xref: /freebsd/sys/kern/kern_ntptime.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  ***********************************************************************
3  *								       *
4  * Copyright (c) David L. Mills 1993-2001			       *
5  *								       *
6  * Permission to use, copy, modify, and distribute this software and   *
7  * its documentation for any purpose and without fee is hereby	       *
8  * granted, provided that the above copyright notice appears in all    *
9  * copies and that both the copyright notice and this permission       *
10  * notice appear in supporting documentation, and that the name	       *
11  * University of Delaware not be used in advertising or publicity      *
12  * pertaining to distribution of the software without specific,	       *
13  * written prior permission. The University of Delaware makes no       *
14  * representations about the suitability this software for any	       *
15  * purpose. It is provided "as is" without express or implied	       *
16  * warranty.							       *
17  *								       *
18  **********************************************************************/
19 
20 /*
21  * Adapted from the original sources for FreeBSD and timecounters by:
22  * Poul-Henning Kamp <phk@FreeBSD.org>.
23  *
24  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25  * date so I have retained only the 64bit version and included it directly
26  * in this file.
27  *
28  * Only minor changes done to interface with the timecounters over in
29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30  * confusing and/or plain wrong in that context.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ntp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/eventhandler.h>
42 #include <sys/kernel.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/time.h>
48 #include <sys/timex.h>
49 #include <sys/timetc.h>
50 #include <sys/timepps.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysctl.h>
53 
54 #ifdef PPS_SYNC
55 FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
56 #endif
57 
58 /*
59  * Single-precision macros for 64-bit machines
60  */
61 typedef int64_t l_fp;
62 #define L_ADD(v, u)	((v) += (u))
63 #define L_SUB(v, u)	((v) -= (u))
64 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
65 #define L_NEG(v)	((v) = -(v))
66 #define L_RSHIFT(v, n) \
67 	do { \
68 		if ((v) < 0) \
69 			(v) = -(-(v) >> (n)); \
70 		else \
71 			(v) = (v) >> (n); \
72 	} while (0)
73 #define L_MPY(v, a)	((v) *= (a))
74 #define L_CLR(v)	((v) = 0)
75 #define L_ISNEG(v)	((v) < 0)
76 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
77 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
78 
79 /*
80  * Generic NTP kernel interface
81  *
82  * These routines constitute the Network Time Protocol (NTP) interfaces
83  * for user and daemon application programs. The ntp_gettime() routine
84  * provides the time, maximum error (synch distance) and estimated error
85  * (dispersion) to client user application programs. The ntp_adjtime()
86  * routine is used by the NTP daemon to adjust the system clock to an
87  * externally derived time. The time offset and related variables set by
88  * this routine are used by other routines in this module to adjust the
89  * phase and frequency of the clock discipline loop which controls the
90  * system clock.
91  *
92  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
93  * defined), the time at each tick interrupt is derived directly from
94  * the kernel time variable. When the kernel time is reckoned in
95  * microseconds, (NTP_NANO undefined), the time is derived from the
96  * kernel time variable together with a variable representing the
97  * leftover nanoseconds at the last tick interrupt. In either case, the
98  * current nanosecond time is reckoned from these values plus an
99  * interpolated value derived by the clock routines in another
100  * architecture-specific module. The interpolation can use either a
101  * dedicated counter or a processor cycle counter (PCC) implemented in
102  * some architectures.
103  *
104  * Note that all routines must run at priority splclock or higher.
105  */
106 /*
107  * Phase/frequency-lock loop (PLL/FLL) definitions
108  *
109  * The nanosecond clock discipline uses two variable types, time
110  * variables and frequency variables. Both types are represented as 64-
111  * bit fixed-point quantities with the decimal point between two 32-bit
112  * halves. On a 32-bit machine, each half is represented as a single
113  * word and mathematical operations are done using multiple-precision
114  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
115  * used.
116  *
117  * A time variable is a signed 64-bit fixed-point number in ns and
118  * fraction. It represents the remaining time offset to be amortized
119  * over succeeding tick interrupts. The maximum time offset is about
120  * 0.5 s and the resolution is about 2.3e-10 ns.
121  *
122  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125  * |s s s|			 ns				   |
126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127  * |			    fraction				   |
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  *
130  * A frequency variable is a signed 64-bit fixed-point number in ns/s
131  * and fraction. It represents the ns and fraction to be added to the
132  * kernel time variable at each second. The maximum frequency offset is
133  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
134  *
135  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
136  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
137  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138  * |s s s s s s s s s s s s s|	          ns/s			   |
139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140  * |			    fraction				   |
141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142  */
143 /*
144  * The following variables establish the state of the PLL/FLL and the
145  * residual time and frequency offset of the local clock.
146  */
147 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
148 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
149 
150 static int time_state = TIME_OK;	/* clock state */
151 static int time_status = STA_UNSYNC;	/* clock status bits */
152 static long time_tai;			/* TAI offset (s) */
153 static long time_monitor;		/* last time offset scaled (ns) */
154 static long time_constant;		/* poll interval (shift) (s) */
155 static long time_precision = 1;		/* clock precision (ns) */
156 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
157 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
158 static long time_reftime;		/* time at last adjustment (s) */
159 static l_fp time_offset;		/* time offset (ns) */
160 static l_fp time_freq;			/* frequency offset (ns/s) */
161 static l_fp time_adj;			/* tick adjust (ns/s) */
162 
163 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
164 
165 #ifdef PPS_SYNC
166 /*
167  * The following variables are used when a pulse-per-second (PPS) signal
168  * is available and connected via a modem control lead. They establish
169  * the engineering parameters of the clock discipline loop when
170  * controlled by the PPS signal.
171  */
172 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
173 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
174 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
175 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
176 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
177 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
178 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
179 
180 static struct timespec pps_tf[3];	/* phase median filter */
181 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
182 static long pps_fcount;			/* frequency accumulator */
183 static long pps_jitter;			/* nominal jitter (ns) */
184 static long pps_stabil;			/* nominal stability (scaled ns/s) */
185 static long pps_lastsec;		/* time at last calibration (s) */
186 static int pps_valid;			/* signal watchdog counter */
187 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
188 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
189 static int pps_intcnt;			/* wander counter */
190 
191 /*
192  * PPS signal quality monitors
193  */
194 static long pps_calcnt;			/* calibration intervals */
195 static long pps_jitcnt;			/* jitter limit exceeded */
196 static long pps_stbcnt;			/* stability limit exceeded */
197 static long pps_errcnt;			/* calibration errors */
198 #endif /* PPS_SYNC */
199 /*
200  * End of phase/frequency-lock loop (PLL/FLL) definitions
201  */
202 
203 static void ntp_init(void);
204 static void hardupdate(long offset);
205 static void ntp_gettime1(struct ntptimeval *ntvp);
206 static int ntp_is_time_error(void);
207 
208 static int
209 ntp_is_time_error(void)
210 {
211 	/*
212 	 * Status word error decode. If any of these conditions occur,
213 	 * an error is returned, instead of the status word. Most
214 	 * applications will care only about the fact the system clock
215 	 * may not be trusted, not about the details.
216 	 *
217 	 * Hardware or software error
218 	 */
219 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
220 
221 	/*
222 	 * PPS signal lost when either time or frequency synchronization
223 	 * requested
224 	 */
225 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
226 	    !(time_status & STA_PPSSIGNAL)) ||
227 
228 	/*
229 	 * PPS jitter exceeded when time synchronization requested
230 	 */
231 	    (time_status & STA_PPSTIME &&
232 	    time_status & STA_PPSJITTER) ||
233 
234 	/*
235 	 * PPS wander exceeded or calibration error when frequency
236 	 * synchronization requested
237 	 */
238 	    (time_status & STA_PPSFREQ &&
239 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
240 		return (1);
241 
242 	return (0);
243 }
244 
245 static void
246 ntp_gettime1(struct ntptimeval *ntvp)
247 {
248 	struct timespec atv;	/* nanosecond time */
249 
250 	GIANT_REQUIRED;
251 
252 	nanotime(&atv);
253 	ntvp->time.tv_sec = atv.tv_sec;
254 	ntvp->time.tv_nsec = atv.tv_nsec;
255 	ntvp->maxerror = time_maxerror;
256 	ntvp->esterror = time_esterror;
257 	ntvp->tai = time_tai;
258 	ntvp->time_state = time_state;
259 
260 	if (ntp_is_time_error())
261 		ntvp->time_state = TIME_ERROR;
262 }
263 
264 /*
265  * ntp_gettime() - NTP user application interface
266  *
267  * See the timex.h header file for synopsis and API description.  Note that
268  * the TAI offset is returned in the ntvtimeval.tai structure member.
269  */
270 #ifndef _SYS_SYSPROTO_H_
271 struct ntp_gettime_args {
272 	struct ntptimeval *ntvp;
273 };
274 #endif
275 /* ARGSUSED */
276 int
277 ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
278 {
279 	struct ntptimeval ntv;
280 
281 	mtx_lock(&Giant);
282 	ntp_gettime1(&ntv);
283 	mtx_unlock(&Giant);
284 
285 	td->td_retval[0] = ntv.time_state;
286 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
287 }
288 
289 static int
290 ntp_sysctl(SYSCTL_HANDLER_ARGS)
291 {
292 	struct ntptimeval ntv;	/* temporary structure */
293 
294 	ntp_gettime1(&ntv);
295 
296 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
297 }
298 
299 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
300 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
301 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
302 
303 #ifdef PPS_SYNC
304 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
305 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
306 SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
307     &time_monitor, 0, "");
308 
309 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
310 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
311 #endif
312 
313 /*
314  * ntp_adjtime() - NTP daemon application interface
315  *
316  * See the timex.h header file for synopsis and API description.  Note that
317  * the timex.constant structure member has a dual purpose to set the time
318  * constant and to set the TAI offset.
319  */
320 #ifndef _SYS_SYSPROTO_H_
321 struct ntp_adjtime_args {
322 	struct timex *tp;
323 };
324 #endif
325 
326 int
327 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
328 {
329 	struct timex ntv;	/* temporary structure */
330 	long freq;		/* frequency ns/s) */
331 	int modes;		/* mode bits from structure */
332 	int s;			/* caller priority */
333 	int error;
334 
335 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
336 	if (error)
337 		return(error);
338 
339 	/*
340 	 * Update selected clock variables - only the superuser can
341 	 * change anything. Note that there is no error checking here on
342 	 * the assumption the superuser should know what it is doing.
343 	 * Note that either the time constant or TAI offset are loaded
344 	 * from the ntv.constant member, depending on the mode bits. If
345 	 * the STA_PLL bit in the status word is cleared, the state and
346 	 * status words are reset to the initial values at boot.
347 	 */
348 	mtx_lock(&Giant);
349 	modes = ntv.modes;
350 	if (modes)
351 		error = priv_check(td, PRIV_NTP_ADJTIME);
352 	if (error)
353 		goto done2;
354 	s = splclock();
355 	if (modes & MOD_MAXERROR)
356 		time_maxerror = ntv.maxerror;
357 	if (modes & MOD_ESTERROR)
358 		time_esterror = ntv.esterror;
359 	if (modes & MOD_STATUS) {
360 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
361 			time_state = TIME_OK;
362 			time_status = STA_UNSYNC;
363 #ifdef PPS_SYNC
364 			pps_shift = PPS_FAVG;
365 #endif /* PPS_SYNC */
366 		}
367 		time_status &= STA_RONLY;
368 		time_status |= ntv.status & ~STA_RONLY;
369 	}
370 	if (modes & MOD_TIMECONST) {
371 		if (ntv.constant < 0)
372 			time_constant = 0;
373 		else if (ntv.constant > MAXTC)
374 			time_constant = MAXTC;
375 		else
376 			time_constant = ntv.constant;
377 	}
378 	if (modes & MOD_TAI) {
379 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
380 			time_tai = ntv.constant;
381 	}
382 #ifdef PPS_SYNC
383 	if (modes & MOD_PPSMAX) {
384 		if (ntv.shift < PPS_FAVG)
385 			pps_shiftmax = PPS_FAVG;
386 		else if (ntv.shift > PPS_FAVGMAX)
387 			pps_shiftmax = PPS_FAVGMAX;
388 		else
389 			pps_shiftmax = ntv.shift;
390 	}
391 #endif /* PPS_SYNC */
392 	if (modes & MOD_NANO)
393 		time_status |= STA_NANO;
394 	if (modes & MOD_MICRO)
395 		time_status &= ~STA_NANO;
396 	if (modes & MOD_CLKB)
397 		time_status |= STA_CLK;
398 	if (modes & MOD_CLKA)
399 		time_status &= ~STA_CLK;
400 	if (modes & MOD_FREQUENCY) {
401 		freq = (ntv.freq * 1000LL) >> 16;
402 		if (freq > MAXFREQ)
403 			L_LINT(time_freq, MAXFREQ);
404 		else if (freq < -MAXFREQ)
405 			L_LINT(time_freq, -MAXFREQ);
406 		else {
407 			/*
408 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
409 			 * time_freq is [ns/s * 2^32]
410 			 */
411 			time_freq = ntv.freq * 1000LL * 65536LL;
412 		}
413 #ifdef PPS_SYNC
414 		pps_freq = time_freq;
415 #endif /* PPS_SYNC */
416 	}
417 	if (modes & MOD_OFFSET) {
418 		if (time_status & STA_NANO)
419 			hardupdate(ntv.offset);
420 		else
421 			hardupdate(ntv.offset * 1000);
422 	}
423 
424 	/*
425 	 * Retrieve all clock variables. Note that the TAI offset is
426 	 * returned only by ntp_gettime();
427 	 */
428 	if (time_status & STA_NANO)
429 		ntv.offset = L_GINT(time_offset);
430 	else
431 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
432 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
433 	ntv.maxerror = time_maxerror;
434 	ntv.esterror = time_esterror;
435 	ntv.status = time_status;
436 	ntv.constant = time_constant;
437 	if (time_status & STA_NANO)
438 		ntv.precision = time_precision;
439 	else
440 		ntv.precision = time_precision / 1000;
441 	ntv.tolerance = MAXFREQ * SCALE_PPM;
442 #ifdef PPS_SYNC
443 	ntv.shift = pps_shift;
444 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
445 	if (time_status & STA_NANO)
446 		ntv.jitter = pps_jitter;
447 	else
448 		ntv.jitter = pps_jitter / 1000;
449 	ntv.stabil = pps_stabil;
450 	ntv.calcnt = pps_calcnt;
451 	ntv.errcnt = pps_errcnt;
452 	ntv.jitcnt = pps_jitcnt;
453 	ntv.stbcnt = pps_stbcnt;
454 #endif /* PPS_SYNC */
455 	splx(s);
456 
457 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
458 	if (error)
459 		goto done2;
460 
461 	if (ntp_is_time_error())
462 		td->td_retval[0] = TIME_ERROR;
463 	else
464 		td->td_retval[0] = time_state;
465 
466 done2:
467 	mtx_unlock(&Giant);
468 	return (error);
469 }
470 
471 /*
472  * second_overflow() - called after ntp_tick_adjust()
473  *
474  * This routine is ordinarily called immediately following the above
475  * routine ntp_tick_adjust(). While these two routines are normally
476  * combined, they are separated here only for the purposes of
477  * simulation.
478  */
479 void
480 ntp_update_second(int64_t *adjustment, time_t *newsec)
481 {
482 	int tickrate;
483 	l_fp ftemp;		/* 32/64-bit temporary */
484 
485 	/*
486 	 * On rollover of the second both the nanosecond and microsecond
487 	 * clocks are updated and the state machine cranked as
488 	 * necessary. The phase adjustment to be used for the next
489 	 * second is calculated and the maximum error is increased by
490 	 * the tolerance.
491 	 */
492 	time_maxerror += MAXFREQ / 1000;
493 
494 	/*
495 	 * Leap second processing. If in leap-insert state at
496 	 * the end of the day, the system clock is set back one
497 	 * second; if in leap-delete state, the system clock is
498 	 * set ahead one second. The nano_time() routine or
499 	 * external clock driver will insure that reported time
500 	 * is always monotonic.
501 	 */
502 	switch (time_state) {
503 
504 		/*
505 		 * No warning.
506 		 */
507 		case TIME_OK:
508 		if (time_status & STA_INS)
509 			time_state = TIME_INS;
510 		else if (time_status & STA_DEL)
511 			time_state = TIME_DEL;
512 		break;
513 
514 		/*
515 		 * Insert second 23:59:60 following second
516 		 * 23:59:59.
517 		 */
518 		case TIME_INS:
519 		if (!(time_status & STA_INS))
520 			time_state = TIME_OK;
521 		else if ((*newsec) % 86400 == 0) {
522 			(*newsec)--;
523 			time_state = TIME_OOP;
524 			time_tai++;
525 		}
526 		break;
527 
528 		/*
529 		 * Delete second 23:59:59.
530 		 */
531 		case TIME_DEL:
532 		if (!(time_status & STA_DEL))
533 			time_state = TIME_OK;
534 		else if (((*newsec) + 1) % 86400 == 0) {
535 			(*newsec)++;
536 			time_tai--;
537 			time_state = TIME_WAIT;
538 		}
539 		break;
540 
541 		/*
542 		 * Insert second in progress.
543 		 */
544 		case TIME_OOP:
545 			time_state = TIME_WAIT;
546 		break;
547 
548 		/*
549 		 * Wait for status bits to clear.
550 		 */
551 		case TIME_WAIT:
552 		if (!(time_status & (STA_INS | STA_DEL)))
553 			time_state = TIME_OK;
554 	}
555 
556 	/*
557 	 * Compute the total time adjustment for the next second
558 	 * in ns. The offset is reduced by a factor depending on
559 	 * whether the PPS signal is operating. Note that the
560 	 * value is in effect scaled by the clock frequency,
561 	 * since the adjustment is added at each tick interrupt.
562 	 */
563 	ftemp = time_offset;
564 #ifdef PPS_SYNC
565 	/* XXX even if PPS signal dies we should finish adjustment ? */
566 	if (time_status & STA_PPSTIME && time_status &
567 	    STA_PPSSIGNAL)
568 		L_RSHIFT(ftemp, pps_shift);
569 	else
570 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
571 #else
572 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
573 #endif /* PPS_SYNC */
574 	time_adj = ftemp;
575 	L_SUB(time_offset, ftemp);
576 	L_ADD(time_adj, time_freq);
577 
578 	/*
579 	 * Apply any correction from adjtime(2).  If more than one second
580 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
581 	 * until the last second is slewed the final < 500 usecs.
582 	 */
583 	if (time_adjtime != 0) {
584 		if (time_adjtime > 1000000)
585 			tickrate = 5000;
586 		else if (time_adjtime < -1000000)
587 			tickrate = -5000;
588 		else if (time_adjtime > 500)
589 			tickrate = 500;
590 		else if (time_adjtime < -500)
591 			tickrate = -500;
592 		else
593 			tickrate = time_adjtime;
594 		time_adjtime -= tickrate;
595 		L_LINT(ftemp, tickrate * 1000);
596 		L_ADD(time_adj, ftemp);
597 	}
598 	*adjustment = time_adj;
599 
600 #ifdef PPS_SYNC
601 	if (pps_valid > 0)
602 		pps_valid--;
603 	else
604 		time_status &= ~STA_PPSSIGNAL;
605 #endif /* PPS_SYNC */
606 }
607 
608 /*
609  * ntp_init() - initialize variables and structures
610  *
611  * This routine must be called after the kernel variables hz and tick
612  * are set or changed and before the next tick interrupt. In this
613  * particular implementation, these values are assumed set elsewhere in
614  * the kernel. The design allows the clock frequency and tick interval
615  * to be changed while the system is running. So, this routine should
616  * probably be integrated with the code that does that.
617  */
618 static void
619 ntp_init()
620 {
621 
622 	/*
623 	 * The following variables are initialized only at startup. Only
624 	 * those structures not cleared by the compiler need to be
625 	 * initialized, and these only in the simulator. In the actual
626 	 * kernel, any nonzero values here will quickly evaporate.
627 	 */
628 	L_CLR(time_offset);
629 	L_CLR(time_freq);
630 #ifdef PPS_SYNC
631 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
632 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
633 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
634 	pps_fcount = 0;
635 	L_CLR(pps_freq);
636 #endif /* PPS_SYNC */
637 }
638 
639 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
640 
641 /*
642  * hardupdate() - local clock update
643  *
644  * This routine is called by ntp_adjtime() to update the local clock
645  * phase and frequency. The implementation is of an adaptive-parameter,
646  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
647  * time and frequency offset estimates for each call. If the kernel PPS
648  * discipline code is configured (PPS_SYNC), the PPS signal itself
649  * determines the new time offset, instead of the calling argument.
650  * Presumably, calls to ntp_adjtime() occur only when the caller
651  * believes the local clock is valid within some bound (+-128 ms with
652  * NTP). If the caller's time is far different than the PPS time, an
653  * argument will ensue, and it's not clear who will lose.
654  *
655  * For uncompensated quartz crystal oscillators and nominal update
656  * intervals less than 256 s, operation should be in phase-lock mode,
657  * where the loop is disciplined to phase. For update intervals greater
658  * than 1024 s, operation should be in frequency-lock mode, where the
659  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
660  * is selected by the STA_MODE status bit.
661  */
662 static void
663 hardupdate(offset)
664 	long offset;		/* clock offset (ns) */
665 {
666 	long mtemp;
667 	l_fp ftemp;
668 
669 	/*
670 	 * Select how the phase is to be controlled and from which
671 	 * source. If the PPS signal is present and enabled to
672 	 * discipline the time, the PPS offset is used; otherwise, the
673 	 * argument offset is used.
674 	 */
675 	if (!(time_status & STA_PLL))
676 		return;
677 	if (!(time_status & STA_PPSTIME && time_status &
678 	    STA_PPSSIGNAL)) {
679 		if (offset > MAXPHASE)
680 			time_monitor = MAXPHASE;
681 		else if (offset < -MAXPHASE)
682 			time_monitor = -MAXPHASE;
683 		else
684 			time_monitor = offset;
685 		L_LINT(time_offset, time_monitor);
686 	}
687 
688 	/*
689 	 * Select how the frequency is to be controlled and in which
690 	 * mode (PLL or FLL). If the PPS signal is present and enabled
691 	 * to discipline the frequency, the PPS frequency is used;
692 	 * otherwise, the argument offset is used to compute it.
693 	 */
694 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
695 		time_reftime = time_second;
696 		return;
697 	}
698 	if (time_status & STA_FREQHOLD || time_reftime == 0)
699 		time_reftime = time_second;
700 	mtemp = time_second - time_reftime;
701 	L_LINT(ftemp, time_monitor);
702 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
703 	L_MPY(ftemp, mtemp);
704 	L_ADD(time_freq, ftemp);
705 	time_status &= ~STA_MODE;
706 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
707 	    MAXSEC)) {
708 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
709 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
710 		L_ADD(time_freq, ftemp);
711 		time_status |= STA_MODE;
712 	}
713 	time_reftime = time_second;
714 	if (L_GINT(time_freq) > MAXFREQ)
715 		L_LINT(time_freq, MAXFREQ);
716 	else if (L_GINT(time_freq) < -MAXFREQ)
717 		L_LINT(time_freq, -MAXFREQ);
718 }
719 
720 #ifdef PPS_SYNC
721 /*
722  * hardpps() - discipline CPU clock oscillator to external PPS signal
723  *
724  * This routine is called at each PPS interrupt in order to discipline
725  * the CPU clock oscillator to the PPS signal. There are two independent
726  * first-order feedback loops, one for the phase, the other for the
727  * frequency. The phase loop measures and grooms the PPS phase offset
728  * and leaves it in a handy spot for the seconds overflow routine. The
729  * frequency loop averages successive PPS phase differences and
730  * calculates the PPS frequency offset, which is also processed by the
731  * seconds overflow routine. The code requires the caller to capture the
732  * time and architecture-dependent hardware counter values in
733  * nanoseconds at the on-time PPS signal transition.
734  *
735  * Note that, on some Unix systems this routine runs at an interrupt
736  * priority level higher than the timer interrupt routine hardclock().
737  * Therefore, the variables used are distinct from the hardclock()
738  * variables, except for the actual time and frequency variables, which
739  * are determined by this routine and updated atomically.
740  */
741 void
742 hardpps(tsp, nsec)
743 	struct timespec *tsp;	/* time at PPS */
744 	long nsec;		/* hardware counter at PPS */
745 {
746 	long u_sec, u_nsec, v_nsec; /* temps */
747 	l_fp ftemp;
748 
749 	/*
750 	 * The signal is first processed by a range gate and frequency
751 	 * discriminator. The range gate rejects noise spikes outside
752 	 * the range +-500 us. The frequency discriminator rejects input
753 	 * signals with apparent frequency outside the range 1 +-500
754 	 * PPM. If two hits occur in the same second, we ignore the
755 	 * later hit; if not and a hit occurs outside the range gate,
756 	 * keep the later hit for later comparison, but do not process
757 	 * it.
758 	 */
759 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
760 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
761 	pps_valid = PPS_VALID;
762 	u_sec = tsp->tv_sec;
763 	u_nsec = tsp->tv_nsec;
764 	if (u_nsec >= (NANOSECOND >> 1)) {
765 		u_nsec -= NANOSECOND;
766 		u_sec++;
767 	}
768 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
769 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
770 	    MAXFREQ)
771 		return;
772 	pps_tf[2] = pps_tf[1];
773 	pps_tf[1] = pps_tf[0];
774 	pps_tf[0].tv_sec = u_sec;
775 	pps_tf[0].tv_nsec = u_nsec;
776 
777 	/*
778 	 * Compute the difference between the current and previous
779 	 * counter values. If the difference exceeds 0.5 s, assume it
780 	 * has wrapped around, so correct 1.0 s. If the result exceeds
781 	 * the tick interval, the sample point has crossed a tick
782 	 * boundary during the last second, so correct the tick. Very
783 	 * intricate.
784 	 */
785 	u_nsec = nsec;
786 	if (u_nsec > (NANOSECOND >> 1))
787 		u_nsec -= NANOSECOND;
788 	else if (u_nsec < -(NANOSECOND >> 1))
789 		u_nsec += NANOSECOND;
790 	pps_fcount += u_nsec;
791 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
792 		return;
793 	time_status &= ~STA_PPSJITTER;
794 
795 	/*
796 	 * A three-stage median filter is used to help denoise the PPS
797 	 * time. The median sample becomes the time offset estimate; the
798 	 * difference between the other two samples becomes the time
799 	 * dispersion (jitter) estimate.
800 	 */
801 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
802 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
803 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
804 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
805 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
806 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
807 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
808 		} else {
809 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
810 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
811 		}
812 	} else {
813 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
814 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
815 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
816 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
817 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
818 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
819 		} else {
820 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
821 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
822 		}
823 	}
824 
825 	/*
826 	 * Nominal jitter is due to PPS signal noise and interrupt
827 	 * latency. If it exceeds the popcorn threshold, the sample is
828 	 * discarded. otherwise, if so enabled, the time offset is
829 	 * updated. We can tolerate a modest loss of data here without
830 	 * much degrading time accuracy.
831 	 */
832 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
833 		time_status |= STA_PPSJITTER;
834 		pps_jitcnt++;
835 	} else if (time_status & STA_PPSTIME) {
836 		time_monitor = -v_nsec;
837 		L_LINT(time_offset, time_monitor);
838 	}
839 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
840 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
841 	if (u_sec < (1 << pps_shift))
842 		return;
843 
844 	/*
845 	 * At the end of the calibration interval the difference between
846 	 * the first and last counter values becomes the scaled
847 	 * frequency. It will later be divided by the length of the
848 	 * interval to determine the frequency update. If the frequency
849 	 * exceeds a sanity threshold, or if the actual calibration
850 	 * interval is not equal to the expected length, the data are
851 	 * discarded. We can tolerate a modest loss of data here without
852 	 * much degrading frequency accuracy.
853 	 */
854 	pps_calcnt++;
855 	v_nsec = -pps_fcount;
856 	pps_lastsec = pps_tf[0].tv_sec;
857 	pps_fcount = 0;
858 	u_nsec = MAXFREQ << pps_shift;
859 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
860 	    pps_shift)) {
861 		time_status |= STA_PPSERROR;
862 		pps_errcnt++;
863 		return;
864 	}
865 
866 	/*
867 	 * Here the raw frequency offset and wander (stability) is
868 	 * calculated. If the wander is less than the wander threshold
869 	 * for four consecutive averaging intervals, the interval is
870 	 * doubled; if it is greater than the threshold for four
871 	 * consecutive intervals, the interval is halved. The scaled
872 	 * frequency offset is converted to frequency offset. The
873 	 * stability metric is calculated as the average of recent
874 	 * frequency changes, but is used only for performance
875 	 * monitoring.
876 	 */
877 	L_LINT(ftemp, v_nsec);
878 	L_RSHIFT(ftemp, pps_shift);
879 	L_SUB(ftemp, pps_freq);
880 	u_nsec = L_GINT(ftemp);
881 	if (u_nsec > PPS_MAXWANDER) {
882 		L_LINT(ftemp, PPS_MAXWANDER);
883 		pps_intcnt--;
884 		time_status |= STA_PPSWANDER;
885 		pps_stbcnt++;
886 	} else if (u_nsec < -PPS_MAXWANDER) {
887 		L_LINT(ftemp, -PPS_MAXWANDER);
888 		pps_intcnt--;
889 		time_status |= STA_PPSWANDER;
890 		pps_stbcnt++;
891 	} else {
892 		pps_intcnt++;
893 	}
894 	if (pps_intcnt >= 4) {
895 		pps_intcnt = 4;
896 		if (pps_shift < pps_shiftmax) {
897 			pps_shift++;
898 			pps_intcnt = 0;
899 		}
900 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
901 		pps_intcnt = -4;
902 		if (pps_shift > PPS_FAVG) {
903 			pps_shift--;
904 			pps_intcnt = 0;
905 		}
906 	}
907 	if (u_nsec < 0)
908 		u_nsec = -u_nsec;
909 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
910 
911 	/*
912 	 * The PPS frequency is recalculated and clamped to the maximum
913 	 * MAXFREQ. If enabled, the system clock frequency is updated as
914 	 * well.
915 	 */
916 	L_ADD(pps_freq, ftemp);
917 	u_nsec = L_GINT(pps_freq);
918 	if (u_nsec > MAXFREQ)
919 		L_LINT(pps_freq, MAXFREQ);
920 	else if (u_nsec < -MAXFREQ)
921 		L_LINT(pps_freq, -MAXFREQ);
922 	if (time_status & STA_PPSFREQ)
923 		time_freq = pps_freq;
924 }
925 #endif /* PPS_SYNC */
926 
927 #ifndef _SYS_SYSPROTO_H_
928 struct adjtime_args {
929 	struct timeval *delta;
930 	struct timeval *olddelta;
931 };
932 #endif
933 /* ARGSUSED */
934 int
935 adjtime(struct thread *td, struct adjtime_args *uap)
936 {
937 	struct timeval delta, olddelta, *deltap;
938 	int error;
939 
940 	if (uap->delta) {
941 		error = copyin(uap->delta, &delta, sizeof(delta));
942 		if (error)
943 			return (error);
944 		deltap = &delta;
945 	} else
946 		deltap = NULL;
947 	error = kern_adjtime(td, deltap, &olddelta);
948 	if (uap->olddelta && error == 0)
949 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
950 	return (error);
951 }
952 
953 int
954 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
955 {
956 	struct timeval atv;
957 	int error;
958 
959 	mtx_lock(&Giant);
960 	if (olddelta) {
961 		atv.tv_sec = time_adjtime / 1000000;
962 		atv.tv_usec = time_adjtime % 1000000;
963 		if (atv.tv_usec < 0) {
964 			atv.tv_usec += 1000000;
965 			atv.tv_sec--;
966 		}
967 		*olddelta = atv;
968 	}
969 	if (delta) {
970 		if ((error = priv_check(td, PRIV_ADJTIME))) {
971 			mtx_unlock(&Giant);
972 			return (error);
973 		}
974 		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
975 		    delta->tv_usec;
976 	}
977 	mtx_unlock(&Giant);
978 	return (0);
979 }
980 
981 static struct callout resettodr_callout;
982 static int resettodr_period = 1800;
983 
984 static void
985 periodic_resettodr(void *arg __unused)
986 {
987 
988 	if (!ntp_is_time_error()) {
989 		mtx_lock(&Giant);
990 		resettodr();
991 		mtx_unlock(&Giant);
992 	}
993 	if (resettodr_period > 0)
994 		callout_schedule(&resettodr_callout, resettodr_period * hz);
995 }
996 
997 static void
998 shutdown_resettodr(void *arg __unused, int howto __unused)
999 {
1000 
1001 	callout_drain(&resettodr_callout);
1002 	if (resettodr_period > 0 && !ntp_is_time_error()) {
1003 		mtx_lock(&Giant);
1004 		resettodr();
1005 		mtx_unlock(&Giant);
1006 	}
1007 }
1008 
1009 static int
1010 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1011 {
1012 	int error;
1013 
1014 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1015 	if (error || !req->newptr)
1016 		return (error);
1017 	if (resettodr_period == 0)
1018 		callout_stop(&resettodr_callout);
1019 	else
1020 		callout_reset(&resettodr_callout, resettodr_period * hz,
1021 		    periodic_resettodr, NULL);
1022 	return (0);
1023 }
1024 
1025 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
1026 	&resettodr_period, 1800, sysctl_resettodr_period, "I",
1027 	"Save system time to RTC with this period (in seconds)");
1028 TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
1029 
1030 static void
1031 start_periodic_resettodr(void *arg __unused)
1032 {
1033 
1034 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1035 	    SHUTDOWN_PRI_FIRST);
1036 	callout_init(&resettodr_callout, 1);
1037 	if (resettodr_period == 0)
1038 		return;
1039 	callout_reset(&resettodr_callout, resettodr_period * hz,
1040 	    periodic_resettodr, NULL);
1041 }
1042 
1043 SYSINIT(periodic_resettodr, SI_SUB_RUN_SCHEDULER, SI_ORDER_MIDDLE,
1044 	start_periodic_resettodr, NULL);
1045