xref: /freebsd/sys/kern/kern_ntptime.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  ***********************************************************************
3  *								       *
4  * Copyright (c) David L. Mills 1993-2001			       *
5  *								       *
6  * Permission to use, copy, modify, and distribute this software and   *
7  * its documentation for any purpose and without fee is hereby	       *
8  * granted, provided that the above copyright notice appears in all    *
9  * copies and that both the copyright notice and this permission       *
10  * notice appear in supporting documentation, and that the name	       *
11  * University of Delaware not be used in advertising or publicity      *
12  * pertaining to distribution of the software without specific,	       *
13  * written prior permission. The University of Delaware makes no       *
14  * representations about the suitability this software for any	       *
15  * purpose. It is provided "as is" without express or implied	       *
16  * warranty.							       *
17  *								       *
18  **********************************************************************/
19 
20 /*
21  * Adapted from the original sources for FreeBSD and timecounters by:
22  * Poul-Henning Kamp <phk@FreeBSD.org>.
23  *
24  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25  * date so I have retained only the 64bit version and included it directly
26  * in this file.
27  *
28  * Only minor changes done to interface with the timecounters over in
29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30  * confusing and/or plain wrong in that context.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ntp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/time.h>
46 #include <sys/timex.h>
47 #include <sys/timetc.h>
48 #include <sys/timepps.h>
49 #include <sys/syscallsubr.h>
50 #include <sys/sysctl.h>
51 
52 /*
53  * Single-precision macros for 64-bit machines
54  */
55 typedef int64_t l_fp;
56 #define L_ADD(v, u)	((v) += (u))
57 #define L_SUB(v, u)	((v) -= (u))
58 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
59 #define L_NEG(v)	((v) = -(v))
60 #define L_RSHIFT(v, n) \
61 	do { \
62 		if ((v) < 0) \
63 			(v) = -(-(v) >> (n)); \
64 		else \
65 			(v) = (v) >> (n); \
66 	} while (0)
67 #define L_MPY(v, a)	((v) *= (a))
68 #define L_CLR(v)	((v) = 0)
69 #define L_ISNEG(v)	((v) < 0)
70 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
71 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
72 
73 /*
74  * Generic NTP kernel interface
75  *
76  * These routines constitute the Network Time Protocol (NTP) interfaces
77  * for user and daemon application programs. The ntp_gettime() routine
78  * provides the time, maximum error (synch distance) and estimated error
79  * (dispersion) to client user application programs. The ntp_adjtime()
80  * routine is used by the NTP daemon to adjust the system clock to an
81  * externally derived time. The time offset and related variables set by
82  * this routine are used by other routines in this module to adjust the
83  * phase and frequency of the clock discipline loop which controls the
84  * system clock.
85  *
86  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
87  * defined), the time at each tick interrupt is derived directly from
88  * the kernel time variable. When the kernel time is reckoned in
89  * microseconds, (NTP_NANO undefined), the time is derived from the
90  * kernel time variable together with a variable representing the
91  * leftover nanoseconds at the last tick interrupt. In either case, the
92  * current nanosecond time is reckoned from these values plus an
93  * interpolated value derived by the clock routines in another
94  * architecture-specific module. The interpolation can use either a
95  * dedicated counter or a processor cycle counter (PCC) implemented in
96  * some architectures.
97  *
98  * Note that all routines must run at priority splclock or higher.
99  */
100 /*
101  * Phase/frequency-lock loop (PLL/FLL) definitions
102  *
103  * The nanosecond clock discipline uses two variable types, time
104  * variables and frequency variables. Both types are represented as 64-
105  * bit fixed-point quantities with the decimal point between two 32-bit
106  * halves. On a 32-bit machine, each half is represented as a single
107  * word and mathematical operations are done using multiple-precision
108  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
109  * used.
110  *
111  * A time variable is a signed 64-bit fixed-point number in ns and
112  * fraction. It represents the remaining time offset to be amortized
113  * over succeeding tick interrupts. The maximum time offset is about
114  * 0.5 s and the resolution is about 2.3e-10 ns.
115  *
116  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
117  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
118  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119  * |s s s|			 ns				   |
120  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121  * |			    fraction				   |
122  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
123  *
124  * A frequency variable is a signed 64-bit fixed-point number in ns/s
125  * and fraction. It represents the ns and fraction to be added to the
126  * kernel time variable at each second. The maximum frequency offset is
127  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
128  *
129  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
130  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132  * |s s s s s s s s s s s s s|	          ns/s			   |
133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134  * |			    fraction				   |
135  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136  */
137 /*
138  * The following variables establish the state of the PLL/FLL and the
139  * residual time and frequency offset of the local clock.
140  */
141 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
142 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
143 
144 static int time_state = TIME_OK;	/* clock state */
145 static int time_status = STA_UNSYNC;	/* clock status bits */
146 static long time_tai;			/* TAI offset (s) */
147 static long time_monitor;		/* last time offset scaled (ns) */
148 static long time_constant;		/* poll interval (shift) (s) */
149 static long time_precision = 1;		/* clock precision (ns) */
150 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
151 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
152 static long time_reftime;		/* time at last adjustment (s) */
153 static l_fp time_offset;		/* time offset (ns) */
154 static l_fp time_freq;			/* frequency offset (ns/s) */
155 static l_fp time_adj;			/* tick adjust (ns/s) */
156 
157 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
158 
159 #ifdef PPS_SYNC
160 /*
161  * The following variables are used when a pulse-per-second (PPS) signal
162  * is available and connected via a modem control lead. They establish
163  * the engineering parameters of the clock discipline loop when
164  * controlled by the PPS signal.
165  */
166 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
167 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
168 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
169 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
170 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
171 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
172 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
173 
174 static struct timespec pps_tf[3];	/* phase median filter */
175 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
176 static long pps_fcount;			/* frequency accumulator */
177 static long pps_jitter;			/* nominal jitter (ns) */
178 static long pps_stabil;			/* nominal stability (scaled ns/s) */
179 static long pps_lastsec;		/* time at last calibration (s) */
180 static int pps_valid;			/* signal watchdog counter */
181 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
182 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
183 static int pps_intcnt;			/* wander counter */
184 
185 /*
186  * PPS signal quality monitors
187  */
188 static long pps_calcnt;			/* calibration intervals */
189 static long pps_jitcnt;			/* jitter limit exceeded */
190 static long pps_stbcnt;			/* stability limit exceeded */
191 static long pps_errcnt;			/* calibration errors */
192 #endif /* PPS_SYNC */
193 /*
194  * End of phase/frequency-lock loop (PLL/FLL) definitions
195  */
196 
197 static void ntp_init(void);
198 static void hardupdate(long offset);
199 static void ntp_gettime1(struct ntptimeval *ntvp);
200 
201 static void
202 ntp_gettime1(struct ntptimeval *ntvp)
203 {
204 	struct timespec atv;	/* nanosecond time */
205 
206 	GIANT_REQUIRED;
207 
208 	nanotime(&atv);
209 	ntvp->time.tv_sec = atv.tv_sec;
210 	ntvp->time.tv_nsec = atv.tv_nsec;
211 	ntvp->maxerror = time_maxerror;
212 	ntvp->esterror = time_esterror;
213 	ntvp->tai = time_tai;
214 	ntvp->time_state = time_state;
215 
216 	/*
217 	 * Status word error decode. If any of these conditions occur,
218 	 * an error is returned, instead of the status word. Most
219 	 * applications will care only about the fact the system clock
220 	 * may not be trusted, not about the details.
221 	 *
222 	 * Hardware or software error
223 	 */
224 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
225 
226 	/*
227 	 * PPS signal lost when either time or frequency synchronization
228 	 * requested
229 	 */
230 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
231 	    !(time_status & STA_PPSSIGNAL)) ||
232 
233 	/*
234 	 * PPS jitter exceeded when time synchronization requested
235 	 */
236 	    (time_status & STA_PPSTIME &&
237 	    time_status & STA_PPSJITTER) ||
238 
239 	/*
240 	 * PPS wander exceeded or calibration error when frequency
241 	 * synchronization requested
242 	 */
243 	    (time_status & STA_PPSFREQ &&
244 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
245 		ntvp->time_state = TIME_ERROR;
246 }
247 
248 /*
249  * ntp_gettime() - NTP user application interface
250  *
251  * See the timex.h header file for synopsis and API description. Note
252  * that the TAI offset is returned in the ntvtimeval.tai structure
253  * member.
254  */
255 #ifndef _SYS_SYSPROTO_H_
256 struct ntp_gettime_args {
257 	struct ntptimeval *ntvp;
258 };
259 #endif
260 /* ARGSUSED */
261 int
262 ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
263 {
264 	struct ntptimeval ntv;
265 
266 	mtx_lock(&Giant);
267 	ntp_gettime1(&ntv);
268 	mtx_unlock(&Giant);
269 
270 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
271 }
272 
273 static int
274 ntp_sysctl(SYSCTL_HANDLER_ARGS)
275 {
276 	struct ntptimeval ntv;	/* temporary structure */
277 
278 	ntp_gettime1(&ntv);
279 
280 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
281 }
282 
283 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
284 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
285 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
286 
287 #ifdef PPS_SYNC
288 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
289 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
290 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
291 
292 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
293 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
294 #endif
295 /*
296  * ntp_adjtime() - NTP daemon application interface
297  *
298  * See the timex.h header file for synopsis and API description. Note
299  * that the timex.constant structure member has a dual purpose to set
300  * the time constant and to set the TAI offset.
301  */
302 #ifndef _SYS_SYSPROTO_H_
303 struct ntp_adjtime_args {
304 	struct timex *tp;
305 };
306 #endif
307 
308 /*
309  * MPSAFE
310  */
311 int
312 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
313 {
314 	struct timex ntv;	/* temporary structure */
315 	long freq;		/* frequency ns/s) */
316 	int modes;		/* mode bits from structure */
317 	int s;			/* caller priority */
318 	int error;
319 
320 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
321 	if (error)
322 		return(error);
323 
324 	/*
325 	 * Update selected clock variables - only the superuser can
326 	 * change anything. Note that there is no error checking here on
327 	 * the assumption the superuser should know what it is doing.
328 	 * Note that either the time constant or TAI offset are loaded
329 	 * from the ntv.constant member, depending on the mode bits. If
330 	 * the STA_PLL bit in the status word is cleared, the state and
331 	 * status words are reset to the initial values at boot.
332 	 */
333 	mtx_lock(&Giant);
334 	modes = ntv.modes;
335 	if (modes)
336 		error = suser(td);
337 	if (error)
338 		goto done2;
339 	s = splclock();
340 	if (modes & MOD_MAXERROR)
341 		time_maxerror = ntv.maxerror;
342 	if (modes & MOD_ESTERROR)
343 		time_esterror = ntv.esterror;
344 	if (modes & MOD_STATUS) {
345 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
346 			time_state = TIME_OK;
347 			time_status = STA_UNSYNC;
348 #ifdef PPS_SYNC
349 			pps_shift = PPS_FAVG;
350 #endif /* PPS_SYNC */
351 		}
352 		time_status &= STA_RONLY;
353 		time_status |= ntv.status & ~STA_RONLY;
354 	}
355 	if (modes & MOD_TIMECONST) {
356 		if (ntv.constant < 0)
357 			time_constant = 0;
358 		else if (ntv.constant > MAXTC)
359 			time_constant = MAXTC;
360 		else
361 			time_constant = ntv.constant;
362 	}
363 	if (modes & MOD_TAI) {
364 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
365 			time_tai = ntv.constant;
366 	}
367 #ifdef PPS_SYNC
368 	if (modes & MOD_PPSMAX) {
369 		if (ntv.shift < PPS_FAVG)
370 			pps_shiftmax = PPS_FAVG;
371 		else if (ntv.shift > PPS_FAVGMAX)
372 			pps_shiftmax = PPS_FAVGMAX;
373 		else
374 			pps_shiftmax = ntv.shift;
375 	}
376 #endif /* PPS_SYNC */
377 	if (modes & MOD_NANO)
378 		time_status |= STA_NANO;
379 	if (modes & MOD_MICRO)
380 		time_status &= ~STA_NANO;
381 	if (modes & MOD_CLKB)
382 		time_status |= STA_CLK;
383 	if (modes & MOD_CLKA)
384 		time_status &= ~STA_CLK;
385 	if (modes & MOD_FREQUENCY) {
386 		freq = (ntv.freq * 1000LL) >> 16;
387 		if (freq > MAXFREQ)
388 			L_LINT(time_freq, MAXFREQ);
389 		else if (freq < -MAXFREQ)
390 			L_LINT(time_freq, -MAXFREQ);
391 		else {
392 			/*
393 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
394 			 * time_freq is [ns/s * 2^32]
395 			 */
396 			time_freq = ntv.freq * 1000LL * 65536LL;
397 		}
398 #ifdef PPS_SYNC
399 		pps_freq = time_freq;
400 #endif /* PPS_SYNC */
401 	}
402 	if (modes & MOD_OFFSET) {
403 		if (time_status & STA_NANO)
404 			hardupdate(ntv.offset);
405 		else
406 			hardupdate(ntv.offset * 1000);
407 	}
408 
409 	/*
410 	 * Retrieve all clock variables. Note that the TAI offset is
411 	 * returned only by ntp_gettime();
412 	 */
413 	if (time_status & STA_NANO)
414 		ntv.offset = L_GINT(time_offset);
415 	else
416 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
417 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
418 	ntv.maxerror = time_maxerror;
419 	ntv.esterror = time_esterror;
420 	ntv.status = time_status;
421 	ntv.constant = time_constant;
422 	if (time_status & STA_NANO)
423 		ntv.precision = time_precision;
424 	else
425 		ntv.precision = time_precision / 1000;
426 	ntv.tolerance = MAXFREQ * SCALE_PPM;
427 #ifdef PPS_SYNC
428 	ntv.shift = pps_shift;
429 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
430 	if (time_status & STA_NANO)
431 		ntv.jitter = pps_jitter;
432 	else
433 		ntv.jitter = pps_jitter / 1000;
434 	ntv.stabil = pps_stabil;
435 	ntv.calcnt = pps_calcnt;
436 	ntv.errcnt = pps_errcnt;
437 	ntv.jitcnt = pps_jitcnt;
438 	ntv.stbcnt = pps_stbcnt;
439 #endif /* PPS_SYNC */
440 	splx(s);
441 
442 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
443 	if (error)
444 		goto done2;
445 
446 	/*
447 	 * Status word error decode. See comments in
448 	 * ntp_gettime() routine.
449 	 */
450 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
451 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
452 	    !(time_status & STA_PPSSIGNAL)) ||
453 	    (time_status & STA_PPSTIME &&
454 	    time_status & STA_PPSJITTER) ||
455 	    (time_status & STA_PPSFREQ &&
456 	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
457 		td->td_retval[0] = TIME_ERROR;
458 	} else {
459 		td->td_retval[0] = time_state;
460 	}
461 done2:
462 	mtx_unlock(&Giant);
463 	return (error);
464 }
465 
466 /*
467  * second_overflow() - called after ntp_tick_adjust()
468  *
469  * This routine is ordinarily called immediately following the above
470  * routine ntp_tick_adjust(). While these two routines are normally
471  * combined, they are separated here only for the purposes of
472  * simulation.
473  */
474 void
475 ntp_update_second(int64_t *adjustment, time_t *newsec)
476 {
477 	int tickrate;
478 	l_fp ftemp;		/* 32/64-bit temporary */
479 
480 	/*
481 	 * On rollover of the second both the nanosecond and microsecond
482 	 * clocks are updated and the state machine cranked as
483 	 * necessary. The phase adjustment to be used for the next
484 	 * second is calculated and the maximum error is increased by
485 	 * the tolerance.
486 	 */
487 	time_maxerror += MAXFREQ / 1000;
488 
489 	/*
490 	 * Leap second processing. If in leap-insert state at
491 	 * the end of the day, the system clock is set back one
492 	 * second; if in leap-delete state, the system clock is
493 	 * set ahead one second. The nano_time() routine or
494 	 * external clock driver will insure that reported time
495 	 * is always monotonic.
496 	 */
497 	switch (time_state) {
498 
499 		/*
500 		 * No warning.
501 		 */
502 		case TIME_OK:
503 		if (time_status & STA_INS)
504 			time_state = TIME_INS;
505 		else if (time_status & STA_DEL)
506 			time_state = TIME_DEL;
507 		break;
508 
509 		/*
510 		 * Insert second 23:59:60 following second
511 		 * 23:59:59.
512 		 */
513 		case TIME_INS:
514 		if (!(time_status & STA_INS))
515 			time_state = TIME_OK;
516 		else if ((*newsec) % 86400 == 0) {
517 			(*newsec)--;
518 			time_state = TIME_OOP;
519 			time_tai++;
520 		}
521 		break;
522 
523 		/*
524 		 * Delete second 23:59:59.
525 		 */
526 		case TIME_DEL:
527 		if (!(time_status & STA_DEL))
528 			time_state = TIME_OK;
529 		else if (((*newsec) + 1) % 86400 == 0) {
530 			(*newsec)++;
531 			time_tai--;
532 			time_state = TIME_WAIT;
533 		}
534 		break;
535 
536 		/*
537 		 * Insert second in progress.
538 		 */
539 		case TIME_OOP:
540 			time_state = TIME_WAIT;
541 		break;
542 
543 		/*
544 		 * Wait for status bits to clear.
545 		 */
546 		case TIME_WAIT:
547 		if (!(time_status & (STA_INS | STA_DEL)))
548 			time_state = TIME_OK;
549 	}
550 
551 	/*
552 	 * Compute the total time adjustment for the next second
553 	 * in ns. The offset is reduced by a factor depending on
554 	 * whether the PPS signal is operating. Note that the
555 	 * value is in effect scaled by the clock frequency,
556 	 * since the adjustment is added at each tick interrupt.
557 	 */
558 	ftemp = time_offset;
559 #ifdef PPS_SYNC
560 	/* XXX even if PPS signal dies we should finish adjustment ? */
561 	if (time_status & STA_PPSTIME && time_status &
562 	    STA_PPSSIGNAL)
563 		L_RSHIFT(ftemp, pps_shift);
564 	else
565 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
566 #else
567 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
568 #endif /* PPS_SYNC */
569 	time_adj = ftemp;
570 	L_SUB(time_offset, ftemp);
571 	L_ADD(time_adj, time_freq);
572 
573 	/*
574 	 * Apply any correction from adjtime(2).  If more than one second
575 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
576 	 * until the last second is slewed the final < 500 usecs.
577 	 */
578 	if (time_adjtime != 0) {
579 		if (time_adjtime > 1000000)
580 			tickrate = 5000;
581 		else if (time_adjtime < -1000000)
582 			tickrate = -5000;
583 		else if (time_adjtime > 500)
584 			tickrate = 500;
585 		else if (time_adjtime < -500)
586 			tickrate = -500;
587 		else
588 			tickrate = time_adjtime;
589 		time_adjtime -= tickrate;
590 		L_LINT(ftemp, tickrate * 1000);
591 		L_ADD(time_adj, ftemp);
592 	}
593 	*adjustment = time_adj;
594 
595 #ifdef PPS_SYNC
596 	if (pps_valid > 0)
597 		pps_valid--;
598 	else
599 		time_status &= ~STA_PPSSIGNAL;
600 #endif /* PPS_SYNC */
601 }
602 
603 /*
604  * ntp_init() - initialize variables and structures
605  *
606  * This routine must be called after the kernel variables hz and tick
607  * are set or changed and before the next tick interrupt. In this
608  * particular implementation, these values are assumed set elsewhere in
609  * the kernel. The design allows the clock frequency and tick interval
610  * to be changed while the system is running. So, this routine should
611  * probably be integrated with the code that does that.
612  */
613 static void
614 ntp_init()
615 {
616 
617 	/*
618 	 * The following variables are initialized only at startup. Only
619 	 * those structures not cleared by the compiler need to be
620 	 * initialized, and these only in the simulator. In the actual
621 	 * kernel, any nonzero values here will quickly evaporate.
622 	 */
623 	L_CLR(time_offset);
624 	L_CLR(time_freq);
625 #ifdef PPS_SYNC
626 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
627 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
628 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
629 	pps_fcount = 0;
630 	L_CLR(pps_freq);
631 #endif /* PPS_SYNC */
632 }
633 
634 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
635 
636 /*
637  * hardupdate() - local clock update
638  *
639  * This routine is called by ntp_adjtime() to update the local clock
640  * phase and frequency. The implementation is of an adaptive-parameter,
641  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
642  * time and frequency offset estimates for each call. If the kernel PPS
643  * discipline code is configured (PPS_SYNC), the PPS signal itself
644  * determines the new time offset, instead of the calling argument.
645  * Presumably, calls to ntp_adjtime() occur only when the caller
646  * believes the local clock is valid within some bound (+-128 ms with
647  * NTP). If the caller's time is far different than the PPS time, an
648  * argument will ensue, and it's not clear who will lose.
649  *
650  * For uncompensated quartz crystal oscillators and nominal update
651  * intervals less than 256 s, operation should be in phase-lock mode,
652  * where the loop is disciplined to phase. For update intervals greater
653  * than 1024 s, operation should be in frequency-lock mode, where the
654  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
655  * is selected by the STA_MODE status bit.
656  */
657 static void
658 hardupdate(offset)
659 	long offset;		/* clock offset (ns) */
660 {
661 	long mtemp;
662 	l_fp ftemp;
663 
664 	/*
665 	 * Select how the phase is to be controlled and from which
666 	 * source. If the PPS signal is present and enabled to
667 	 * discipline the time, the PPS offset is used; otherwise, the
668 	 * argument offset is used.
669 	 */
670 	if (!(time_status & STA_PLL))
671 		return;
672 	if (!(time_status & STA_PPSTIME && time_status &
673 	    STA_PPSSIGNAL)) {
674 		if (offset > MAXPHASE)
675 			time_monitor = MAXPHASE;
676 		else if (offset < -MAXPHASE)
677 			time_monitor = -MAXPHASE;
678 		else
679 			time_monitor = offset;
680 		L_LINT(time_offset, time_monitor);
681 	}
682 
683 	/*
684 	 * Select how the frequency is to be controlled and in which
685 	 * mode (PLL or FLL). If the PPS signal is present and enabled
686 	 * to discipline the frequency, the PPS frequency is used;
687 	 * otherwise, the argument offset is used to compute it.
688 	 */
689 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
690 		time_reftime = time_second;
691 		return;
692 	}
693 	if (time_status & STA_FREQHOLD || time_reftime == 0)
694 		time_reftime = time_second;
695 	mtemp = time_second - time_reftime;
696 	L_LINT(ftemp, time_monitor);
697 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
698 	L_MPY(ftemp, mtemp);
699 	L_ADD(time_freq, ftemp);
700 	time_status &= ~STA_MODE;
701 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
702 	    MAXSEC)) {
703 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
704 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
705 		L_ADD(time_freq, ftemp);
706 		time_status |= STA_MODE;
707 	}
708 	time_reftime = time_second;
709 	if (L_GINT(time_freq) > MAXFREQ)
710 		L_LINT(time_freq, MAXFREQ);
711 	else if (L_GINT(time_freq) < -MAXFREQ)
712 		L_LINT(time_freq, -MAXFREQ);
713 }
714 
715 #ifdef PPS_SYNC
716 /*
717  * hardpps() - discipline CPU clock oscillator to external PPS signal
718  *
719  * This routine is called at each PPS interrupt in order to discipline
720  * the CPU clock oscillator to the PPS signal. There are two independent
721  * first-order feedback loops, one for the phase, the other for the
722  * frequency. The phase loop measures and grooms the PPS phase offset
723  * and leaves it in a handy spot for the seconds overflow routine. The
724  * frequency loop averages successive PPS phase differences and
725  * calculates the PPS frequency offset, which is also processed by the
726  * seconds overflow routine. The code requires the caller to capture the
727  * time and architecture-dependent hardware counter values in
728  * nanoseconds at the on-time PPS signal transition.
729  *
730  * Note that, on some Unix systems this routine runs at an interrupt
731  * priority level higher than the timer interrupt routine hardclock().
732  * Therefore, the variables used are distinct from the hardclock()
733  * variables, except for the actual time and frequency variables, which
734  * are determined by this routine and updated atomically.
735  */
736 void
737 hardpps(tsp, nsec)
738 	struct timespec *tsp;	/* time at PPS */
739 	long nsec;		/* hardware counter at PPS */
740 {
741 	long u_sec, u_nsec, v_nsec; /* temps */
742 	l_fp ftemp;
743 
744 	/*
745 	 * The signal is first processed by a range gate and frequency
746 	 * discriminator. The range gate rejects noise spikes outside
747 	 * the range +-500 us. The frequency discriminator rejects input
748 	 * signals with apparent frequency outside the range 1 +-500
749 	 * PPM. If two hits occur in the same second, we ignore the
750 	 * later hit; if not and a hit occurs outside the range gate,
751 	 * keep the later hit for later comparison, but do not process
752 	 * it.
753 	 */
754 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
755 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
756 	pps_valid = PPS_VALID;
757 	u_sec = tsp->tv_sec;
758 	u_nsec = tsp->tv_nsec;
759 	if (u_nsec >= (NANOSECOND >> 1)) {
760 		u_nsec -= NANOSECOND;
761 		u_sec++;
762 	}
763 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
764 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
765 	    MAXFREQ)
766 		return;
767 	pps_tf[2] = pps_tf[1];
768 	pps_tf[1] = pps_tf[0];
769 	pps_tf[0].tv_sec = u_sec;
770 	pps_tf[0].tv_nsec = u_nsec;
771 
772 	/*
773 	 * Compute the difference between the current and previous
774 	 * counter values. If the difference exceeds 0.5 s, assume it
775 	 * has wrapped around, so correct 1.0 s. If the result exceeds
776 	 * the tick interval, the sample point has crossed a tick
777 	 * boundary during the last second, so correct the tick. Very
778 	 * intricate.
779 	 */
780 	u_nsec = nsec;
781 	if (u_nsec > (NANOSECOND >> 1))
782 		u_nsec -= NANOSECOND;
783 	else if (u_nsec < -(NANOSECOND >> 1))
784 		u_nsec += NANOSECOND;
785 	pps_fcount += u_nsec;
786 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
787 		return;
788 	time_status &= ~STA_PPSJITTER;
789 
790 	/*
791 	 * A three-stage median filter is used to help denoise the PPS
792 	 * time. The median sample becomes the time offset estimate; the
793 	 * difference between the other two samples becomes the time
794 	 * dispersion (jitter) estimate.
795 	 */
796 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
797 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
798 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
799 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
800 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
801 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
802 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
803 		} else {
804 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
805 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
806 		}
807 	} else {
808 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
809 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
810 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
811 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
812 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
813 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
814 		} else {
815 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
816 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
817 		}
818 	}
819 
820 	/*
821 	 * Nominal jitter is due to PPS signal noise and interrupt
822 	 * latency. If it exceeds the popcorn threshold, the sample is
823 	 * discarded. otherwise, if so enabled, the time offset is
824 	 * updated. We can tolerate a modest loss of data here without
825 	 * much degrading time accuracy.
826 	 */
827 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
828 		time_status |= STA_PPSJITTER;
829 		pps_jitcnt++;
830 	} else if (time_status & STA_PPSTIME) {
831 		time_monitor = -v_nsec;
832 		L_LINT(time_offset, time_monitor);
833 	}
834 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
835 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
836 	if (u_sec < (1 << pps_shift))
837 		return;
838 
839 	/*
840 	 * At the end of the calibration interval the difference between
841 	 * the first and last counter values becomes the scaled
842 	 * frequency. It will later be divided by the length of the
843 	 * interval to determine the frequency update. If the frequency
844 	 * exceeds a sanity threshold, or if the actual calibration
845 	 * interval is not equal to the expected length, the data are
846 	 * discarded. We can tolerate a modest loss of data here without
847 	 * much degrading frequency accuracy.
848 	 */
849 	pps_calcnt++;
850 	v_nsec = -pps_fcount;
851 	pps_lastsec = pps_tf[0].tv_sec;
852 	pps_fcount = 0;
853 	u_nsec = MAXFREQ << pps_shift;
854 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
855 	    pps_shift)) {
856 		time_status |= STA_PPSERROR;
857 		pps_errcnt++;
858 		return;
859 	}
860 
861 	/*
862 	 * Here the raw frequency offset and wander (stability) is
863 	 * calculated. If the wander is less than the wander threshold
864 	 * for four consecutive averaging intervals, the interval is
865 	 * doubled; if it is greater than the threshold for four
866 	 * consecutive intervals, the interval is halved. The scaled
867 	 * frequency offset is converted to frequency offset. The
868 	 * stability metric is calculated as the average of recent
869 	 * frequency changes, but is used only for performance
870 	 * monitoring.
871 	 */
872 	L_LINT(ftemp, v_nsec);
873 	L_RSHIFT(ftemp, pps_shift);
874 	L_SUB(ftemp, pps_freq);
875 	u_nsec = L_GINT(ftemp);
876 	if (u_nsec > PPS_MAXWANDER) {
877 		L_LINT(ftemp, PPS_MAXWANDER);
878 		pps_intcnt--;
879 		time_status |= STA_PPSWANDER;
880 		pps_stbcnt++;
881 	} else if (u_nsec < -PPS_MAXWANDER) {
882 		L_LINT(ftemp, -PPS_MAXWANDER);
883 		pps_intcnt--;
884 		time_status |= STA_PPSWANDER;
885 		pps_stbcnt++;
886 	} else {
887 		pps_intcnt++;
888 	}
889 	if (pps_intcnt >= 4) {
890 		pps_intcnt = 4;
891 		if (pps_shift < pps_shiftmax) {
892 			pps_shift++;
893 			pps_intcnt = 0;
894 		}
895 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
896 		pps_intcnt = -4;
897 		if (pps_shift > PPS_FAVG) {
898 			pps_shift--;
899 			pps_intcnt = 0;
900 		}
901 	}
902 	if (u_nsec < 0)
903 		u_nsec = -u_nsec;
904 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
905 
906 	/*
907 	 * The PPS frequency is recalculated and clamped to the maximum
908 	 * MAXFREQ. If enabled, the system clock frequency is updated as
909 	 * well.
910 	 */
911 	L_ADD(pps_freq, ftemp);
912 	u_nsec = L_GINT(pps_freq);
913 	if (u_nsec > MAXFREQ)
914 		L_LINT(pps_freq, MAXFREQ);
915 	else if (u_nsec < -MAXFREQ)
916 		L_LINT(pps_freq, -MAXFREQ);
917 	if (time_status & STA_PPSFREQ)
918 		time_freq = pps_freq;
919 }
920 #endif /* PPS_SYNC */
921 
922 #ifndef _SYS_SYSPROTO_H_
923 struct adjtime_args {
924 	struct timeval *delta;
925 	struct timeval *olddelta;
926 };
927 #endif
928 /*
929  * MPSAFE
930  */
931 /* ARGSUSED */
932 int
933 adjtime(struct thread *td, struct adjtime_args *uap)
934 {
935 	struct timeval delta, olddelta, *deltap;
936 	int error;
937 
938 	if (uap->delta) {
939 		error = copyin(uap->delta, &delta, sizeof(delta));
940 		if (error)
941 			return (error);
942 		deltap = &delta;
943 	} else
944 		deltap = NULL;
945 	error = kern_adjtime(td, deltap, &olddelta);
946 	if (uap->olddelta && error == 0)
947 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
948 	return (error);
949 }
950 
951 int
952 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
953 {
954 	struct timeval atv;
955 	int error;
956 
957 	if ((error = suser(td)))
958 		return (error);
959 
960 	mtx_lock(&Giant);
961 	if (olddelta) {
962 		atv.tv_sec = time_adjtime / 1000000;
963 		atv.tv_usec = time_adjtime % 1000000;
964 		if (atv.tv_usec < 0) {
965 			atv.tv_usec += 1000000;
966 			atv.tv_sec--;
967 		}
968 		*olddelta = atv;
969 	}
970 	if (delta)
971 		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
972 		    delta->tv_usec;
973 	mtx_unlock(&Giant);
974 	return (error);
975 }
976 
977