xref: /freebsd/sys/kern/kern_ntptime.c (revision 63f9a4cb2684a303e3eb2ffed39c03a2e2b28ae0)
1 /***********************************************************************
2  *								       *
3  * Copyright (c) David L. Mills 1993-2001			       *
4  *								       *
5  * Permission to use, copy, modify, and distribute this software and   *
6  * its documentation for any purpose and without fee is hereby	       *
7  * granted, provided that the above copyright notice appears in all    *
8  * copies and that both the copyright notice and this permission       *
9  * notice appear in supporting documentation, and that the name	       *
10  * University of Delaware not be used in advertising or publicity      *
11  * pertaining to distribution of the software without specific,	       *
12  * written prior permission. The University of Delaware makes no       *
13  * representations about the suitability this software for any	       *
14  * purpose. It is provided "as is" without express or implied	       *
15  * warranty.							       *
16  *								       *
17  **********************************************************************/
18 
19 /*
20  * Adapted from the original sources for FreeBSD and timecounters by:
21  * Poul-Henning Kamp <phk@FreeBSD.org>.
22  *
23  * The 32bit version of the "LP" macros seems a bit past its "sell by"
24  * date so I have retained only the 64bit version and included it directly
25  * in this file.
26  *
27  * Only minor changes done to interface with the timecounters over in
28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29  * confusing and/or plain wrong in that context.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ntp.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/time.h>
45 #include <sys/timex.h>
46 #include <sys/timetc.h>
47 #include <sys/timepps.h>
48 #include <sys/sysctl.h>
49 
50 /*
51  * Single-precision macros for 64-bit machines
52  */
53 typedef int64_t l_fp;
54 #define L_ADD(v, u)	((v) += (u))
55 #define L_SUB(v, u)	((v) -= (u))
56 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
57 #define L_NEG(v)	((v) = -(v))
58 #define L_RSHIFT(v, n) \
59 	do { \
60 		if ((v) < 0) \
61 			(v) = -(-(v) >> (n)); \
62 		else \
63 			(v) = (v) >> (n); \
64 	} while (0)
65 #define L_MPY(v, a)	((v) *= (a))
66 #define L_CLR(v)	((v) = 0)
67 #define L_ISNEG(v)	((v) < 0)
68 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
69 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
70 
71 /*
72  * Generic NTP kernel interface
73  *
74  * These routines constitute the Network Time Protocol (NTP) interfaces
75  * for user and daemon application programs. The ntp_gettime() routine
76  * provides the time, maximum error (synch distance) and estimated error
77  * (dispersion) to client user application programs. The ntp_adjtime()
78  * routine is used by the NTP daemon to adjust the system clock to an
79  * externally derived time. The time offset and related variables set by
80  * this routine are used by other routines in this module to adjust the
81  * phase and frequency of the clock discipline loop which controls the
82  * system clock.
83  *
84  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
85  * defined), the time at each tick interrupt is derived directly from
86  * the kernel time variable. When the kernel time is reckoned in
87  * microseconds, (NTP_NANO undefined), the time is derived from the
88  * kernel time variable together with a variable representing the
89  * leftover nanoseconds at the last tick interrupt. In either case, the
90  * current nanosecond time is reckoned from these values plus an
91  * interpolated value derived by the clock routines in another
92  * architecture-specific module. The interpolation can use either a
93  * dedicated counter or a processor cycle counter (PCC) implemented in
94  * some architectures.
95  *
96  * Note that all routines must run at priority splclock or higher.
97  */
98 /*
99  * Phase/frequency-lock loop (PLL/FLL) definitions
100  *
101  * The nanosecond clock discipline uses two variable types, time
102  * variables and frequency variables. Both types are represented as 64-
103  * bit fixed-point quantities with the decimal point between two 32-bit
104  * halves. On a 32-bit machine, each half is represented as a single
105  * word and mathematical operations are done using multiple-precision
106  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
107  * used.
108  *
109  * A time variable is a signed 64-bit fixed-point number in ns and
110  * fraction. It represents the remaining time offset to be amortized
111  * over succeeding tick interrupts. The maximum time offset is about
112  * 0.5 s and the resolution is about 2.3e-10 ns.
113  *
114  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
115  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
116  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
117  * |s s s|			 ns				   |
118  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119  * |			    fraction				   |
120  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121  *
122  * A frequency variable is a signed 64-bit fixed-point number in ns/s
123  * and fraction. It represents the ns and fraction to be added to the
124  * kernel time variable at each second. The maximum frequency offset is
125  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
126  *
127  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
128  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
129  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130  * |s s s s s s s s s s s s s|	          ns/s			   |
131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132  * |			    fraction				   |
133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134  */
135 /*
136  * The following variables establish the state of the PLL/FLL and the
137  * residual time and frequency offset of the local clock.
138  */
139 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
140 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
141 
142 static int time_state = TIME_OK;	/* clock state */
143 static int time_status = STA_UNSYNC;	/* clock status bits */
144 static long time_tai;			/* TAI offset (s) */
145 static long time_monitor;		/* last time offset scaled (ns) */
146 static long time_constant;		/* poll interval (shift) (s) */
147 static long time_precision = 1;		/* clock precision (ns) */
148 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
149 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
150 static long time_reftime;		/* time at last adjustment (s) */
151 static l_fp time_offset;		/* time offset (ns) */
152 static l_fp time_freq;			/* frequency offset (ns/s) */
153 static l_fp time_adj;			/* tick adjust (ns/s) */
154 
155 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
156 
157 #ifdef PPS_SYNC
158 /*
159  * The following variables are used when a pulse-per-second (PPS) signal
160  * is available and connected via a modem control lead. They establish
161  * the engineering parameters of the clock discipline loop when
162  * controlled by the PPS signal.
163  */
164 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
165 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
166 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
167 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
168 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
169 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
170 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
171 
172 static struct timespec pps_tf[3];	/* phase median filter */
173 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
174 static long pps_fcount;			/* frequency accumulator */
175 static long pps_jitter;			/* nominal jitter (ns) */
176 static long pps_stabil;			/* nominal stability (scaled ns/s) */
177 static long pps_lastsec;		/* time at last calibration (s) */
178 static int pps_valid;			/* signal watchdog counter */
179 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
180 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
181 static int pps_intcnt;			/* wander counter */
182 
183 /*
184  * PPS signal quality monitors
185  */
186 static long pps_calcnt;			/* calibration intervals */
187 static long pps_jitcnt;			/* jitter limit exceeded */
188 static long pps_stbcnt;			/* stability limit exceeded */
189 static long pps_errcnt;			/* calibration errors */
190 #endif /* PPS_SYNC */
191 /*
192  * End of phase/frequency-lock loop (PLL/FLL) definitions
193  */
194 
195 static void ntp_init(void);
196 static void hardupdate(long offset);
197 static void ntp_gettime1(struct ntptimeval *ntvp);
198 
199 static void
200 ntp_gettime1(struct ntptimeval *ntvp)
201 {
202 	struct timespec atv;	/* nanosecond time */
203 
204 	nanotime(&atv);
205 	ntvp->time.tv_sec = atv.tv_sec;
206 	ntvp->time.tv_nsec = atv.tv_nsec;
207 	ntvp->maxerror = time_maxerror;
208 	ntvp->esterror = time_esterror;
209 	ntvp->tai = time_tai;
210 	ntvp->time_state = time_state;
211 
212 	/*
213 	 * Status word error decode. If any of these conditions occur,
214 	 * an error is returned, instead of the status word. Most
215 	 * applications will care only about the fact the system clock
216 	 * may not be trusted, not about the details.
217 	 *
218 	 * Hardware or software error
219 	 */
220 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
221 
222 	/*
223 	 * PPS signal lost when either time or frequency synchronization
224 	 * requested
225 	 */
226 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
227 	    !(time_status & STA_PPSSIGNAL)) ||
228 
229 	/*
230 	 * PPS jitter exceeded when time synchronization requested
231 	 */
232 	    (time_status & STA_PPSTIME &&
233 	    time_status & STA_PPSJITTER) ||
234 
235 	/*
236 	 * PPS wander exceeded or calibration error when frequency
237 	 * synchronization requested
238 	 */
239 	    (time_status & STA_PPSFREQ &&
240 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
241 		ntvp->time_state = TIME_ERROR;
242 }
243 
244 /*
245  * ntp_gettime() - NTP user application interface
246  *
247  * See the timex.h header file for synopsis and API description. Note
248  * that the TAI offset is returned in the ntvtimeval.tai structure
249  * member.
250  */
251 #ifndef _SYS_SYSPROTO_H_
252 struct ntp_gettime_args {
253 	struct ntptimeval *ntvp;
254 };
255 #endif
256 /* ARGSUSED */
257 int
258 ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
259 {
260 	struct ntptimeval ntv;
261 
262 	ntp_gettime1(&ntv);
263 
264 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
265 }
266 
267 static int
268 ntp_sysctl(SYSCTL_HANDLER_ARGS)
269 {
270 	struct ntptimeval ntv;	/* temporary structure */
271 
272 	ntp_gettime1(&ntv);
273 
274 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
275 }
276 
277 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
278 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
279 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
280 
281 #ifdef PPS_SYNC
282 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
283 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
284 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
285 
286 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
287 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
288 #endif
289 /*
290  * ntp_adjtime() - NTP daemon application interface
291  *
292  * See the timex.h header file for synopsis and API description. Note
293  * that the timex.constant structure member has a dual purpose to set
294  * the time constant and to set the TAI offset.
295  */
296 #ifndef _SYS_SYSPROTO_H_
297 struct ntp_adjtime_args {
298 	struct timex *tp;
299 };
300 #endif
301 
302 /*
303  * MPSAFE
304  */
305 int
306 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
307 {
308 	struct timex ntv;	/* temporary structure */
309 	long freq;		/* frequency ns/s) */
310 	int modes;		/* mode bits from structure */
311 	int s;			/* caller priority */
312 	int error;
313 
314 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
315 	if (error)
316 		return(error);
317 
318 	/*
319 	 * Update selected clock variables - only the superuser can
320 	 * change anything. Note that there is no error checking here on
321 	 * the assumption the superuser should know what it is doing.
322 	 * Note that either the time constant or TAI offset are loaded
323 	 * from the ntv.constant member, depending on the mode bits. If
324 	 * the STA_PLL bit in the status word is cleared, the state and
325 	 * status words are reset to the initial values at boot.
326 	 */
327 	mtx_lock(&Giant);
328 	modes = ntv.modes;
329 	if (modes)
330 		error = suser(td);
331 	if (error)
332 		goto done2;
333 	s = splclock();
334 	if (modes & MOD_MAXERROR)
335 		time_maxerror = ntv.maxerror;
336 	if (modes & MOD_ESTERROR)
337 		time_esterror = ntv.esterror;
338 	if (modes & MOD_STATUS) {
339 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
340 			time_state = TIME_OK;
341 			time_status = STA_UNSYNC;
342 #ifdef PPS_SYNC
343 			pps_shift = PPS_FAVG;
344 #endif /* PPS_SYNC */
345 		}
346 		time_status &= STA_RONLY;
347 		time_status |= ntv.status & ~STA_RONLY;
348 	}
349 	if (modes & MOD_TIMECONST) {
350 		if (ntv.constant < 0)
351 			time_constant = 0;
352 		else if (ntv.constant > MAXTC)
353 			time_constant = MAXTC;
354 		else
355 			time_constant = ntv.constant;
356 	}
357 	if (modes & MOD_TAI) {
358 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
359 			time_tai = ntv.constant;
360 	}
361 #ifdef PPS_SYNC
362 	if (modes & MOD_PPSMAX) {
363 		if (ntv.shift < PPS_FAVG)
364 			pps_shiftmax = PPS_FAVG;
365 		else if (ntv.shift > PPS_FAVGMAX)
366 			pps_shiftmax = PPS_FAVGMAX;
367 		else
368 			pps_shiftmax = ntv.shift;
369 	}
370 #endif /* PPS_SYNC */
371 	if (modes & MOD_NANO)
372 		time_status |= STA_NANO;
373 	if (modes & MOD_MICRO)
374 		time_status &= ~STA_NANO;
375 	if (modes & MOD_CLKB)
376 		time_status |= STA_CLK;
377 	if (modes & MOD_CLKA)
378 		time_status &= ~STA_CLK;
379 	if (modes & MOD_FREQUENCY) {
380 		freq = (ntv.freq * 1000LL) >> 16;
381 		if (freq > MAXFREQ)
382 			L_LINT(time_freq, MAXFREQ);
383 		else if (freq < -MAXFREQ)
384 			L_LINT(time_freq, -MAXFREQ);
385 		else {
386 			/*
387 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
388 			 * time_freq is [ns/s * 2^32]
389 			 */
390 			time_freq = ntv.freq * 1000LL * 65536LL;
391 		}
392 #ifdef PPS_SYNC
393 		pps_freq = time_freq;
394 #endif /* PPS_SYNC */
395 	}
396 	if (modes & MOD_OFFSET) {
397 		if (time_status & STA_NANO)
398 			hardupdate(ntv.offset);
399 		else
400 			hardupdate(ntv.offset * 1000);
401 	}
402 
403 	/*
404 	 * Retrieve all clock variables. Note that the TAI offset is
405 	 * returned only by ntp_gettime();
406 	 */
407 	if (time_status & STA_NANO)
408 		ntv.offset = L_GINT(time_offset);
409 	else
410 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
411 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
412 	ntv.maxerror = time_maxerror;
413 	ntv.esterror = time_esterror;
414 	ntv.status = time_status;
415 	ntv.constant = time_constant;
416 	if (time_status & STA_NANO)
417 		ntv.precision = time_precision;
418 	else
419 		ntv.precision = time_precision / 1000;
420 	ntv.tolerance = MAXFREQ * SCALE_PPM;
421 #ifdef PPS_SYNC
422 	ntv.shift = pps_shift;
423 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
424 	if (time_status & STA_NANO)
425 		ntv.jitter = pps_jitter;
426 	else
427 		ntv.jitter = pps_jitter / 1000;
428 	ntv.stabil = pps_stabil;
429 	ntv.calcnt = pps_calcnt;
430 	ntv.errcnt = pps_errcnt;
431 	ntv.jitcnt = pps_jitcnt;
432 	ntv.stbcnt = pps_stbcnt;
433 #endif /* PPS_SYNC */
434 	splx(s);
435 
436 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
437 	if (error)
438 		goto done2;
439 
440 	/*
441 	 * Status word error decode. See comments in
442 	 * ntp_gettime() routine.
443 	 */
444 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
445 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
446 	    !(time_status & STA_PPSSIGNAL)) ||
447 	    (time_status & STA_PPSTIME &&
448 	    time_status & STA_PPSJITTER) ||
449 	    (time_status & STA_PPSFREQ &&
450 	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
451 		td->td_retval[0] = TIME_ERROR;
452 	} else {
453 		td->td_retval[0] = time_state;
454 	}
455 done2:
456 	mtx_unlock(&Giant);
457 	return (error);
458 }
459 
460 /*
461  * second_overflow() - called after ntp_tick_adjust()
462  *
463  * This routine is ordinarily called immediately following the above
464  * routine ntp_tick_adjust(). While these two routines are normally
465  * combined, they are separated here only for the purposes of
466  * simulation.
467  */
468 void
469 ntp_update_second(int64_t *adjustment, time_t *newsec)
470 {
471 	int tickrate;
472 	l_fp ftemp;		/* 32/64-bit temporary */
473 
474 	/*
475 	 * On rollover of the second both the nanosecond and microsecond
476 	 * clocks are updated and the state machine cranked as
477 	 * necessary. The phase adjustment to be used for the next
478 	 * second is calculated and the maximum error is increased by
479 	 * the tolerance.
480 	 */
481 	time_maxerror += MAXFREQ / 1000;
482 
483 	/*
484 	 * Leap second processing. If in leap-insert state at
485 	 * the end of the day, the system clock is set back one
486 	 * second; if in leap-delete state, the system clock is
487 	 * set ahead one second. The nano_time() routine or
488 	 * external clock driver will insure that reported time
489 	 * is always monotonic.
490 	 */
491 	switch (time_state) {
492 
493 		/*
494 		 * No warning.
495 		 */
496 		case TIME_OK:
497 		if (time_status & STA_INS)
498 			time_state = TIME_INS;
499 		else if (time_status & STA_DEL)
500 			time_state = TIME_DEL;
501 		break;
502 
503 		/*
504 		 * Insert second 23:59:60 following second
505 		 * 23:59:59.
506 		 */
507 		case TIME_INS:
508 		if (!(time_status & STA_INS))
509 			time_state = TIME_OK;
510 		else if ((*newsec) % 86400 == 0) {
511 			(*newsec)--;
512 			time_state = TIME_OOP;
513 			time_tai++;
514 		}
515 		break;
516 
517 		/*
518 		 * Delete second 23:59:59.
519 		 */
520 		case TIME_DEL:
521 		if (!(time_status & STA_DEL))
522 			time_state = TIME_OK;
523 		else if (((*newsec) + 1) % 86400 == 0) {
524 			(*newsec)++;
525 			time_tai--;
526 			time_state = TIME_WAIT;
527 		}
528 		break;
529 
530 		/*
531 		 * Insert second in progress.
532 		 */
533 		case TIME_OOP:
534 			time_state = TIME_WAIT;
535 		break;
536 
537 		/*
538 		 * Wait for status bits to clear.
539 		 */
540 		case TIME_WAIT:
541 		if (!(time_status & (STA_INS | STA_DEL)))
542 			time_state = TIME_OK;
543 	}
544 
545 	/*
546 	 * Compute the total time adjustment for the next second
547 	 * in ns. The offset is reduced by a factor depending on
548 	 * whether the PPS signal is operating. Note that the
549 	 * value is in effect scaled by the clock frequency,
550 	 * since the adjustment is added at each tick interrupt.
551 	 */
552 	ftemp = time_offset;
553 #ifdef PPS_SYNC
554 	/* XXX even if PPS signal dies we should finish adjustment ? */
555 	if (time_status & STA_PPSTIME && time_status &
556 	    STA_PPSSIGNAL)
557 		L_RSHIFT(ftemp, pps_shift);
558 	else
559 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
560 #else
561 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
562 #endif /* PPS_SYNC */
563 	time_adj = ftemp;
564 	L_SUB(time_offset, ftemp);
565 	L_ADD(time_adj, time_freq);
566 
567 	/*
568 	 * Apply any correction from adjtime(2).  If more than one second
569 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
570 	 * until the last second is slewed the final < 500 usecs.
571 	 */
572 	if (time_adjtime != 0) {
573 		if (time_adjtime > 1000000)
574 			tickrate = 5000;
575 		else if (time_adjtime < -1000000)
576 			tickrate = -5000;
577 		else if (time_adjtime > 500)
578 			tickrate = 500;
579 		else if (time_adjtime < -500)
580 			tickrate = -500;
581 		else
582 			tickrate = time_adjtime;
583 		time_adjtime -= tickrate;
584 		L_LINT(ftemp, tickrate * 1000);
585 		L_ADD(time_adj, ftemp);
586 	}
587 	*adjustment = time_adj;
588 
589 #ifdef PPS_SYNC
590 	if (pps_valid > 0)
591 		pps_valid--;
592 	else
593 		time_status &= ~STA_PPSSIGNAL;
594 #endif /* PPS_SYNC */
595 }
596 
597 /*
598  * ntp_init() - initialize variables and structures
599  *
600  * This routine must be called after the kernel variables hz and tick
601  * are set or changed and before the next tick interrupt. In this
602  * particular implementation, these values are assumed set elsewhere in
603  * the kernel. The design allows the clock frequency and tick interval
604  * to be changed while the system is running. So, this routine should
605  * probably be integrated with the code that does that.
606  */
607 static void
608 ntp_init()
609 {
610 
611 	/*
612 	 * The following variables are initialized only at startup. Only
613 	 * those structures not cleared by the compiler need to be
614 	 * initialized, and these only in the simulator. In the actual
615 	 * kernel, any nonzero values here will quickly evaporate.
616 	 */
617 	L_CLR(time_offset);
618 	L_CLR(time_freq);
619 #ifdef PPS_SYNC
620 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
621 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
622 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
623 	pps_fcount = 0;
624 	L_CLR(pps_freq);
625 #endif /* PPS_SYNC */
626 }
627 
628 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
629 
630 /*
631  * hardupdate() - local clock update
632  *
633  * This routine is called by ntp_adjtime() to update the local clock
634  * phase and frequency. The implementation is of an adaptive-parameter,
635  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
636  * time and frequency offset estimates for each call. If the kernel PPS
637  * discipline code is configured (PPS_SYNC), the PPS signal itself
638  * determines the new time offset, instead of the calling argument.
639  * Presumably, calls to ntp_adjtime() occur only when the caller
640  * believes the local clock is valid within some bound (+-128 ms with
641  * NTP). If the caller's time is far different than the PPS time, an
642  * argument will ensue, and it's not clear who will lose.
643  *
644  * For uncompensated quartz crystal oscillators and nominal update
645  * intervals less than 256 s, operation should be in phase-lock mode,
646  * where the loop is disciplined to phase. For update intervals greater
647  * than 1024 s, operation should be in frequency-lock mode, where the
648  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
649  * is selected by the STA_MODE status bit.
650  */
651 static void
652 hardupdate(offset)
653 	long offset;		/* clock offset (ns) */
654 {
655 	long mtemp;
656 	l_fp ftemp;
657 
658 	/*
659 	 * Select how the phase is to be controlled and from which
660 	 * source. If the PPS signal is present and enabled to
661 	 * discipline the time, the PPS offset is used; otherwise, the
662 	 * argument offset is used.
663 	 */
664 	if (!(time_status & STA_PLL))
665 		return;
666 	if (!(time_status & STA_PPSTIME && time_status &
667 	    STA_PPSSIGNAL)) {
668 		if (offset > MAXPHASE)
669 			time_monitor = MAXPHASE;
670 		else if (offset < -MAXPHASE)
671 			time_monitor = -MAXPHASE;
672 		else
673 			time_monitor = offset;
674 		L_LINT(time_offset, time_monitor);
675 	}
676 
677 	/*
678 	 * Select how the frequency is to be controlled and in which
679 	 * mode (PLL or FLL). If the PPS signal is present and enabled
680 	 * to discipline the frequency, the PPS frequency is used;
681 	 * otherwise, the argument offset is used to compute it.
682 	 */
683 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
684 		time_reftime = time_second;
685 		return;
686 	}
687 	if (time_status & STA_FREQHOLD || time_reftime == 0)
688 		time_reftime = time_second;
689 	mtemp = time_second - time_reftime;
690 	L_LINT(ftemp, time_monitor);
691 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
692 	L_MPY(ftemp, mtemp);
693 	L_ADD(time_freq, ftemp);
694 	time_status &= ~STA_MODE;
695 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
696 	    MAXSEC)) {
697 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
698 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
699 		L_ADD(time_freq, ftemp);
700 		time_status |= STA_MODE;
701 	}
702 	time_reftime = time_second;
703 	if (L_GINT(time_freq) > MAXFREQ)
704 		L_LINT(time_freq, MAXFREQ);
705 	else if (L_GINT(time_freq) < -MAXFREQ)
706 		L_LINT(time_freq, -MAXFREQ);
707 }
708 
709 #ifdef PPS_SYNC
710 /*
711  * hardpps() - discipline CPU clock oscillator to external PPS signal
712  *
713  * This routine is called at each PPS interrupt in order to discipline
714  * the CPU clock oscillator to the PPS signal. There are two independent
715  * first-order feedback loops, one for the phase, the other for the
716  * frequency. The phase loop measures and grooms the PPS phase offset
717  * and leaves it in a handy spot for the seconds overflow routine. The
718  * frequency loop averages successive PPS phase differences and
719  * calculates the PPS frequency offset, which is also processed by the
720  * seconds overflow routine. The code requires the caller to capture the
721  * time and architecture-dependent hardware counter values in
722  * nanoseconds at the on-time PPS signal transition.
723  *
724  * Note that, on some Unix systems this routine runs at an interrupt
725  * priority level higher than the timer interrupt routine hardclock().
726  * Therefore, the variables used are distinct from the hardclock()
727  * variables, except for the actual time and frequency variables, which
728  * are determined by this routine and updated atomically.
729  */
730 void
731 hardpps(tsp, nsec)
732 	struct timespec *tsp;	/* time at PPS */
733 	long nsec;		/* hardware counter at PPS */
734 {
735 	long u_sec, u_nsec, v_nsec; /* temps */
736 	l_fp ftemp;
737 
738 	/*
739 	 * The signal is first processed by a range gate and frequency
740 	 * discriminator. The range gate rejects noise spikes outside
741 	 * the range +-500 us. The frequency discriminator rejects input
742 	 * signals with apparent frequency outside the range 1 +-500
743 	 * PPM. If two hits occur in the same second, we ignore the
744 	 * later hit; if not and a hit occurs outside the range gate,
745 	 * keep the later hit for later comparison, but do not process
746 	 * it.
747 	 */
748 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
749 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
750 	pps_valid = PPS_VALID;
751 	u_sec = tsp->tv_sec;
752 	u_nsec = tsp->tv_nsec;
753 	if (u_nsec >= (NANOSECOND >> 1)) {
754 		u_nsec -= NANOSECOND;
755 		u_sec++;
756 	}
757 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
758 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
759 	    MAXFREQ)
760 		return;
761 	pps_tf[2] = pps_tf[1];
762 	pps_tf[1] = pps_tf[0];
763 	pps_tf[0].tv_sec = u_sec;
764 	pps_tf[0].tv_nsec = u_nsec;
765 
766 	/*
767 	 * Compute the difference between the current and previous
768 	 * counter values. If the difference exceeds 0.5 s, assume it
769 	 * has wrapped around, so correct 1.0 s. If the result exceeds
770 	 * the tick interval, the sample point has crossed a tick
771 	 * boundary during the last second, so correct the tick. Very
772 	 * intricate.
773 	 */
774 	u_nsec = nsec;
775 	if (u_nsec > (NANOSECOND >> 1))
776 		u_nsec -= NANOSECOND;
777 	else if (u_nsec < -(NANOSECOND >> 1))
778 		u_nsec += NANOSECOND;
779 	pps_fcount += u_nsec;
780 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
781 		return;
782 	time_status &= ~STA_PPSJITTER;
783 
784 	/*
785 	 * A three-stage median filter is used to help denoise the PPS
786 	 * time. The median sample becomes the time offset estimate; the
787 	 * difference between the other two samples becomes the time
788 	 * dispersion (jitter) estimate.
789 	 */
790 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
791 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
792 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
793 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
794 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
795 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
796 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
797 		} else {
798 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
799 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
800 		}
801 	} else {
802 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
803 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
804 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
805 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
806 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
807 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
808 		} else {
809 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
810 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
811 		}
812 	}
813 
814 	/*
815 	 * Nominal jitter is due to PPS signal noise and interrupt
816 	 * latency. If it exceeds the popcorn threshold, the sample is
817 	 * discarded. otherwise, if so enabled, the time offset is
818 	 * updated. We can tolerate a modest loss of data here without
819 	 * much degrading time accuracy.
820 	 */
821 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
822 		time_status |= STA_PPSJITTER;
823 		pps_jitcnt++;
824 	} else if (time_status & STA_PPSTIME) {
825 		time_monitor = -v_nsec;
826 		L_LINT(time_offset, time_monitor);
827 	}
828 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
829 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
830 	if (u_sec < (1 << pps_shift))
831 		return;
832 
833 	/*
834 	 * At the end of the calibration interval the difference between
835 	 * the first and last counter values becomes the scaled
836 	 * frequency. It will later be divided by the length of the
837 	 * interval to determine the frequency update. If the frequency
838 	 * exceeds a sanity threshold, or if the actual calibration
839 	 * interval is not equal to the expected length, the data are
840 	 * discarded. We can tolerate a modest loss of data here without
841 	 * much degrading frequency accuracy.
842 	 */
843 	pps_calcnt++;
844 	v_nsec = -pps_fcount;
845 	pps_lastsec = pps_tf[0].tv_sec;
846 	pps_fcount = 0;
847 	u_nsec = MAXFREQ << pps_shift;
848 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
849 	    pps_shift)) {
850 		time_status |= STA_PPSERROR;
851 		pps_errcnt++;
852 		return;
853 	}
854 
855 	/*
856 	 * Here the raw frequency offset and wander (stability) is
857 	 * calculated. If the wander is less than the wander threshold
858 	 * for four consecutive averaging intervals, the interval is
859 	 * doubled; if it is greater than the threshold for four
860 	 * consecutive intervals, the interval is halved. The scaled
861 	 * frequency offset is converted to frequency offset. The
862 	 * stability metric is calculated as the average of recent
863 	 * frequency changes, but is used only for performance
864 	 * monitoring.
865 	 */
866 	L_LINT(ftemp, v_nsec);
867 	L_RSHIFT(ftemp, pps_shift);
868 	L_SUB(ftemp, pps_freq);
869 	u_nsec = L_GINT(ftemp);
870 	if (u_nsec > PPS_MAXWANDER) {
871 		L_LINT(ftemp, PPS_MAXWANDER);
872 		pps_intcnt--;
873 		time_status |= STA_PPSWANDER;
874 		pps_stbcnt++;
875 	} else if (u_nsec < -PPS_MAXWANDER) {
876 		L_LINT(ftemp, -PPS_MAXWANDER);
877 		pps_intcnt--;
878 		time_status |= STA_PPSWANDER;
879 		pps_stbcnt++;
880 	} else {
881 		pps_intcnt++;
882 	}
883 	if (pps_intcnt >= 4) {
884 		pps_intcnt = 4;
885 		if (pps_shift < pps_shiftmax) {
886 			pps_shift++;
887 			pps_intcnt = 0;
888 		}
889 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
890 		pps_intcnt = -4;
891 		if (pps_shift > PPS_FAVG) {
892 			pps_shift--;
893 			pps_intcnt = 0;
894 		}
895 	}
896 	if (u_nsec < 0)
897 		u_nsec = -u_nsec;
898 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
899 
900 	/*
901 	 * The PPS frequency is recalculated and clamped to the maximum
902 	 * MAXFREQ. If enabled, the system clock frequency is updated as
903 	 * well.
904 	 */
905 	L_ADD(pps_freq, ftemp);
906 	u_nsec = L_GINT(pps_freq);
907 	if (u_nsec > MAXFREQ)
908 		L_LINT(pps_freq, MAXFREQ);
909 	else if (u_nsec < -MAXFREQ)
910 		L_LINT(pps_freq, -MAXFREQ);
911 	if (time_status & STA_PPSFREQ)
912 		time_freq = pps_freq;
913 }
914 #endif /* PPS_SYNC */
915 
916 #ifndef _SYS_SYSPROTO_H_
917 struct adjtime_args {
918 	struct timeval *delta;
919 	struct timeval *olddelta;
920 };
921 #endif
922 /*
923  * MPSAFE
924  */
925 /* ARGSUSED */
926 int
927 adjtime(struct thread *td, struct adjtime_args *uap)
928 {
929 	struct timeval atv;
930 	int error;
931 
932 	if ((error = suser(td)))
933 		return (error);
934 
935 	mtx_lock(&Giant);
936 	if (uap->olddelta) {
937 		atv.tv_sec = time_adjtime / 1000000;
938 		atv.tv_usec = time_adjtime % 1000000;
939 		if (atv.tv_usec < 0) {
940 			atv.tv_usec += 1000000;
941 			atv.tv_sec--;
942 		}
943 		error = copyout(&atv, uap->olddelta, sizeof(atv));
944 		if (error)
945 			goto done2;
946 	}
947 	if (uap->delta) {
948 		error = copyin(uap->delta, &atv, sizeof(atv));
949 		if (error)
950 			goto done2;
951 		time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec;
952 	}
953 done2:
954 	mtx_unlock(&Giant);
955 	return (error);
956 }
957 
958