19454b2d8SWarner Losh /*- 29454b2d8SWarner Losh *********************************************************************** 33f31c649SGarrett Wollman * * 424dbea46SJohn Hay * Copyright (c) David L. Mills 1993-2001 * 53f31c649SGarrett Wollman * * 6c68996e2SPoul-Henning Kamp * Permission to use, copy, modify, and distribute this software and * 7c68996e2SPoul-Henning Kamp * its documentation for any purpose and without fee is hereby * 8c68996e2SPoul-Henning Kamp * granted, provided that the above copyright notice appears in all * 9c68996e2SPoul-Henning Kamp * copies and that both the copyright notice and this permission * 10c68996e2SPoul-Henning Kamp * notice appear in supporting documentation, and that the name * 11c68996e2SPoul-Henning Kamp * University of Delaware not be used in advertising or publicity * 12c68996e2SPoul-Henning Kamp * pertaining to distribution of the software without specific, * 13c68996e2SPoul-Henning Kamp * written prior permission. The University of Delaware makes no * 14c68996e2SPoul-Henning Kamp * representations about the suitability this software for any * 15c68996e2SPoul-Henning Kamp * purpose. It is provided "as is" without express or implied * 16c68996e2SPoul-Henning Kamp * warranty. * 173f31c649SGarrett Wollman * * 18c68996e2SPoul-Henning Kamp **********************************************************************/ 193f31c649SGarrett Wollman 203f31c649SGarrett Wollman /* 21c68996e2SPoul-Henning Kamp * Adapted from the original sources for FreeBSD and timecounters by: 2232c20357SPoul-Henning Kamp * Poul-Henning Kamp <phk@FreeBSD.org>. 233f31c649SGarrett Wollman * 24c68996e2SPoul-Henning Kamp * The 32bit version of the "LP" macros seems a bit past its "sell by" 25c68996e2SPoul-Henning Kamp * date so I have retained only the 64bit version and included it directly 26c68996e2SPoul-Henning Kamp * in this file. 27885bd8e4SJohn Hay * 28c68996e2SPoul-Henning Kamp * Only minor changes done to interface with the timecounters over in 29c68996e2SPoul-Henning Kamp * sys/kern/kern_clock.c. Some of the comments below may be (even more) 30c68996e2SPoul-Henning Kamp * confusing and/or plain wrong in that context. 313f31c649SGarrett Wollman */ 32e0d781f3SEivind Eklund 33677b542eSDavid E. O'Brien #include <sys/cdefs.h> 34677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$"); 35677b542eSDavid E. O'Brien 3632c20357SPoul-Henning Kamp #include "opt_ntp.h" 3732c20357SPoul-Henning Kamp 383f31c649SGarrett Wollman #include <sys/param.h> 393f31c649SGarrett Wollman #include <sys/systm.h> 40d2d3e875SBruce Evans #include <sys/sysproto.h> 413f31c649SGarrett Wollman #include <sys/kernel.h> 42acd3428bSRobert Watson #include <sys/priv.h> 433f31c649SGarrett Wollman #include <sys/proc.h> 446f1e8c18SMatthew Dillon #include <sys/lock.h> 456f1e8c18SMatthew Dillon #include <sys/mutex.h> 46c68996e2SPoul-Henning Kamp #include <sys/time.h> 473f31c649SGarrett Wollman #include <sys/timex.h> 4891266b96SPoul-Henning Kamp #include <sys/timetc.h> 49938ee3ceSPoul-Henning Kamp #include <sys/timepps.h> 50b88ec951SJohn Baldwin #include <sys/syscallsubr.h> 513f31c649SGarrett Wollman #include <sys/sysctl.h> 523f31c649SGarrett Wollman 533f31c649SGarrett Wollman /* 54c68996e2SPoul-Henning Kamp * Single-precision macros for 64-bit machines 553f31c649SGarrett Wollman */ 56bcfe6d8bSPoul-Henning Kamp typedef int64_t l_fp; 57c68996e2SPoul-Henning Kamp #define L_ADD(v, u) ((v) += (u)) 58c68996e2SPoul-Henning Kamp #define L_SUB(v, u) ((v) -= (u)) 59bcfe6d8bSPoul-Henning Kamp #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32) 60c68996e2SPoul-Henning Kamp #define L_NEG(v) ((v) = -(v)) 61c68996e2SPoul-Henning Kamp #define L_RSHIFT(v, n) \ 62c68996e2SPoul-Henning Kamp do { \ 63c68996e2SPoul-Henning Kamp if ((v) < 0) \ 64c68996e2SPoul-Henning Kamp (v) = -(-(v) >> (n)); \ 65c68996e2SPoul-Henning Kamp else \ 66c68996e2SPoul-Henning Kamp (v) = (v) >> (n); \ 67c68996e2SPoul-Henning Kamp } while (0) 68c68996e2SPoul-Henning Kamp #define L_MPY(v, a) ((v) *= (a)) 69c68996e2SPoul-Henning Kamp #define L_CLR(v) ((v) = 0) 70c68996e2SPoul-Henning Kamp #define L_ISNEG(v) ((v) < 0) 71bcfe6d8bSPoul-Henning Kamp #define L_LINT(v, a) ((v) = (int64_t)(a) << 32) 72c68996e2SPoul-Henning Kamp #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32) 736f70df15SPoul-Henning Kamp 746f70df15SPoul-Henning Kamp /* 75c68996e2SPoul-Henning Kamp * Generic NTP kernel interface 766f70df15SPoul-Henning Kamp * 77c68996e2SPoul-Henning Kamp * These routines constitute the Network Time Protocol (NTP) interfaces 78c68996e2SPoul-Henning Kamp * for user and daemon application programs. The ntp_gettime() routine 79c68996e2SPoul-Henning Kamp * provides the time, maximum error (synch distance) and estimated error 80c68996e2SPoul-Henning Kamp * (dispersion) to client user application programs. The ntp_adjtime() 81c68996e2SPoul-Henning Kamp * routine is used by the NTP daemon to adjust the system clock to an 82c68996e2SPoul-Henning Kamp * externally derived time. The time offset and related variables set by 83c68996e2SPoul-Henning Kamp * this routine are used by other routines in this module to adjust the 84c68996e2SPoul-Henning Kamp * phase and frequency of the clock discipline loop which controls the 85c68996e2SPoul-Henning Kamp * system clock. 866f70df15SPoul-Henning Kamp * 87f425c1f6SPoul-Henning Kamp * When the kernel time is reckoned directly in nanoseconds (NTP_NANO 88c68996e2SPoul-Henning Kamp * defined), the time at each tick interrupt is derived directly from 89c68996e2SPoul-Henning Kamp * the kernel time variable. When the kernel time is reckoned in 90f425c1f6SPoul-Henning Kamp * microseconds, (NTP_NANO undefined), the time is derived from the 91f425c1f6SPoul-Henning Kamp * kernel time variable together with a variable representing the 92f425c1f6SPoul-Henning Kamp * leftover nanoseconds at the last tick interrupt. In either case, the 93f425c1f6SPoul-Henning Kamp * current nanosecond time is reckoned from these values plus an 94f425c1f6SPoul-Henning Kamp * interpolated value derived by the clock routines in another 95f425c1f6SPoul-Henning Kamp * architecture-specific module. The interpolation can use either a 96f425c1f6SPoul-Henning Kamp * dedicated counter or a processor cycle counter (PCC) implemented in 97f425c1f6SPoul-Henning Kamp * some architectures. 986f70df15SPoul-Henning Kamp * 99c68996e2SPoul-Henning Kamp * Note that all routines must run at priority splclock or higher. 1006f70df15SPoul-Henning Kamp */ 101c68996e2SPoul-Henning Kamp /* 102c68996e2SPoul-Henning Kamp * Phase/frequency-lock loop (PLL/FLL) definitions 103c68996e2SPoul-Henning Kamp * 104c68996e2SPoul-Henning Kamp * The nanosecond clock discipline uses two variable types, time 105c68996e2SPoul-Henning Kamp * variables and frequency variables. Both types are represented as 64- 106c68996e2SPoul-Henning Kamp * bit fixed-point quantities with the decimal point between two 32-bit 107c68996e2SPoul-Henning Kamp * halves. On a 32-bit machine, each half is represented as a single 108c68996e2SPoul-Henning Kamp * word and mathematical operations are done using multiple-precision 109c68996e2SPoul-Henning Kamp * arithmetic. On a 64-bit machine, ordinary computer arithmetic is 110c68996e2SPoul-Henning Kamp * used. 111c68996e2SPoul-Henning Kamp * 112c68996e2SPoul-Henning Kamp * A time variable is a signed 64-bit fixed-point number in ns and 113c68996e2SPoul-Henning Kamp * fraction. It represents the remaining time offset to be amortized 114c68996e2SPoul-Henning Kamp * over succeeding tick interrupts. The maximum time offset is about 115f425c1f6SPoul-Henning Kamp * 0.5 s and the resolution is about 2.3e-10 ns. 116c68996e2SPoul-Henning Kamp * 117c68996e2SPoul-Henning Kamp * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 118c68996e2SPoul-Henning Kamp * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 119c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 120c68996e2SPoul-Henning Kamp * |s s s| ns | 121c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 122c68996e2SPoul-Henning Kamp * | fraction | 123c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 124c68996e2SPoul-Henning Kamp * 125c68996e2SPoul-Henning Kamp * A frequency variable is a signed 64-bit fixed-point number in ns/s 126c68996e2SPoul-Henning Kamp * and fraction. It represents the ns and fraction to be added to the 127c68996e2SPoul-Henning Kamp * kernel time variable at each second. The maximum frequency offset is 128f425c1f6SPoul-Henning Kamp * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s. 129c68996e2SPoul-Henning Kamp * 130c68996e2SPoul-Henning Kamp * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 131c68996e2SPoul-Henning Kamp * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 132c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 133c68996e2SPoul-Henning Kamp * |s s s s s s s s s s s s s| ns/s | 134c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 135c68996e2SPoul-Henning Kamp * | fraction | 136c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 137c68996e2SPoul-Henning Kamp */ 138c68996e2SPoul-Henning Kamp /* 139c68996e2SPoul-Henning Kamp * The following variables establish the state of the PLL/FLL and the 140c68996e2SPoul-Henning Kamp * residual time and frequency offset of the local clock. 141c68996e2SPoul-Henning Kamp */ 142c68996e2SPoul-Henning Kamp #define SHIFT_PLL 4 /* PLL loop gain (shift) */ 143c68996e2SPoul-Henning Kamp #define SHIFT_FLL 2 /* FLL loop gain (shift) */ 144c68996e2SPoul-Henning Kamp 145c68996e2SPoul-Henning Kamp static int time_state = TIME_OK; /* clock state */ 146c68996e2SPoul-Henning Kamp static int time_status = STA_UNSYNC; /* clock status bits */ 14797804a5cSPoul-Henning Kamp static long time_tai; /* TAI offset (s) */ 14897804a5cSPoul-Henning Kamp static long time_monitor; /* last time offset scaled (ns) */ 149c68996e2SPoul-Henning Kamp static long time_constant; /* poll interval (shift) (s) */ 150c68996e2SPoul-Henning Kamp static long time_precision = 1; /* clock precision (ns) */ 151c68996e2SPoul-Henning Kamp static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */ 152c68996e2SPoul-Henning Kamp static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */ 153c68996e2SPoul-Henning Kamp static long time_reftime; /* time at last adjustment (s) */ 154c68996e2SPoul-Henning Kamp static l_fp time_offset; /* time offset (ns) */ 155c68996e2SPoul-Henning Kamp static l_fp time_freq; /* frequency offset (ns/s) */ 15697804a5cSPoul-Henning Kamp static l_fp time_adj; /* tick adjust (ns/s) */ 1573f31c649SGarrett Wollman 158e1d970f1SPoul-Henning Kamp static int64_t time_adjtime; /* correction from adjtime(2) (usec) */ 159e1d970f1SPoul-Henning Kamp 1603f31c649SGarrett Wollman #ifdef PPS_SYNC 1613f31c649SGarrett Wollman /* 162c68996e2SPoul-Henning Kamp * The following variables are used when a pulse-per-second (PPS) signal 163c68996e2SPoul-Henning Kamp * is available and connected via a modem control lead. They establish 164c68996e2SPoul-Henning Kamp * the engineering parameters of the clock discipline loop when 165c68996e2SPoul-Henning Kamp * controlled by the PPS signal. 1663f31c649SGarrett Wollman */ 167c68996e2SPoul-Henning Kamp #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */ 16824dbea46SJohn Hay #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */ 16982e84c5bSPoul-Henning Kamp #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */ 170c68996e2SPoul-Henning Kamp #define PPS_PAVG 4 /* phase avg interval (s) (shift) */ 171c68996e2SPoul-Henning Kamp #define PPS_VALID 120 /* PPS signal watchdog max (s) */ 17282e84c5bSPoul-Henning Kamp #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */ 17382e84c5bSPoul-Henning Kamp #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */ 174c68996e2SPoul-Henning Kamp 17582e84c5bSPoul-Henning Kamp static struct timespec pps_tf[3]; /* phase median filter */ 176c68996e2SPoul-Henning Kamp static l_fp pps_freq; /* scaled frequency offset (ns/s) */ 177f425c1f6SPoul-Henning Kamp static long pps_fcount; /* frequency accumulator */ 17882e84c5bSPoul-Henning Kamp static long pps_jitter; /* nominal jitter (ns) */ 17982e84c5bSPoul-Henning Kamp static long pps_stabil; /* nominal stability (scaled ns/s) */ 180c68996e2SPoul-Henning Kamp static long pps_lastsec; /* time at last calibration (s) */ 181c68996e2SPoul-Henning Kamp static int pps_valid; /* signal watchdog counter */ 182c68996e2SPoul-Henning Kamp static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */ 18382e84c5bSPoul-Henning Kamp static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */ 184c68996e2SPoul-Henning Kamp static int pps_intcnt; /* wander counter */ 1856f70df15SPoul-Henning Kamp 1866f70df15SPoul-Henning Kamp /* 1876f70df15SPoul-Henning Kamp * PPS signal quality monitors 1886f70df15SPoul-Henning Kamp */ 189c68996e2SPoul-Henning Kamp static long pps_calcnt; /* calibration intervals */ 190c68996e2SPoul-Henning Kamp static long pps_jitcnt; /* jitter limit exceeded */ 191c68996e2SPoul-Henning Kamp static long pps_stbcnt; /* stability limit exceeded */ 192c68996e2SPoul-Henning Kamp static long pps_errcnt; /* calibration errors */ 1933f31c649SGarrett Wollman #endif /* PPS_SYNC */ 194c68996e2SPoul-Henning Kamp /* 195c68996e2SPoul-Henning Kamp * End of phase/frequency-lock loop (PLL/FLL) definitions 196c68996e2SPoul-Henning Kamp */ 1973f31c649SGarrett Wollman 198c68996e2SPoul-Henning Kamp static void ntp_init(void); 199c68996e2SPoul-Henning Kamp static void hardupdate(long offset); 200932cfd41SMark Santcroos static void ntp_gettime1(struct ntptimeval *ntvp); 201c68996e2SPoul-Henning Kamp 202932cfd41SMark Santcroos static void 203932cfd41SMark Santcroos ntp_gettime1(struct ntptimeval *ntvp) 204c68996e2SPoul-Henning Kamp { 205c68996e2SPoul-Henning Kamp struct timespec atv; /* nanosecond time */ 206c68996e2SPoul-Henning Kamp 20775b82238SRobert Watson GIANT_REQUIRED; 20875b82238SRobert Watson 209c68996e2SPoul-Henning Kamp nanotime(&atv); 210932cfd41SMark Santcroos ntvp->time.tv_sec = atv.tv_sec; 211932cfd41SMark Santcroos ntvp->time.tv_nsec = atv.tv_nsec; 212932cfd41SMark Santcroos ntvp->maxerror = time_maxerror; 213932cfd41SMark Santcroos ntvp->esterror = time_esterror; 214932cfd41SMark Santcroos ntvp->tai = time_tai; 215932cfd41SMark Santcroos ntvp->time_state = time_state; 216c68996e2SPoul-Henning Kamp 217c68996e2SPoul-Henning Kamp /* 218c68996e2SPoul-Henning Kamp * Status word error decode. If any of these conditions occur, 219c68996e2SPoul-Henning Kamp * an error is returned, instead of the status word. Most 220c68996e2SPoul-Henning Kamp * applications will care only about the fact the system clock 221c68996e2SPoul-Henning Kamp * may not be trusted, not about the details. 222c68996e2SPoul-Henning Kamp * 223c68996e2SPoul-Henning Kamp * Hardware or software error 224c68996e2SPoul-Henning Kamp */ 225c68996e2SPoul-Henning Kamp if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || 226c68996e2SPoul-Henning Kamp 227c68996e2SPoul-Henning Kamp /* 228c68996e2SPoul-Henning Kamp * PPS signal lost when either time or frequency synchronization 229c68996e2SPoul-Henning Kamp * requested 230c68996e2SPoul-Henning Kamp */ 231c68996e2SPoul-Henning Kamp (time_status & (STA_PPSFREQ | STA_PPSTIME) && 232c68996e2SPoul-Henning Kamp !(time_status & STA_PPSSIGNAL)) || 233c68996e2SPoul-Henning Kamp 234c68996e2SPoul-Henning Kamp /* 235c68996e2SPoul-Henning Kamp * PPS jitter exceeded when time synchronization requested 236c68996e2SPoul-Henning Kamp */ 237c68996e2SPoul-Henning Kamp (time_status & STA_PPSTIME && 238c68996e2SPoul-Henning Kamp time_status & STA_PPSJITTER) || 239c68996e2SPoul-Henning Kamp 240c68996e2SPoul-Henning Kamp /* 241c68996e2SPoul-Henning Kamp * PPS wander exceeded or calibration error when frequency 242c68996e2SPoul-Henning Kamp * synchronization requested 243c68996e2SPoul-Henning Kamp */ 244c68996e2SPoul-Henning Kamp (time_status & STA_PPSFREQ && 245c68996e2SPoul-Henning Kamp time_status & (STA_PPSWANDER | STA_PPSERROR))) 246932cfd41SMark Santcroos ntvp->time_state = TIME_ERROR; 247932cfd41SMark Santcroos } 248932cfd41SMark Santcroos 2499b7fe7e4SMark Santcroos /* 2509b7fe7e4SMark Santcroos * ntp_gettime() - NTP user application interface 2519b7fe7e4SMark Santcroos * 2529b7fe7e4SMark Santcroos * See the timex.h header file for synopsis and API description. Note 2539b7fe7e4SMark Santcroos * that the TAI offset is returned in the ntvtimeval.tai structure 2549b7fe7e4SMark Santcroos * member. 2559b7fe7e4SMark Santcroos */ 256932cfd41SMark Santcroos #ifndef _SYS_SYSPROTO_H_ 257932cfd41SMark Santcroos struct ntp_gettime_args { 258932cfd41SMark Santcroos struct ntptimeval *ntvp; 259932cfd41SMark Santcroos }; 260932cfd41SMark Santcroos #endif 261932cfd41SMark Santcroos /* ARGSUSED */ 262932cfd41SMark Santcroos int 263932cfd41SMark Santcroos ntp_gettime(struct thread *td, struct ntp_gettime_args *uap) 264932cfd41SMark Santcroos { 265932cfd41SMark Santcroos struct ntptimeval ntv; 266932cfd41SMark Santcroos 26775b82238SRobert Watson mtx_lock(&Giant); 268932cfd41SMark Santcroos ntp_gettime1(&ntv); 26975b82238SRobert Watson mtx_unlock(&Giant); 270932cfd41SMark Santcroos 271fe18f385SWarner Losh td->td_retval[0] = ntv.time_state; 272932cfd41SMark Santcroos return (copyout(&ntv, uap->ntvp, sizeof(ntv))); 273932cfd41SMark Santcroos } 274932cfd41SMark Santcroos 275932cfd41SMark Santcroos static int 276932cfd41SMark Santcroos ntp_sysctl(SYSCTL_HANDLER_ARGS) 277932cfd41SMark Santcroos { 278932cfd41SMark Santcroos struct ntptimeval ntv; /* temporary structure */ 279932cfd41SMark Santcroos 280932cfd41SMark Santcroos ntp_gettime1(&ntv); 281932cfd41SMark Santcroos 282932cfd41SMark Santcroos return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req)); 283c68996e2SPoul-Henning Kamp } 284c68996e2SPoul-Henning Kamp 285c68996e2SPoul-Henning Kamp SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, ""); 286c68996e2SPoul-Henning Kamp SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD, 287c68996e2SPoul-Henning Kamp 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", ""); 288c68996e2SPoul-Henning Kamp 2895968e18bSPoul-Henning Kamp #ifdef PPS_SYNC 29082e84c5bSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, ""); 2916a77f60dSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, ""); 2928925e63cSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, ""); 2937fd299cbSPoul-Henning Kamp 2947fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", ""); 2957fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", ""); 2965968e18bSPoul-Henning Kamp #endif 297c68996e2SPoul-Henning Kamp /* 298c68996e2SPoul-Henning Kamp * ntp_adjtime() - NTP daemon application interface 299c68996e2SPoul-Henning Kamp * 30097804a5cSPoul-Henning Kamp * See the timex.h header file for synopsis and API description. Note 30197804a5cSPoul-Henning Kamp * that the timex.constant structure member has a dual purpose to set 30297804a5cSPoul-Henning Kamp * the time constant and to set the TAI offset. 303c68996e2SPoul-Henning Kamp */ 304c68996e2SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_ 305c68996e2SPoul-Henning Kamp struct ntp_adjtime_args { 306c68996e2SPoul-Henning Kamp struct timex *tp; 307c68996e2SPoul-Henning Kamp }; 308c68996e2SPoul-Henning Kamp #endif 309c68996e2SPoul-Henning Kamp 3106f1e8c18SMatthew Dillon /* 3116f1e8c18SMatthew Dillon * MPSAFE 3126f1e8c18SMatthew Dillon */ 313c68996e2SPoul-Henning Kamp int 314b40ce416SJulian Elischer ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap) 315c68996e2SPoul-Henning Kamp { 316c68996e2SPoul-Henning Kamp struct timex ntv; /* temporary structure */ 317f425c1f6SPoul-Henning Kamp long freq; /* frequency ns/s) */ 318c68996e2SPoul-Henning Kamp int modes; /* mode bits from structure */ 319c68996e2SPoul-Henning Kamp int s; /* caller priority */ 320c68996e2SPoul-Henning Kamp int error; 321c68996e2SPoul-Henning Kamp 322c68996e2SPoul-Henning Kamp error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv)); 323c68996e2SPoul-Henning Kamp if (error) 324c68996e2SPoul-Henning Kamp return(error); 325c68996e2SPoul-Henning Kamp 326c68996e2SPoul-Henning Kamp /* 327c68996e2SPoul-Henning Kamp * Update selected clock variables - only the superuser can 328c68996e2SPoul-Henning Kamp * change anything. Note that there is no error checking here on 329c68996e2SPoul-Henning Kamp * the assumption the superuser should know what it is doing. 33097804a5cSPoul-Henning Kamp * Note that either the time constant or TAI offset are loaded 33124dbea46SJohn Hay * from the ntv.constant member, depending on the mode bits. If 33224dbea46SJohn Hay * the STA_PLL bit in the status word is cleared, the state and 33324dbea46SJohn Hay * status words are reset to the initial values at boot. 334c68996e2SPoul-Henning Kamp */ 3356f1e8c18SMatthew Dillon mtx_lock(&Giant); 336c68996e2SPoul-Henning Kamp modes = ntv.modes; 337fafbe352SPoul-Henning Kamp if (modes) 338acd3428bSRobert Watson error = priv_check(td, PRIV_NTP_ADJTIME); 339c68996e2SPoul-Henning Kamp if (error) 3406f1e8c18SMatthew Dillon goto done2; 341c68996e2SPoul-Henning Kamp s = splclock(); 342c68996e2SPoul-Henning Kamp if (modes & MOD_MAXERROR) 343c68996e2SPoul-Henning Kamp time_maxerror = ntv.maxerror; 344c68996e2SPoul-Henning Kamp if (modes & MOD_ESTERROR) 345c68996e2SPoul-Henning Kamp time_esterror = ntv.esterror; 346c68996e2SPoul-Henning Kamp if (modes & MOD_STATUS) { 34724dbea46SJohn Hay if (time_status & STA_PLL && !(ntv.status & STA_PLL)) { 34824dbea46SJohn Hay time_state = TIME_OK; 34924dbea46SJohn Hay time_status = STA_UNSYNC; 35024dbea46SJohn Hay #ifdef PPS_SYNC 35124dbea46SJohn Hay pps_shift = PPS_FAVG; 35224dbea46SJohn Hay #endif /* PPS_SYNC */ 35324dbea46SJohn Hay } 354c68996e2SPoul-Henning Kamp time_status &= STA_RONLY; 355c68996e2SPoul-Henning Kamp time_status |= ntv.status & ~STA_RONLY; 356c68996e2SPoul-Henning Kamp } 357f425c1f6SPoul-Henning Kamp if (modes & MOD_TIMECONST) { 358f425c1f6SPoul-Henning Kamp if (ntv.constant < 0) 359f425c1f6SPoul-Henning Kamp time_constant = 0; 360f425c1f6SPoul-Henning Kamp else if (ntv.constant > MAXTC) 361f425c1f6SPoul-Henning Kamp time_constant = MAXTC; 362f425c1f6SPoul-Henning Kamp else 363c68996e2SPoul-Henning Kamp time_constant = ntv.constant; 364f425c1f6SPoul-Henning Kamp } 36597804a5cSPoul-Henning Kamp if (modes & MOD_TAI) { 36697804a5cSPoul-Henning Kamp if (ntv.constant > 0) /* XXX zero & negative numbers ? */ 36797804a5cSPoul-Henning Kamp time_tai = ntv.constant; 36897804a5cSPoul-Henning Kamp } 36982e84c5bSPoul-Henning Kamp #ifdef PPS_SYNC 37082e84c5bSPoul-Henning Kamp if (modes & MOD_PPSMAX) { 37182e84c5bSPoul-Henning Kamp if (ntv.shift < PPS_FAVG) 37282e84c5bSPoul-Henning Kamp pps_shiftmax = PPS_FAVG; 37382e84c5bSPoul-Henning Kamp else if (ntv.shift > PPS_FAVGMAX) 37482e84c5bSPoul-Henning Kamp pps_shiftmax = PPS_FAVGMAX; 37582e84c5bSPoul-Henning Kamp else 37682e84c5bSPoul-Henning Kamp pps_shiftmax = ntv.shift; 37782e84c5bSPoul-Henning Kamp } 37882e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */ 379c68996e2SPoul-Henning Kamp if (modes & MOD_NANO) 380c68996e2SPoul-Henning Kamp time_status |= STA_NANO; 381c68996e2SPoul-Henning Kamp if (modes & MOD_MICRO) 382c68996e2SPoul-Henning Kamp time_status &= ~STA_NANO; 383c68996e2SPoul-Henning Kamp if (modes & MOD_CLKB) 384c68996e2SPoul-Henning Kamp time_status |= STA_CLK; 385c68996e2SPoul-Henning Kamp if (modes & MOD_CLKA) 386c68996e2SPoul-Henning Kamp time_status &= ~STA_CLK; 38724dbea46SJohn Hay if (modes & MOD_FREQUENCY) { 38824dbea46SJohn Hay freq = (ntv.freq * 1000LL) >> 16; 38924dbea46SJohn Hay if (freq > MAXFREQ) 39024dbea46SJohn Hay L_LINT(time_freq, MAXFREQ); 39124dbea46SJohn Hay else if (freq < -MAXFREQ) 39224dbea46SJohn Hay L_LINT(time_freq, -MAXFREQ); 393bcfe6d8bSPoul-Henning Kamp else { 394bcfe6d8bSPoul-Henning Kamp /* 395bcfe6d8bSPoul-Henning Kamp * ntv.freq is [PPM * 2^16] = [us/s * 2^16] 396bcfe6d8bSPoul-Henning Kamp * time_freq is [ns/s * 2^32] 397bcfe6d8bSPoul-Henning Kamp */ 398bcfe6d8bSPoul-Henning Kamp time_freq = ntv.freq * 1000LL * 65536LL; 399bcfe6d8bSPoul-Henning Kamp } 40024dbea46SJohn Hay #ifdef PPS_SYNC 40124dbea46SJohn Hay pps_freq = time_freq; 40224dbea46SJohn Hay #endif /* PPS_SYNC */ 40324dbea46SJohn Hay } 404551260fcSPoul-Henning Kamp if (modes & MOD_OFFSET) { 405551260fcSPoul-Henning Kamp if (time_status & STA_NANO) 406551260fcSPoul-Henning Kamp hardupdate(ntv.offset); 407551260fcSPoul-Henning Kamp else 408551260fcSPoul-Henning Kamp hardupdate(ntv.offset * 1000); 409551260fcSPoul-Henning Kamp } 410c68996e2SPoul-Henning Kamp 411c68996e2SPoul-Henning Kamp /* 41297804a5cSPoul-Henning Kamp * Retrieve all clock variables. Note that the TAI offset is 41397804a5cSPoul-Henning Kamp * returned only by ntp_gettime(); 414c68996e2SPoul-Henning Kamp */ 415c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 416b9c6e8bdSPoul-Henning Kamp ntv.offset = L_GINT(time_offset); 417c68996e2SPoul-Henning Kamp else 418b9c6e8bdSPoul-Henning Kamp ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */ 41934cffbe3SPoul-Henning Kamp ntv.freq = L_GINT((time_freq / 1000LL) << 16); 420c68996e2SPoul-Henning Kamp ntv.maxerror = time_maxerror; 421c68996e2SPoul-Henning Kamp ntv.esterror = time_esterror; 422c68996e2SPoul-Henning Kamp ntv.status = time_status; 423f425c1f6SPoul-Henning Kamp ntv.constant = time_constant; 424c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 425c68996e2SPoul-Henning Kamp ntv.precision = time_precision; 426c68996e2SPoul-Henning Kamp else 427c68996e2SPoul-Henning Kamp ntv.precision = time_precision / 1000; 428c68996e2SPoul-Henning Kamp ntv.tolerance = MAXFREQ * SCALE_PPM; 429c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 430c68996e2SPoul-Henning Kamp ntv.shift = pps_shift; 43134cffbe3SPoul-Henning Kamp ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16); 432c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 433c68996e2SPoul-Henning Kamp ntv.jitter = pps_jitter; 434c68996e2SPoul-Henning Kamp else 435c68996e2SPoul-Henning Kamp ntv.jitter = pps_jitter / 1000; 436c68996e2SPoul-Henning Kamp ntv.stabil = pps_stabil; 437c68996e2SPoul-Henning Kamp ntv.calcnt = pps_calcnt; 438c68996e2SPoul-Henning Kamp ntv.errcnt = pps_errcnt; 439c68996e2SPoul-Henning Kamp ntv.jitcnt = pps_jitcnt; 440c68996e2SPoul-Henning Kamp ntv.stbcnt = pps_stbcnt; 441c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 442c68996e2SPoul-Henning Kamp splx(s); 443c68996e2SPoul-Henning Kamp 444c68996e2SPoul-Henning Kamp error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv)); 445c68996e2SPoul-Henning Kamp if (error) 4466f1e8c18SMatthew Dillon goto done2; 447c68996e2SPoul-Henning Kamp 448c68996e2SPoul-Henning Kamp /* 449c68996e2SPoul-Henning Kamp * Status word error decode. See comments in 450c68996e2SPoul-Henning Kamp * ntp_gettime() routine. 451c68996e2SPoul-Henning Kamp */ 452c68996e2SPoul-Henning Kamp if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || 453c68996e2SPoul-Henning Kamp (time_status & (STA_PPSFREQ | STA_PPSTIME) && 454c68996e2SPoul-Henning Kamp !(time_status & STA_PPSSIGNAL)) || 455c68996e2SPoul-Henning Kamp (time_status & STA_PPSTIME && 456c68996e2SPoul-Henning Kamp time_status & STA_PPSJITTER) || 457c68996e2SPoul-Henning Kamp (time_status & STA_PPSFREQ && 4586f1e8c18SMatthew Dillon time_status & (STA_PPSWANDER | STA_PPSERROR))) { 459b40ce416SJulian Elischer td->td_retval[0] = TIME_ERROR; 4606f1e8c18SMatthew Dillon } else { 461b40ce416SJulian Elischer td->td_retval[0] = time_state; 4626f1e8c18SMatthew Dillon } 4636f1e8c18SMatthew Dillon done2: 4646f1e8c18SMatthew Dillon mtx_unlock(&Giant); 465a5088017SPoul-Henning Kamp return (error); 466c68996e2SPoul-Henning Kamp } 467c68996e2SPoul-Henning Kamp 468c68996e2SPoul-Henning Kamp /* 469c68996e2SPoul-Henning Kamp * second_overflow() - called after ntp_tick_adjust() 470c68996e2SPoul-Henning Kamp * 471c68996e2SPoul-Henning Kamp * This routine is ordinarily called immediately following the above 472c68996e2SPoul-Henning Kamp * routine ntp_tick_adjust(). While these two routines are normally 473c68996e2SPoul-Henning Kamp * combined, they are separated here only for the purposes of 474c68996e2SPoul-Henning Kamp * simulation. 475c68996e2SPoul-Henning Kamp */ 476c68996e2SPoul-Henning Kamp void 477b4a1d0deSPoul-Henning Kamp ntp_update_second(int64_t *adjustment, time_t *newsec) 478c68996e2SPoul-Henning Kamp { 479e1d970f1SPoul-Henning Kamp int tickrate; 48097804a5cSPoul-Henning Kamp l_fp ftemp; /* 32/64-bit temporary */ 481c68996e2SPoul-Henning Kamp 48282e84c5bSPoul-Henning Kamp /* 48382e84c5bSPoul-Henning Kamp * On rollover of the second both the nanosecond and microsecond 48482e84c5bSPoul-Henning Kamp * clocks are updated and the state machine cranked as 48582e84c5bSPoul-Henning Kamp * necessary. The phase adjustment to be used for the next 48682e84c5bSPoul-Henning Kamp * second is calculated and the maximum error is increased by 48782e84c5bSPoul-Henning Kamp * the tolerance. 48882e84c5bSPoul-Henning Kamp */ 489c68996e2SPoul-Henning Kamp time_maxerror += MAXFREQ / 1000; 490c68996e2SPoul-Henning Kamp 491c68996e2SPoul-Henning Kamp /* 492c68996e2SPoul-Henning Kamp * Leap second processing. If in leap-insert state at 493c68996e2SPoul-Henning Kamp * the end of the day, the system clock is set back one 494c68996e2SPoul-Henning Kamp * second; if in leap-delete state, the system clock is 495c68996e2SPoul-Henning Kamp * set ahead one second. The nano_time() routine or 496c68996e2SPoul-Henning Kamp * external clock driver will insure that reported time 497c68996e2SPoul-Henning Kamp * is always monotonic. 498c68996e2SPoul-Henning Kamp */ 499c68996e2SPoul-Henning Kamp switch (time_state) { 500c68996e2SPoul-Henning Kamp 501c68996e2SPoul-Henning Kamp /* 502c68996e2SPoul-Henning Kamp * No warning. 503c68996e2SPoul-Henning Kamp */ 504c68996e2SPoul-Henning Kamp case TIME_OK: 505c68996e2SPoul-Henning Kamp if (time_status & STA_INS) 506c68996e2SPoul-Henning Kamp time_state = TIME_INS; 507c68996e2SPoul-Henning Kamp else if (time_status & STA_DEL) 508c68996e2SPoul-Henning Kamp time_state = TIME_DEL; 509c68996e2SPoul-Henning Kamp break; 510c68996e2SPoul-Henning Kamp 511c68996e2SPoul-Henning Kamp /* 512c68996e2SPoul-Henning Kamp * Insert second 23:59:60 following second 513c68996e2SPoul-Henning Kamp * 23:59:59. 514c68996e2SPoul-Henning Kamp */ 515c68996e2SPoul-Henning Kamp case TIME_INS: 516c68996e2SPoul-Henning Kamp if (!(time_status & STA_INS)) 517c68996e2SPoul-Henning Kamp time_state = TIME_OK; 518c68996e2SPoul-Henning Kamp else if ((*newsec) % 86400 == 0) { 519c68996e2SPoul-Henning Kamp (*newsec)--; 520c68996e2SPoul-Henning Kamp time_state = TIME_OOP; 521eac3c62bSWarner Losh time_tai++; 522c68996e2SPoul-Henning Kamp } 523c68996e2SPoul-Henning Kamp break; 524c68996e2SPoul-Henning Kamp 525c68996e2SPoul-Henning Kamp /* 526c68996e2SPoul-Henning Kamp * Delete second 23:59:59. 527c68996e2SPoul-Henning Kamp */ 528c68996e2SPoul-Henning Kamp case TIME_DEL: 529c68996e2SPoul-Henning Kamp if (!(time_status & STA_DEL)) 530c68996e2SPoul-Henning Kamp time_state = TIME_OK; 531c68996e2SPoul-Henning Kamp else if (((*newsec) + 1) % 86400 == 0) { 532c68996e2SPoul-Henning Kamp (*newsec)++; 53397804a5cSPoul-Henning Kamp time_tai--; 534c68996e2SPoul-Henning Kamp time_state = TIME_WAIT; 535c68996e2SPoul-Henning Kamp } 536c68996e2SPoul-Henning Kamp break; 537c68996e2SPoul-Henning Kamp 538c68996e2SPoul-Henning Kamp /* 539c68996e2SPoul-Henning Kamp * Insert second in progress. 540c68996e2SPoul-Henning Kamp */ 541c68996e2SPoul-Henning Kamp case TIME_OOP: 542c68996e2SPoul-Henning Kamp time_state = TIME_WAIT; 543c68996e2SPoul-Henning Kamp break; 544c68996e2SPoul-Henning Kamp 545c68996e2SPoul-Henning Kamp /* 546c68996e2SPoul-Henning Kamp * Wait for status bits to clear. 547c68996e2SPoul-Henning Kamp */ 548c68996e2SPoul-Henning Kamp case TIME_WAIT: 549c68996e2SPoul-Henning Kamp if (!(time_status & (STA_INS | STA_DEL))) 550c68996e2SPoul-Henning Kamp time_state = TIME_OK; 551c68996e2SPoul-Henning Kamp } 552c68996e2SPoul-Henning Kamp 553c68996e2SPoul-Henning Kamp /* 55482e84c5bSPoul-Henning Kamp * Compute the total time adjustment for the next second 55582e84c5bSPoul-Henning Kamp * in ns. The offset is reduced by a factor depending on 55682e84c5bSPoul-Henning Kamp * whether the PPS signal is operating. Note that the 55782e84c5bSPoul-Henning Kamp * value is in effect scaled by the clock frequency, 55882e84c5bSPoul-Henning Kamp * since the adjustment is added at each tick interrupt. 559c68996e2SPoul-Henning Kamp */ 56097804a5cSPoul-Henning Kamp ftemp = time_offset; 561c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 56297804a5cSPoul-Henning Kamp /* XXX even if PPS signal dies we should finish adjustment ? */ 56397804a5cSPoul-Henning Kamp if (time_status & STA_PPSTIME && time_status & 56497804a5cSPoul-Henning Kamp STA_PPSSIGNAL) 56597804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, pps_shift); 56697804a5cSPoul-Henning Kamp else 56797804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 56882e84c5bSPoul-Henning Kamp #else 56997804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 57082e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */ 57197804a5cSPoul-Henning Kamp time_adj = ftemp; 57297804a5cSPoul-Henning Kamp L_SUB(time_offset, ftemp); 573c68996e2SPoul-Henning Kamp L_ADD(time_adj, time_freq); 574e1d970f1SPoul-Henning Kamp 575e1d970f1SPoul-Henning Kamp /* 576e1d970f1SPoul-Henning Kamp * Apply any correction from adjtime(2). If more than one second 577e1d970f1SPoul-Henning Kamp * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM) 578e1d970f1SPoul-Henning Kamp * until the last second is slewed the final < 500 usecs. 579e1d970f1SPoul-Henning Kamp */ 580e1d970f1SPoul-Henning Kamp if (time_adjtime != 0) { 581e1d970f1SPoul-Henning Kamp if (time_adjtime > 1000000) 582e1d970f1SPoul-Henning Kamp tickrate = 5000; 583e1d970f1SPoul-Henning Kamp else if (time_adjtime < -1000000) 584e1d970f1SPoul-Henning Kamp tickrate = -5000; 585e1d970f1SPoul-Henning Kamp else if (time_adjtime > 500) 586e1d970f1SPoul-Henning Kamp tickrate = 500; 587e1d970f1SPoul-Henning Kamp else if (time_adjtime < -500) 588e1d970f1SPoul-Henning Kamp tickrate = -500; 589e1d970f1SPoul-Henning Kamp else 590bcfe6d8bSPoul-Henning Kamp tickrate = time_adjtime; 591e1d970f1SPoul-Henning Kamp time_adjtime -= tickrate; 592e1d970f1SPoul-Henning Kamp L_LINT(ftemp, tickrate * 1000); 593e1d970f1SPoul-Henning Kamp L_ADD(time_adj, ftemp); 594e1d970f1SPoul-Henning Kamp } 595b4a1d0deSPoul-Henning Kamp *adjustment = time_adj; 596e1d970f1SPoul-Henning Kamp 597c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 598c68996e2SPoul-Henning Kamp if (pps_valid > 0) 599c68996e2SPoul-Henning Kamp pps_valid--; 600c68996e2SPoul-Henning Kamp else 60124dbea46SJohn Hay time_status &= ~STA_PPSSIGNAL; 602c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 603c68996e2SPoul-Henning Kamp } 604c68996e2SPoul-Henning Kamp 605c68996e2SPoul-Henning Kamp /* 606c68996e2SPoul-Henning Kamp * ntp_init() - initialize variables and structures 607c68996e2SPoul-Henning Kamp * 608c68996e2SPoul-Henning Kamp * This routine must be called after the kernel variables hz and tick 609c68996e2SPoul-Henning Kamp * are set or changed and before the next tick interrupt. In this 610c68996e2SPoul-Henning Kamp * particular implementation, these values are assumed set elsewhere in 611c68996e2SPoul-Henning Kamp * the kernel. The design allows the clock frequency and tick interval 612c68996e2SPoul-Henning Kamp * to be changed while the system is running. So, this routine should 613c68996e2SPoul-Henning Kamp * probably be integrated with the code that does that. 614c68996e2SPoul-Henning Kamp */ 615c68996e2SPoul-Henning Kamp static void 616c68996e2SPoul-Henning Kamp ntp_init() 617c68996e2SPoul-Henning Kamp { 618c68996e2SPoul-Henning Kamp 619c68996e2SPoul-Henning Kamp /* 620c68996e2SPoul-Henning Kamp * The following variables are initialized only at startup. Only 621c68996e2SPoul-Henning Kamp * those structures not cleared by the compiler need to be 622c68996e2SPoul-Henning Kamp * initialized, and these only in the simulator. In the actual 623c68996e2SPoul-Henning Kamp * kernel, any nonzero values here will quickly evaporate. 624c68996e2SPoul-Henning Kamp */ 625c68996e2SPoul-Henning Kamp L_CLR(time_offset); 626c68996e2SPoul-Henning Kamp L_CLR(time_freq); 627c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 62882e84c5bSPoul-Henning Kamp pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0; 62982e84c5bSPoul-Henning Kamp pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0; 63082e84c5bSPoul-Henning Kamp pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0; 631f425c1f6SPoul-Henning Kamp pps_fcount = 0; 632c68996e2SPoul-Henning Kamp L_CLR(pps_freq); 633c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 634c68996e2SPoul-Henning Kamp } 635c68996e2SPoul-Henning Kamp 636ff292556SPeter Wemm SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL) 6376f70df15SPoul-Henning Kamp 6386f70df15SPoul-Henning Kamp /* 6396f70df15SPoul-Henning Kamp * hardupdate() - local clock update 6406f70df15SPoul-Henning Kamp * 6416f70df15SPoul-Henning Kamp * This routine is called by ntp_adjtime() to update the local clock 6426f70df15SPoul-Henning Kamp * phase and frequency. The implementation is of an adaptive-parameter, 6436f70df15SPoul-Henning Kamp * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 6446f70df15SPoul-Henning Kamp * time and frequency offset estimates for each call. If the kernel PPS 6456f70df15SPoul-Henning Kamp * discipline code is configured (PPS_SYNC), the PPS signal itself 6466f70df15SPoul-Henning Kamp * determines the new time offset, instead of the calling argument. 6476f70df15SPoul-Henning Kamp * Presumably, calls to ntp_adjtime() occur only when the caller 6486f70df15SPoul-Henning Kamp * believes the local clock is valid within some bound (+-128 ms with 6496f70df15SPoul-Henning Kamp * NTP). If the caller's time is far different than the PPS time, an 6506f70df15SPoul-Henning Kamp * argument will ensue, and it's not clear who will lose. 6516f70df15SPoul-Henning Kamp * 652c68996e2SPoul-Henning Kamp * For uncompensated quartz crystal oscillators and nominal update 653c68996e2SPoul-Henning Kamp * intervals less than 256 s, operation should be in phase-lock mode, 654c68996e2SPoul-Henning Kamp * where the loop is disciplined to phase. For update intervals greater 655c68996e2SPoul-Henning Kamp * than 1024 s, operation should be in frequency-lock mode, where the 656c68996e2SPoul-Henning Kamp * loop is disciplined to frequency. Between 256 s and 1024 s, the mode 657c68996e2SPoul-Henning Kamp * is selected by the STA_MODE status bit. 6586f70df15SPoul-Henning Kamp */ 6596f70df15SPoul-Henning Kamp static void 660c68996e2SPoul-Henning Kamp hardupdate(offset) 661c68996e2SPoul-Henning Kamp long offset; /* clock offset (ns) */ 6626f70df15SPoul-Henning Kamp { 66397804a5cSPoul-Henning Kamp long mtemp; 664c68996e2SPoul-Henning Kamp l_fp ftemp; 6656f70df15SPoul-Henning Kamp 666c68996e2SPoul-Henning Kamp /* 667c68996e2SPoul-Henning Kamp * Select how the phase is to be controlled and from which 668c68996e2SPoul-Henning Kamp * source. If the PPS signal is present and enabled to 669c68996e2SPoul-Henning Kamp * discipline the time, the PPS offset is used; otherwise, the 670c68996e2SPoul-Henning Kamp * argument offset is used. 671c68996e2SPoul-Henning Kamp */ 67282e84c5bSPoul-Henning Kamp if (!(time_status & STA_PLL)) 67382e84c5bSPoul-Henning Kamp return; 67497804a5cSPoul-Henning Kamp if (!(time_status & STA_PPSTIME && time_status & 67597804a5cSPoul-Henning Kamp STA_PPSSIGNAL)) { 67697804a5cSPoul-Henning Kamp if (offset > MAXPHASE) 67797804a5cSPoul-Henning Kamp time_monitor = MAXPHASE; 67897804a5cSPoul-Henning Kamp else if (offset < -MAXPHASE) 67997804a5cSPoul-Henning Kamp time_monitor = -MAXPHASE; 68097804a5cSPoul-Henning Kamp else 68197804a5cSPoul-Henning Kamp time_monitor = offset; 68297804a5cSPoul-Henning Kamp L_LINT(time_offset, time_monitor); 68397804a5cSPoul-Henning Kamp } 6846f70df15SPoul-Henning Kamp 6856f70df15SPoul-Henning Kamp /* 686c68996e2SPoul-Henning Kamp * Select how the frequency is to be controlled and in which 687c68996e2SPoul-Henning Kamp * mode (PLL or FLL). If the PPS signal is present and enabled 688c68996e2SPoul-Henning Kamp * to discipline the frequency, the PPS frequency is used; 689c68996e2SPoul-Henning Kamp * otherwise, the argument offset is used to compute it. 6906f70df15SPoul-Henning Kamp */ 691c68996e2SPoul-Henning Kamp if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) { 692c68996e2SPoul-Henning Kamp time_reftime = time_second; 693c68996e2SPoul-Henning Kamp return; 694c68996e2SPoul-Henning Kamp } 6956f70df15SPoul-Henning Kamp if (time_status & STA_FREQHOLD || time_reftime == 0) 696227ee8a1SPoul-Henning Kamp time_reftime = time_second; 697227ee8a1SPoul-Henning Kamp mtemp = time_second - time_reftime; 69897804a5cSPoul-Henning Kamp L_LINT(ftemp, time_monitor); 699c68996e2SPoul-Henning Kamp L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1); 700c68996e2SPoul-Henning Kamp L_MPY(ftemp, mtemp); 701c68996e2SPoul-Henning Kamp L_ADD(time_freq, ftemp); 702c68996e2SPoul-Henning Kamp time_status &= ~STA_MODE; 70397804a5cSPoul-Henning Kamp if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > 70497804a5cSPoul-Henning Kamp MAXSEC)) { 70597804a5cSPoul-Henning Kamp L_LINT(ftemp, (time_monitor << 4) / mtemp); 70682e84c5bSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_FLL + 4); 70782e84c5bSPoul-Henning Kamp L_ADD(time_freq, ftemp); 70882e84c5bSPoul-Henning Kamp time_status |= STA_MODE; 709c68996e2SPoul-Henning Kamp } 710227ee8a1SPoul-Henning Kamp time_reftime = time_second; 711c68996e2SPoul-Henning Kamp if (L_GINT(time_freq) > MAXFREQ) 712c68996e2SPoul-Henning Kamp L_LINT(time_freq, MAXFREQ); 713c68996e2SPoul-Henning Kamp else if (L_GINT(time_freq) < -MAXFREQ) 714c68996e2SPoul-Henning Kamp L_LINT(time_freq, -MAXFREQ); 7153f31c649SGarrett Wollman } 7163f31c649SGarrett Wollman 7176f70df15SPoul-Henning Kamp #ifdef PPS_SYNC 7186f70df15SPoul-Henning Kamp /* 7196f70df15SPoul-Henning Kamp * hardpps() - discipline CPU clock oscillator to external PPS signal 7206f70df15SPoul-Henning Kamp * 7216f70df15SPoul-Henning Kamp * This routine is called at each PPS interrupt in order to discipline 72297804a5cSPoul-Henning Kamp * the CPU clock oscillator to the PPS signal. There are two independent 72397804a5cSPoul-Henning Kamp * first-order feedback loops, one for the phase, the other for the 72497804a5cSPoul-Henning Kamp * frequency. The phase loop measures and grooms the PPS phase offset 72597804a5cSPoul-Henning Kamp * and leaves it in a handy spot for the seconds overflow routine. The 72697804a5cSPoul-Henning Kamp * frequency loop averages successive PPS phase differences and 72797804a5cSPoul-Henning Kamp * calculates the PPS frequency offset, which is also processed by the 72897804a5cSPoul-Henning Kamp * seconds overflow routine. The code requires the caller to capture the 72997804a5cSPoul-Henning Kamp * time and architecture-dependent hardware counter values in 73097804a5cSPoul-Henning Kamp * nanoseconds at the on-time PPS signal transition. 7316f70df15SPoul-Henning Kamp * 732c68996e2SPoul-Henning Kamp * Note that, on some Unix systems this routine runs at an interrupt 7336f70df15SPoul-Henning Kamp * priority level higher than the timer interrupt routine hardclock(). 7346f70df15SPoul-Henning Kamp * Therefore, the variables used are distinct from the hardclock() 735c68996e2SPoul-Henning Kamp * variables, except for the actual time and frequency variables, which 736c68996e2SPoul-Henning Kamp * are determined by this routine and updated atomically. 7376f70df15SPoul-Henning Kamp */ 7386f70df15SPoul-Henning Kamp void 739c68996e2SPoul-Henning Kamp hardpps(tsp, nsec) 740c68996e2SPoul-Henning Kamp struct timespec *tsp; /* time at PPS */ 741c68996e2SPoul-Henning Kamp long nsec; /* hardware counter at PPS */ 7426f70df15SPoul-Henning Kamp { 74397804a5cSPoul-Henning Kamp long u_sec, u_nsec, v_nsec; /* temps */ 744c68996e2SPoul-Henning Kamp l_fp ftemp; 7456f70df15SPoul-Henning Kamp 7466f70df15SPoul-Henning Kamp /* 74797804a5cSPoul-Henning Kamp * The signal is first processed by a range gate and frequency 74897804a5cSPoul-Henning Kamp * discriminator. The range gate rejects noise spikes outside 74997804a5cSPoul-Henning Kamp * the range +-500 us. The frequency discriminator rejects input 75097804a5cSPoul-Henning Kamp * signals with apparent frequency outside the range 1 +-500 75197804a5cSPoul-Henning Kamp * PPM. If two hits occur in the same second, we ignore the 75297804a5cSPoul-Henning Kamp * later hit; if not and a hit occurs outside the range gate, 75397804a5cSPoul-Henning Kamp * keep the later hit for later comparison, but do not process 75497804a5cSPoul-Henning Kamp * it. 7556f70df15SPoul-Henning Kamp */ 756c68996e2SPoul-Henning Kamp time_status |= STA_PPSSIGNAL | STA_PPSJITTER; 757c68996e2SPoul-Henning Kamp time_status &= ~(STA_PPSWANDER | STA_PPSERROR); 758c68996e2SPoul-Henning Kamp pps_valid = PPS_VALID; 759c68996e2SPoul-Henning Kamp u_sec = tsp->tv_sec; 760c68996e2SPoul-Henning Kamp u_nsec = tsp->tv_nsec; 761c68996e2SPoul-Henning Kamp if (u_nsec >= (NANOSECOND >> 1)) { 762c68996e2SPoul-Henning Kamp u_nsec -= NANOSECOND; 763c68996e2SPoul-Henning Kamp u_sec++; 7646f70df15SPoul-Henning Kamp } 76582e84c5bSPoul-Henning Kamp v_nsec = u_nsec - pps_tf[0].tv_nsec; 76624dbea46SJohn Hay if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - 76724dbea46SJohn Hay MAXFREQ) 768c68996e2SPoul-Henning Kamp return; 769c68996e2SPoul-Henning Kamp pps_tf[2] = pps_tf[1]; 770c68996e2SPoul-Henning Kamp pps_tf[1] = pps_tf[0]; 77182e84c5bSPoul-Henning Kamp pps_tf[0].tv_sec = u_sec; 77282e84c5bSPoul-Henning Kamp pps_tf[0].tv_nsec = u_nsec; 7736f70df15SPoul-Henning Kamp 7746f70df15SPoul-Henning Kamp /* 775c68996e2SPoul-Henning Kamp * Compute the difference between the current and previous 776c68996e2SPoul-Henning Kamp * counter values. If the difference exceeds 0.5 s, assume it 777c68996e2SPoul-Henning Kamp * has wrapped around, so correct 1.0 s. If the result exceeds 778c68996e2SPoul-Henning Kamp * the tick interval, the sample point has crossed a tick 779c68996e2SPoul-Henning Kamp * boundary during the last second, so correct the tick. Very 780c68996e2SPoul-Henning Kamp * intricate. 781c68996e2SPoul-Henning Kamp */ 78232c20357SPoul-Henning Kamp u_nsec = nsec; 783c68996e2SPoul-Henning Kamp if (u_nsec > (NANOSECOND >> 1)) 784c68996e2SPoul-Henning Kamp u_nsec -= NANOSECOND; 785c68996e2SPoul-Henning Kamp else if (u_nsec < -(NANOSECOND >> 1)) 786c68996e2SPoul-Henning Kamp u_nsec += NANOSECOND; 787884ab557SPoul-Henning Kamp pps_fcount += u_nsec; 78824dbea46SJohn Hay if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) 789c68996e2SPoul-Henning Kamp return; 790c68996e2SPoul-Henning Kamp time_status &= ~STA_PPSJITTER; 791c68996e2SPoul-Henning Kamp 792c68996e2SPoul-Henning Kamp /* 793c68996e2SPoul-Henning Kamp * A three-stage median filter is used to help denoise the PPS 7946f70df15SPoul-Henning Kamp * time. The median sample becomes the time offset estimate; the 7956f70df15SPoul-Henning Kamp * difference between the other two samples becomes the time 7966f70df15SPoul-Henning Kamp * dispersion (jitter) estimate. 7976f70df15SPoul-Henning Kamp */ 79882e84c5bSPoul-Henning Kamp if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) { 79982e84c5bSPoul-Henning Kamp if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) { 80082e84c5bSPoul-Henning Kamp v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */ 80182e84c5bSPoul-Henning Kamp u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec; 80282e84c5bSPoul-Henning Kamp } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) { 80382e84c5bSPoul-Henning Kamp v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */ 80482e84c5bSPoul-Henning Kamp u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec; 8056f70df15SPoul-Henning Kamp } else { 80682e84c5bSPoul-Henning Kamp v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */ 80782e84c5bSPoul-Henning Kamp u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec; 808c68996e2SPoul-Henning Kamp } 809c68996e2SPoul-Henning Kamp } else { 81082e84c5bSPoul-Henning Kamp if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) { 81182e84c5bSPoul-Henning Kamp v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */ 81282e84c5bSPoul-Henning Kamp u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec; 81382e84c5bSPoul-Henning Kamp } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) { 81482e84c5bSPoul-Henning Kamp v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */ 81582e84c5bSPoul-Henning Kamp u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec; 816c68996e2SPoul-Henning Kamp } else { 81782e84c5bSPoul-Henning Kamp v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */ 81882e84c5bSPoul-Henning Kamp u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec; 8196f70df15SPoul-Henning Kamp } 8206f70df15SPoul-Henning Kamp } 8216f70df15SPoul-Henning Kamp 8226f70df15SPoul-Henning Kamp /* 823c68996e2SPoul-Henning Kamp * Nominal jitter is due to PPS signal noise and interrupt 82497804a5cSPoul-Henning Kamp * latency. If it exceeds the popcorn threshold, the sample is 82597804a5cSPoul-Henning Kamp * discarded. otherwise, if so enabled, the time offset is 82697804a5cSPoul-Henning Kamp * updated. We can tolerate a modest loss of data here without 82797804a5cSPoul-Henning Kamp * much degrading time accuracy. 8286f70df15SPoul-Henning Kamp */ 82982e84c5bSPoul-Henning Kamp if (u_nsec > (pps_jitter << PPS_POPCORN)) { 830c68996e2SPoul-Henning Kamp time_status |= STA_PPSJITTER; 831c68996e2SPoul-Henning Kamp pps_jitcnt++; 832c68996e2SPoul-Henning Kamp } else if (time_status & STA_PPSTIME) { 83397804a5cSPoul-Henning Kamp time_monitor = -v_nsec; 83497804a5cSPoul-Henning Kamp L_LINT(time_offset, time_monitor); 835c68996e2SPoul-Henning Kamp } 836c68996e2SPoul-Henning Kamp pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG; 83782e84c5bSPoul-Henning Kamp u_sec = pps_tf[0].tv_sec - pps_lastsec; 838c68996e2SPoul-Henning Kamp if (u_sec < (1 << pps_shift)) 839c68996e2SPoul-Henning Kamp return; 840c68996e2SPoul-Henning Kamp 841c68996e2SPoul-Henning Kamp /* 842c68996e2SPoul-Henning Kamp * At the end of the calibration interval the difference between 843c68996e2SPoul-Henning Kamp * the first and last counter values becomes the scaled 844c68996e2SPoul-Henning Kamp * frequency. It will later be divided by the length of the 845c68996e2SPoul-Henning Kamp * interval to determine the frequency update. If the frequency 846c68996e2SPoul-Henning Kamp * exceeds a sanity threshold, or if the actual calibration 847c68996e2SPoul-Henning Kamp * interval is not equal to the expected length, the data are 848c68996e2SPoul-Henning Kamp * discarded. We can tolerate a modest loss of data here without 84997804a5cSPoul-Henning Kamp * much degrading frequency accuracy. 850c68996e2SPoul-Henning Kamp */ 851c68996e2SPoul-Henning Kamp pps_calcnt++; 852884ab557SPoul-Henning Kamp v_nsec = -pps_fcount; 85382e84c5bSPoul-Henning Kamp pps_lastsec = pps_tf[0].tv_sec; 854884ab557SPoul-Henning Kamp pps_fcount = 0; 855c68996e2SPoul-Henning Kamp u_nsec = MAXFREQ << pps_shift; 856c68996e2SPoul-Henning Kamp if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << 857c68996e2SPoul-Henning Kamp pps_shift)) { 858c68996e2SPoul-Henning Kamp time_status |= STA_PPSERROR; 859c68996e2SPoul-Henning Kamp pps_errcnt++; 860c68996e2SPoul-Henning Kamp return; 861c68996e2SPoul-Henning Kamp } 862c68996e2SPoul-Henning Kamp 863c68996e2SPoul-Henning Kamp /* 86482e84c5bSPoul-Henning Kamp * Here the raw frequency offset and wander (stability) is 86582e84c5bSPoul-Henning Kamp * calculated. If the wander is less than the wander threshold 86682e84c5bSPoul-Henning Kamp * for four consecutive averaging intervals, the interval is 86782e84c5bSPoul-Henning Kamp * doubled; if it is greater than the threshold for four 86882e84c5bSPoul-Henning Kamp * consecutive intervals, the interval is halved. The scaled 86982e84c5bSPoul-Henning Kamp * frequency offset is converted to frequency offset. The 87082e84c5bSPoul-Henning Kamp * stability metric is calculated as the average of recent 87182e84c5bSPoul-Henning Kamp * frequency changes, but is used only for performance 872c68996e2SPoul-Henning Kamp * monitoring. 873c68996e2SPoul-Henning Kamp */ 874c68996e2SPoul-Henning Kamp L_LINT(ftemp, v_nsec); 875c68996e2SPoul-Henning Kamp L_RSHIFT(ftemp, pps_shift); 876c68996e2SPoul-Henning Kamp L_SUB(ftemp, pps_freq); 877c68996e2SPoul-Henning Kamp u_nsec = L_GINT(ftemp); 87882e84c5bSPoul-Henning Kamp if (u_nsec > PPS_MAXWANDER) { 87982e84c5bSPoul-Henning Kamp L_LINT(ftemp, PPS_MAXWANDER); 880c68996e2SPoul-Henning Kamp pps_intcnt--; 881c68996e2SPoul-Henning Kamp time_status |= STA_PPSWANDER; 882c68996e2SPoul-Henning Kamp pps_stbcnt++; 88382e84c5bSPoul-Henning Kamp } else if (u_nsec < -PPS_MAXWANDER) { 88482e84c5bSPoul-Henning Kamp L_LINT(ftemp, -PPS_MAXWANDER); 885c68996e2SPoul-Henning Kamp pps_intcnt--; 886c68996e2SPoul-Henning Kamp time_status |= STA_PPSWANDER; 887c68996e2SPoul-Henning Kamp pps_stbcnt++; 888c68996e2SPoul-Henning Kamp } else { 8896f70df15SPoul-Henning Kamp pps_intcnt++; 8906f70df15SPoul-Henning Kamp } 89197804a5cSPoul-Henning Kamp if (pps_intcnt >= 4) { 892c68996e2SPoul-Henning Kamp pps_intcnt = 4; 89382e84c5bSPoul-Henning Kamp if (pps_shift < pps_shiftmax) { 894c68996e2SPoul-Henning Kamp pps_shift++; 895c68996e2SPoul-Henning Kamp pps_intcnt = 0; 896c68996e2SPoul-Henning Kamp } 89797804a5cSPoul-Henning Kamp } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) { 898c68996e2SPoul-Henning Kamp pps_intcnt = -4; 899c68996e2SPoul-Henning Kamp if (pps_shift > PPS_FAVG) { 900c68996e2SPoul-Henning Kamp pps_shift--; 901c68996e2SPoul-Henning Kamp pps_intcnt = 0; 902c68996e2SPoul-Henning Kamp } 903c68996e2SPoul-Henning Kamp } 904c68996e2SPoul-Henning Kamp if (u_nsec < 0) 905c68996e2SPoul-Henning Kamp u_nsec = -u_nsec; 906c68996e2SPoul-Henning Kamp pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG; 9079ada5a50SPoul-Henning Kamp 908c68996e2SPoul-Henning Kamp /* 90982e84c5bSPoul-Henning Kamp * The PPS frequency is recalculated and clamped to the maximum 91082e84c5bSPoul-Henning Kamp * MAXFREQ. If enabled, the system clock frequency is updated as 91182e84c5bSPoul-Henning Kamp * well. 912c68996e2SPoul-Henning Kamp */ 913c68996e2SPoul-Henning Kamp L_ADD(pps_freq, ftemp); 914c68996e2SPoul-Henning Kamp u_nsec = L_GINT(pps_freq); 915c68996e2SPoul-Henning Kamp if (u_nsec > MAXFREQ) 916c68996e2SPoul-Henning Kamp L_LINT(pps_freq, MAXFREQ); 917c68996e2SPoul-Henning Kamp else if (u_nsec < -MAXFREQ) 918c68996e2SPoul-Henning Kamp L_LINT(pps_freq, -MAXFREQ); 91997804a5cSPoul-Henning Kamp if (time_status & STA_PPSFREQ) 920c68996e2SPoul-Henning Kamp time_freq = pps_freq; 921c68996e2SPoul-Henning Kamp } 9226f70df15SPoul-Henning Kamp #endif /* PPS_SYNC */ 923e1d970f1SPoul-Henning Kamp 924e1d970f1SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_ 925e1d970f1SPoul-Henning Kamp struct adjtime_args { 926e1d970f1SPoul-Henning Kamp struct timeval *delta; 927e1d970f1SPoul-Henning Kamp struct timeval *olddelta; 928e1d970f1SPoul-Henning Kamp }; 929e1d970f1SPoul-Henning Kamp #endif 930e1d970f1SPoul-Henning Kamp /* 931e1d970f1SPoul-Henning Kamp * MPSAFE 932e1d970f1SPoul-Henning Kamp */ 933e1d970f1SPoul-Henning Kamp /* ARGSUSED */ 934e1d970f1SPoul-Henning Kamp int 935e1d970f1SPoul-Henning Kamp adjtime(struct thread *td, struct adjtime_args *uap) 936e1d970f1SPoul-Henning Kamp { 937b88ec951SJohn Baldwin struct timeval delta, olddelta, *deltap; 938b88ec951SJohn Baldwin int error; 939b88ec951SJohn Baldwin 940b88ec951SJohn Baldwin if (uap->delta) { 941b88ec951SJohn Baldwin error = copyin(uap->delta, &delta, sizeof(delta)); 942b88ec951SJohn Baldwin if (error) 943b88ec951SJohn Baldwin return (error); 944b88ec951SJohn Baldwin deltap = δ 945b88ec951SJohn Baldwin } else 946b88ec951SJohn Baldwin deltap = NULL; 947b88ec951SJohn Baldwin error = kern_adjtime(td, deltap, &olddelta); 948b88ec951SJohn Baldwin if (uap->olddelta && error == 0) 949b88ec951SJohn Baldwin error = copyout(&olddelta, uap->olddelta, sizeof(olddelta)); 950b88ec951SJohn Baldwin return (error); 951b88ec951SJohn Baldwin } 952b88ec951SJohn Baldwin 953b88ec951SJohn Baldwin int 954b88ec951SJohn Baldwin kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta) 955b88ec951SJohn Baldwin { 956e1d970f1SPoul-Henning Kamp struct timeval atv; 957e1d970f1SPoul-Henning Kamp int error; 958e1d970f1SPoul-Henning Kamp 959acd3428bSRobert Watson if ((error = priv_check(td, PRIV_ADJTIME))) 9603bdd2d06SPoul-Henning Kamp return (error); 9613bdd2d06SPoul-Henning Kamp 9623bdd2d06SPoul-Henning Kamp mtx_lock(&Giant); 963b88ec951SJohn Baldwin if (olddelta) { 964e1d970f1SPoul-Henning Kamp atv.tv_sec = time_adjtime / 1000000; 965e1d970f1SPoul-Henning Kamp atv.tv_usec = time_adjtime % 1000000; 966e1d970f1SPoul-Henning Kamp if (atv.tv_usec < 0) { 967e1d970f1SPoul-Henning Kamp atv.tv_usec += 1000000; 968e1d970f1SPoul-Henning Kamp atv.tv_sec--; 969e1d970f1SPoul-Henning Kamp } 970b88ec951SJohn Baldwin *olddelta = atv; 971e1d970f1SPoul-Henning Kamp } 972b88ec951SJohn Baldwin if (delta) 973b88ec951SJohn Baldwin time_adjtime = (int64_t)delta->tv_sec * 1000000 + 974b88ec951SJohn Baldwin delta->tv_usec; 975e1d970f1SPoul-Henning Kamp mtx_unlock(&Giant); 976e1d970f1SPoul-Henning Kamp return (error); 977e1d970f1SPoul-Henning Kamp } 978e1d970f1SPoul-Henning Kamp 979