100  * architecture-specific module. The interpolation can use either a
101  * dedicated counter or a processor cycle counter (PCC) implemented in
102  * some architectures.
103  *
104  * Note that all routines must run at priority splclock or higher.
105  */
106 /*
107  * Phase/frequency-lock loop (PLL/FLL) definitions
108  *
109  * The nanosecond clock discipline uses two variable types, time
110  * variables and frequency variables. Both types are represented as 64-
111  * bit fixed-point quantities with the decimal point between two 32-bit
112  * halves. On a 32-bit machine, each half is represented as a single
113  * word and mathematical operations are done using multiple-precision
114  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
115  * used.
116  *
117  * A time variable is a signed 64-bit fixed-point number in ns and
118  * fraction. It represents the remaining time offset to be amortized
119  * over succeeding tick interrupts. The maximum time offset is about
120  * 0.5 s and the resolution is about 2.3e-10 ns.
121  *
122  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125  * |s s s|			 ns				   |
126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127  * |			    fraction				   |
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  *
130  * A frequency variable is a signed 64-bit fixed-point number in ns/s
131  * and fraction. It represents the ns and fraction to be added to the
132  * kernel time variable at each second. The maximum frequency offset is
133  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
134  *
135  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
136  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
137  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138  * |s s s s s s s s s s s s s|	          ns/s			   |
139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140  * |			    fraction				   |
141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142  */
143 /*
144  * The following variables establish the state of the PLL/FLL and the
145  * residual time and frequency offset of the local clock.
146  */
147 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
148 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
149 
150 static int time_state = TIME_OK;	/* clock state */
151 int time_status = STA_UNSYNC;	/* clock status bits */
152 static long time_tai;			/* TAI offset (s) */
153 static long time_monitor;		/* last time offset scaled (ns) */
154 static long time_constant;		/* poll interval (shift) (s) */
155 static long time_precision = 1;		/* clock precision (ns) */
156 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
157 long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
158 static long time_reftime;		/* time at last adjustment (s) */
159 static l_fp time_offset;		/* time offset (ns) */
160 static l_fp time_freq;			/* frequency offset (ns/s) */
161 static l_fp time_adj;			/* tick adjust (ns/s) */
162 
163 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
164 
165 #ifdef PPS_SYNC
166 /*
167  * The following variables are used when a pulse-per-second (PPS) signal
168  * is available and connected via a modem control lead. They establish
169  * the engineering parameters of the clock discipline loop when
170  * controlled by the PPS signal.
171  */
172 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
173 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
174 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
175 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
176 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
177 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
178 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
179 
180 static struct timespec pps_tf[3];	/* phase median filter */
181 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
182 static long pps_fcount;			/* frequency accumulator */
183 static long pps_jitter;			/* nominal jitter (ns) */
184 static long pps_stabil;			/* nominal stability (scaled ns/s) */
185 static long pps_lastsec;		/* time at last calibration (s) */
186 static int pps_valid;			/* signal watchdog counter */
187 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
188 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
189 static int pps_intcnt;			/* wander counter */
190 
191 /*
192  * PPS signal quality monitors
193  */
194 static long pps_calcnt;			/* calibration intervals */
195 static long pps_jitcnt;			/* jitter limit exceeded */
196 static long pps_stbcnt;			/* stability limit exceeded */
197 static long pps_errcnt;			/* calibration errors */
198 #endif /* PPS_SYNC */
199 /*
200  * End of phase/frequency-lock loop (PLL/FLL) definitions
201  */
202 
203 static void ntp_init(void);
204 static void hardupdate(long offset);
205 static void ntp_gettime1(struct ntptimeval *ntvp);
206 static int ntp_is_time_error(void);
207 
208 static int
209 ntp_is_time_error(void)
210 {
211 	/*
212 	 * Status word error decode. If any of these conditions occur,
213 	 * an error is returned, instead of the status word. Most
214 	 * applications will care only about the fact the system clock
215 	 * may not be trusted, not about the details.
216 	 *
217 	 * Hardware or software error
218 	 */
219 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
220 
221 	/*
222 	 * PPS signal lost when either time or frequency synchronization
223 	 * requested
224 	 */
225 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
226 	    !(time_status & STA_PPSSIGNAL)) ||
227 
228 	/*
229 	 * PPS jitter exceeded when time synchronization requested
230 	 */
231 	    (time_status & STA_PPSTIME &&
232 	    time_status & STA_PPSJITTER) ||
233 
234 	/*
235 	 * PPS wander exceeded or calibration error when frequency
236 	 * synchronization requested
237 	 */
238 	    (time_status & STA_PPSFREQ &&
239 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
240 		return (1);
241 
242 	return (0);
243 }
244 
245 static void
246 ntp_gettime1(struct ntptimeval *ntvp)
247 {
248 	struct timespec atv;	/* nanosecond time */
249 
250 	GIANT_REQUIRED;
251 
252 	nanotime(&atv);
253 	ntvp->time.tv_sec = atv.tv_sec;
254 	ntvp->time.tv_nsec = atv.tv_nsec;
255 	ntvp->maxerror = time_maxerror;
256 	ntvp->esterror = time_esterror;
257 	ntvp->tai = time_tai;
258 	ntvp->time_state = time_state;
259 
260 	if (ntp_is_time_error())
261 		ntvp->time_state = TIME_ERROR;
262 }
263 
264 /*
265  * ntp_gettime() - NTP user application interface
266  *
267  * See the timex.h header file for synopsis and API description.  Note that
268  * the TAI offset is returned in the ntvtimeval.tai structure member.
269  */
270 #ifndef _SYS_SYSPROTO_H_
271 struct ntp_gettime_args {
272 	struct ntptimeval *ntvp;
273 };
274 #endif
275 /* ARGSUSED */
276 int
277 sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
278 {
279 	struct ntptimeval ntv;
280 
281 	mtx_lock(&Giant);
282 	ntp_gettime1(&ntv);
283 	mtx_unlock(&Giant);
284 
285 	td->td_retval[0] = ntv.time_state;
286 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
287 }
288 
289 static int
290 ntp_sysctl(SYSCTL_HANDLER_ARGS)
291 {
292 	struct ntptimeval ntv;	/* temporary structure */
293 
294 	ntp_gettime1(&ntv);
295 
296 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
297 }
298 
299 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
300 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
301 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
302 
303 #ifdef PPS_SYNC
304 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
305     &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
306 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
307     &pps_shift, 0, "Interval duration (sec) (shift)");
308 SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
309     &time_monitor, 0, "Last time offset scaled (ns)");
310 
311 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD,
312     &pps_freq, sizeof(pps_freq), "I", "Scaled frequency offset (ns/sec)");
313 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD,
314     &time_freq, sizeof(time_freq), "I", "Frequency offset (ns/sec)");
315 #endif
316 
317 /*
318  * ntp_adjtime() - NTP daemon application interface
319  *
320  * See the timex.h header file for synopsis and API description.  Note that
321  * the timex.constant structure member has a dual purpose to set the time
322  * constant and to set the TAI offset.
323  */
324 #ifndef _SYS_SYSPROTO_H_
325 struct ntp_adjtime_args {
326 	struct timex *tp;
327 };
328 #endif
329 
330 int
331 sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
332 {
333 	struct timex ntv;	/* temporary structure */
334 	long freq;		/* frequency ns/s) */
335 	int modes;		/* mode bits from structure */
336 	int s;			/* caller priority */
337 	int error;
338 
339 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
340 	if (error)
341 		return(error);
342 
343 	/*
344 	 * Update selected clock variables - only the superuser can
345 	 * change anything. Note that there is no error checking here on
346 	 * the assumption the superuser should know what it is doing.
347 	 * Note that either the time constant or TAI offset are loaded
348 	 * from the ntv.constant member, depending on the mode bits. If
349 	 * the STA_PLL bit in the status word is cleared, the state and
350 	 * status words are reset to the initial values at boot.
351 	 */
352 	mtx_lock(&Giant);
353 	modes = ntv.modes;
354 	if (modes)
355 		error = priv_check(td, PRIV_NTP_ADJTIME);
356 	if (error)
357 		goto done2;
358 	s = splclock();
359 	if (modes & MOD_MAXERROR)
360 		time_maxerror = ntv.maxerror;
361 	if (modes & MOD_ESTERROR)
362 		time_esterror = ntv.esterror;
363 	if (modes & MOD_STATUS) {
364 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
365 			time_state = TIME_OK;
366 			time_status = STA_UNSYNC;
367 #ifdef PPS_SYNC
368 			pps_shift = PPS_FAVG;
369 #endif /* PPS_SYNC */
370 		}
371 		time_status &= STA_RONLY;
372 		time_status |= ntv.status & ~STA_RONLY;
373 	}
374 	if (modes & MOD_TIMECONST) {
375 		if (ntv.constant < 0)
376 			time_constant = 0;
377 		else if (ntv.constant > MAXTC)
378 			time_constant = MAXTC;
379 		else
380 			time_constant = ntv.constant;
381 	}
382 	if (modes & MOD_TAI) {
383 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
384 			time_tai = ntv.constant;
385 	}
386 #ifdef PPS_SYNC
387 	if (modes & MOD_PPSMAX) {
388 		if (ntv.shift < PPS_FAVG)
389 			pps_shiftmax = PPS_FAVG;
390 		else if (ntv.shift > PPS_FAVGMAX)
391 			pps_shiftmax = PPS_FAVGMAX;
392 		else
393 			pps_shiftmax = ntv.shift;
394 	}
395 #endif /* PPS_SYNC */
396 	if (modes & MOD_NANO)
397 		time_status |= STA_NANO;
398 	if (modes & MOD_MICRO)
399 		time_status &= ~STA_NANO;
400 	if (modes & MOD_CLKB)
401 		time_status |= STA_CLK;
402 	if (modes & MOD_CLKA)
403 		time_status &= ~STA_CLK;
404 	if (modes & MOD_FREQUENCY) {
405 		freq = (ntv.freq * 1000LL) >> 16;
406 		if (freq > MAXFREQ)
407 			L_LINT(time_freq, MAXFREQ);
408 		else if (freq < -MAXFREQ)
409 			L_LINT(time_freq, -MAXFREQ);
410 		else {
411 			/*
412 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
413 			 * time_freq is [ns/s * 2^32]
414 			 */
415 			time_freq = ntv.freq * 1000LL * 65536LL;
416 		}
417 #ifdef PPS_SYNC
418 		pps_freq = time_freq;
419 #endif /* PPS_SYNC */
420 	}
421 	if (modes & MOD_OFFSET) {
422 		if (time_status & STA_NANO)
423 			hardupdate(ntv.offset);
424 		else
425 			hardupdate(ntv.offset * 1000);
426 	}
427 
428 	/*
429 	 * Retrieve all clock variables. Note that the TAI offset is
430 	 * returned only by ntp_gettime();
431 	 */
432 	if (time_status & STA_NANO)
433 		ntv.offset = L_GINT(time_offset);
434 	else
435 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
436 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
437 	ntv.maxerror = time_maxerror;
438 	ntv.esterror = time_esterror;
439 	ntv.status = time_status;
440 	ntv.constant = time_constant;
441 	if (time_status & STA_NANO)
442 		ntv.precision = time_precision;
443 	else
444 		ntv.precision = time_precision / 1000;
445 	ntv.tolerance = MAXFREQ * SCALE_PPM;
446 #ifdef PPS_SYNC
447 	ntv.shift = pps_shift;
448 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
449 	if (time_status & STA_NANO)
450 		ntv.jitter = pps_jitter;
451 	else
452 		ntv.jitter = pps_jitter / 1000;
453 	ntv.stabil = pps_stabil;
454 	ntv.calcnt = pps_calcnt;
455 	ntv.errcnt = pps_errcnt;
456 	ntv.jitcnt = pps_jitcnt;
457 	ntv.stbcnt = pps_stbcnt;
458 #endif /* PPS_SYNC */
459 	splx(s);
460 
461 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
462 	if (error)
463 		goto done2;
464 
465 	if (ntp_is_time_error())
466 		td->td_retval[0] = TIME_ERROR;
467 	else
468 		td->td_retval[0] = time_state;
469 
470 done2:
471 	mtx_unlock(&Giant);
472 	return (error);
473 }
474 
475 /*
476  * second_overflow() - called after ntp_tick_adjust()
477  *
478  * This routine is ordinarily called immediately following the above
479  * routine ntp_tick_adjust(). While these two routines are normally
480  * combined, they are separated here only for the purposes of
481  * simulation.
482  */
483 void
484 ntp_update_second(int64_t *adjustment, time_t *newsec)
485 {
486 	int tickrate;
487 	l_fp ftemp;		/* 32/64-bit temporary */
488 
489 	/*
490 	 * On rollover of the second both the nanosecond and microsecond
491 	 * clocks are updated and the state machine cranked as
492 	 * necessary. The phase adjustment to be used for the next
493 	 * second is calculated and the maximum error is increased by
494 	 * the tolerance.
495 	 */
496 	time_maxerror += MAXFREQ / 1000;
497 
498 	/*
499 	 * Leap second processing. If in leap-insert state at
500 	 * the end of the day, the system clock is set back one
501 	 * second; if in leap-delete state, the system clock is
502 	 * set ahead one second. The nano_time() routine or
503 	 * external clock driver will insure that reported time
504 	 * is always monotonic.
505 	 */
506 	switch (time_state) {
507 
508 		/*
509 		 * No warning.
510 		 */
511 		case TIME_OK:
512 		if (time_status & STA_INS)
513 			time_state = TIME_INS;
514 		else if (time_status & STA_DEL)
515 			time_state = TIME_DEL;
516 		break;
517 
518 		/*
519 		 * Insert second 23:59:60 following second
520 		 * 23:59:59.
521 		 */
522 		case TIME_INS:
523 		if (!(time_status & STA_INS))
524 			time_state = TIME_OK;
525 		else if ((*newsec) % 86400 == 0) {
526 			(*newsec)--;
527 			time_state = TIME_OOP;
528 			time_tai++;
529 		}
530 		break;
531 
532 		/*
533 		 * Delete second 23:59:59.
534 		 */
535 		case TIME_DEL:
536 		if (!(time_status & STA_DEL))
537 			time_state = TIME_OK;
538 		else if (((*newsec) + 1) % 86400 == 0) {
539 			(*newsec)++;
540 			time_tai--;
541 			time_state = TIME_WAIT;
542 		}
543 		break;
544 
545 		/*
546 		 * Insert second in progress.
547 		 */
548 		case TIME_OOP:
549 			time_state = TIME_WAIT;
550 		break;
551 
552 		/*
553 		 * Wait for status bits to clear.
554 		 */
555 		case TIME_WAIT:
556 		if (!(time_status & (STA_INS | STA_DEL)))
557 			time_state = TIME_OK;
558 	}
559 
560 	/*
561 	 * Compute the total time adjustment for the next second
562 	 * in ns. The offset is reduced by a factor depending on
563 	 * whether the PPS signal is operating. Note that the
564 	 * value is in effect scaled by the clock frequency,
565 	 * since the adjustment is added at each tick interrupt.
566 	 */
567 	ftemp = time_offset;
568 #ifdef PPS_SYNC
569 	/* XXX even if PPS signal dies we should finish adjustment ? */
570 	if (time_status & STA_PPSTIME && time_status &
571 	    STA_PPSSIGNAL)
572 		L_RSHIFT(ftemp, pps_shift);
573 	else
574 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
575 #else
576 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
577 #endif /* PPS_SYNC */
578 	time_adj = ftemp;
579 	L_SUB(time_offset, ftemp);
580 	L_ADD(time_adj, time_freq);
581 
582 	/*
583 	 * Apply any correction from adjtime(2).  If more than one second
584 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
585 	 * until the last second is slewed the final < 500 usecs.
586 	 */
587 	if (time_adjtime != 0) {
588 		if (time_adjtime > 1000000)
589 			tickrate = 5000;
590 		else if (time_adjtime < -1000000)
591 			tickrate = -5000;
592 		else if (time_adjtime > 500)
593 			tickrate = 500;
594 		else if (time_adjtime < -500)
595 			tickrate = -500;
596 		else
597 			tickrate = time_adjtime;
598 		time_adjtime -= tickrate;
599 		L_LINT(ftemp, tickrate * 1000);
600 		L_ADD(time_adj, ftemp);
601 	}
602 	*adjustment = time_adj;
603 
604 #ifdef PPS_SYNC
605 	if (pps_valid > 0)
606 		pps_valid--;
607 	else
608 		time_status &= ~STA_PPSSIGNAL;
609 #endif /* PPS_SYNC */
610 }
611 
612 /*
613  * ntp_init() - initialize variables and structures
614  *
615  * This routine must be called after the kernel variables hz and tick
616  * are set or changed and before the next tick interrupt. In this
617  * particular implementation, these values are assumed set elsewhere in
618  * the kernel. The design allows the clock frequency and tick interval
619  * to be changed while the system is running. So, this routine should
620  * probably be integrated with the code that does that.
621  */
622 static void
623 ntp_init()
624 {
625 
626 	/*
627 	 * The following variables are initialized only at startup. Only
628 	 * those structures not cleared by the compiler need to be
629 	 * initialized, and these only in the simulator. In the actual
630 	 * kernel, any nonzero values here will quickly evaporate.
631 	 */
632 	L_CLR(time_offset);
633 	L_CLR(time_freq);
634 #ifdef PPS_SYNC
635 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
636 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
637 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
638 	pps_fcount = 0;
639 	L_CLR(pps_freq);
640 #endif /* PPS_SYNC */
641 }
642 
643 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
644 
645 /*
646  * hardupdate() - local clock update
647  *
648  * This routine is called by ntp_adjtime() to update the local clock
649  * phase and frequency. The implementation is of an adaptive-parameter,
650  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
651  * time and frequency offset estimates for each call. If the kernel PPS
652  * discipline code is configured (PPS_SYNC), the PPS signal itself
653  * determines the new time offset, instead of the calling argument.
654  * Presumably, calls to ntp_adjtime() occur only when the caller
655  * believes the local clock is valid within some bound (+-128 ms with
656  * NTP). If the caller's time is far different than the PPS time, an
657  * argument will ensue, and it's not clear who will lose.
658  *
659  * For uncompensated quartz crystal oscillators and nominal update
660  * intervals less than 256 s, operation should be in phase-lock mode,
661  * where the loop is disciplined to phase. For update intervals greater
662  * than 1024 s, operation should be in frequency-lock mode, where the
663  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
664  * is selected by the STA_MODE status bit.
665  */
666 static void
667 hardupdate(offset)
668 	long offset;		/* clock offset (ns) */
669 {
670 	long mtemp;
671 	l_fp ftemp;
672 
673 	/*
674 	 * Select how the phase is to be controlled and from which
675 	 * source. If the PPS signal is present and enabled to
676 	 * discipline the time, the PPS offset is used; otherwise, the
677 	 * argument offset is used.
678 	 */
679 	if (!(time_status & STA_PLL))
680 		return;
681 	if (!(time_status & STA_PPSTIME && time_status &
682 	    STA_PPSSIGNAL)) {
683 		if (offset > MAXPHASE)
684 			time_monitor = MAXPHASE;
685 		else if (offset < -MAXPHASE)
686 			time_monitor = -MAXPHASE;
687 		else
688 			time_monitor = offset;
689 		L_LINT(time_offset, time_monitor);
690 	}
691 
692 	/*
693 	 * Select how the frequency is to be controlled and in which
694 	 * mode (PLL or FLL). If the PPS signal is present and enabled
695 	 * to discipline the frequency, the PPS frequency is used;
696 	 * otherwise, the argument offset is used to compute it.
697 	 */
698 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
699 		time_reftime = time_second;
700 		return;
701 	}
702 	if (time_status & STA_FREQHOLD || time_reftime == 0)
703 		time_reftime = time_second;
704 	mtemp = time_second - time_reftime;
705 	L_LINT(ftemp, time_monitor);
706 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
707 	L_MPY(ftemp, mtemp);
708 	L_ADD(time_freq, ftemp);
709 	time_status &= ~STA_MODE;
710 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
711 	    MAXSEC)) {
712 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
713 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
714 		L_ADD(time_freq, ftemp);
715 		time_status |= STA_MODE;
716 	}
717 	time_reftime = time_second;
718 	if (L_GINT(time_freq) > MAXFREQ)
719 		L_LINT(time_freq, MAXFREQ);
720 	else if (L_GINT(time_freq) < -MAXFREQ)
721 		L_LINT(time_freq, -MAXFREQ);
722 }
723 
724 #ifdef PPS_SYNC
725 /*
726  * hardpps() - discipline CPU clock oscillator to external PPS signal
727  *
728  * This routine is called at each PPS interrupt in order to discipline
729  * the CPU clock oscillator to the PPS signal. There are two independent
730  * first-order feedback loops, one for the phase, the other for the
731  * frequency. The phase loop measures and grooms the PPS phase offset
732  * and leaves it in a handy spot for the seconds overflow routine. The
733  * frequency loop averages successive PPS phase differences and
734  * calculates the PPS frequency offset, which is also processed by the
735  * seconds overflow routine. The code requires the caller to capture the
736  * time and architecture-dependent hardware counter values in
737  * nanoseconds at the on-time PPS signal transition.
738  *
739  * Note that, on some Unix systems this routine runs at an interrupt
740  * priority level higher than the timer interrupt routine hardclock().
741  * Therefore, the variables used are distinct from the hardclock()
742  * variables, except for the actual time and frequency variables, which
743  * are determined by this routine and updated atomically.
744  */
745 void
746 hardpps(tsp, nsec)
747 	struct timespec *tsp;	/* time at PPS */
748 	long nsec;		/* hardware counter at PPS */
749 {
750 	long u_sec, u_nsec, v_nsec; /* temps */
751 	l_fp ftemp;
752 
753 	/*
754 	 * The signal is first processed by a range gate and frequency
755 	 * discriminator. The range gate rejects noise spikes outside
756 	 * the range +-500 us. The frequency discriminator rejects input
757 	 * signals with apparent frequency outside the range 1 +-500
758 	 * PPM. If two hits occur in the same second, we ignore the
759 	 * later hit; if not and a hit occurs outside the range gate,
760 	 * keep the later hit for later comparison, but do not process
761 	 * it.
762 	 */
763 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
764 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
765 	pps_valid = PPS_VALID;
766 	u_sec = tsp->tv_sec;
767 	u_nsec = tsp->tv_nsec;
768 	if (u_nsec >= (NANOSECOND >> 1)) {
769 		u_nsec -= NANOSECOND;
770 		u_sec++;
771 	}
772 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
773 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
774 	    MAXFREQ)
775 		return;
776 	pps_tf[2] = pps_tf[1];
777 	pps_tf[1] = pps_tf[0];
778 	pps_tf[0].tv_sec = u_sec;
779 	pps_tf[0].tv_nsec = u_nsec;
780 
781 	/*
782 	 * Compute the difference between the current and previous
783 	 * counter values. If the difference exceeds 0.5 s, assume it
784 	 * has wrapped around, so correct 1.0 s. If the result exceeds
785 	 * the tick interval, the sample point has crossed a tick
786 	 * boundary during the last second, so correct the tick. Very
787 	 * intricate.
788 	 */
789 	u_nsec = nsec;
790 	if (u_nsec > (NANOSECOND >> 1))
791 		u_nsec -= NANOSECOND;
792 	else if (u_nsec < -(NANOSECOND >> 1))
793 		u_nsec += NANOSECOND;
794 	pps_fcount += u_nsec;
795 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
796 		return;
797 	time_status &= ~STA_PPSJITTER;
798 
799 	/*
800 	 * A three-stage median filter is used to help denoise the PPS
801 	 * time. The median sample becomes the time offset estimate; the
802 	 * difference between the other two samples becomes the time
803 	 * dispersion (jitter) estimate.
804 	 */
805 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
806 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
807 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
808 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
809 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
810 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
811 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
812 		} else {
813 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
814 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
815 		}
816 	} else {
817 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
818 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
819 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
820 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
821 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
822 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
823 		} else {
824 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
825 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
826 		}
827 	}
828 
829 	/*
830 	 * Nominal jitter is due to PPS signal noise and interrupt
831 	 * latency. If it exceeds the popcorn threshold, the sample is
832 	 * discarded. otherwise, if so enabled, the time offset is
833 	 * updated. We can tolerate a modest loss of data here without
834 	 * much degrading time accuracy.
835 	 *
836 	 * The measurements being checked here were made with the system
837 	 * timecounter, so the popcorn threshold is not allowed to fall below
838 	 * the number of nanoseconds in two ticks of the timecounter.  For a
839 	 * timecounter running faster than 1 GHz the lower bound is 2ns, just
840 	 * to avoid a nonsensical threshold of zero.
841 	*/
842 	if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
843 	    2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
844 		time_status |= STA_PPSJITTER;
845 		pps_jitcnt++;
846 	} else if (time_status & STA_PPSTIME) {
847 		time_monitor = -v_nsec;
848 		L_LINT(time_offset, time_monitor);
849 	}
850 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
851 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
852 	if (u_sec < (1 << pps_shift))
853 		return;
854 
855 	/*
856 	 * At the end of the calibration interval the difference between
857 	 * the first and last counter values becomes the scaled
858 	 * frequency. It will later be divided by the length of the
859 	 * interval to determine the frequency update. If the frequency
860 	 * exceeds a sanity threshold, or if the actual calibration
861 	 * interval is not equal to the expected length, the data are
862 	 * discarded. We can tolerate a modest loss of data here without
863 	 * much degrading frequency accuracy.
864 	 */
865 	pps_calcnt++;
866 	v_nsec = -pps_fcount;
867 	pps_lastsec = pps_tf[0].tv_sec;
868 	pps_fcount = 0;
869 	u_nsec = MAXFREQ << pps_shift;
870 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
871 	    pps_shift)) {
872 		time_status |= STA_PPSERROR;
873 		pps_errcnt++;
874 		return;
875 	}
876 
877 	/*
878 	 * Here the raw frequency offset and wander (stability) is
879 	 * calculated. If the wander is less than the wander threshold
880 	 * for four consecutive averaging intervals, the interval is
881 	 * doubled; if it is greater than the threshold for four
882 	 * consecutive intervals, the interval is halved. The scaled
883 	 * frequency offset is converted to frequency offset. The
884 	 * stability metric is calculated as the average of recent
885 	 * frequency changes, but is used only for performance
886 	 * monitoring.
887 	 */
888 	L_LINT(ftemp, v_nsec);
889 	L_RSHIFT(ftemp, pps_shift);
890 	L_SUB(ftemp, pps_freq);
891 	u_nsec = L_GINT(ftemp);
892 	if (u_nsec > PPS_MAXWANDER) {
893 		L_LINT(ftemp, PPS_MAXWANDER);
894 		pps_intcnt--;
895 		time_status |= STA_PPSWANDER;
896 		pps_stbcnt++;
897 	} else if (u_nsec < -PPS_MAXWANDER) {
898 		L_LINT(ftemp, -PPS_MAXWANDER);
899 		pps_intcnt--;
900 		time_status |= STA_PPSWANDER;
901 		pps_stbcnt++;
902 	} else {
903 		pps_intcnt++;
904 	}
905 	if (pps_intcnt >= 4) {
906 		pps_intcnt = 4;
907 		if (pps_shift < pps_shiftmax) {
908 			pps_shift++;
909 			pps_intcnt = 0;
910 		}
911 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
912 		pps_intcnt = -4;
913 		if (pps_shift > PPS_FAVG) {
914 			pps_shift--;
915 			pps_intcnt = 0;
916 		}
917 	}
918 	if (u_nsec < 0)
919 		u_nsec = -u_nsec;
920 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
921 
922 	/*
923 	 * The PPS frequency is recalculated and clamped to the maximum
924 	 * MAXFREQ. If enabled, the system clock frequency is updated as
925 	 * well.
926 	 */
927 	L_ADD(pps_freq, ftemp);
928 	u_nsec = L_GINT(pps_freq);
929 	if (u_nsec > MAXFREQ)
930 		L_LINT(pps_freq, MAXFREQ);
931 	else if (u_nsec < -MAXFREQ)
932 		L_LINT(pps_freq, -MAXFREQ);
933 	if (time_status & STA_PPSFREQ)
934 		time_freq = pps_freq;
935 }
936 #endif /* PPS_SYNC */
937 
938 #ifndef _SYS_SYSPROTO_H_
939 struct adjtime_args {
940 	struct timeval *delta;
941 	struct timeval *olddelta;
942 };
943 #endif
944 /* ARGSUSED */
945 int
946 sys_adjtime(struct thread *td, struct adjtime_args *uap)
947 {
948 	struct timeval delta, olddelta, *deltap;
949 	int error;
950 
951 	if (uap->delta) {
952 		error = copyin(uap->delta, &delta, sizeof(delta));
953 		if (error)
954 			return (error);
955 		deltap = &delta;
956 	} else
957 		deltap = NULL;
958 	error = kern_adjtime(td, deltap, &olddelta);
959 	if (uap->olddelta && error == 0)
960 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
961 	return (error);
962 }
963 
964 int
965 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
966 {
967 	struct timeval atv;
968 	int error;
969 
970 	mtx_lock(&Giant);
971 	if (olddelta) {
972 		atv.tv_sec = time_adjtime / 1000000;
973 		atv.tv_usec = time_adjtime % 1000000;
974 		if (atv.tv_usec < 0) {
975 			atv.tv_usec += 1000000;
976 			atv.tv_sec--;
977 		}
978 		*olddelta = atv;
979 	}
980 	if (delta) {
981 		if ((error = priv_check(td, PRIV_ADJTIME))) {
982 			mtx_unlock(&Giant);
983 			return (error);
984 		}
985 		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
986 		    delta->tv_usec;
987 	}
988 	mtx_unlock(&Giant);
989 	return (0);
990 }
991 
992 static struct callout resettodr_callout;
993 static int resettodr_period = 1800;
994 
995 static void
996 periodic_resettodr(void *arg __unused)
997 {
998 
999 	if (!ntp_is_time_error()) {
1000 		mtx_lock(&Giant);
1001 		resettodr();
1002 		mtx_unlock(&Giant);
1003 	}
1004 	if (resettodr_period > 0)
1005 		callout_schedule(&resettodr_callout, resettodr_period * hz);
1006 }
1007 
1008 static void
1009 shutdown_resettodr(void *arg __unused, int howto __unused)
1010 {
1011 
1012 	callout_drain(&resettodr_callout);
1013 	if (resettodr_period > 0 && !ntp_is_time_error()) {
1014 		mtx_lock(&Giant);
1015 		resettodr();
1016 		mtx_unlock(&Giant);
1017 	}
1018 }
1019 
1020 static int
1021 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1022 {
1023 	int error;
1024 
1025 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1026 	if (error || !req->newptr)
1027 		return (error);
1028 	if (resettodr_period == 0)
1029 		callout_stop(&resettodr_callout);
1030 	else
1031 		callout_reset(&resettodr_callout, resettodr_period * hz,
1032 		    periodic_resettodr, NULL);
1033 	return (0);
1034 }
1035 
1036 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
1037 	&resettodr_period, 1800, sysctl_resettodr_period, "I",
1038 	"Save system time to RTC with this period (in seconds)");
1039 TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
1040 
1041 static void
1042 start_periodic_resettodr(void *arg __unused)
1043 {
1044 
1045 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1046 	    SHUTDOWN_PRI_FIRST);
1047 	callout_init(&resettodr_callout, 1);
1048 	if (resettodr_period == 0)
1049 		return;
1050 	callout_reset(&resettodr_callout, resettodr_period * hz,
1051 	    periodic_resettodr, NULL);
1052 }
1053 
1054 SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
1055 	start_periodic_resettodr, NULL);
1056