xref: /freebsd/sys/kern/kern_ntptime.c (revision b601c69bdbe8755d26570261d7fd4c02ee4eff74)
1 /***********************************************************************
2  *								       *
3  * Copyright (c) David L. Mills 1993-1999			       *
4  *								       *
5  * Permission to use, copy, modify, and distribute this software and   *
6  * its documentation for any purpose and without fee is hereby	       *
7  * granted, provided that the above copyright notice appears in all    *
8  * copies and that both the copyright notice and this permission       *
9  * notice appear in supporting documentation, and that the name	       *
10  * University of Delaware not be used in advertising or publicity      *
11  * pertaining to distribution of the software without specific,	       *
12  * written prior permission. The University of Delaware makes no       *
13  * representations about the suitability this software for any	       *
14  * purpose. It is provided "as is" without express or implied	       *
15  * warranty.							       *
16  *								       *
17  **********************************************************************/
18 
19 /*
20  * Adapted from the original sources for FreeBSD and timecounters by:
21  * Poul-Henning Kamp <phk@FreeBSD.org>.
22  *
23  * The 32bit version of the "LP" macros seems a bit past its "sell by"
24  * date so I have retained only the 64bit version and included it directly
25  * in this file.
26  *
27  * Only minor changes done to interface with the timecounters over in
28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29  * confusing and/or plain wrong in that context.
30  *
31  * $FreeBSD$
32  */
33 
34 #include "opt_ntp.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sysproto.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/time.h>
42 #include <sys/timex.h>
43 #include <sys/timetc.h>
44 #include <sys/timepps.h>
45 #include <sys/sysctl.h>
46 
47 /*
48  * Single-precision macros for 64-bit machines
49  */
50 typedef long long l_fp;
51 #define L_ADD(v, u)	((v) += (u))
52 #define L_SUB(v, u)	((v) -= (u))
53 #define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
54 #define L_NEG(v)	((v) = -(v))
55 #define L_RSHIFT(v, n) \
56 	do { \
57 		if ((v) < 0) \
58 			(v) = -(-(v) >> (n)); \
59 		else \
60 			(v) = (v) >> (n); \
61 	} while (0)
62 #define L_MPY(v, a)	((v) *= (a))
63 #define L_CLR(v)	((v) = 0)
64 #define L_ISNEG(v)	((v) < 0)
65 #define L_LINT(v, a)	((v) = (long long)(a) << 32)
66 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
67 
68 /*
69  * Generic NTP kernel interface
70  *
71  * These routines constitute the Network Time Protocol (NTP) interfaces
72  * for user and daemon application programs. The ntp_gettime() routine
73  * provides the time, maximum error (synch distance) and estimated error
74  * (dispersion) to client user application programs. The ntp_adjtime()
75  * routine is used by the NTP daemon to adjust the system clock to an
76  * externally derived time. The time offset and related variables set by
77  * this routine are used by other routines in this module to adjust the
78  * phase and frequency of the clock discipline loop which controls the
79  * system clock.
80  *
81  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
82  * defined), the time at each tick interrupt is derived directly from
83  * the kernel time variable. When the kernel time is reckoned in
84  * microseconds, (NTP_NANO undefined), the time is derived from the
85  * kernel time variable together with a variable representing the
86  * leftover nanoseconds at the last tick interrupt. In either case, the
87  * current nanosecond time is reckoned from these values plus an
88  * interpolated value derived by the clock routines in another
89  * architecture-specific module. The interpolation can use either a
90  * dedicated counter or a processor cycle counter (PCC) implemented in
91  * some architectures.
92  *
93  * Note that all routines must run at priority splclock or higher.
94  */
95 
96 /*
97  * Phase/frequency-lock loop (PLL/FLL) definitions
98  *
99  * The nanosecond clock discipline uses two variable types, time
100  * variables and frequency variables. Both types are represented as 64-
101  * bit fixed-point quantities with the decimal point between two 32-bit
102  * halves. On a 32-bit machine, each half is represented as a single
103  * word and mathematical operations are done using multiple-precision
104  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
105  * used.
106  *
107  * A time variable is a signed 64-bit fixed-point number in ns and
108  * fraction. It represents the remaining time offset to be amortized
109  * over succeeding tick interrupts. The maximum time offset is about
110  * 0.5 s and the resolution is about 2.3e-10 ns.
111  *
112  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
113  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
114  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
115  * |s s s|			 ns				   |
116  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
117  * |			    fraction				   |
118  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119  *
120  * A frequency variable is a signed 64-bit fixed-point number in ns/s
121  * and fraction. It represents the ns and fraction to be added to the
122  * kernel time variable at each second. The maximum frequency offset is
123  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
124  *
125  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
126  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
127  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
128  * |s s s s s s s s s s s s s|	          ns/s			   |
129  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130  * |			    fraction				   |
131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132  */
133 /*
134  * The following variables establish the state of the PLL/FLL and the
135  * residual time and frequency offset of the local clock.
136  */
137 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
138 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
139 
140 static int time_state = TIME_OK;	/* clock state */
141 static int time_status = STA_UNSYNC;	/* clock status bits */
142 static long time_constant;		/* poll interval (shift) (s) */
143 static long time_precision = 1;		/* clock precision (ns) */
144 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
145 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
146 static long time_reftime;		/* time at last adjustment (s) */
147 static long time_tick;			/* nanoseconds per tick (ns) */
148 static l_fp time_offset;		/* time offset (ns) */
149 static l_fp time_freq;			/* frequency offset (ns/s) */
150 static l_fp time_adj;			/* resulting adjustment */
151 
152 #ifdef PPS_SYNC
153 /*
154  * The following variables are used when a pulse-per-second (PPS) signal
155  * is available and connected via a modem control lead. They establish
156  * the engineering parameters of the clock discipline loop when
157  * controlled by the PPS signal.
158  */
159 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
160 #define PPS_FAVGDEF	7		/* default freq avg int (s) (shift) */
161 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
162 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
163 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
164 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
165 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
166 
167 static struct timespec pps_tf[3];	/* phase median filter */
168 static l_fp pps_offset;		/* time offset (ns) */
169 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
170 static long pps_fcount;			/* frequency accumulator */
171 static long pps_jitter;			/* nominal jitter (ns) */
172 static long pps_stabil;			/* nominal stability (scaled ns/s) */
173 static long pps_lastsec;		/* time at last calibration (s) */
174 static int pps_valid;			/* signal watchdog counter */
175 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
176 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
177 static int pps_intcnt;			/* wander counter */
178 static int pps_letgo;			/* PLL frequency hold-off */
179 
180 /*
181  * PPS signal quality monitors
182  */
183 static long pps_calcnt;			/* calibration intervals */
184 static long pps_jitcnt;			/* jitter limit exceeded */
185 static long pps_stbcnt;			/* stability limit exceeded */
186 static long pps_errcnt;			/* calibration errors */
187 #endif /* PPS_SYNC */
188 /*
189  * End of phase/frequency-lock loop (PLL/FLL) definitions
190  */
191 
192 static void ntp_init(void);
193 static void hardupdate(long offset);
194 
195 /*
196  * ntp_gettime() - NTP user application interface
197  *
198  * See the timex.h header file for synopsis and API description.
199  */
200 static int
201 ntp_sysctl(SYSCTL_HANDLER_ARGS)
202 {
203 	struct ntptimeval ntv;	/* temporary structure */
204 	struct timespec atv;	/* nanosecond time */
205 
206 	nanotime(&atv);
207 	ntv.time.tv_sec = atv.tv_sec;
208 	ntv.time.tv_nsec = atv.tv_nsec;
209 	ntv.maxerror = time_maxerror;
210 	ntv.esterror = time_esterror;
211 	ntv.time_state = time_state;
212 
213 	/*
214 	 * Status word error decode. If any of these conditions occur,
215 	 * an error is returned, instead of the status word. Most
216 	 * applications will care only about the fact the system clock
217 	 * may not be trusted, not about the details.
218 	 *
219 	 * Hardware or software error
220 	 */
221 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
222 
223 	/*
224 	 * PPS signal lost when either time or frequency synchronization
225 	 * requested
226 	 */
227 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
228 	    !(time_status & STA_PPSSIGNAL)) ||
229 
230 	/*
231 	 * PPS jitter exceeded when time synchronization requested
232 	 */
233 	    (time_status & STA_PPSTIME &&
234 	    time_status & STA_PPSJITTER) ||
235 
236 	/*
237 	 * PPS wander exceeded or calibration error when frequency
238 	 * synchronization requested
239 	 */
240 	    (time_status & STA_PPSFREQ &&
241 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
242 		ntv.time_state = TIME_ERROR;
243 	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
244 }
245 
246 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
247 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
248 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
249 
250 #ifdef PPS_SYNC
251 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
252 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
253 
254 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
255 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
256 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_offset, CTLFLAG_RD, &pps_offset, sizeof(pps_offset), "I", "");
257 #endif
258 /*
259  * ntp_adjtime() - NTP daemon application interface
260  *
261  * See the timex.h header file for synopsis and API description.
262  */
263 #ifndef _SYS_SYSPROTO_H_
264 struct ntp_adjtime_args {
265 	struct timex *tp;
266 };
267 #endif
268 
269 int
270 ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
271 {
272 	struct timex ntv;	/* temporary structure */
273 	long freq;		/* frequency ns/s) */
274 	int modes;		/* mode bits from structure */
275 	int s;			/* caller priority */
276 	int error;
277 
278 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
279 	if (error)
280 		return(error);
281 
282 	/*
283 	 * Update selected clock variables - only the superuser can
284 	 * change anything. Note that there is no error checking here on
285 	 * the assumption the superuser should know what it is doing.
286 	 */
287 	modes = ntv.modes;
288 	if (modes)
289 		error = suser(p);
290 	if (error)
291 		return (error);
292 	s = splclock();
293 	if (modes & MOD_FREQUENCY) {
294 		freq = (ntv.freq * 1000LL) >> 16;
295 		if (freq > MAXFREQ)
296 			L_LINT(time_freq, MAXFREQ);
297 		else if (freq < -MAXFREQ)
298 			L_LINT(time_freq, -MAXFREQ);
299 		else
300 			L_LINT(time_freq, freq);
301 
302 #ifdef PPS_SYNC
303 		pps_freq = time_freq;
304 #endif /* PPS_SYNC */
305 	}
306 	if (modes & MOD_MAXERROR)
307 		time_maxerror = ntv.maxerror;
308 	if (modes & MOD_ESTERROR)
309 		time_esterror = ntv.esterror;
310 	if (modes & MOD_STATUS) {
311 		time_status &= STA_RONLY;
312 		time_status |= ntv.status & ~STA_RONLY;
313 	}
314 	if (modes & MOD_TIMECONST) {
315 		if (ntv.constant < 0)
316 			time_constant = 0;
317 		else if (ntv.constant > MAXTC)
318 			time_constant = MAXTC;
319 		else
320 			time_constant = ntv.constant;
321 	}
322 #ifdef PPS_SYNC
323 	if (modes & MOD_PPSMAX) {
324 		if (ntv.shift < PPS_FAVG)
325 			pps_shiftmax = PPS_FAVG;
326 		else if (ntv.shift > PPS_FAVGMAX)
327 			pps_shiftmax = PPS_FAVGMAX;
328 		else
329 			pps_shiftmax = ntv.shift;
330 	}
331 #endif /* PPS_SYNC */
332 	if (modes & MOD_NANO)
333 		time_status |= STA_NANO;
334 	if (modes & MOD_MICRO)
335 		time_status &= ~STA_NANO;
336 	if (modes & MOD_CLKB)
337 		time_status |= STA_CLK;
338 	if (modes & MOD_CLKA)
339 		time_status &= ~STA_CLK;
340 	if (modes & MOD_OFFSET) {
341 		if (time_status & STA_NANO)
342 			hardupdate(ntv.offset);
343 		else
344 			hardupdate(ntv.offset * 1000);
345 	}
346 
347 	/*
348 	 * Retrieve all clock variables
349 	 */
350 	if (time_status & STA_NANO)
351 		ntv.offset = L_GINT(time_offset);
352 	else
353 		ntv.offset = L_GINT(time_offset) / 1000;
354 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
355 	ntv.maxerror = time_maxerror;
356 	ntv.esterror = time_esterror;
357 	ntv.status = time_status;
358 	ntv.constant = time_constant;
359 	if (time_status & STA_NANO)
360 		ntv.precision = time_precision;
361 	else
362 		ntv.precision = time_precision / 1000;
363 	ntv.tolerance = MAXFREQ * SCALE_PPM;
364 #ifdef PPS_SYNC
365 	ntv.shift = pps_shift;
366 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
367 	if (time_status & STA_NANO)
368 		ntv.jitter = pps_jitter;
369 	else
370 		ntv.jitter = pps_jitter / 1000;
371 	ntv.stabil = pps_stabil;
372 	ntv.calcnt = pps_calcnt;
373 	ntv.errcnt = pps_errcnt;
374 	ntv.jitcnt = pps_jitcnt;
375 	ntv.stbcnt = pps_stbcnt;
376 #endif /* PPS_SYNC */
377 	splx(s);
378 
379 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
380 	if (error)
381 		return (error);
382 
383 	/*
384 	 * Status word error decode. See comments in
385 	 * ntp_gettime() routine.
386 	 */
387 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
388 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
389 	    !(time_status & STA_PPSSIGNAL)) ||
390 	    (time_status & STA_PPSTIME &&
391 	    time_status & STA_PPSJITTER) ||
392 	    (time_status & STA_PPSFREQ &&
393 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
394 		p->p_retval[0] = TIME_ERROR;
395 	else
396 		p->p_retval[0] = time_state;
397 	return (error);
398 }
399 
400 /*
401  * second_overflow() - called after ntp_tick_adjust()
402  *
403  * This routine is ordinarily called immediately following the above
404  * routine ntp_tick_adjust(). While these two routines are normally
405  * combined, they are separated here only for the purposes of
406  * simulation.
407  */
408 void
409 ntp_update_second(struct timecounter *tcp)
410 {
411 	u_int32_t *newsec;
412 
413 	newsec = &tcp->tc_offset_sec;
414 	/*
415 	 * On rollover of the second both the nanosecond and microsecond
416 	 * clocks are updated and the state machine cranked as
417 	 * necessary. The phase adjustment to be used for the next
418 	 * second is calculated and the maximum error is increased by
419 	 * the tolerance.
420 	 */
421 	time_maxerror += MAXFREQ / 1000;
422 
423 	/*
424 	 * Leap second processing. If in leap-insert state at
425 	 * the end of the day, the system clock is set back one
426 	 * second; if in leap-delete state, the system clock is
427 	 * set ahead one second. The nano_time() routine or
428 	 * external clock driver will insure that reported time
429 	 * is always monotonic.
430 	 */
431 	switch (time_state) {
432 
433 		/*
434 		 * No warning.
435 		 */
436 		case TIME_OK:
437 		if (time_status & STA_INS)
438 			time_state = TIME_INS;
439 		else if (time_status & STA_DEL)
440 			time_state = TIME_DEL;
441 		break;
442 
443 		/*
444 		 * Insert second 23:59:60 following second
445 		 * 23:59:59.
446 		 */
447 		case TIME_INS:
448 		if (!(time_status & STA_INS))
449 			time_state = TIME_OK;
450 		else if ((*newsec) % 86400 == 0) {
451 			(*newsec)--;
452 			time_state = TIME_OOP;
453 		}
454 		break;
455 
456 		/*
457 		 * Delete second 23:59:59.
458 		 */
459 		case TIME_DEL:
460 		if (!(time_status & STA_DEL))
461 			time_state = TIME_OK;
462 		else if (((*newsec) + 1) % 86400 == 0) {
463 			(*newsec)++;
464 			time_state = TIME_WAIT;
465 		}
466 		break;
467 
468 		/*
469 		 * Insert second in progress.
470 		 */
471 		case TIME_OOP:
472 		time_state = TIME_WAIT;
473 		break;
474 
475 		/*
476 		 * Wait for status bits to clear.
477 		 */
478 		case TIME_WAIT:
479 		if (!(time_status & (STA_INS | STA_DEL)))
480 			time_state = TIME_OK;
481 	}
482 
483 	/*
484 	 * Compute the total time adjustment for the next second
485 	 * in ns. The offset is reduced by a factor depending on
486 	 * whether the PPS signal is operating. Note that the
487 	 * value is in effect scaled by the clock frequency,
488 	 * since the adjustment is added at each tick interrupt.
489 	 */
490 #ifdef PPS_SYNC
491 	/* XXX even if signal dies we should finish adjustment ? */
492 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) {
493 		time_adj = pps_offset;
494 		L_RSHIFT(time_adj, pps_shift);
495 		L_SUB(pps_offset, time_adj);
496 	} else {
497 		time_adj = time_offset;
498 		L_RSHIFT(time_adj, SHIFT_PLL + time_constant);
499 		L_SUB(time_offset, time_adj);
500 	}
501 #else
502 	time_adj = time_offset;
503 	L_RSHIFT(time_adj, SHIFT_PLL + time_constant);
504 	L_SUB(time_offset, time_adj);
505 #endif /* PPS_SYNC */
506 	L_ADD(time_adj, time_freq);
507 	tcp->tc_adjustment = time_adj;
508 #ifdef PPS_SYNC
509 	if (pps_valid > 0)
510 		pps_valid--;
511 	else
512 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
513 		    STA_PPSWANDER | STA_PPSERROR);
514 #endif /* PPS_SYNC */
515 }
516 
517 /*
518  * ntp_init() - initialize variables and structures
519  *
520  * This routine must be called after the kernel variables hz and tick
521  * are set or changed and before the next tick interrupt. In this
522  * particular implementation, these values are assumed set elsewhere in
523  * the kernel. The design allows the clock frequency and tick interval
524  * to be changed while the system is running. So, this routine should
525  * probably be integrated with the code that does that.
526  */
527 static void
528 ntp_init()
529 {
530 
531 	/*
532 	 * The following variable must be initialized any time the
533 	 * kernel variable hz is changed.
534 	 */
535 	time_tick = NANOSECOND / hz;
536 
537 	/*
538 	 * The following variables are initialized only at startup. Only
539 	 * those structures not cleared by the compiler need to be
540 	 * initialized, and these only in the simulator. In the actual
541 	 * kernel, any nonzero values here will quickly evaporate.
542 	 */
543 	L_CLR(time_offset);
544 	L_CLR(time_freq);
545 #ifdef PPS_SYNC
546 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
547 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
548 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
549 	pps_fcount = 0;
550 	L_CLR(pps_freq);
551 #endif /* PPS_SYNC */
552 }
553 
554 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
555 
556 /*
557  * hardupdate() - local clock update
558  *
559  * This routine is called by ntp_adjtime() to update the local clock
560  * phase and frequency. The implementation is of an adaptive-parameter,
561  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
562  * time and frequency offset estimates for each call. If the kernel PPS
563  * discipline code is configured (PPS_SYNC), the PPS signal itself
564  * determines the new time offset, instead of the calling argument.
565  * Presumably, calls to ntp_adjtime() occur only when the caller
566  * believes the local clock is valid within some bound (+-128 ms with
567  * NTP). If the caller's time is far different than the PPS time, an
568  * argument will ensue, and it's not clear who will lose.
569  *
570  * For uncompensated quartz crystal oscillators and nominal update
571  * intervals less than 256 s, operation should be in phase-lock mode,
572  * where the loop is disciplined to phase. For update intervals greater
573  * than 1024 s, operation should be in frequency-lock mode, where the
574  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
575  * is selected by the STA_MODE status bit.
576  */
577 static void
578 hardupdate(offset)
579 	long offset;		/* clock offset (ns) */
580 {
581 	long ltemp, mtemp;
582 	l_fp ftemp;
583 
584 	/*
585 	 * Select how the phase is to be controlled and from which
586 	 * source. If the PPS signal is present and enabled to
587 	 * discipline the time, the PPS offset is used; otherwise, the
588 	 * argument offset is used.
589 	 */
590 	if (!(time_status & STA_PLL))
591 		return;
592 	ltemp = offset;
593 	if (ltemp > MAXPHASE)
594 		ltemp = MAXPHASE;
595 	else if (ltemp < -MAXPHASE)
596 		ltemp = -MAXPHASE;
597 	if (!(time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL))
598 		L_LINT(time_offset, ltemp);
599 
600 	/*
601 	 * Select how the frequency is to be controlled and in which
602 	 * mode (PLL or FLL). If the PPS signal is present and enabled
603 	 * to discipline the frequency, the PPS frequency is used;
604 	 * otherwise, the argument offset is used to compute it.
605 	 */
606 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
607 		time_reftime = time_second;
608 		return;
609 	}
610 	if (time_status & STA_FREQHOLD || time_reftime == 0)
611 		time_reftime = time_second;
612 	mtemp = time_second - time_reftime;
613 	L_LINT(ftemp, ltemp);
614 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
615 	L_MPY(ftemp, mtemp);
616 	L_ADD(time_freq, ftemp);
617 	time_status &= ~STA_MODE;
618 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
619 		L_LINT(ftemp, (ltemp << 4) / mtemp);
620 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
621 		L_ADD(time_freq, ftemp);
622 		time_status |= STA_MODE;
623 	}
624 	time_reftime = time_second;
625 	if (L_GINT(time_freq) > MAXFREQ)
626 		L_LINT(time_freq, MAXFREQ);
627 	else if (L_GINT(time_freq) < -MAXFREQ)
628 		L_LINT(time_freq, -MAXFREQ);
629 }
630 
631 #ifdef PPS_SYNC
632 /*
633  * hardpps() - discipline CPU clock oscillator to external PPS signal
634  *
635  * This routine is called at each PPS interrupt in order to discipline
636  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
637  * and leaves it in a handy spot for the hardclock() routine. It
638  * integrates successive PPS phase differences and calculates the
639  * frequency offset. This is used in hardclock() to discipline the CPU
640  * clock oscillator so that the intrinsic frequency error is cancelled
641  * out. The code requires the caller to capture the time and
642  * architecture-dependent hardware counter values in nanoseconds at the
643  * on-time PPS signal transition.
644  *
645  * Note that, on some Unix systems this routine runs at an interrupt
646  * priority level higher than the timer interrupt routine hardclock().
647  * Therefore, the variables used are distinct from the hardclock()
648  * variables, except for the actual time and frequency variables, which
649  * are determined by this routine and updated atomically.
650  */
651 void
652 hardpps(tsp, nsec)
653 	struct timespec *tsp;	/* time at PPS */
654 	long nsec;		/* hardware counter at PPS */
655 {
656 	long u_sec, u_nsec, v_nsec, w_nsec; /* temps */
657 	l_fp ftemp;
658 
659 	/*
660 	 * The signal is first processed by a frequency discriminator
661 	 * which rejects noise and input signals with frequencies
662 	 * outside the range 1 +-MAXFREQ PPS. If two hits occur in the
663 	 * same second, we ignore the later hit; if not and a hit occurs
664 	 * outside the range gate, keep the later hit but do not
665 	 * process it.
666 	 */
667 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
668 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
669 	pps_valid = PPS_VALID;
670 	u_sec = tsp->tv_sec;
671 	u_nsec = tsp->tv_nsec;
672 	if (u_nsec >= (NANOSECOND >> 1)) {
673 		u_nsec -= NANOSECOND;
674 		u_sec++;
675 	}
676 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
677 	if (u_sec == pps_tf[0].tv_sec && v_nsec < -MAXFREQ) {
678 		return;
679 	}
680 	pps_tf[2] = pps_tf[1];
681 	pps_tf[1] = pps_tf[0];
682 	pps_tf[0].tv_sec = u_sec;
683 	pps_tf[0].tv_nsec = u_nsec;
684 
685 	/*
686 	 * Compute the difference between the current and previous
687 	 * counter values. If the difference exceeds 0.5 s, assume it
688 	 * has wrapped around, so correct 1.0 s. If the result exceeds
689 	 * the tick interval, the sample point has crossed a tick
690 	 * boundary during the last second, so correct the tick. Very
691 	 * intricate.
692 	 */
693 	u_nsec = nsec;
694 	if (u_nsec > (NANOSECOND >> 1))
695 		u_nsec -= NANOSECOND;
696 	else if (u_nsec < -(NANOSECOND >> 1))
697 		u_nsec += NANOSECOND;
698 	pps_fcount += u_nsec;
699 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) {
700 		return;
701 	}
702 	time_status &= ~STA_PPSJITTER;
703 
704 	/*
705 	 * A three-stage median filter is used to help denoise the PPS
706 	 * time. The median sample becomes the time offset estimate; the
707 	 * difference between the other two samples becomes the time
708 	 * dispersion (jitter) estimate.
709 	 */
710 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
711 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
712 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
713 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
714 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
715 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
716 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
717 		} else {
718 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
719 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
720 		}
721 	} else {
722 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
723 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
724 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
725 		} else  if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
726 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
727 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
728 		} else {
729 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
730 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
731 		}
732 	}
733 
734 	/*
735 	 * Nominal jitter is due to PPS signal noise and  interrupt
736 	 * latency. If it exceeds the popcorn threshold,
737 	 * the sample is discarded. otherwise, if so enabled, the time
738 	 * offset is updated. We can tolerate a modest loss of data here
739 	 * without degrading time accuracy.
740 	 */
741 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
742 		time_status |= STA_PPSJITTER;
743 		pps_jitcnt++;
744 	} else if (time_status & STA_PPSTIME) {
745 		L_LINT(time_offset, -v_nsec);
746 		L_LINT(pps_offset, -v_nsec);
747 
748 		if (pps_letgo >= 2) {
749 			L_LINT(ftemp, -v_nsec);
750 			L_RSHIFT(ftemp, (pps_shift * 2));
751 			L_ADD(ftemp, time_freq);
752 			w_nsec = L_GINT(ftemp);
753 			if (w_nsec > MAXFREQ)
754 				L_LINT(ftemp, MAXFREQ);
755 			else if (w_nsec < -MAXFREQ)
756 				L_LINT(ftemp, -MAXFREQ);
757 			time_freq = ftemp;
758 		}
759 
760 	}
761 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
762 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
763 	if (u_sec < (1 << pps_shift))
764 		return;
765 
766 	/*
767 	 * At the end of the calibration interval the difference between
768 	 * the first and last counter values becomes the scaled
769 	 * frequency. It will later be divided by the length of the
770 	 * interval to determine the frequency update. If the frequency
771 	 * exceeds a sanity threshold, or if the actual calibration
772 	 * interval is not equal to the expected length, the data are
773 	 * discarded. We can tolerate a modest loss of data here without
774 	 * degrading frequency ccuracy.
775 	 */
776 	pps_calcnt++;
777 	v_nsec = -pps_fcount;
778 	pps_lastsec = pps_tf[0].tv_sec;
779 	pps_fcount = 0;
780 	u_nsec = MAXFREQ << pps_shift;
781 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
782 	    pps_shift)) {
783 		time_status |= STA_PPSERROR;
784 		pps_errcnt++;
785 		return;
786 	}
787 
788 	/*
789 	 * Here the raw frequency offset and wander (stability) is
790 	 * calculated. If the wander is less than the wander threshold
791 	 * for four consecutive averaging intervals, the interval is
792 	 * doubled; if it is greater than the threshold for four
793 	 * consecutive intervals, the interval is halved. The scaled
794 	 * frequency offset is converted to frequency offset. The
795 	 * stability metric is calculated as the average of recent
796 	 * frequency changes, but is used only for performance
797 	 * monitoring.
798 	 */
799 	L_LINT(ftemp, v_nsec);
800 	L_RSHIFT(ftemp, pps_shift);
801 	L_SUB(ftemp, pps_freq);
802 	u_nsec = L_GINT(ftemp);
803 	if (u_nsec > PPS_MAXWANDER) {
804 		L_LINT(ftemp, PPS_MAXWANDER);
805 		pps_intcnt--;
806 		time_status |= STA_PPSWANDER;
807 		pps_stbcnt++;
808 	} else if (u_nsec < -PPS_MAXWANDER) {
809 		L_LINT(ftemp, -PPS_MAXWANDER);
810 		pps_intcnt--;
811 		time_status |= STA_PPSWANDER;
812 		pps_stbcnt++;
813 	} else {
814 		pps_intcnt++;
815 	}
816 	if (!(time_status & STA_PPSFREQ)) {
817 		pps_intcnt = 0;
818 		pps_shift = PPS_FAVG;
819 	} else if (pps_shift > pps_shiftmax) {
820 		/* If we lowered pps_shiftmax */
821 		pps_shift = pps_shiftmax;
822 		pps_intcnt = 0;
823 	} else if (pps_intcnt >= 4) {
824 		pps_intcnt = 4;
825 		if (pps_shift < pps_shiftmax) {
826 			pps_shift++;
827 			pps_intcnt = 0;
828 		}
829 	} else if (pps_intcnt <= -4) {
830 		pps_intcnt = -4;
831 		if (pps_shift > PPS_FAVG) {
832 			pps_shift--;
833 			pps_intcnt = 0;
834 		}
835 	}
836 	if (u_nsec < 0)
837 		u_nsec = -u_nsec;
838 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
839 
840 	/*
841 	 * The PPS frequency is recalculated and clamped to the maximum
842 	 * MAXFREQ. If enabled, the system clock frequency is updated as
843 	 * well.
844 	 */
845 	L_ADD(pps_freq, ftemp);
846 	u_nsec = L_GINT(pps_freq);
847 	if (u_nsec > MAXFREQ)
848 		L_LINT(pps_freq, MAXFREQ);
849 	else if (u_nsec < -MAXFREQ)
850 		L_LINT(pps_freq, -MAXFREQ);
851 	if ((time_status & (STA_PPSFREQ | STA_PPSTIME)) == STA_PPSFREQ) {
852 		pps_letgo = 0;
853 		time_freq = pps_freq;
854 	} else if (time_status & STA_PPSTIME) {
855 		if (pps_letgo < 2)
856 			pps_letgo++;
857 	}
858 }
859 #endif /* PPS_SYNC */
860