xref: /freebsd/sys/kern/kern_ntptime.c (revision a8445737e740901f5f2c8d24c12ef7fc8b00134e)
1 /******************************************************************************
2  *                                                                            *
3  * Copyright (c) David L. Mills 1993, 1994                                    *
4  *                                                                            *
5  * Permission to use, copy, modify, and distribute this software and its      *
6  * documentation for any purpose and without fee is hereby granted, provided  *
7  * that the above copyright notice appears in all copies and that both the    *
8  * copyright notice and this permission notice appear in supporting           *
9  * documentation, and that the name University of Delaware not be used in     *
10  * advertising or publicity pertaining to distribution of the software        *
11  * without specific, written prior permission.  The University of Delaware    *
12  * makes no representations about the suitability this software for any       *
13  * purpose.  It is provided "as is" without express or implied warranty.      *
14  *                                                                            *
15  ******************************************************************************/
16 
17 /*
18  * Modification history kern_ntptime.c
19  *
20  * 24 Sep 94	David L. Mills
21  *	Tightened code at exits.
22  *
23  * 24 Mar 94	David L. Mills
24  *	Revised syscall interface to include new variables for PPS
25  *	time discipline.
26  *
27  * 14 Feb 94	David L. Mills
28  *	Added code for external clock
29  *
30  * 28 Nov 93	David L. Mills
31  *	Revised frequency scaling to conform with adjusted parameters
32  *
33  * 17 Sep 93	David L. Mills
34  *	Created file
35  */
36 /*
37  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
38  * V4.1.1 and V4.1.3
39  *
40  * These routines consitute the Network Time Protocol (NTP) interfaces
41  * for user and daemon application programs. The ntp_gettime() routine
42  * provides the time, maximum error (synch distance) and estimated error
43  * (dispersion) to client user application programs. The ntp_adjtime()
44  * routine is used by the NTP daemon to adjust the system clock to an
45  * externally derived time. The time offset and related variables set by
46  * this routine are used by hardclock() to adjust the phase and
47  * frequency of the phase-lock loop which controls the system clock.
48  */
49 
50 #include "opt_ntp.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysproto.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/timex.h>
58 #include <sys/timepps.h>
59 #include <sys/sysctl.h>
60 
61 /*
62  * Phase/frequency-lock loop (PLL/FLL) definitions
63  *
64  * The following variables are read and set by the ntp_adjtime() system
65  * call.
66  *
67  * time_state shows the state of the system clock, with values defined
68  * in the timex.h header file.
69  *
70  * time_status shows the status of the system clock, with bits defined
71  * in the timex.h header file.
72  *
73  * time_offset is used by the PLL/FLL to adjust the system time in small
74  * increments.
75  *
76  * time_constant determines the bandwidth or "stiffness" of the PLL.
77  *
78  * time_tolerance determines maximum frequency error or tolerance of the
79  * CPU clock oscillator and is a property of the architecture; however,
80  * in principle it could change as result of the presence of external
81  * discipline signals, for instance.
82  *
83  * time_precision is usually equal to the kernel tick variable; however,
84  * in cases where a precision clock counter or external clock is
85  * available, the resolution can be much less than this and depend on
86  * whether the external clock is working or not.
87  *
88  * time_maxerror is initialized by a ntp_adjtime() call and increased by
89  * the kernel once each second to reflect the maximum error
90  * bound growth.
91  *
92  * time_esterror is set and read by the ntp_adjtime() call, but
93  * otherwise not used by the kernel.
94  */
95 static int time_status = STA_UNSYNC;	/* clock status bits */
96 static int time_state = TIME_OK;	/* clock state */
97 static long time_offset = 0;		/* time offset (us) */
98 static long time_constant = 0;		/* pll time constant */
99 static long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
100 static long time_precision = 1;		/* clock precision (us) */
101 static long time_maxerror = MAXPHASE;	/* maximum error (us) */
102 static long time_esterror = MAXPHASE;	/* estimated error (us) */
103 static int time_daemon = 0;		/* No timedaemon active */
104 
105 /*
106  * The following variables establish the state of the PLL/FLL and the
107  * residual time and frequency offset of the local clock. The scale
108  * factors are defined in the timex.h header file.
109  *
110  * time_phase and time_freq are the phase increment and the frequency
111  * increment, respectively, of the kernel time variable at each tick of
112  * the clock.
113  *
114  * time_freq is set via ntp_adjtime() from a value stored in a file when
115  * the synchronization daemon is first started. Its value is retrieved
116  * via ntp_adjtime() and written to the file about once per hour by the
117  * daemon.
118  *
119  * time_adj is the adjustment added to the value of tick at each timer
120  * interrupt and is recomputed from time_phase and time_freq at each
121  * seconds rollover.
122  *
123  * time_reftime is the second's portion of the system time on the last
124  * call to ntp_adjtime(). It is used to adjust the time_freq variable
125  * and to increase the time_maxerror as the time since last update
126  * increases.
127  */
128 long time_phase = 0;			/* phase offset (scaled us) */
129 static long time_freq = 0;		/* frequency offset (scaled ppm) */
130 long time_adj = 0;			/* tick adjust (scaled 1 / hz) */
131 static long time_reftime = 0;		/* time at last adjustment (s) */
132 
133 #ifdef PPS_SYNC
134 /*
135  * The following variables are used only if the kernel PPS discipline
136  * code is configured (PPS_SYNC). The scale factors are defined in the
137  * timex.h header file.
138  *
139  * pps_time contains the time at each calibration interval, as read by
140  * microtime(). pps_count counts the seconds of the calibration
141  * interval, the duration of which is nominally pps_shift in powers of
142  * two.
143  *
144  * pps_offset is the time offset produced by the time median filter
145  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
146  * this filter.
147  *
148  * pps_freq is the frequency offset produced by the frequency median
149  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
150  * by this filter.
151  *
152  * pps_usec is latched from a high resolution counter or external clock
153  * at pps_time. Here we want the hardware counter contents only, not the
154  * contents plus the time_tv.usec as usual.
155  *
156  * pps_valid counts the number of seconds since the last PPS update. It
157  * is used as a watchdog timer to disable the PPS discipline should the
158  * PPS signal be lost.
159  *
160  * pps_glitch counts the number of seconds since the beginning of an
161  * offset burst more than tick/2 from current nominal offset. It is used
162  * mainly to suppress error bursts due to priority conflicts between the
163  * PPS interrupt and timer interrupt.
164  *
165  * pps_intcnt counts the calibration intervals for use in the interval-
166  * adaptation algorithm. It's just too complicated for words.
167  */
168 static struct timeval pps_time;	/* kernel time at last interval */
169 static long pps_offset = 0;		/* pps time offset (us) */
170 static long pps_jitter = MAXTIME;	/* pps time dispersion (jitter) (us) */
171 static long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
172 static long pps_freq = 0;		/* frequency offset (scaled ppm) */
173 static long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
174 static long pps_ff[] = {0, 0, 0};	/* frequency offset median filter */
175 static long pps_usec = 0;		/* microsec counter at last interval */
176 static long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
177 static int pps_glitch = 0;		/* pps signal glitch counter */
178 static int pps_count = 0;		/* calibration interval counter (s) */
179 static int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
180 static int pps_intcnt = 0;		/* intervals at current duration */
181 
182 /*
183  * PPS signal quality monitors
184  *
185  * pps_jitcnt counts the seconds that have been discarded because the
186  * jitter measured by the time median filter exceeds the limit MAXTIME
187  * (100 us).
188  *
189  * pps_calcnt counts the frequency calibration intervals, which are
190  * variable from 4 s to 256 s.
191  *
192  * pps_errcnt counts the calibration intervals which have been discarded
193  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
194  * calibration interval jitter exceeds two ticks.
195  *
196  * pps_stbcnt counts the calibration intervals that have been discarded
197  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
198  */
199 static long pps_jitcnt = 0;		/* jitter limit exceeded */
200 static long pps_calcnt = 0;		/* calibration intervals */
201 static long pps_errcnt = 0;		/* calibration errors */
202 static long pps_stbcnt = 0;		/* stability limit exceeded */
203 #endif /* PPS_SYNC */
204 
205 static void hardupdate __P((int64_t offset, int prescaled));
206 
207 /*
208  * hardupdate() - local clock update
209  *
210  * This routine is called by ntp_adjtime() to update the local clock
211  * phase and frequency. The implementation is of an adaptive-parameter,
212  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
213  * time and frequency offset estimates for each call. If the kernel PPS
214  * discipline code is configured (PPS_SYNC), the PPS signal itself
215  * determines the new time offset, instead of the calling argument.
216  * Presumably, calls to ntp_adjtime() occur only when the caller
217  * believes the local clock is valid within some bound (+-128 ms with
218  * NTP). If the caller's time is far different than the PPS time, an
219  * argument will ensue, and it's not clear who will lose.
220  *
221  * For uncompensated quartz crystal oscillatores and nominal update
222  * intervals less than 1024 s, operation should be in phase-lock mode
223  * (STA_FLL = 0), where the loop is disciplined to phase. For update
224  * intervals greater than thiss, operation should be in frequency-lock
225  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
226  *
227  * Note: splclock() is in effect.
228  */
229 static void
230 hardupdate(offset, prescaled)
231 	int64_t offset;
232 	int prescaled;
233 {
234 	long mtemp;
235 	int64_t ltemp;
236 
237 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
238 		return;
239 	if (prescaled)
240 		ltemp = offset;
241 	else
242 		ltemp = offset << SHIFT_UPDATE;
243 #ifdef PPS_SYNC
244 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
245 		ltemp = pps_offset << SHIFT_UPDATE;
246 #endif /* PPS_SYNC */
247 
248 	/*
249 	 * Scale the phase adjustment and clamp to the operating range.
250 	 */
251 	if (ltemp > (MAXPHASE << SHIFT_UPDATE))
252 		time_offset = MAXPHASE << SHIFT_UPDATE;
253 	else if (ltemp < -(MAXPHASE << SHIFT_UPDATE))
254 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
255 	else
256 		time_offset = ltemp;
257 
258 	/*
259 	 * Select whether the frequency is to be controlled and in which
260 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
261 	 * multiply/divide should be replaced someday.
262 	 */
263 	if (time_status & STA_FREQHOLD || time_reftime == 0)
264 		time_reftime = time_second;
265 	mtemp = time_second - time_reftime;
266 	time_reftime = time_second;
267 	if (time_status & STA_FLL) {
268 		if (mtemp >= MINSEC) {
269 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
270 			    SHIFT_UPDATE));
271 			if (ltemp < 0)
272 				time_freq -= -ltemp >> SHIFT_KH;
273 			else
274 				time_freq += ltemp >> SHIFT_KH;
275 		}
276 	} else {
277 		if (mtemp < MAXSEC) {
278 			ltemp = time_offset * mtemp;
279 			if (ltemp < 0)
280 				time_freq -= -ltemp >> ((int64_t)time_constant +
281 				    time_constant + SHIFT_KF -
282 				    SHIFT_USEC + SHIFT_UPDATE);
283 			else
284 				time_freq += ltemp >> ((int64_t)time_constant +
285 				    time_constant + SHIFT_KF -
286 				    SHIFT_USEC + SHIFT_UPDATE);
287 		}
288 	}
289 	if (time_freq > time_tolerance)
290 		time_freq = time_tolerance;
291 	else if (time_freq < -time_tolerance)
292 		time_freq = -time_tolerance;
293 }
294 
295 /*
296  * On rollover of the second the phase adjustment to be used for
297  * the next second is calculated. Also, the maximum error is
298  * increased by the tolerance. If the PPS frequency discipline
299  * code is present, the phase is increased to compensate for the
300  * CPU clock oscillator frequency error.
301  *
302  * On a 32-bit machine and given parameters in the timex.h
303  * header file, the maximum phase adjustment is +-512 ms and
304  * maximum frequency offset is a tad less than) +-512 ppm. On a
305  * 64-bit machine, you shouldn't need to ask.
306  */
307 void
308 ntp_update_second(struct timecounter *tc)
309 {
310 	u_int32_t *newsec;
311 	long ltemp;
312 
313 	if (!time_daemon)
314 		return;
315 
316 	newsec = &tc->tc_offset_sec;
317 	time_maxerror += time_tolerance >> SHIFT_USEC;
318 
319 	/*
320 	* Compute the phase adjustment for the next second. In
321 	* PLL mode, the offset is reduced by a fixed factor
322 	* times the time constant. In FLL mode the offset is
323 	* used directly. In either mode, the maximum phase
324 	* adjustment for each second is clamped so as to spread
325 	* the adjustment over not more than the number of
326 	* seconds between updates.
327 	*/
328 	if (time_offset < 0) {
329 		ltemp = -time_offset;
330 		if (!(time_status & STA_FLL))
331 			ltemp >>= SHIFT_KG + time_constant;
332 		if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
333 			ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
334 		time_offset += ltemp;
335 		time_adj = -ltemp << (SHIFT_SCALE - SHIFT_UPDATE);
336 	} else {
337 		ltemp = time_offset;
338 		if (!(time_status & STA_FLL))
339 			ltemp >>= SHIFT_KG + time_constant;
340 		if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
341 			ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
342 		time_offset -= ltemp;
343 		time_adj = ltemp << (SHIFT_SCALE - SHIFT_UPDATE);
344 	}
345 
346 	/*
347 	* Compute the frequency estimate and additional phase
348 	* adjustment due to frequency error for the next
349 	* second. When the PPS signal is engaged, gnaw on the
350 	* watchdog counter and update the frequency computed by
351 	* the pll and the PPS signal.
352 	*/
353 #ifdef PPS_SYNC
354 	pps_valid++;
355 	if (pps_valid == PPS_VALID) {
356 		pps_jitter = MAXTIME;
357 		pps_stabil = MAXFREQ;
358 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
359 		    STA_PPSWANDER | STA_PPSERROR);
360 	}
361 	ltemp = time_freq + pps_freq;
362 #else
363 	ltemp = time_freq;
364 #endif /* PPS_SYNC */
365 	if (ltemp < 0)
366 		time_adj -= -ltemp << (SHIFT_SCALE - SHIFT_USEC);
367 	else
368 		time_adj += ltemp << (SHIFT_SCALE - SHIFT_USEC);
369 
370 	tc->tc_adjustment = time_adj;
371 
372 	/* XXX - this is really bogus, but can't be fixed until
373 	xntpd's idea of the system clock is fixed to know how
374 	the user wants leap seconds handled; in the mean time,
375 	we assume that users of NTP are running without proper
376 	leap second support (this is now the default anyway) */
377 	/*
378 	* Leap second processing. If in leap-insert state at
379 	* the end of the day, the system clock is set back one
380 	* second; if in leap-delete state, the system clock is
381 	* set ahead one second. The microtime() routine or
382 	* external clock driver will insure that reported time
383 	* is always monotonic. The ugly divides should be
384 	* replaced.
385 	*/
386 	switch (time_state) {
387 
388 		case TIME_OK:
389 			if (time_status & STA_INS)
390 				time_state = TIME_INS;
391 			else if (time_status & STA_DEL)
392 				time_state = TIME_DEL;
393 			break;
394 
395 		case TIME_INS:
396 			if ((*newsec) % 86400 == 0) {
397 				(*newsec)--;
398 				time_state = TIME_OOP;
399 			}
400 			break;
401 
402 		case TIME_DEL:
403 			if (((*newsec) + 1) % 86400 == 0) {
404 				(*newsec)++;
405 				time_state = TIME_WAIT;
406 			}
407 			break;
408 
409 		case TIME_OOP:
410 			time_state = TIME_WAIT;
411 			break;
412 
413 		case TIME_WAIT:
414 			if (!(time_status & (STA_INS | STA_DEL)))
415 				time_state = TIME_OK;
416 			break;
417 	}
418 }
419 
420 static int
421 ntp_sysctl SYSCTL_HANDLER_ARGS
422 {
423 	struct timeval atv;
424 	struct ntptimeval ntv;
425 	int s;
426 
427 	s = splclock();
428 	microtime(&atv);
429 	ntv.time = atv;
430 	ntv.maxerror = time_maxerror;
431 	ntv.esterror = time_esterror;
432 	splx(s);
433 
434 	ntv.time_state = time_state;
435 
436 	/*
437 	 * Status word error decode. If any of these conditions
438 	 * occur, an error is returned, instead of the status
439 	 * word. Most applications will care only about the fact
440 	 * the system clock may not be trusted, not about the
441 	 * details.
442 	 *
443 	 * Hardware or software error
444 	 */
445 	if (time_status & (STA_UNSYNC | STA_CLOCKERR)) {
446 		ntv.time_state = TIME_ERROR;
447 	}
448 
449 	/*
450 	 * PPS signal lost when either time or frequency
451 	 * synchronization requested
452 	 */
453 	if (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
454 	    !(time_status & STA_PPSSIGNAL)) {
455 		ntv.time_state = TIME_ERROR;
456 	}
457 
458 	/*
459 	 * PPS jitter exceeded when time synchronization
460 	 * requested
461 	 */
462 	if (time_status & STA_PPSTIME &&
463 	    time_status & STA_PPSJITTER) {
464 		ntv.time_state = TIME_ERROR;
465 	}
466 
467 	/*
468 	 * PPS wander exceeded or calibration error when
469 	 * frequency synchronization requested
470 	 */
471 	if (time_status & STA_PPSFREQ &&
472 	    time_status & (STA_PPSWANDER | STA_PPSERROR)) {
473 		ntv.time_state = TIME_ERROR;
474 	}
475 	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
476 }
477 
478 SYSCTL_NODE(_kern, KERN_NTP_PLL, ntp_pll, CTLFLAG_RW, 0,
479 	"NTP kernel PLL related stuff");
480 SYSCTL_PROC(_kern_ntp_pll, NTP_PLL_GETTIME, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
481 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
482 
483 /*
484  * ntp_adjtime() - NTP daemon application interface
485  */
486 #ifndef _SYS_SYSPROTO_H_
487 struct ntp_adjtime_args {
488   struct timex *tp;
489 };
490 #endif
491 
492 int
493 ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
494 {
495 	struct timex ntv;
496 	int modes;
497 	int s;
498 	int error;
499 
500 	time_daemon = 1;
501 
502 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
503 	if (error)
504 		return error;
505 
506 	/*
507 	 * Update selected clock variables - only the superuser can
508 	 * change anything. Note that there is no error checking here on
509 	 * the assumption the superuser should know what it is doing.
510 	 */
511 	modes = ntv.modes;
512 	if ((modes != 0)
513 	    && (error = suser(p->p_cred->pc_ucred, &p->p_acflag)))
514 		return error;
515 
516 	s = splclock();
517 	if (modes & MOD_FREQUENCY)
518 #ifdef PPS_SYNC
519 		time_freq = ntv.freq - pps_freq;
520 #else /* PPS_SYNC */
521 		time_freq = ntv.freq;
522 #endif /* PPS_SYNC */
523 	if (modes & MOD_MAXERROR)
524 		time_maxerror = ntv.maxerror;
525 	if (modes & MOD_ESTERROR)
526 		time_esterror = ntv.esterror;
527 	if (modes & MOD_STATUS) {
528 		time_status &= STA_RONLY;
529 		time_status |= ntv.status & ~STA_RONLY;
530 	}
531 	if (modes & MOD_TIMECONST)
532 		time_constant = ntv.constant;
533 	if (modes & MOD_OFFSET)
534 		hardupdate(ntv.offset, modes & MOD_DOSCALE);
535 
536 	ntv.modes |= MOD_CANSCALE;
537 	/*
538 	 * Retrieve all clock variables
539 	 */
540 	if (modes & MOD_DOSCALE)
541 		ntv.offset = time_offset;
542 	else if (time_offset < 0)
543 		ntv.offset = -(-time_offset >> SHIFT_UPDATE);
544 	else
545 		ntv.offset = time_offset >> SHIFT_UPDATE;
546 #ifdef PPS_SYNC
547 	ntv.freq = time_freq + pps_freq;
548 #else /* PPS_SYNC */
549 	ntv.freq = time_freq;
550 #endif /* PPS_SYNC */
551 	ntv.maxerror = time_maxerror;
552 	ntv.esterror = time_esterror;
553 	ntv.status = time_status;
554 	ntv.constant = time_constant;
555 	ntv.precision = time_precision;
556 	ntv.tolerance = time_tolerance;
557 #ifdef PPS_SYNC
558 	ntv.shift = pps_shift;
559 	ntv.ppsfreq = pps_freq;
560 	ntv.jitter = pps_jitter >> PPS_AVG;
561 	ntv.stabil = pps_stabil;
562 	ntv.calcnt = pps_calcnt;
563 	ntv.errcnt = pps_errcnt;
564 	ntv.jitcnt = pps_jitcnt;
565 	ntv.stbcnt = pps_stbcnt;
566 #endif /* PPS_SYNC */
567 	(void)splx(s);
568 
569 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
570 	if (!error) {
571 		/*
572 		 * Status word error decode. See comments in
573 		 * ntp_gettime() routine.
574 		 */
575 		p->p_retval[0] = time_state;
576 		if (time_status & (STA_UNSYNC | STA_CLOCKERR))
577 			p->p_retval[0] = TIME_ERROR;
578 		if (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
579 		    !(time_status & STA_PPSSIGNAL))
580 			p->p_retval[0] = TIME_ERROR;
581 		if (time_status & STA_PPSTIME &&
582 		    time_status & STA_PPSJITTER)
583 			p->p_retval[0] = TIME_ERROR;
584 		if (time_status & STA_PPSFREQ &&
585 		    time_status & (STA_PPSWANDER | STA_PPSERROR))
586 			p->p_retval[0] = TIME_ERROR;
587 	}
588 	return error;
589 }
590 
591 #ifdef PPS_SYNC
592 
593 /* We need this ugly monster twice, so let's macroize it. */
594 
595 #define MEDIAN3X(a, m, s, i1, i2, i3)				\
596 	do {							\
597 	m = a[i2];						\
598 	s = a[i1] - a[i3];					\
599 	} while (0)
600 
601 #define MEDIAN3(a, m, s)					\
602 	do {							\
603 		if (a[0] > a[1]) {				\
604 			if (a[1] > a[2])			\
605 				MEDIAN3X(a, m, s, 0, 1, 2);	\
606 			else if (a[2] > a[0])			\
607 				MEDIAN3X(a, m, s, 2, 0, 1);	\
608 			else					\
609 				MEDIAN3X(a, m, s, 0, 2, 1);	\
610 		} else {					\
611 			if (a[2] > a[1])			\
612 				MEDIAN3X(a, m, s, 2, 1, 0);	\
613 			else  if (a[0] > a[2])			\
614 				MEDIAN3X(a, m, s, 1, 0, 2);	\
615 			else					\
616 				MEDIAN3X(a, m, s, 1, 2, 0);	\
617 		}						\
618 	} while (0)
619 
620 /*
621  * hardpps() - discipline CPU clock oscillator to external PPS signal
622  *
623  * This routine is called at each PPS interrupt in order to discipline
624  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
625  * and leaves it in a handy spot for the hardclock() routine. It
626  * integrates successive PPS phase differences and calculates the
627  * frequency offset. This is used in hardclock() to discipline the CPU
628  * clock oscillator so that intrinsic frequency error is cancelled out.
629  * The code requires the caller to capture the time and hardware counter
630  * value at the on-time PPS signal transition.
631  *
632  * Note that, on some Unix systems, this routine runs at an interrupt
633  * priority level higher than the timer interrupt routine hardclock().
634  * Therefore, the variables used are distinct from the hardclock()
635  * variables, except for certain exceptions: The PPS frequency pps_freq
636  * and phase pps_offset variables are determined by this routine and
637  * updated atomically. The time_tolerance variable can be considered a
638  * constant, since it is infrequently changed, and then only when the
639  * PPS signal is disabled. The watchdog counter pps_valid is updated
640  * once per second by hardclock() and is atomically cleared in this
641  * routine.
642  */
643 void
644 hardpps(tvp, p_usec)
645 	struct timeval *tvp;		/* time at PPS */
646 	long p_usec;			/* hardware counter at PPS */
647 {
648 	long u_usec, v_usec, bigtick;
649 	long cal_sec, cal_usec;
650 
651 	/*
652 	 * An occasional glitch can be produced when the PPS interrupt
653 	 * occurs in the hardclock() routine before the time variable is
654 	 * updated. Here the offset is discarded when the difference
655 	 * between it and the last one is greater than tick/2, but not
656 	 * if the interval since the first discard exceeds 30 s.
657 	 */
658 	time_status |= STA_PPSSIGNAL;
659 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
660 	pps_valid = 0;
661 	u_usec = -tvp->tv_usec;
662 	if (u_usec < -500000)
663 		u_usec += 1000000;
664 	v_usec = pps_offset - u_usec;
665 	if (v_usec < 0)
666 		v_usec = -v_usec;
667 	if (v_usec > (tick >> 1)) {
668 		if (pps_glitch > MAXGLITCH) {
669 			pps_glitch = 0;
670 			pps_tf[2] = u_usec;
671 			pps_tf[1] = u_usec;
672 		} else {
673 			pps_glitch++;
674 			u_usec = pps_offset;
675 		}
676 	} else
677 		pps_glitch = 0;
678 
679 	/*
680 	 * A three-stage median filter is used to help deglitch the pps
681 	 * time. The median sample becomes the time offset estimate; the
682 	 * difference between the other two samples becomes the time
683 	 * dispersion (jitter) estimate.
684 	 */
685 	pps_tf[2] = pps_tf[1];
686 	pps_tf[1] = pps_tf[0];
687 	pps_tf[0] = u_usec;
688 	MEDIAN3(pps_tf, pps_offset, v_usec);
689 	if (v_usec > MAXTIME)
690 		pps_jitcnt++;
691 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
692 	if (v_usec < 0)
693 		pps_jitter -= -v_usec >> PPS_AVG;
694 	else
695 		pps_jitter += v_usec >> PPS_AVG;
696 	if (pps_jitter > (MAXTIME >> 1))
697 		time_status |= STA_PPSJITTER;
698 
699 	/*
700 	 * During the calibration interval adjust the starting time when
701 	 * the tick overflows. At the end of the interval compute the
702 	 * duration of the interval and the difference of the hardware
703 	 * counters at the beginning and end of the interval. This code
704 	 * is deliciously complicated by the fact valid differences may
705 	 * exceed the value of tick when using long calibration
706 	 * intervals and small ticks. Note that the counter can be
707 	 * greater than tick if caught at just the wrong instant, but
708 	 * the values returned and used here are correct.
709 	 */
710 	bigtick = (long)tick << SHIFT_USEC;
711 	pps_usec -= pps_freq;
712 	if (pps_usec >= bigtick)
713 		pps_usec -= bigtick;
714 	if (pps_usec < 0)
715 		pps_usec += bigtick;
716 	pps_time.tv_sec++;
717 	pps_count++;
718 	if (pps_count < (1 << pps_shift))
719 		return;
720 	pps_count = 0;
721 	pps_calcnt++;
722 	u_usec = p_usec << SHIFT_USEC;
723 	v_usec = pps_usec - u_usec;
724 	if (v_usec >= bigtick >> 1)
725 		v_usec -= bigtick;
726 	if (v_usec < -(bigtick >> 1))
727 		v_usec += bigtick;
728 	if (v_usec < 0)
729 		v_usec = -(-v_usec >> pps_shift);
730 	else
731 		v_usec = v_usec >> pps_shift;
732 	pps_usec = u_usec;
733 	cal_sec = tvp->tv_sec;
734 	cal_usec = tvp->tv_usec;
735 	cal_sec -= pps_time.tv_sec;
736 	cal_usec -= pps_time.tv_usec;
737 	if (cal_usec < 0) {
738 		cal_usec += 1000000;
739 		cal_sec--;
740 	}
741 	pps_time = *tvp;
742 
743 	/*
744 	 * Check for lost interrupts, noise, excessive jitter and
745 	 * excessive frequency error. The number of timer ticks during
746 	 * the interval may vary +-1 tick. Add to this a margin of one
747 	 * tick for the PPS signal jitter and maximum frequency
748 	 * deviation. If the limits are exceeded, the calibration
749 	 * interval is reset to the minimum and we start over.
750 	 */
751 	u_usec = (long)tick << 1;
752 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
753 	    || (cal_sec == 0 && cal_usec < u_usec))
754 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
755 		pps_errcnt++;
756 		pps_shift = PPS_SHIFT;
757 		pps_intcnt = 0;
758 		time_status |= STA_PPSERROR;
759 		return;
760 	}
761 
762 	/*
763 	 * A three-stage median filter is used to help deglitch the pps
764 	 * frequency. The median sample becomes the frequency offset
765 	 * estimate; the difference between the other two samples
766 	 * becomes the frequency dispersion (stability) estimate.
767 	 */
768 	pps_ff[2] = pps_ff[1];
769 	pps_ff[1] = pps_ff[0];
770 	pps_ff[0] = v_usec;
771 	MEDIAN3(pps_ff, u_usec, v_usec);
772 
773 	/*
774 	 * Here the frequency dispersion (stability) is updated. If it
775 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
776 	 * offset is updated as well, but clamped to the tolerance. It
777 	 * will be processed later by the hardclock() routine.
778 	 */
779 	v_usec = (v_usec >> 1) - pps_stabil;
780 	if (v_usec < 0)
781 		pps_stabil -= -v_usec >> PPS_AVG;
782 	else
783 		pps_stabil += v_usec >> PPS_AVG;
784 	if (pps_stabil > MAXFREQ >> 2) {
785 		pps_stbcnt++;
786 		time_status |= STA_PPSWANDER;
787 		return;
788 	}
789 	if (time_status & STA_PPSFREQ) {
790 		if (u_usec < 0) {
791 			pps_freq -= -u_usec >> PPS_AVG;
792 			if (pps_freq < -time_tolerance)
793 				pps_freq = -time_tolerance;
794 			u_usec = -u_usec;
795 		} else {
796 			pps_freq += u_usec >> PPS_AVG;
797 			if (pps_freq > time_tolerance)
798 				pps_freq = time_tolerance;
799 		}
800 	}
801 
802 	/*
803 	 * Here the calibration interval is adjusted. If the maximum
804 	 * time difference is greater than tick / 4, reduce the interval
805 	 * by half. If this is not the case for four consecutive
806 	 * intervals, double the interval.
807 	 */
808 	if (u_usec << pps_shift > bigtick >> 2) {
809 		pps_intcnt = 0;
810 		if (pps_shift > PPS_SHIFT)
811 			pps_shift--;
812 	} else if (pps_intcnt >= 4) {
813 		pps_intcnt = 0;
814 		if (pps_shift < PPS_SHIFTMAX)
815 			pps_shift++;
816 	} else
817 		pps_intcnt++;
818 }
819 
820 #endif /* PPS_SYNC */
821 
822 int
823 std_pps_ioctl(u_long cmd, caddr_t data, pps_params_t *pp, pps_info_t *pi, int ppscap)
824 {
825         pps_params_t *app;
826         pps_info_t *api;
827 
828         switch (cmd) {
829         case PPS_IOC_CREATE:
830                 return (0);
831         case PPS_IOC_DESTROY:
832                 return (0);
833         case PPS_IOC_SETPARAMS:
834                 app = (pps_params_t *)data;
835                 if (app->mode & ~ppscap)
836                         return (EINVAL);
837                 *pp = *app;
838                 return (0);
839         case PPS_IOC_GETPARAMS:
840                 app = (pps_params_t *)data;
841                 *app = *pp;
842                 return (0);
843         case PPS_IOC_GETCAP:
844                 *(int*)data = ppscap;
845                 return (0);
846         case PPS_IOC_FETCH:
847                 api = (pps_info_t *)data;
848                 *api = *pi;
849                 pi->current_mode = pp->mode;
850                 return (0);
851         case PPS_IOC_WAIT:
852                 return (EOPNOTSUPP);
853         default:
854                 return (ENODEV);
855         }
856 }
857