xref: /freebsd/sys/kern/kern_ntptime.c (revision 6780ab54325a71e7e70112b11657973edde8655e)
1 /***********************************************************************
2  *								       *
3  * Copyright (c) David L. Mills 1993-2001			       *
4  *								       *
5  * Permission to use, copy, modify, and distribute this software and   *
6  * its documentation for any purpose and without fee is hereby	       *
7  * granted, provided that the above copyright notice appears in all    *
8  * copies and that both the copyright notice and this permission       *
9  * notice appear in supporting documentation, and that the name	       *
10  * University of Delaware not be used in advertising or publicity      *
11  * pertaining to distribution of the software without specific,	       *
12  * written prior permission. The University of Delaware makes no       *
13  * representations about the suitability this software for any	       *
14  * purpose. It is provided "as is" without express or implied	       *
15  * warranty.							       *
16  *								       *
17  **********************************************************************/
18 
19 /*
20  * Adapted from the original sources for FreeBSD and timecounters by:
21  * Poul-Henning Kamp <phk@FreeBSD.org>.
22  *
23  * The 32bit version of the "LP" macros seems a bit past its "sell by"
24  * date so I have retained only the 64bit version and included it directly
25  * in this file.
26  *
27  * Only minor changes done to interface with the timecounters over in
28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29  * confusing and/or plain wrong in that context.
30  *
31  * $FreeBSD$
32  */
33 
34 #include "opt_ntp.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sysproto.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/time.h>
44 #include <sys/timex.h>
45 #include <sys/timetc.h>
46 #include <sys/timepps.h>
47 #include <sys/sysctl.h>
48 
49 /*
50  * Single-precision macros for 64-bit machines
51  */
52 typedef long long l_fp;
53 #define L_ADD(v, u)	((v) += (u))
54 #define L_SUB(v, u)	((v) -= (u))
55 #define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
56 #define L_NEG(v)	((v) = -(v))
57 #define L_RSHIFT(v, n) \
58 	do { \
59 		if ((v) < 0) \
60 			(v) = -(-(v) >> (n)); \
61 		else \
62 			(v) = (v) >> (n); \
63 	} while (0)
64 #define L_MPY(v, a)	((v) *= (a))
65 #define L_CLR(v)	((v) = 0)
66 #define L_ISNEG(v)	((v) < 0)
67 #define L_LINT(v, a)	((v) = (long long)(a) << 32)
68 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
69 
70 /*
71  * Generic NTP kernel interface
72  *
73  * These routines constitute the Network Time Protocol (NTP) interfaces
74  * for user and daemon application programs. The ntp_gettime() routine
75  * provides the time, maximum error (synch distance) and estimated error
76  * (dispersion) to client user application programs. The ntp_adjtime()
77  * routine is used by the NTP daemon to adjust the system clock to an
78  * externally derived time. The time offset and related variables set by
79  * this routine are used by other routines in this module to adjust the
80  * phase and frequency of the clock discipline loop which controls the
81  * system clock.
82  *
83  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
84  * defined), the time at each tick interrupt is derived directly from
85  * the kernel time variable. When the kernel time is reckoned in
86  * microseconds, (NTP_NANO undefined), the time is derived from the
87  * kernel time variable together with a variable representing the
88  * leftover nanoseconds at the last tick interrupt. In either case, the
89  * current nanosecond time is reckoned from these values plus an
90  * interpolated value derived by the clock routines in another
91  * architecture-specific module. The interpolation can use either a
92  * dedicated counter or a processor cycle counter (PCC) implemented in
93  * some architectures.
94  *
95  * Note that all routines must run at priority splclock or higher.
96  */
97 /*
98  * Phase/frequency-lock loop (PLL/FLL) definitions
99  *
100  * The nanosecond clock discipline uses two variable types, time
101  * variables and frequency variables. Both types are represented as 64-
102  * bit fixed-point quantities with the decimal point between two 32-bit
103  * halves. On a 32-bit machine, each half is represented as a single
104  * word and mathematical operations are done using multiple-precision
105  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
106  * used.
107  *
108  * A time variable is a signed 64-bit fixed-point number in ns and
109  * fraction. It represents the remaining time offset to be amortized
110  * over succeeding tick interrupts. The maximum time offset is about
111  * 0.5 s and the resolution is about 2.3e-10 ns.
112  *
113  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
114  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
115  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116  * |s s s|			 ns				   |
117  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118  * |			    fraction				   |
119  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120  *
121  * A frequency variable is a signed 64-bit fixed-point number in ns/s
122  * and fraction. It represents the ns and fraction to be added to the
123  * kernel time variable at each second. The maximum frequency offset is
124  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
125  *
126  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
127  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  * |s s s s s s s s s s s s s|	          ns/s			   |
130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131  * |			    fraction				   |
132  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133  */
134 /*
135  * The following variables establish the state of the PLL/FLL and the
136  * residual time and frequency offset of the local clock.
137  */
138 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
139 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
140 
141 static int time_state = TIME_OK;	/* clock state */
142 static int time_status = STA_UNSYNC;	/* clock status bits */
143 static long time_tai;			/* TAI offset (s) */
144 static long time_monitor;		/* last time offset scaled (ns) */
145 static long time_constant;		/* poll interval (shift) (s) */
146 static long time_precision = 1;		/* clock precision (ns) */
147 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
148 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
149 static long time_reftime;		/* time at last adjustment (s) */
150 static l_fp time_offset;		/* time offset (ns) */
151 static l_fp time_freq;			/* frequency offset (ns/s) */
152 static l_fp time_adj;			/* tick adjust (ns/s) */
153 
154 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
155 
156 #ifdef PPS_SYNC
157 /*
158  * The following variables are used when a pulse-per-second (PPS) signal
159  * is available and connected via a modem control lead. They establish
160  * the engineering parameters of the clock discipline loop when
161  * controlled by the PPS signal.
162  */
163 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
164 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
165 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
166 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
167 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
168 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
169 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
170 
171 static struct timespec pps_tf[3];	/* phase median filter */
172 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
173 static long pps_fcount;			/* frequency accumulator */
174 static long pps_jitter;			/* nominal jitter (ns) */
175 static long pps_stabil;			/* nominal stability (scaled ns/s) */
176 static long pps_lastsec;		/* time at last calibration (s) */
177 static int pps_valid;			/* signal watchdog counter */
178 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
179 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
180 static int pps_intcnt;			/* wander counter */
181 
182 /*
183  * PPS signal quality monitors
184  */
185 static long pps_calcnt;			/* calibration intervals */
186 static long pps_jitcnt;			/* jitter limit exceeded */
187 static long pps_stbcnt;			/* stability limit exceeded */
188 static long pps_errcnt;			/* calibration errors */
189 #endif /* PPS_SYNC */
190 /*
191  * End of phase/frequency-lock loop (PLL/FLL) definitions
192  */
193 
194 static void ntp_init(void);
195 static void hardupdate(long offset);
196 
197 /*
198  * ntp_gettime() - NTP user application interface
199  *
200  * See the timex.h header file for synopsis and API description. Note
201  * that the TAI offset is returned in the ntvtimeval.tai structure
202  * member.
203  */
204 static int
205 ntp_sysctl(SYSCTL_HANDLER_ARGS)
206 {
207 	struct ntptimeval ntv;	/* temporary structure */
208 	struct timespec atv;	/* nanosecond time */
209 
210 	nanotime(&atv);
211 	ntv.time.tv_sec = atv.tv_sec;
212 	ntv.time.tv_nsec = atv.tv_nsec;
213 	ntv.maxerror = time_maxerror;
214 	ntv.esterror = time_esterror;
215 	ntv.tai = time_tai;
216 	ntv.time_state = time_state;
217 
218 	/*
219 	 * Status word error decode. If any of these conditions occur,
220 	 * an error is returned, instead of the status word. Most
221 	 * applications will care only about the fact the system clock
222 	 * may not be trusted, not about the details.
223 	 *
224 	 * Hardware or software error
225 	 */
226 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
227 
228 	/*
229 	 * PPS signal lost when either time or frequency synchronization
230 	 * requested
231 	 */
232 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
233 	    !(time_status & STA_PPSSIGNAL)) ||
234 
235 	/*
236 	 * PPS jitter exceeded when time synchronization requested
237 	 */
238 	    (time_status & STA_PPSTIME &&
239 	    time_status & STA_PPSJITTER) ||
240 
241 	/*
242 	 * PPS wander exceeded or calibration error when frequency
243 	 * synchronization requested
244 	 */
245 	    (time_status & STA_PPSFREQ &&
246 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
247 		ntv.time_state = TIME_ERROR;
248 	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
249 }
250 
251 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
252 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
253 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
254 
255 #ifdef PPS_SYNC
256 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
257 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
258 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
259 
260 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
261 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
262 #endif
263 /*
264  * ntp_adjtime() - NTP daemon application interface
265  *
266  * See the timex.h header file for synopsis and API description. Note
267  * that the timex.constant structure member has a dual purpose to set
268  * the time constant and to set the TAI offset.
269  */
270 #ifndef _SYS_SYSPROTO_H_
271 struct ntp_adjtime_args {
272 	struct timex *tp;
273 };
274 #endif
275 
276 /*
277  * MPSAFE
278  */
279 int
280 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
281 {
282 	struct timex ntv;	/* temporary structure */
283 	long freq;		/* frequency ns/s) */
284 	int modes;		/* mode bits from structure */
285 	int s;			/* caller priority */
286 	int error;
287 
288 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
289 	if (error)
290 		return(error);
291 
292 	/*
293 	 * Update selected clock variables - only the superuser can
294 	 * change anything. Note that there is no error checking here on
295 	 * the assumption the superuser should know what it is doing.
296 	 * Note that either the time constant or TAI offset are loaded
297 	 * from the ntv.constant member, depending on the mode bits. If
298 	 * the STA_PLL bit in the status word is cleared, the state and
299 	 * status words are reset to the initial values at boot.
300 	 */
301 	mtx_lock(&Giant);
302 	modes = ntv.modes;
303 	if (modes)
304 		error = suser(td);
305 	if (error)
306 		goto done2;
307 	s = splclock();
308 	if (modes & MOD_MAXERROR)
309 		time_maxerror = ntv.maxerror;
310 	if (modes & MOD_ESTERROR)
311 		time_esterror = ntv.esterror;
312 	if (modes & MOD_STATUS) {
313 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
314 			time_state = TIME_OK;
315 			time_status = STA_UNSYNC;
316 #ifdef PPS_SYNC
317 			pps_shift = PPS_FAVG;
318 #endif /* PPS_SYNC */
319 		}
320 		time_status &= STA_RONLY;
321 		time_status |= ntv.status & ~STA_RONLY;
322 	}
323 	if (modes & MOD_TIMECONST) {
324 		if (ntv.constant < 0)
325 			time_constant = 0;
326 		else if (ntv.constant > MAXTC)
327 			time_constant = MAXTC;
328 		else
329 			time_constant = ntv.constant;
330 	}
331 	if (modes & MOD_TAI) {
332 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
333 			time_tai = ntv.constant;
334 	}
335 #ifdef PPS_SYNC
336 	if (modes & MOD_PPSMAX) {
337 		if (ntv.shift < PPS_FAVG)
338 			pps_shiftmax = PPS_FAVG;
339 		else if (ntv.shift > PPS_FAVGMAX)
340 			pps_shiftmax = PPS_FAVGMAX;
341 		else
342 			pps_shiftmax = ntv.shift;
343 	}
344 #endif /* PPS_SYNC */
345 	if (modes & MOD_NANO)
346 		time_status |= STA_NANO;
347 	if (modes & MOD_MICRO)
348 		time_status &= ~STA_NANO;
349 	if (modes & MOD_CLKB)
350 		time_status |= STA_CLK;
351 	if (modes & MOD_CLKA)
352 		time_status &= ~STA_CLK;
353 	if (modes & MOD_OFFSET) {
354 		if (time_status & STA_NANO)
355 			hardupdate(ntv.offset);
356 		else
357 			hardupdate(ntv.offset * 1000);
358 	}
359 	if (modes & MOD_FREQUENCY) {
360 		freq = (ntv.freq * 1000LL) >> 16;
361 		if (freq > MAXFREQ)
362 			L_LINT(time_freq, MAXFREQ);
363 		else if (freq < -MAXFREQ)
364 			L_LINT(time_freq, -MAXFREQ);
365 		else
366 			L_LINT(time_freq, freq);
367 #ifdef PPS_SYNC
368 		pps_freq = time_freq;
369 #endif /* PPS_SYNC */
370 	}
371 
372 	/*
373 	 * Retrieve all clock variables. Note that the TAI offset is
374 	 * returned only by ntp_gettime();
375 	 */
376 	if (time_status & STA_NANO)
377 		ntv.offset = L_GINT(time_offset);
378 	else
379 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
380 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
381 	ntv.maxerror = time_maxerror;
382 	ntv.esterror = time_esterror;
383 	ntv.status = time_status;
384 	ntv.constant = time_constant;
385 	if (time_status & STA_NANO)
386 		ntv.precision = time_precision;
387 	else
388 		ntv.precision = time_precision / 1000;
389 	ntv.tolerance = MAXFREQ * SCALE_PPM;
390 #ifdef PPS_SYNC
391 	ntv.shift = pps_shift;
392 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
393 	if (time_status & STA_NANO)
394 		ntv.jitter = pps_jitter;
395 	else
396 		ntv.jitter = pps_jitter / 1000;
397 	ntv.stabil = pps_stabil;
398 	ntv.calcnt = pps_calcnt;
399 	ntv.errcnt = pps_errcnt;
400 	ntv.jitcnt = pps_jitcnt;
401 	ntv.stbcnt = pps_stbcnt;
402 #endif /* PPS_SYNC */
403 	splx(s);
404 
405 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
406 	if (error)
407 		goto done2;
408 
409 	/*
410 	 * Status word error decode. See comments in
411 	 * ntp_gettime() routine.
412 	 */
413 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
414 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
415 	    !(time_status & STA_PPSSIGNAL)) ||
416 	    (time_status & STA_PPSTIME &&
417 	    time_status & STA_PPSJITTER) ||
418 	    (time_status & STA_PPSFREQ &&
419 	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
420 		td->td_retval[0] = TIME_ERROR;
421 	} else {
422 		td->td_retval[0] = time_state;
423 	}
424 done2:
425 	mtx_unlock(&Giant);
426 	return (error);
427 }
428 
429 /*
430  * second_overflow() - called after ntp_tick_adjust()
431  *
432  * This routine is ordinarily called immediately following the above
433  * routine ntp_tick_adjust(). While these two routines are normally
434  * combined, they are separated here only for the purposes of
435  * simulation.
436  */
437 void
438 ntp_update_second(int64_t *adjustment, time_t *newsec)
439 {
440 	int tickrate;
441 	l_fp ftemp;		/* 32/64-bit temporary */
442 
443 	/*
444 	 * On rollover of the second both the nanosecond and microsecond
445 	 * clocks are updated and the state machine cranked as
446 	 * necessary. The phase adjustment to be used for the next
447 	 * second is calculated and the maximum error is increased by
448 	 * the tolerance.
449 	 */
450 	time_maxerror += MAXFREQ / 1000;
451 
452 	/*
453 	 * Leap second processing. If in leap-insert state at
454 	 * the end of the day, the system clock is set back one
455 	 * second; if in leap-delete state, the system clock is
456 	 * set ahead one second. The nano_time() routine or
457 	 * external clock driver will insure that reported time
458 	 * is always monotonic.
459 	 */
460 	switch (time_state) {
461 
462 		/*
463 		 * No warning.
464 		 */
465 		case TIME_OK:
466 		if (time_status & STA_INS)
467 			time_state = TIME_INS;
468 		else if (time_status & STA_DEL)
469 			time_state = TIME_DEL;
470 		break;
471 
472 		/*
473 		 * Insert second 23:59:60 following second
474 		 * 23:59:59.
475 		 */
476 		case TIME_INS:
477 		if (!(time_status & STA_INS))
478 			time_state = TIME_OK;
479 		else if ((*newsec) % 86400 == 0) {
480 			(*newsec)--;
481 			time_state = TIME_OOP;
482 		}
483 		break;
484 
485 		/*
486 		 * Delete second 23:59:59.
487 		 */
488 		case TIME_DEL:
489 		if (!(time_status & STA_DEL))
490 			time_state = TIME_OK;
491 		else if (((*newsec) + 1) % 86400 == 0) {
492 			(*newsec)++;
493 			time_tai--;
494 			time_state = TIME_WAIT;
495 		}
496 		break;
497 
498 		/*
499 		 * Insert second in progress.
500 		 */
501 		case TIME_OOP:
502 			time_tai++;
503 			time_state = TIME_WAIT;
504 		break;
505 
506 		/*
507 		 * Wait for status bits to clear.
508 		 */
509 		case TIME_WAIT:
510 		if (!(time_status & (STA_INS | STA_DEL)))
511 			time_state = TIME_OK;
512 	}
513 
514 	/*
515 	 * Compute the total time adjustment for the next second
516 	 * in ns. The offset is reduced by a factor depending on
517 	 * whether the PPS signal is operating. Note that the
518 	 * value is in effect scaled by the clock frequency,
519 	 * since the adjustment is added at each tick interrupt.
520 	 */
521 	ftemp = time_offset;
522 #ifdef PPS_SYNC
523 	/* XXX even if PPS signal dies we should finish adjustment ? */
524 	if (time_status & STA_PPSTIME && time_status &
525 	    STA_PPSSIGNAL)
526 		L_RSHIFT(ftemp, pps_shift);
527 	else
528 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
529 #else
530 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
531 #endif /* PPS_SYNC */
532 	time_adj = ftemp;
533 	L_SUB(time_offset, ftemp);
534 	L_ADD(time_adj, time_freq);
535 
536 	/*
537 	 * Apply any correction from adjtime(2).  If more than one second
538 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
539 	 * until the last second is slewed the final < 500 usecs.
540 	 */
541 	if (time_adjtime != 0) {
542 		if (time_adjtime > 1000000)
543 			tickrate = 5000;
544 		else if (time_adjtime < -1000000)
545 			tickrate = -5000;
546 		else if (time_adjtime > 500)
547 			tickrate = 500;
548 		else if (time_adjtime < -500)
549 			tickrate = -500;
550 		else if (time_adjtime != 0)
551 			tickrate = time_adjtime;
552 		else
553 			tickrate = 0;	/* GCC sucks! */
554 		time_adjtime -= tickrate;
555 		L_LINT(ftemp, tickrate * 1000);
556 		L_ADD(time_adj, ftemp);
557 	}
558 	*adjustment = time_adj;
559 
560 #ifdef PPS_SYNC
561 	if (pps_valid > 0)
562 		pps_valid--;
563 	else
564 		time_status &= ~STA_PPSSIGNAL;
565 #endif /* PPS_SYNC */
566 }
567 
568 /*
569  * ntp_init() - initialize variables and structures
570  *
571  * This routine must be called after the kernel variables hz and tick
572  * are set or changed and before the next tick interrupt. In this
573  * particular implementation, these values are assumed set elsewhere in
574  * the kernel. The design allows the clock frequency and tick interval
575  * to be changed while the system is running. So, this routine should
576  * probably be integrated with the code that does that.
577  */
578 static void
579 ntp_init()
580 {
581 
582 	/*
583 	 * The following variables are initialized only at startup. Only
584 	 * those structures not cleared by the compiler need to be
585 	 * initialized, and these only in the simulator. In the actual
586 	 * kernel, any nonzero values here will quickly evaporate.
587 	 */
588 	L_CLR(time_offset);
589 	L_CLR(time_freq);
590 #ifdef PPS_SYNC
591 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
592 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
593 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
594 	pps_fcount = 0;
595 	L_CLR(pps_freq);
596 #endif /* PPS_SYNC */
597 }
598 
599 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
600 
601 /*
602  * hardupdate() - local clock update
603  *
604  * This routine is called by ntp_adjtime() to update the local clock
605  * phase and frequency. The implementation is of an adaptive-parameter,
606  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
607  * time and frequency offset estimates for each call. If the kernel PPS
608  * discipline code is configured (PPS_SYNC), the PPS signal itself
609  * determines the new time offset, instead of the calling argument.
610  * Presumably, calls to ntp_adjtime() occur only when the caller
611  * believes the local clock is valid within some bound (+-128 ms with
612  * NTP). If the caller's time is far different than the PPS time, an
613  * argument will ensue, and it's not clear who will lose.
614  *
615  * For uncompensated quartz crystal oscillators and nominal update
616  * intervals less than 256 s, operation should be in phase-lock mode,
617  * where the loop is disciplined to phase. For update intervals greater
618  * than 1024 s, operation should be in frequency-lock mode, where the
619  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
620  * is selected by the STA_MODE status bit.
621  */
622 static void
623 hardupdate(offset)
624 	long offset;		/* clock offset (ns) */
625 {
626 	long mtemp;
627 	l_fp ftemp;
628 
629 	/*
630 	 * Select how the phase is to be controlled and from which
631 	 * source. If the PPS signal is present and enabled to
632 	 * discipline the time, the PPS offset is used; otherwise, the
633 	 * argument offset is used.
634 	 */
635 	if (!(time_status & STA_PLL))
636 		return;
637 	if (!(time_status & STA_PPSTIME && time_status &
638 	    STA_PPSSIGNAL)) {
639 		if (offset > MAXPHASE)
640 			time_monitor = MAXPHASE;
641 		else if (offset < -MAXPHASE)
642 			time_monitor = -MAXPHASE;
643 		else
644 			time_monitor = offset;
645 		L_LINT(time_offset, time_monitor);
646 	}
647 
648 	/*
649 	 * Select how the frequency is to be controlled and in which
650 	 * mode (PLL or FLL). If the PPS signal is present and enabled
651 	 * to discipline the frequency, the PPS frequency is used;
652 	 * otherwise, the argument offset is used to compute it.
653 	 */
654 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
655 		time_reftime = time_second;
656 		return;
657 	}
658 	if (time_status & STA_FREQHOLD || time_reftime == 0)
659 		time_reftime = time_second;
660 	mtemp = time_second - time_reftime;
661 	L_LINT(ftemp, time_monitor);
662 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
663 	L_MPY(ftemp, mtemp);
664 	L_ADD(time_freq, ftemp);
665 	time_status &= ~STA_MODE;
666 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
667 	    MAXSEC)) {
668 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
669 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
670 		L_ADD(time_freq, ftemp);
671 		time_status |= STA_MODE;
672 	}
673 	time_reftime = time_second;
674 	if (L_GINT(time_freq) > MAXFREQ)
675 		L_LINT(time_freq, MAXFREQ);
676 	else if (L_GINT(time_freq) < -MAXFREQ)
677 		L_LINT(time_freq, -MAXFREQ);
678 }
679 
680 #ifdef PPS_SYNC
681 /*
682  * hardpps() - discipline CPU clock oscillator to external PPS signal
683  *
684  * This routine is called at each PPS interrupt in order to discipline
685  * the CPU clock oscillator to the PPS signal. There are two independent
686  * first-order feedback loops, one for the phase, the other for the
687  * frequency. The phase loop measures and grooms the PPS phase offset
688  * and leaves it in a handy spot for the seconds overflow routine. The
689  * frequency loop averages successive PPS phase differences and
690  * calculates the PPS frequency offset, which is also processed by the
691  * seconds overflow routine. The code requires the caller to capture the
692  * time and architecture-dependent hardware counter values in
693  * nanoseconds at the on-time PPS signal transition.
694  *
695  * Note that, on some Unix systems this routine runs at an interrupt
696  * priority level higher than the timer interrupt routine hardclock().
697  * Therefore, the variables used are distinct from the hardclock()
698  * variables, except for the actual time and frequency variables, which
699  * are determined by this routine and updated atomically.
700  */
701 void
702 hardpps(tsp, nsec)
703 	struct timespec *tsp;	/* time at PPS */
704 	long nsec;		/* hardware counter at PPS */
705 {
706 	long u_sec, u_nsec, v_nsec; /* temps */
707 	l_fp ftemp;
708 
709 	/*
710 	 * The signal is first processed by a range gate and frequency
711 	 * discriminator. The range gate rejects noise spikes outside
712 	 * the range +-500 us. The frequency discriminator rejects input
713 	 * signals with apparent frequency outside the range 1 +-500
714 	 * PPM. If two hits occur in the same second, we ignore the
715 	 * later hit; if not and a hit occurs outside the range gate,
716 	 * keep the later hit for later comparison, but do not process
717 	 * it.
718 	 */
719 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
720 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
721 	pps_valid = PPS_VALID;
722 	u_sec = tsp->tv_sec;
723 	u_nsec = tsp->tv_nsec;
724 	if (u_nsec >= (NANOSECOND >> 1)) {
725 		u_nsec -= NANOSECOND;
726 		u_sec++;
727 	}
728 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
729 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
730 	    MAXFREQ)
731 		return;
732 	pps_tf[2] = pps_tf[1];
733 	pps_tf[1] = pps_tf[0];
734 	pps_tf[0].tv_sec = u_sec;
735 	pps_tf[0].tv_nsec = u_nsec;
736 
737 	/*
738 	 * Compute the difference between the current and previous
739 	 * counter values. If the difference exceeds 0.5 s, assume it
740 	 * has wrapped around, so correct 1.0 s. If the result exceeds
741 	 * the tick interval, the sample point has crossed a tick
742 	 * boundary during the last second, so correct the tick. Very
743 	 * intricate.
744 	 */
745 	u_nsec = nsec;
746 	if (u_nsec > (NANOSECOND >> 1))
747 		u_nsec -= NANOSECOND;
748 	else if (u_nsec < -(NANOSECOND >> 1))
749 		u_nsec += NANOSECOND;
750 	pps_fcount += u_nsec;
751 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
752 		return;
753 	time_status &= ~STA_PPSJITTER;
754 
755 	/*
756 	 * A three-stage median filter is used to help denoise the PPS
757 	 * time. The median sample becomes the time offset estimate; the
758 	 * difference between the other two samples becomes the time
759 	 * dispersion (jitter) estimate.
760 	 */
761 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
762 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
763 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
764 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
765 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
766 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
767 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
768 		} else {
769 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
770 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
771 		}
772 	} else {
773 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
774 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
775 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
776 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
777 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
778 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
779 		} else {
780 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
781 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
782 		}
783 	}
784 
785 	/*
786 	 * Nominal jitter is due to PPS signal noise and interrupt
787 	 * latency. If it exceeds the popcorn threshold, the sample is
788 	 * discarded. otherwise, if so enabled, the time offset is
789 	 * updated. We can tolerate a modest loss of data here without
790 	 * much degrading time accuracy.
791 	 */
792 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
793 		time_status |= STA_PPSJITTER;
794 		pps_jitcnt++;
795 	} else if (time_status & STA_PPSTIME) {
796 		time_monitor = -v_nsec;
797 		L_LINT(time_offset, time_monitor);
798 	}
799 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
800 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
801 	if (u_sec < (1 << pps_shift))
802 		return;
803 
804 	/*
805 	 * At the end of the calibration interval the difference between
806 	 * the first and last counter values becomes the scaled
807 	 * frequency. It will later be divided by the length of the
808 	 * interval to determine the frequency update. If the frequency
809 	 * exceeds a sanity threshold, or if the actual calibration
810 	 * interval is not equal to the expected length, the data are
811 	 * discarded. We can tolerate a modest loss of data here without
812 	 * much degrading frequency accuracy.
813 	 */
814 	pps_calcnt++;
815 	v_nsec = -pps_fcount;
816 	pps_lastsec = pps_tf[0].tv_sec;
817 	pps_fcount = 0;
818 	u_nsec = MAXFREQ << pps_shift;
819 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
820 	    pps_shift)) {
821 		time_status |= STA_PPSERROR;
822 		pps_errcnt++;
823 		return;
824 	}
825 
826 	/*
827 	 * Here the raw frequency offset and wander (stability) is
828 	 * calculated. If the wander is less than the wander threshold
829 	 * for four consecutive averaging intervals, the interval is
830 	 * doubled; if it is greater than the threshold for four
831 	 * consecutive intervals, the interval is halved. The scaled
832 	 * frequency offset is converted to frequency offset. The
833 	 * stability metric is calculated as the average of recent
834 	 * frequency changes, but is used only for performance
835 	 * monitoring.
836 	 */
837 	L_LINT(ftemp, v_nsec);
838 	L_RSHIFT(ftemp, pps_shift);
839 	L_SUB(ftemp, pps_freq);
840 	u_nsec = L_GINT(ftemp);
841 	if (u_nsec > PPS_MAXWANDER) {
842 		L_LINT(ftemp, PPS_MAXWANDER);
843 		pps_intcnt--;
844 		time_status |= STA_PPSWANDER;
845 		pps_stbcnt++;
846 	} else if (u_nsec < -PPS_MAXWANDER) {
847 		L_LINT(ftemp, -PPS_MAXWANDER);
848 		pps_intcnt--;
849 		time_status |= STA_PPSWANDER;
850 		pps_stbcnt++;
851 	} else {
852 		pps_intcnt++;
853 	}
854 	if (pps_intcnt >= 4) {
855 		pps_intcnt = 4;
856 		if (pps_shift < pps_shiftmax) {
857 			pps_shift++;
858 			pps_intcnt = 0;
859 		}
860 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
861 		pps_intcnt = -4;
862 		if (pps_shift > PPS_FAVG) {
863 			pps_shift--;
864 			pps_intcnt = 0;
865 		}
866 	}
867 	if (u_nsec < 0)
868 		u_nsec = -u_nsec;
869 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
870 
871 	/*
872 	 * The PPS frequency is recalculated and clamped to the maximum
873 	 * MAXFREQ. If enabled, the system clock frequency is updated as
874 	 * well.
875 	 */
876 	L_ADD(pps_freq, ftemp);
877 	u_nsec = L_GINT(pps_freq);
878 	if (u_nsec > MAXFREQ)
879 		L_LINT(pps_freq, MAXFREQ);
880 	else if (u_nsec < -MAXFREQ)
881 		L_LINT(pps_freq, -MAXFREQ);
882 	if (time_status & STA_PPSFREQ)
883 		time_freq = pps_freq;
884 }
885 #endif /* PPS_SYNC */
886 
887 #ifndef _SYS_SYSPROTO_H_
888 struct adjtime_args {
889 	struct timeval *delta;
890 	struct timeval *olddelta;
891 };
892 #endif
893 /*
894  * MPSAFE
895  */
896 /* ARGSUSED */
897 int
898 adjtime(struct thread *td, struct adjtime_args *uap)
899 {
900 	struct timeval atv;
901 	int error;
902 
903 	if ((error = suser(td)))
904 		return (error);
905 
906 	mtx_lock(&Giant);
907 	if (uap->olddelta) {
908 		atv.tv_sec = time_adjtime / 1000000;
909 		atv.tv_usec = time_adjtime % 1000000;
910 		if (atv.tv_usec < 0) {
911 			atv.tv_usec += 1000000;
912 			atv.tv_sec--;
913 		}
914 		error = copyout(&atv, uap->olddelta, sizeof(atv));
915 		if (error)
916 			goto done2;
917 	}
918 	if (uap->delta) {
919 		error = copyin(uap->delta, &atv, sizeof(atv));
920 		if (error)
921 			goto done2;
922 		time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec;
923 	}
924 done2:
925 	mtx_unlock(&Giant);
926 	return (error);
927 }
928 
929