1c68996e2SPoul-Henning Kamp /*********************************************************************** 23f31c649SGarrett Wollman * * 324dbea46SJohn Hay * Copyright (c) David L. Mills 1993-2001 * 43f31c649SGarrett Wollman * * 5c68996e2SPoul-Henning Kamp * Permission to use, copy, modify, and distribute this software and * 6c68996e2SPoul-Henning Kamp * its documentation for any purpose and without fee is hereby * 7c68996e2SPoul-Henning Kamp * granted, provided that the above copyright notice appears in all * 8c68996e2SPoul-Henning Kamp * copies and that both the copyright notice and this permission * 9c68996e2SPoul-Henning Kamp * notice appear in supporting documentation, and that the name * 10c68996e2SPoul-Henning Kamp * University of Delaware not be used in advertising or publicity * 11c68996e2SPoul-Henning Kamp * pertaining to distribution of the software without specific, * 12c68996e2SPoul-Henning Kamp * written prior permission. The University of Delaware makes no * 13c68996e2SPoul-Henning Kamp * representations about the suitability this software for any * 14c68996e2SPoul-Henning Kamp * purpose. It is provided "as is" without express or implied * 15c68996e2SPoul-Henning Kamp * warranty. * 163f31c649SGarrett Wollman * * 17c68996e2SPoul-Henning Kamp **********************************************************************/ 183f31c649SGarrett Wollman 193f31c649SGarrett Wollman /* 20c68996e2SPoul-Henning Kamp * Adapted from the original sources for FreeBSD and timecounters by: 2132c20357SPoul-Henning Kamp * Poul-Henning Kamp <phk@FreeBSD.org>. 223f31c649SGarrett Wollman * 23c68996e2SPoul-Henning Kamp * The 32bit version of the "LP" macros seems a bit past its "sell by" 24c68996e2SPoul-Henning Kamp * date so I have retained only the 64bit version and included it directly 25c68996e2SPoul-Henning Kamp * in this file. 26885bd8e4SJohn Hay * 27c68996e2SPoul-Henning Kamp * Only minor changes done to interface with the timecounters over in 28c68996e2SPoul-Henning Kamp * sys/kern/kern_clock.c. Some of the comments below may be (even more) 29c68996e2SPoul-Henning Kamp * confusing and/or plain wrong in that context. 303f31c649SGarrett Wollman */ 31e0d781f3SEivind Eklund 32677b542eSDavid E. O'Brien #include <sys/cdefs.h> 33677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$"); 34677b542eSDavid E. O'Brien 3532c20357SPoul-Henning Kamp #include "opt_ntp.h" 3632c20357SPoul-Henning Kamp 373f31c649SGarrett Wollman #include <sys/param.h> 383f31c649SGarrett Wollman #include <sys/systm.h> 39d2d3e875SBruce Evans #include <sys/sysproto.h> 403f31c649SGarrett Wollman #include <sys/kernel.h> 413f31c649SGarrett Wollman #include <sys/proc.h> 426f1e8c18SMatthew Dillon #include <sys/lock.h> 436f1e8c18SMatthew Dillon #include <sys/mutex.h> 44c68996e2SPoul-Henning Kamp #include <sys/time.h> 453f31c649SGarrett Wollman #include <sys/timex.h> 4691266b96SPoul-Henning Kamp #include <sys/timetc.h> 47938ee3ceSPoul-Henning Kamp #include <sys/timepps.h> 483f31c649SGarrett Wollman #include <sys/sysctl.h> 493f31c649SGarrett Wollman 503f31c649SGarrett Wollman /* 51c68996e2SPoul-Henning Kamp * Single-precision macros for 64-bit machines 523f31c649SGarrett Wollman */ 53bcfe6d8bSPoul-Henning Kamp typedef int64_t l_fp; 54c68996e2SPoul-Henning Kamp #define L_ADD(v, u) ((v) += (u)) 55c68996e2SPoul-Henning Kamp #define L_SUB(v, u) ((v) -= (u)) 56bcfe6d8bSPoul-Henning Kamp #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32) 57c68996e2SPoul-Henning Kamp #define L_NEG(v) ((v) = -(v)) 58c68996e2SPoul-Henning Kamp #define L_RSHIFT(v, n) \ 59c68996e2SPoul-Henning Kamp do { \ 60c68996e2SPoul-Henning Kamp if ((v) < 0) \ 61c68996e2SPoul-Henning Kamp (v) = -(-(v) >> (n)); \ 62c68996e2SPoul-Henning Kamp else \ 63c68996e2SPoul-Henning Kamp (v) = (v) >> (n); \ 64c68996e2SPoul-Henning Kamp } while (0) 65c68996e2SPoul-Henning Kamp #define L_MPY(v, a) ((v) *= (a)) 66c68996e2SPoul-Henning Kamp #define L_CLR(v) ((v) = 0) 67c68996e2SPoul-Henning Kamp #define L_ISNEG(v) ((v) < 0) 68bcfe6d8bSPoul-Henning Kamp #define L_LINT(v, a) ((v) = (int64_t)(a) << 32) 69c68996e2SPoul-Henning Kamp #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32) 706f70df15SPoul-Henning Kamp 716f70df15SPoul-Henning Kamp /* 72c68996e2SPoul-Henning Kamp * Generic NTP kernel interface 736f70df15SPoul-Henning Kamp * 74c68996e2SPoul-Henning Kamp * These routines constitute the Network Time Protocol (NTP) interfaces 75c68996e2SPoul-Henning Kamp * for user and daemon application programs. The ntp_gettime() routine 76c68996e2SPoul-Henning Kamp * provides the time, maximum error (synch distance) and estimated error 77c68996e2SPoul-Henning Kamp * (dispersion) to client user application programs. The ntp_adjtime() 78c68996e2SPoul-Henning Kamp * routine is used by the NTP daemon to adjust the system clock to an 79c68996e2SPoul-Henning Kamp * externally derived time. The time offset and related variables set by 80c68996e2SPoul-Henning Kamp * this routine are used by other routines in this module to adjust the 81c68996e2SPoul-Henning Kamp * phase and frequency of the clock discipline loop which controls the 82c68996e2SPoul-Henning Kamp * system clock. 836f70df15SPoul-Henning Kamp * 84f425c1f6SPoul-Henning Kamp * When the kernel time is reckoned directly in nanoseconds (NTP_NANO 85c68996e2SPoul-Henning Kamp * defined), the time at each tick interrupt is derived directly from 86c68996e2SPoul-Henning Kamp * the kernel time variable. When the kernel time is reckoned in 87f425c1f6SPoul-Henning Kamp * microseconds, (NTP_NANO undefined), the time is derived from the 88f425c1f6SPoul-Henning Kamp * kernel time variable together with a variable representing the 89f425c1f6SPoul-Henning Kamp * leftover nanoseconds at the last tick interrupt. In either case, the 90f425c1f6SPoul-Henning Kamp * current nanosecond time is reckoned from these values plus an 91f425c1f6SPoul-Henning Kamp * interpolated value derived by the clock routines in another 92f425c1f6SPoul-Henning Kamp * architecture-specific module. The interpolation can use either a 93f425c1f6SPoul-Henning Kamp * dedicated counter or a processor cycle counter (PCC) implemented in 94f425c1f6SPoul-Henning Kamp * some architectures. 956f70df15SPoul-Henning Kamp * 96c68996e2SPoul-Henning Kamp * Note that all routines must run at priority splclock or higher. 976f70df15SPoul-Henning Kamp */ 98c68996e2SPoul-Henning Kamp /* 99c68996e2SPoul-Henning Kamp * Phase/frequency-lock loop (PLL/FLL) definitions 100c68996e2SPoul-Henning Kamp * 101c68996e2SPoul-Henning Kamp * The nanosecond clock discipline uses two variable types, time 102c68996e2SPoul-Henning Kamp * variables and frequency variables. Both types are represented as 64- 103c68996e2SPoul-Henning Kamp * bit fixed-point quantities with the decimal point between two 32-bit 104c68996e2SPoul-Henning Kamp * halves. On a 32-bit machine, each half is represented as a single 105c68996e2SPoul-Henning Kamp * word and mathematical operations are done using multiple-precision 106c68996e2SPoul-Henning Kamp * arithmetic. On a 64-bit machine, ordinary computer arithmetic is 107c68996e2SPoul-Henning Kamp * used. 108c68996e2SPoul-Henning Kamp * 109c68996e2SPoul-Henning Kamp * A time variable is a signed 64-bit fixed-point number in ns and 110c68996e2SPoul-Henning Kamp * fraction. It represents the remaining time offset to be amortized 111c68996e2SPoul-Henning Kamp * over succeeding tick interrupts. The maximum time offset is about 112f425c1f6SPoul-Henning Kamp * 0.5 s and the resolution is about 2.3e-10 ns. 113c68996e2SPoul-Henning Kamp * 114c68996e2SPoul-Henning Kamp * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 115c68996e2SPoul-Henning Kamp * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 116c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 117c68996e2SPoul-Henning Kamp * |s s s| ns | 118c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 119c68996e2SPoul-Henning Kamp * | fraction | 120c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 121c68996e2SPoul-Henning Kamp * 122c68996e2SPoul-Henning Kamp * A frequency variable is a signed 64-bit fixed-point number in ns/s 123c68996e2SPoul-Henning Kamp * and fraction. It represents the ns and fraction to be added to the 124c68996e2SPoul-Henning Kamp * kernel time variable at each second. The maximum frequency offset is 125f425c1f6SPoul-Henning Kamp * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s. 126c68996e2SPoul-Henning Kamp * 127c68996e2SPoul-Henning Kamp * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 128c68996e2SPoul-Henning Kamp * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 129c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 130c68996e2SPoul-Henning Kamp * |s s s s s s s s s s s s s| ns/s | 131c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 132c68996e2SPoul-Henning Kamp * | fraction | 133c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 134c68996e2SPoul-Henning Kamp */ 135c68996e2SPoul-Henning Kamp /* 136c68996e2SPoul-Henning Kamp * The following variables establish the state of the PLL/FLL and the 137c68996e2SPoul-Henning Kamp * residual time and frequency offset of the local clock. 138c68996e2SPoul-Henning Kamp */ 139c68996e2SPoul-Henning Kamp #define SHIFT_PLL 4 /* PLL loop gain (shift) */ 140c68996e2SPoul-Henning Kamp #define SHIFT_FLL 2 /* FLL loop gain (shift) */ 141c68996e2SPoul-Henning Kamp 142c68996e2SPoul-Henning Kamp static int time_state = TIME_OK; /* clock state */ 143c68996e2SPoul-Henning Kamp static int time_status = STA_UNSYNC; /* clock status bits */ 14497804a5cSPoul-Henning Kamp static long time_tai; /* TAI offset (s) */ 14597804a5cSPoul-Henning Kamp static long time_monitor; /* last time offset scaled (ns) */ 146c68996e2SPoul-Henning Kamp static long time_constant; /* poll interval (shift) (s) */ 147c68996e2SPoul-Henning Kamp static long time_precision = 1; /* clock precision (ns) */ 148c68996e2SPoul-Henning Kamp static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */ 149c68996e2SPoul-Henning Kamp static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */ 150c68996e2SPoul-Henning Kamp static long time_reftime; /* time at last adjustment (s) */ 151c68996e2SPoul-Henning Kamp static l_fp time_offset; /* time offset (ns) */ 152c68996e2SPoul-Henning Kamp static l_fp time_freq; /* frequency offset (ns/s) */ 15397804a5cSPoul-Henning Kamp static l_fp time_adj; /* tick adjust (ns/s) */ 1543f31c649SGarrett Wollman 155e1d970f1SPoul-Henning Kamp static int64_t time_adjtime; /* correction from adjtime(2) (usec) */ 156e1d970f1SPoul-Henning Kamp 1573f31c649SGarrett Wollman #ifdef PPS_SYNC 1583f31c649SGarrett Wollman /* 159c68996e2SPoul-Henning Kamp * The following variables are used when a pulse-per-second (PPS) signal 160c68996e2SPoul-Henning Kamp * is available and connected via a modem control lead. They establish 161c68996e2SPoul-Henning Kamp * the engineering parameters of the clock discipline loop when 162c68996e2SPoul-Henning Kamp * controlled by the PPS signal. 1633f31c649SGarrett Wollman */ 164c68996e2SPoul-Henning Kamp #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */ 16524dbea46SJohn Hay #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */ 16682e84c5bSPoul-Henning Kamp #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */ 167c68996e2SPoul-Henning Kamp #define PPS_PAVG 4 /* phase avg interval (s) (shift) */ 168c68996e2SPoul-Henning Kamp #define PPS_VALID 120 /* PPS signal watchdog max (s) */ 16982e84c5bSPoul-Henning Kamp #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */ 17082e84c5bSPoul-Henning Kamp #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */ 171c68996e2SPoul-Henning Kamp 17282e84c5bSPoul-Henning Kamp static struct timespec pps_tf[3]; /* phase median filter */ 173c68996e2SPoul-Henning Kamp static l_fp pps_freq; /* scaled frequency offset (ns/s) */ 174f425c1f6SPoul-Henning Kamp static long pps_fcount; /* frequency accumulator */ 17582e84c5bSPoul-Henning Kamp static long pps_jitter; /* nominal jitter (ns) */ 17682e84c5bSPoul-Henning Kamp static long pps_stabil; /* nominal stability (scaled ns/s) */ 177c68996e2SPoul-Henning Kamp static long pps_lastsec; /* time at last calibration (s) */ 178c68996e2SPoul-Henning Kamp static int pps_valid; /* signal watchdog counter */ 179c68996e2SPoul-Henning Kamp static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */ 18082e84c5bSPoul-Henning Kamp static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */ 181c68996e2SPoul-Henning Kamp static int pps_intcnt; /* wander counter */ 1826f70df15SPoul-Henning Kamp 1836f70df15SPoul-Henning Kamp /* 1846f70df15SPoul-Henning Kamp * PPS signal quality monitors 1856f70df15SPoul-Henning Kamp */ 186c68996e2SPoul-Henning Kamp static long pps_calcnt; /* calibration intervals */ 187c68996e2SPoul-Henning Kamp static long pps_jitcnt; /* jitter limit exceeded */ 188c68996e2SPoul-Henning Kamp static long pps_stbcnt; /* stability limit exceeded */ 189c68996e2SPoul-Henning Kamp static long pps_errcnt; /* calibration errors */ 1903f31c649SGarrett Wollman #endif /* PPS_SYNC */ 191c68996e2SPoul-Henning Kamp /* 192c68996e2SPoul-Henning Kamp * End of phase/frequency-lock loop (PLL/FLL) definitions 193c68996e2SPoul-Henning Kamp */ 1943f31c649SGarrett Wollman 195c68996e2SPoul-Henning Kamp static void ntp_init(void); 196c68996e2SPoul-Henning Kamp static void hardupdate(long offset); 197932cfd41SMark Santcroos static void ntp_gettime1(struct ntptimeval *ntvp); 198c68996e2SPoul-Henning Kamp 199932cfd41SMark Santcroos static void 200932cfd41SMark Santcroos ntp_gettime1(struct ntptimeval *ntvp) 201c68996e2SPoul-Henning Kamp { 202c68996e2SPoul-Henning Kamp struct timespec atv; /* nanosecond time */ 203c68996e2SPoul-Henning Kamp 204c68996e2SPoul-Henning Kamp nanotime(&atv); 205932cfd41SMark Santcroos ntvp->time.tv_sec = atv.tv_sec; 206932cfd41SMark Santcroos ntvp->time.tv_nsec = atv.tv_nsec; 207932cfd41SMark Santcroos ntvp->maxerror = time_maxerror; 208932cfd41SMark Santcroos ntvp->esterror = time_esterror; 209932cfd41SMark Santcroos ntvp->tai = time_tai; 210932cfd41SMark Santcroos ntvp->time_state = time_state; 211c68996e2SPoul-Henning Kamp 212c68996e2SPoul-Henning Kamp /* 213c68996e2SPoul-Henning Kamp * Status word error decode. If any of these conditions occur, 214c68996e2SPoul-Henning Kamp * an error is returned, instead of the status word. Most 215c68996e2SPoul-Henning Kamp * applications will care only about the fact the system clock 216c68996e2SPoul-Henning Kamp * may not be trusted, not about the details. 217c68996e2SPoul-Henning Kamp * 218c68996e2SPoul-Henning Kamp * Hardware or software error 219c68996e2SPoul-Henning Kamp */ 220c68996e2SPoul-Henning Kamp if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || 221c68996e2SPoul-Henning Kamp 222c68996e2SPoul-Henning Kamp /* 223c68996e2SPoul-Henning Kamp * PPS signal lost when either time or frequency synchronization 224c68996e2SPoul-Henning Kamp * requested 225c68996e2SPoul-Henning Kamp */ 226c68996e2SPoul-Henning Kamp (time_status & (STA_PPSFREQ | STA_PPSTIME) && 227c68996e2SPoul-Henning Kamp !(time_status & STA_PPSSIGNAL)) || 228c68996e2SPoul-Henning Kamp 229c68996e2SPoul-Henning Kamp /* 230c68996e2SPoul-Henning Kamp * PPS jitter exceeded when time synchronization requested 231c68996e2SPoul-Henning Kamp */ 232c68996e2SPoul-Henning Kamp (time_status & STA_PPSTIME && 233c68996e2SPoul-Henning Kamp time_status & STA_PPSJITTER) || 234c68996e2SPoul-Henning Kamp 235c68996e2SPoul-Henning Kamp /* 236c68996e2SPoul-Henning Kamp * PPS wander exceeded or calibration error when frequency 237c68996e2SPoul-Henning Kamp * synchronization requested 238c68996e2SPoul-Henning Kamp */ 239c68996e2SPoul-Henning Kamp (time_status & STA_PPSFREQ && 240c68996e2SPoul-Henning Kamp time_status & (STA_PPSWANDER | STA_PPSERROR))) 241932cfd41SMark Santcroos ntvp->time_state = TIME_ERROR; 242932cfd41SMark Santcroos } 243932cfd41SMark Santcroos 2449b7fe7e4SMark Santcroos /* 2459b7fe7e4SMark Santcroos * ntp_gettime() - NTP user application interface 2469b7fe7e4SMark Santcroos * 2479b7fe7e4SMark Santcroos * See the timex.h header file for synopsis and API description. Note 2489b7fe7e4SMark Santcroos * that the TAI offset is returned in the ntvtimeval.tai structure 2499b7fe7e4SMark Santcroos * member. 2509b7fe7e4SMark Santcroos */ 251932cfd41SMark Santcroos #ifndef _SYS_SYSPROTO_H_ 252932cfd41SMark Santcroos struct ntp_gettime_args { 253932cfd41SMark Santcroos struct ntptimeval *ntvp; 254932cfd41SMark Santcroos }; 255932cfd41SMark Santcroos #endif 256932cfd41SMark Santcroos /* ARGSUSED */ 257932cfd41SMark Santcroos int 258932cfd41SMark Santcroos ntp_gettime(struct thread *td, struct ntp_gettime_args *uap) 259932cfd41SMark Santcroos { 260932cfd41SMark Santcroos struct ntptimeval ntv; 261932cfd41SMark Santcroos 262932cfd41SMark Santcroos ntp_gettime1(&ntv); 263932cfd41SMark Santcroos 264932cfd41SMark Santcroos return (copyout(&ntv, uap->ntvp, sizeof(ntv))); 265932cfd41SMark Santcroos } 266932cfd41SMark Santcroos 267932cfd41SMark Santcroos static int 268932cfd41SMark Santcroos ntp_sysctl(SYSCTL_HANDLER_ARGS) 269932cfd41SMark Santcroos { 270932cfd41SMark Santcroos struct ntptimeval ntv; /* temporary structure */ 271932cfd41SMark Santcroos 272932cfd41SMark Santcroos ntp_gettime1(&ntv); 273932cfd41SMark Santcroos 274932cfd41SMark Santcroos return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req)); 275c68996e2SPoul-Henning Kamp } 276c68996e2SPoul-Henning Kamp 277c68996e2SPoul-Henning Kamp SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, ""); 278c68996e2SPoul-Henning Kamp SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD, 279c68996e2SPoul-Henning Kamp 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", ""); 280c68996e2SPoul-Henning Kamp 2815968e18bSPoul-Henning Kamp #ifdef PPS_SYNC 28282e84c5bSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, ""); 2836a77f60dSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, ""); 2848925e63cSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, ""); 2857fd299cbSPoul-Henning Kamp 2867fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", ""); 2877fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", ""); 2885968e18bSPoul-Henning Kamp #endif 289c68996e2SPoul-Henning Kamp /* 290c68996e2SPoul-Henning Kamp * ntp_adjtime() - NTP daemon application interface 291c68996e2SPoul-Henning Kamp * 29297804a5cSPoul-Henning Kamp * See the timex.h header file for synopsis and API description. Note 29397804a5cSPoul-Henning Kamp * that the timex.constant structure member has a dual purpose to set 29497804a5cSPoul-Henning Kamp * the time constant and to set the TAI offset. 295c68996e2SPoul-Henning Kamp */ 296c68996e2SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_ 297c68996e2SPoul-Henning Kamp struct ntp_adjtime_args { 298c68996e2SPoul-Henning Kamp struct timex *tp; 299c68996e2SPoul-Henning Kamp }; 300c68996e2SPoul-Henning Kamp #endif 301c68996e2SPoul-Henning Kamp 3026f1e8c18SMatthew Dillon /* 3036f1e8c18SMatthew Dillon * MPSAFE 3046f1e8c18SMatthew Dillon */ 305c68996e2SPoul-Henning Kamp int 306b40ce416SJulian Elischer ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap) 307c68996e2SPoul-Henning Kamp { 308c68996e2SPoul-Henning Kamp struct timex ntv; /* temporary structure */ 309f425c1f6SPoul-Henning Kamp long freq; /* frequency ns/s) */ 310c68996e2SPoul-Henning Kamp int modes; /* mode bits from structure */ 311c68996e2SPoul-Henning Kamp int s; /* caller priority */ 312c68996e2SPoul-Henning Kamp int error; 313c68996e2SPoul-Henning Kamp 314c68996e2SPoul-Henning Kamp error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv)); 315c68996e2SPoul-Henning Kamp if (error) 316c68996e2SPoul-Henning Kamp return(error); 317c68996e2SPoul-Henning Kamp 318c68996e2SPoul-Henning Kamp /* 319c68996e2SPoul-Henning Kamp * Update selected clock variables - only the superuser can 320c68996e2SPoul-Henning Kamp * change anything. Note that there is no error checking here on 321c68996e2SPoul-Henning Kamp * the assumption the superuser should know what it is doing. 32297804a5cSPoul-Henning Kamp * Note that either the time constant or TAI offset are loaded 32324dbea46SJohn Hay * from the ntv.constant member, depending on the mode bits. If 32424dbea46SJohn Hay * the STA_PLL bit in the status word is cleared, the state and 32524dbea46SJohn Hay * status words are reset to the initial values at boot. 326c68996e2SPoul-Henning Kamp */ 3276f1e8c18SMatthew Dillon mtx_lock(&Giant); 328c68996e2SPoul-Henning Kamp modes = ntv.modes; 329fafbe352SPoul-Henning Kamp if (modes) 33044731cabSJohn Baldwin error = suser(td); 331c68996e2SPoul-Henning Kamp if (error) 3326f1e8c18SMatthew Dillon goto done2; 333c68996e2SPoul-Henning Kamp s = splclock(); 334c68996e2SPoul-Henning Kamp if (modes & MOD_MAXERROR) 335c68996e2SPoul-Henning Kamp time_maxerror = ntv.maxerror; 336c68996e2SPoul-Henning Kamp if (modes & MOD_ESTERROR) 337c68996e2SPoul-Henning Kamp time_esterror = ntv.esterror; 338c68996e2SPoul-Henning Kamp if (modes & MOD_STATUS) { 33924dbea46SJohn Hay if (time_status & STA_PLL && !(ntv.status & STA_PLL)) { 34024dbea46SJohn Hay time_state = TIME_OK; 34124dbea46SJohn Hay time_status = STA_UNSYNC; 34224dbea46SJohn Hay #ifdef PPS_SYNC 34324dbea46SJohn Hay pps_shift = PPS_FAVG; 34424dbea46SJohn Hay #endif /* PPS_SYNC */ 34524dbea46SJohn Hay } 346c68996e2SPoul-Henning Kamp time_status &= STA_RONLY; 347c68996e2SPoul-Henning Kamp time_status |= ntv.status & ~STA_RONLY; 348c68996e2SPoul-Henning Kamp } 349f425c1f6SPoul-Henning Kamp if (modes & MOD_TIMECONST) { 350f425c1f6SPoul-Henning Kamp if (ntv.constant < 0) 351f425c1f6SPoul-Henning Kamp time_constant = 0; 352f425c1f6SPoul-Henning Kamp else if (ntv.constant > MAXTC) 353f425c1f6SPoul-Henning Kamp time_constant = MAXTC; 354f425c1f6SPoul-Henning Kamp else 355c68996e2SPoul-Henning Kamp time_constant = ntv.constant; 356f425c1f6SPoul-Henning Kamp } 35797804a5cSPoul-Henning Kamp if (modes & MOD_TAI) { 35897804a5cSPoul-Henning Kamp if (ntv.constant > 0) /* XXX zero & negative numbers ? */ 35997804a5cSPoul-Henning Kamp time_tai = ntv.constant; 36097804a5cSPoul-Henning Kamp } 36182e84c5bSPoul-Henning Kamp #ifdef PPS_SYNC 36282e84c5bSPoul-Henning Kamp if (modes & MOD_PPSMAX) { 36382e84c5bSPoul-Henning Kamp if (ntv.shift < PPS_FAVG) 36482e84c5bSPoul-Henning Kamp pps_shiftmax = PPS_FAVG; 36582e84c5bSPoul-Henning Kamp else if (ntv.shift > PPS_FAVGMAX) 36682e84c5bSPoul-Henning Kamp pps_shiftmax = PPS_FAVGMAX; 36782e84c5bSPoul-Henning Kamp else 36882e84c5bSPoul-Henning Kamp pps_shiftmax = ntv.shift; 36982e84c5bSPoul-Henning Kamp } 37082e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */ 371c68996e2SPoul-Henning Kamp if (modes & MOD_NANO) 372c68996e2SPoul-Henning Kamp time_status |= STA_NANO; 373c68996e2SPoul-Henning Kamp if (modes & MOD_MICRO) 374c68996e2SPoul-Henning Kamp time_status &= ~STA_NANO; 375c68996e2SPoul-Henning Kamp if (modes & MOD_CLKB) 376c68996e2SPoul-Henning Kamp time_status |= STA_CLK; 377c68996e2SPoul-Henning Kamp if (modes & MOD_CLKA) 378c68996e2SPoul-Henning Kamp time_status &= ~STA_CLK; 37924dbea46SJohn Hay if (modes & MOD_FREQUENCY) { 38024dbea46SJohn Hay freq = (ntv.freq * 1000LL) >> 16; 38124dbea46SJohn Hay if (freq > MAXFREQ) 38224dbea46SJohn Hay L_LINT(time_freq, MAXFREQ); 38324dbea46SJohn Hay else if (freq < -MAXFREQ) 38424dbea46SJohn Hay L_LINT(time_freq, -MAXFREQ); 385bcfe6d8bSPoul-Henning Kamp else { 386bcfe6d8bSPoul-Henning Kamp /* 387bcfe6d8bSPoul-Henning Kamp * ntv.freq is [PPM * 2^16] = [us/s * 2^16] 388bcfe6d8bSPoul-Henning Kamp * time_freq is [ns/s * 2^32] 389bcfe6d8bSPoul-Henning Kamp */ 390bcfe6d8bSPoul-Henning Kamp time_freq = ntv.freq * 1000LL * 65536LL; 391bcfe6d8bSPoul-Henning Kamp } 39224dbea46SJohn Hay #ifdef PPS_SYNC 39324dbea46SJohn Hay pps_freq = time_freq; 39424dbea46SJohn Hay #endif /* PPS_SYNC */ 39524dbea46SJohn Hay } 396551260fcSPoul-Henning Kamp if (modes & MOD_OFFSET) { 397551260fcSPoul-Henning Kamp if (time_status & STA_NANO) 398551260fcSPoul-Henning Kamp hardupdate(ntv.offset); 399551260fcSPoul-Henning Kamp else 400551260fcSPoul-Henning Kamp hardupdate(ntv.offset * 1000); 401551260fcSPoul-Henning Kamp } 402c68996e2SPoul-Henning Kamp 403c68996e2SPoul-Henning Kamp /* 40497804a5cSPoul-Henning Kamp * Retrieve all clock variables. Note that the TAI offset is 40597804a5cSPoul-Henning Kamp * returned only by ntp_gettime(); 406c68996e2SPoul-Henning Kamp */ 407c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 408b9c6e8bdSPoul-Henning Kamp ntv.offset = L_GINT(time_offset); 409c68996e2SPoul-Henning Kamp else 410b9c6e8bdSPoul-Henning Kamp ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */ 41134cffbe3SPoul-Henning Kamp ntv.freq = L_GINT((time_freq / 1000LL) << 16); 412c68996e2SPoul-Henning Kamp ntv.maxerror = time_maxerror; 413c68996e2SPoul-Henning Kamp ntv.esterror = time_esterror; 414c68996e2SPoul-Henning Kamp ntv.status = time_status; 415f425c1f6SPoul-Henning Kamp ntv.constant = time_constant; 416c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 417c68996e2SPoul-Henning Kamp ntv.precision = time_precision; 418c68996e2SPoul-Henning Kamp else 419c68996e2SPoul-Henning Kamp ntv.precision = time_precision / 1000; 420c68996e2SPoul-Henning Kamp ntv.tolerance = MAXFREQ * SCALE_PPM; 421c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 422c68996e2SPoul-Henning Kamp ntv.shift = pps_shift; 42334cffbe3SPoul-Henning Kamp ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16); 424c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 425c68996e2SPoul-Henning Kamp ntv.jitter = pps_jitter; 426c68996e2SPoul-Henning Kamp else 427c68996e2SPoul-Henning Kamp ntv.jitter = pps_jitter / 1000; 428c68996e2SPoul-Henning Kamp ntv.stabil = pps_stabil; 429c68996e2SPoul-Henning Kamp ntv.calcnt = pps_calcnt; 430c68996e2SPoul-Henning Kamp ntv.errcnt = pps_errcnt; 431c68996e2SPoul-Henning Kamp ntv.jitcnt = pps_jitcnt; 432c68996e2SPoul-Henning Kamp ntv.stbcnt = pps_stbcnt; 433c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 434c68996e2SPoul-Henning Kamp splx(s); 435c68996e2SPoul-Henning Kamp 436c68996e2SPoul-Henning Kamp error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv)); 437c68996e2SPoul-Henning Kamp if (error) 4386f1e8c18SMatthew Dillon goto done2; 439c68996e2SPoul-Henning Kamp 440c68996e2SPoul-Henning Kamp /* 441c68996e2SPoul-Henning Kamp * Status word error decode. See comments in 442c68996e2SPoul-Henning Kamp * ntp_gettime() routine. 443c68996e2SPoul-Henning Kamp */ 444c68996e2SPoul-Henning Kamp if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || 445c68996e2SPoul-Henning Kamp (time_status & (STA_PPSFREQ | STA_PPSTIME) && 446c68996e2SPoul-Henning Kamp !(time_status & STA_PPSSIGNAL)) || 447c68996e2SPoul-Henning Kamp (time_status & STA_PPSTIME && 448c68996e2SPoul-Henning Kamp time_status & STA_PPSJITTER) || 449c68996e2SPoul-Henning Kamp (time_status & STA_PPSFREQ && 4506f1e8c18SMatthew Dillon time_status & (STA_PPSWANDER | STA_PPSERROR))) { 451b40ce416SJulian Elischer td->td_retval[0] = TIME_ERROR; 4526f1e8c18SMatthew Dillon } else { 453b40ce416SJulian Elischer td->td_retval[0] = time_state; 4546f1e8c18SMatthew Dillon } 4556f1e8c18SMatthew Dillon done2: 4566f1e8c18SMatthew Dillon mtx_unlock(&Giant); 457a5088017SPoul-Henning Kamp return (error); 458c68996e2SPoul-Henning Kamp } 459c68996e2SPoul-Henning Kamp 460c68996e2SPoul-Henning Kamp /* 461c68996e2SPoul-Henning Kamp * second_overflow() - called after ntp_tick_adjust() 462c68996e2SPoul-Henning Kamp * 463c68996e2SPoul-Henning Kamp * This routine is ordinarily called immediately following the above 464c68996e2SPoul-Henning Kamp * routine ntp_tick_adjust(). While these two routines are normally 465c68996e2SPoul-Henning Kamp * combined, they are separated here only for the purposes of 466c68996e2SPoul-Henning Kamp * simulation. 467c68996e2SPoul-Henning Kamp */ 468c68996e2SPoul-Henning Kamp void 469b4a1d0deSPoul-Henning Kamp ntp_update_second(int64_t *adjustment, time_t *newsec) 470c68996e2SPoul-Henning Kamp { 471e1d970f1SPoul-Henning Kamp int tickrate; 47297804a5cSPoul-Henning Kamp l_fp ftemp; /* 32/64-bit temporary */ 473c68996e2SPoul-Henning Kamp 47482e84c5bSPoul-Henning Kamp /* 47582e84c5bSPoul-Henning Kamp * On rollover of the second both the nanosecond and microsecond 47682e84c5bSPoul-Henning Kamp * clocks are updated and the state machine cranked as 47782e84c5bSPoul-Henning Kamp * necessary. The phase adjustment to be used for the next 47882e84c5bSPoul-Henning Kamp * second is calculated and the maximum error is increased by 47982e84c5bSPoul-Henning Kamp * the tolerance. 48082e84c5bSPoul-Henning Kamp */ 481c68996e2SPoul-Henning Kamp time_maxerror += MAXFREQ / 1000; 482c68996e2SPoul-Henning Kamp 483c68996e2SPoul-Henning Kamp /* 484c68996e2SPoul-Henning Kamp * Leap second processing. If in leap-insert state at 485c68996e2SPoul-Henning Kamp * the end of the day, the system clock is set back one 486c68996e2SPoul-Henning Kamp * second; if in leap-delete state, the system clock is 487c68996e2SPoul-Henning Kamp * set ahead one second. The nano_time() routine or 488c68996e2SPoul-Henning Kamp * external clock driver will insure that reported time 489c68996e2SPoul-Henning Kamp * is always monotonic. 490c68996e2SPoul-Henning Kamp */ 491c68996e2SPoul-Henning Kamp switch (time_state) { 492c68996e2SPoul-Henning Kamp 493c68996e2SPoul-Henning Kamp /* 494c68996e2SPoul-Henning Kamp * No warning. 495c68996e2SPoul-Henning Kamp */ 496c68996e2SPoul-Henning Kamp case TIME_OK: 497c68996e2SPoul-Henning Kamp if (time_status & STA_INS) 498c68996e2SPoul-Henning Kamp time_state = TIME_INS; 499c68996e2SPoul-Henning Kamp else if (time_status & STA_DEL) 500c68996e2SPoul-Henning Kamp time_state = TIME_DEL; 501c68996e2SPoul-Henning Kamp break; 502c68996e2SPoul-Henning Kamp 503c68996e2SPoul-Henning Kamp /* 504c68996e2SPoul-Henning Kamp * Insert second 23:59:60 following second 505c68996e2SPoul-Henning Kamp * 23:59:59. 506c68996e2SPoul-Henning Kamp */ 507c68996e2SPoul-Henning Kamp case TIME_INS: 508c68996e2SPoul-Henning Kamp if (!(time_status & STA_INS)) 509c68996e2SPoul-Henning Kamp time_state = TIME_OK; 510c68996e2SPoul-Henning Kamp else if ((*newsec) % 86400 == 0) { 511c68996e2SPoul-Henning Kamp (*newsec)--; 512c68996e2SPoul-Henning Kamp time_state = TIME_OOP; 513eac3c62bSWarner Losh time_tai++; 514c68996e2SPoul-Henning Kamp } 515c68996e2SPoul-Henning Kamp break; 516c68996e2SPoul-Henning Kamp 517c68996e2SPoul-Henning Kamp /* 518c68996e2SPoul-Henning Kamp * Delete second 23:59:59. 519c68996e2SPoul-Henning Kamp */ 520c68996e2SPoul-Henning Kamp case TIME_DEL: 521c68996e2SPoul-Henning Kamp if (!(time_status & STA_DEL)) 522c68996e2SPoul-Henning Kamp time_state = TIME_OK; 523c68996e2SPoul-Henning Kamp else if (((*newsec) + 1) % 86400 == 0) { 524c68996e2SPoul-Henning Kamp (*newsec)++; 52597804a5cSPoul-Henning Kamp time_tai--; 526c68996e2SPoul-Henning Kamp time_state = TIME_WAIT; 527c68996e2SPoul-Henning Kamp } 528c68996e2SPoul-Henning Kamp break; 529c68996e2SPoul-Henning Kamp 530c68996e2SPoul-Henning Kamp /* 531c68996e2SPoul-Henning Kamp * Insert second in progress. 532c68996e2SPoul-Henning Kamp */ 533c68996e2SPoul-Henning Kamp case TIME_OOP: 534c68996e2SPoul-Henning Kamp time_state = TIME_WAIT; 535c68996e2SPoul-Henning Kamp break; 536c68996e2SPoul-Henning Kamp 537c68996e2SPoul-Henning Kamp /* 538c68996e2SPoul-Henning Kamp * Wait for status bits to clear. 539c68996e2SPoul-Henning Kamp */ 540c68996e2SPoul-Henning Kamp case TIME_WAIT: 541c68996e2SPoul-Henning Kamp if (!(time_status & (STA_INS | STA_DEL))) 542c68996e2SPoul-Henning Kamp time_state = TIME_OK; 543c68996e2SPoul-Henning Kamp } 544c68996e2SPoul-Henning Kamp 545c68996e2SPoul-Henning Kamp /* 54682e84c5bSPoul-Henning Kamp * Compute the total time adjustment for the next second 54782e84c5bSPoul-Henning Kamp * in ns. The offset is reduced by a factor depending on 54882e84c5bSPoul-Henning Kamp * whether the PPS signal is operating. Note that the 54982e84c5bSPoul-Henning Kamp * value is in effect scaled by the clock frequency, 55082e84c5bSPoul-Henning Kamp * since the adjustment is added at each tick interrupt. 551c68996e2SPoul-Henning Kamp */ 55297804a5cSPoul-Henning Kamp ftemp = time_offset; 553c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 55497804a5cSPoul-Henning Kamp /* XXX even if PPS signal dies we should finish adjustment ? */ 55597804a5cSPoul-Henning Kamp if (time_status & STA_PPSTIME && time_status & 55697804a5cSPoul-Henning Kamp STA_PPSSIGNAL) 55797804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, pps_shift); 55897804a5cSPoul-Henning Kamp else 55997804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 56082e84c5bSPoul-Henning Kamp #else 56197804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 56282e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */ 56397804a5cSPoul-Henning Kamp time_adj = ftemp; 56497804a5cSPoul-Henning Kamp L_SUB(time_offset, ftemp); 565c68996e2SPoul-Henning Kamp L_ADD(time_adj, time_freq); 566e1d970f1SPoul-Henning Kamp 567e1d970f1SPoul-Henning Kamp /* 568e1d970f1SPoul-Henning Kamp * Apply any correction from adjtime(2). If more than one second 569e1d970f1SPoul-Henning Kamp * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM) 570e1d970f1SPoul-Henning Kamp * until the last second is slewed the final < 500 usecs. 571e1d970f1SPoul-Henning Kamp */ 572e1d970f1SPoul-Henning Kamp if (time_adjtime != 0) { 573e1d970f1SPoul-Henning Kamp if (time_adjtime > 1000000) 574e1d970f1SPoul-Henning Kamp tickrate = 5000; 575e1d970f1SPoul-Henning Kamp else if (time_adjtime < -1000000) 576e1d970f1SPoul-Henning Kamp tickrate = -5000; 577e1d970f1SPoul-Henning Kamp else if (time_adjtime > 500) 578e1d970f1SPoul-Henning Kamp tickrate = 500; 579e1d970f1SPoul-Henning Kamp else if (time_adjtime < -500) 580e1d970f1SPoul-Henning Kamp tickrate = -500; 581e1d970f1SPoul-Henning Kamp else 582bcfe6d8bSPoul-Henning Kamp tickrate = time_adjtime; 583e1d970f1SPoul-Henning Kamp time_adjtime -= tickrate; 584e1d970f1SPoul-Henning Kamp L_LINT(ftemp, tickrate * 1000); 585e1d970f1SPoul-Henning Kamp L_ADD(time_adj, ftemp); 586e1d970f1SPoul-Henning Kamp } 587b4a1d0deSPoul-Henning Kamp *adjustment = time_adj; 588e1d970f1SPoul-Henning Kamp 589c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 590c68996e2SPoul-Henning Kamp if (pps_valid > 0) 591c68996e2SPoul-Henning Kamp pps_valid--; 592c68996e2SPoul-Henning Kamp else 59324dbea46SJohn Hay time_status &= ~STA_PPSSIGNAL; 594c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 595c68996e2SPoul-Henning Kamp } 596c68996e2SPoul-Henning Kamp 597c68996e2SPoul-Henning Kamp /* 598c68996e2SPoul-Henning Kamp * ntp_init() - initialize variables and structures 599c68996e2SPoul-Henning Kamp * 600c68996e2SPoul-Henning Kamp * This routine must be called after the kernel variables hz and tick 601c68996e2SPoul-Henning Kamp * are set or changed and before the next tick interrupt. In this 602c68996e2SPoul-Henning Kamp * particular implementation, these values are assumed set elsewhere in 603c68996e2SPoul-Henning Kamp * the kernel. The design allows the clock frequency and tick interval 604c68996e2SPoul-Henning Kamp * to be changed while the system is running. So, this routine should 605c68996e2SPoul-Henning Kamp * probably be integrated with the code that does that. 606c68996e2SPoul-Henning Kamp */ 607c68996e2SPoul-Henning Kamp static void 608c68996e2SPoul-Henning Kamp ntp_init() 609c68996e2SPoul-Henning Kamp { 610c68996e2SPoul-Henning Kamp 611c68996e2SPoul-Henning Kamp /* 612c68996e2SPoul-Henning Kamp * The following variables are initialized only at startup. Only 613c68996e2SPoul-Henning Kamp * those structures not cleared by the compiler need to be 614c68996e2SPoul-Henning Kamp * initialized, and these only in the simulator. In the actual 615c68996e2SPoul-Henning Kamp * kernel, any nonzero values here will quickly evaporate. 616c68996e2SPoul-Henning Kamp */ 617c68996e2SPoul-Henning Kamp L_CLR(time_offset); 618c68996e2SPoul-Henning Kamp L_CLR(time_freq); 619c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 62082e84c5bSPoul-Henning Kamp pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0; 62182e84c5bSPoul-Henning Kamp pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0; 62282e84c5bSPoul-Henning Kamp pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0; 623f425c1f6SPoul-Henning Kamp pps_fcount = 0; 624c68996e2SPoul-Henning Kamp L_CLR(pps_freq); 625c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 626c68996e2SPoul-Henning Kamp } 627c68996e2SPoul-Henning Kamp 628ff292556SPeter Wemm SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL) 6296f70df15SPoul-Henning Kamp 6306f70df15SPoul-Henning Kamp /* 6316f70df15SPoul-Henning Kamp * hardupdate() - local clock update 6326f70df15SPoul-Henning Kamp * 6336f70df15SPoul-Henning Kamp * This routine is called by ntp_adjtime() to update the local clock 6346f70df15SPoul-Henning Kamp * phase and frequency. The implementation is of an adaptive-parameter, 6356f70df15SPoul-Henning Kamp * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 6366f70df15SPoul-Henning Kamp * time and frequency offset estimates for each call. If the kernel PPS 6376f70df15SPoul-Henning Kamp * discipline code is configured (PPS_SYNC), the PPS signal itself 6386f70df15SPoul-Henning Kamp * determines the new time offset, instead of the calling argument. 6396f70df15SPoul-Henning Kamp * Presumably, calls to ntp_adjtime() occur only when the caller 6406f70df15SPoul-Henning Kamp * believes the local clock is valid within some bound (+-128 ms with 6416f70df15SPoul-Henning Kamp * NTP). If the caller's time is far different than the PPS time, an 6426f70df15SPoul-Henning Kamp * argument will ensue, and it's not clear who will lose. 6436f70df15SPoul-Henning Kamp * 644c68996e2SPoul-Henning Kamp * For uncompensated quartz crystal oscillators and nominal update 645c68996e2SPoul-Henning Kamp * intervals less than 256 s, operation should be in phase-lock mode, 646c68996e2SPoul-Henning Kamp * where the loop is disciplined to phase. For update intervals greater 647c68996e2SPoul-Henning Kamp * than 1024 s, operation should be in frequency-lock mode, where the 648c68996e2SPoul-Henning Kamp * loop is disciplined to frequency. Between 256 s and 1024 s, the mode 649c68996e2SPoul-Henning Kamp * is selected by the STA_MODE status bit. 6506f70df15SPoul-Henning Kamp */ 6516f70df15SPoul-Henning Kamp static void 652c68996e2SPoul-Henning Kamp hardupdate(offset) 653c68996e2SPoul-Henning Kamp long offset; /* clock offset (ns) */ 6546f70df15SPoul-Henning Kamp { 65597804a5cSPoul-Henning Kamp long mtemp; 656c68996e2SPoul-Henning Kamp l_fp ftemp; 6576f70df15SPoul-Henning Kamp 658c68996e2SPoul-Henning Kamp /* 659c68996e2SPoul-Henning Kamp * Select how the phase is to be controlled and from which 660c68996e2SPoul-Henning Kamp * source. If the PPS signal is present and enabled to 661c68996e2SPoul-Henning Kamp * discipline the time, the PPS offset is used; otherwise, the 662c68996e2SPoul-Henning Kamp * argument offset is used. 663c68996e2SPoul-Henning Kamp */ 66482e84c5bSPoul-Henning Kamp if (!(time_status & STA_PLL)) 66582e84c5bSPoul-Henning Kamp return; 66697804a5cSPoul-Henning Kamp if (!(time_status & STA_PPSTIME && time_status & 66797804a5cSPoul-Henning Kamp STA_PPSSIGNAL)) { 66897804a5cSPoul-Henning Kamp if (offset > MAXPHASE) 66997804a5cSPoul-Henning Kamp time_monitor = MAXPHASE; 67097804a5cSPoul-Henning Kamp else if (offset < -MAXPHASE) 67197804a5cSPoul-Henning Kamp time_monitor = -MAXPHASE; 67297804a5cSPoul-Henning Kamp else 67397804a5cSPoul-Henning Kamp time_monitor = offset; 67497804a5cSPoul-Henning Kamp L_LINT(time_offset, time_monitor); 67597804a5cSPoul-Henning Kamp } 6766f70df15SPoul-Henning Kamp 6776f70df15SPoul-Henning Kamp /* 678c68996e2SPoul-Henning Kamp * Select how the frequency is to be controlled and in which 679c68996e2SPoul-Henning Kamp * mode (PLL or FLL). If the PPS signal is present and enabled 680c68996e2SPoul-Henning Kamp * to discipline the frequency, the PPS frequency is used; 681c68996e2SPoul-Henning Kamp * otherwise, the argument offset is used to compute it. 6826f70df15SPoul-Henning Kamp */ 683c68996e2SPoul-Henning Kamp if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) { 684c68996e2SPoul-Henning Kamp time_reftime = time_second; 685c68996e2SPoul-Henning Kamp return; 686c68996e2SPoul-Henning Kamp } 6876f70df15SPoul-Henning Kamp if (time_status & STA_FREQHOLD || time_reftime == 0) 688227ee8a1SPoul-Henning Kamp time_reftime = time_second; 689227ee8a1SPoul-Henning Kamp mtemp = time_second - time_reftime; 69097804a5cSPoul-Henning Kamp L_LINT(ftemp, time_monitor); 691c68996e2SPoul-Henning Kamp L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1); 692c68996e2SPoul-Henning Kamp L_MPY(ftemp, mtemp); 693c68996e2SPoul-Henning Kamp L_ADD(time_freq, ftemp); 694c68996e2SPoul-Henning Kamp time_status &= ~STA_MODE; 69597804a5cSPoul-Henning Kamp if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > 69697804a5cSPoul-Henning Kamp MAXSEC)) { 69797804a5cSPoul-Henning Kamp L_LINT(ftemp, (time_monitor << 4) / mtemp); 69882e84c5bSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_FLL + 4); 69982e84c5bSPoul-Henning Kamp L_ADD(time_freq, ftemp); 70082e84c5bSPoul-Henning Kamp time_status |= STA_MODE; 701c68996e2SPoul-Henning Kamp } 702227ee8a1SPoul-Henning Kamp time_reftime = time_second; 703c68996e2SPoul-Henning Kamp if (L_GINT(time_freq) > MAXFREQ) 704c68996e2SPoul-Henning Kamp L_LINT(time_freq, MAXFREQ); 705c68996e2SPoul-Henning Kamp else if (L_GINT(time_freq) < -MAXFREQ) 706c68996e2SPoul-Henning Kamp L_LINT(time_freq, -MAXFREQ); 7073f31c649SGarrett Wollman } 7083f31c649SGarrett Wollman 7096f70df15SPoul-Henning Kamp #ifdef PPS_SYNC 7106f70df15SPoul-Henning Kamp /* 7116f70df15SPoul-Henning Kamp * hardpps() - discipline CPU clock oscillator to external PPS signal 7126f70df15SPoul-Henning Kamp * 7136f70df15SPoul-Henning Kamp * This routine is called at each PPS interrupt in order to discipline 71497804a5cSPoul-Henning Kamp * the CPU clock oscillator to the PPS signal. There are two independent 71597804a5cSPoul-Henning Kamp * first-order feedback loops, one for the phase, the other for the 71697804a5cSPoul-Henning Kamp * frequency. The phase loop measures and grooms the PPS phase offset 71797804a5cSPoul-Henning Kamp * and leaves it in a handy spot for the seconds overflow routine. The 71897804a5cSPoul-Henning Kamp * frequency loop averages successive PPS phase differences and 71997804a5cSPoul-Henning Kamp * calculates the PPS frequency offset, which is also processed by the 72097804a5cSPoul-Henning Kamp * seconds overflow routine. The code requires the caller to capture the 72197804a5cSPoul-Henning Kamp * time and architecture-dependent hardware counter values in 72297804a5cSPoul-Henning Kamp * nanoseconds at the on-time PPS signal transition. 7236f70df15SPoul-Henning Kamp * 724c68996e2SPoul-Henning Kamp * Note that, on some Unix systems this routine runs at an interrupt 7256f70df15SPoul-Henning Kamp * priority level higher than the timer interrupt routine hardclock(). 7266f70df15SPoul-Henning Kamp * Therefore, the variables used are distinct from the hardclock() 727c68996e2SPoul-Henning Kamp * variables, except for the actual time and frequency variables, which 728c68996e2SPoul-Henning Kamp * are determined by this routine and updated atomically. 7296f70df15SPoul-Henning Kamp */ 7306f70df15SPoul-Henning Kamp void 731c68996e2SPoul-Henning Kamp hardpps(tsp, nsec) 732c68996e2SPoul-Henning Kamp struct timespec *tsp; /* time at PPS */ 733c68996e2SPoul-Henning Kamp long nsec; /* hardware counter at PPS */ 7346f70df15SPoul-Henning Kamp { 73597804a5cSPoul-Henning Kamp long u_sec, u_nsec, v_nsec; /* temps */ 736c68996e2SPoul-Henning Kamp l_fp ftemp; 7376f70df15SPoul-Henning Kamp 7386f70df15SPoul-Henning Kamp /* 73997804a5cSPoul-Henning Kamp * The signal is first processed by a range gate and frequency 74097804a5cSPoul-Henning Kamp * discriminator. The range gate rejects noise spikes outside 74197804a5cSPoul-Henning Kamp * the range +-500 us. The frequency discriminator rejects input 74297804a5cSPoul-Henning Kamp * signals with apparent frequency outside the range 1 +-500 74397804a5cSPoul-Henning Kamp * PPM. If two hits occur in the same second, we ignore the 74497804a5cSPoul-Henning Kamp * later hit; if not and a hit occurs outside the range gate, 74597804a5cSPoul-Henning Kamp * keep the later hit for later comparison, but do not process 74697804a5cSPoul-Henning Kamp * it. 7476f70df15SPoul-Henning Kamp */ 748c68996e2SPoul-Henning Kamp time_status |= STA_PPSSIGNAL | STA_PPSJITTER; 749c68996e2SPoul-Henning Kamp time_status &= ~(STA_PPSWANDER | STA_PPSERROR); 750c68996e2SPoul-Henning Kamp pps_valid = PPS_VALID; 751c68996e2SPoul-Henning Kamp u_sec = tsp->tv_sec; 752c68996e2SPoul-Henning Kamp u_nsec = tsp->tv_nsec; 753c68996e2SPoul-Henning Kamp if (u_nsec >= (NANOSECOND >> 1)) { 754c68996e2SPoul-Henning Kamp u_nsec -= NANOSECOND; 755c68996e2SPoul-Henning Kamp u_sec++; 7566f70df15SPoul-Henning Kamp } 75782e84c5bSPoul-Henning Kamp v_nsec = u_nsec - pps_tf[0].tv_nsec; 75824dbea46SJohn Hay if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - 75924dbea46SJohn Hay MAXFREQ) 760c68996e2SPoul-Henning Kamp return; 761c68996e2SPoul-Henning Kamp pps_tf[2] = pps_tf[1]; 762c68996e2SPoul-Henning Kamp pps_tf[1] = pps_tf[0]; 76382e84c5bSPoul-Henning Kamp pps_tf[0].tv_sec = u_sec; 76482e84c5bSPoul-Henning Kamp pps_tf[0].tv_nsec = u_nsec; 7656f70df15SPoul-Henning Kamp 7666f70df15SPoul-Henning Kamp /* 767c68996e2SPoul-Henning Kamp * Compute the difference between the current and previous 768c68996e2SPoul-Henning Kamp * counter values. If the difference exceeds 0.5 s, assume it 769c68996e2SPoul-Henning Kamp * has wrapped around, so correct 1.0 s. If the result exceeds 770c68996e2SPoul-Henning Kamp * the tick interval, the sample point has crossed a tick 771c68996e2SPoul-Henning Kamp * boundary during the last second, so correct the tick. Very 772c68996e2SPoul-Henning Kamp * intricate. 773c68996e2SPoul-Henning Kamp */ 77432c20357SPoul-Henning Kamp u_nsec = nsec; 775c68996e2SPoul-Henning Kamp if (u_nsec > (NANOSECOND >> 1)) 776c68996e2SPoul-Henning Kamp u_nsec -= NANOSECOND; 777c68996e2SPoul-Henning Kamp else if (u_nsec < -(NANOSECOND >> 1)) 778c68996e2SPoul-Henning Kamp u_nsec += NANOSECOND; 779884ab557SPoul-Henning Kamp pps_fcount += u_nsec; 78024dbea46SJohn Hay if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) 781c68996e2SPoul-Henning Kamp return; 782c68996e2SPoul-Henning Kamp time_status &= ~STA_PPSJITTER; 783c68996e2SPoul-Henning Kamp 784c68996e2SPoul-Henning Kamp /* 785c68996e2SPoul-Henning Kamp * A three-stage median filter is used to help denoise the PPS 7866f70df15SPoul-Henning Kamp * time. The median sample becomes the time offset estimate; the 7876f70df15SPoul-Henning Kamp * difference between the other two samples becomes the time 7886f70df15SPoul-Henning Kamp * dispersion (jitter) estimate. 7896f70df15SPoul-Henning Kamp */ 79082e84c5bSPoul-Henning Kamp if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) { 79182e84c5bSPoul-Henning Kamp if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) { 79282e84c5bSPoul-Henning Kamp v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */ 79382e84c5bSPoul-Henning Kamp u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec; 79482e84c5bSPoul-Henning Kamp } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) { 79582e84c5bSPoul-Henning Kamp v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */ 79682e84c5bSPoul-Henning Kamp u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec; 7976f70df15SPoul-Henning Kamp } else { 79882e84c5bSPoul-Henning Kamp v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */ 79982e84c5bSPoul-Henning Kamp u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec; 800c68996e2SPoul-Henning Kamp } 801c68996e2SPoul-Henning Kamp } else { 80282e84c5bSPoul-Henning Kamp if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) { 80382e84c5bSPoul-Henning Kamp v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */ 80482e84c5bSPoul-Henning Kamp u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec; 80582e84c5bSPoul-Henning Kamp } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) { 80682e84c5bSPoul-Henning Kamp v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */ 80782e84c5bSPoul-Henning Kamp u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec; 808c68996e2SPoul-Henning Kamp } else { 80982e84c5bSPoul-Henning Kamp v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */ 81082e84c5bSPoul-Henning Kamp u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec; 8116f70df15SPoul-Henning Kamp } 8126f70df15SPoul-Henning Kamp } 8136f70df15SPoul-Henning Kamp 8146f70df15SPoul-Henning Kamp /* 815c68996e2SPoul-Henning Kamp * Nominal jitter is due to PPS signal noise and interrupt 81697804a5cSPoul-Henning Kamp * latency. If it exceeds the popcorn threshold, the sample is 81797804a5cSPoul-Henning Kamp * discarded. otherwise, if so enabled, the time offset is 81897804a5cSPoul-Henning Kamp * updated. We can tolerate a modest loss of data here without 81997804a5cSPoul-Henning Kamp * much degrading time accuracy. 8206f70df15SPoul-Henning Kamp */ 82182e84c5bSPoul-Henning Kamp if (u_nsec > (pps_jitter << PPS_POPCORN)) { 822c68996e2SPoul-Henning Kamp time_status |= STA_PPSJITTER; 823c68996e2SPoul-Henning Kamp pps_jitcnt++; 824c68996e2SPoul-Henning Kamp } else if (time_status & STA_PPSTIME) { 82597804a5cSPoul-Henning Kamp time_monitor = -v_nsec; 82697804a5cSPoul-Henning Kamp L_LINT(time_offset, time_monitor); 827c68996e2SPoul-Henning Kamp } 828c68996e2SPoul-Henning Kamp pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG; 82982e84c5bSPoul-Henning Kamp u_sec = pps_tf[0].tv_sec - pps_lastsec; 830c68996e2SPoul-Henning Kamp if (u_sec < (1 << pps_shift)) 831c68996e2SPoul-Henning Kamp return; 832c68996e2SPoul-Henning Kamp 833c68996e2SPoul-Henning Kamp /* 834c68996e2SPoul-Henning Kamp * At the end of the calibration interval the difference between 835c68996e2SPoul-Henning Kamp * the first and last counter values becomes the scaled 836c68996e2SPoul-Henning Kamp * frequency. It will later be divided by the length of the 837c68996e2SPoul-Henning Kamp * interval to determine the frequency update. If the frequency 838c68996e2SPoul-Henning Kamp * exceeds a sanity threshold, or if the actual calibration 839c68996e2SPoul-Henning Kamp * interval is not equal to the expected length, the data are 840c68996e2SPoul-Henning Kamp * discarded. We can tolerate a modest loss of data here without 84197804a5cSPoul-Henning Kamp * much degrading frequency accuracy. 842c68996e2SPoul-Henning Kamp */ 843c68996e2SPoul-Henning Kamp pps_calcnt++; 844884ab557SPoul-Henning Kamp v_nsec = -pps_fcount; 84582e84c5bSPoul-Henning Kamp pps_lastsec = pps_tf[0].tv_sec; 846884ab557SPoul-Henning Kamp pps_fcount = 0; 847c68996e2SPoul-Henning Kamp u_nsec = MAXFREQ << pps_shift; 848c68996e2SPoul-Henning Kamp if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << 849c68996e2SPoul-Henning Kamp pps_shift)) { 850c68996e2SPoul-Henning Kamp time_status |= STA_PPSERROR; 851c68996e2SPoul-Henning Kamp pps_errcnt++; 852c68996e2SPoul-Henning Kamp return; 853c68996e2SPoul-Henning Kamp } 854c68996e2SPoul-Henning Kamp 855c68996e2SPoul-Henning Kamp /* 85682e84c5bSPoul-Henning Kamp * Here the raw frequency offset and wander (stability) is 85782e84c5bSPoul-Henning Kamp * calculated. If the wander is less than the wander threshold 85882e84c5bSPoul-Henning Kamp * for four consecutive averaging intervals, the interval is 85982e84c5bSPoul-Henning Kamp * doubled; if it is greater than the threshold for four 86082e84c5bSPoul-Henning Kamp * consecutive intervals, the interval is halved. The scaled 86182e84c5bSPoul-Henning Kamp * frequency offset is converted to frequency offset. The 86282e84c5bSPoul-Henning Kamp * stability metric is calculated as the average of recent 86382e84c5bSPoul-Henning Kamp * frequency changes, but is used only for performance 864c68996e2SPoul-Henning Kamp * monitoring. 865c68996e2SPoul-Henning Kamp */ 866c68996e2SPoul-Henning Kamp L_LINT(ftemp, v_nsec); 867c68996e2SPoul-Henning Kamp L_RSHIFT(ftemp, pps_shift); 868c68996e2SPoul-Henning Kamp L_SUB(ftemp, pps_freq); 869c68996e2SPoul-Henning Kamp u_nsec = L_GINT(ftemp); 87082e84c5bSPoul-Henning Kamp if (u_nsec > PPS_MAXWANDER) { 87182e84c5bSPoul-Henning Kamp L_LINT(ftemp, PPS_MAXWANDER); 872c68996e2SPoul-Henning Kamp pps_intcnt--; 873c68996e2SPoul-Henning Kamp time_status |= STA_PPSWANDER; 874c68996e2SPoul-Henning Kamp pps_stbcnt++; 87582e84c5bSPoul-Henning Kamp } else if (u_nsec < -PPS_MAXWANDER) { 87682e84c5bSPoul-Henning Kamp L_LINT(ftemp, -PPS_MAXWANDER); 877c68996e2SPoul-Henning Kamp pps_intcnt--; 878c68996e2SPoul-Henning Kamp time_status |= STA_PPSWANDER; 879c68996e2SPoul-Henning Kamp pps_stbcnt++; 880c68996e2SPoul-Henning Kamp } else { 8816f70df15SPoul-Henning Kamp pps_intcnt++; 8826f70df15SPoul-Henning Kamp } 88397804a5cSPoul-Henning Kamp if (pps_intcnt >= 4) { 884c68996e2SPoul-Henning Kamp pps_intcnt = 4; 88582e84c5bSPoul-Henning Kamp if (pps_shift < pps_shiftmax) { 886c68996e2SPoul-Henning Kamp pps_shift++; 887c68996e2SPoul-Henning Kamp pps_intcnt = 0; 888c68996e2SPoul-Henning Kamp } 88997804a5cSPoul-Henning Kamp } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) { 890c68996e2SPoul-Henning Kamp pps_intcnt = -4; 891c68996e2SPoul-Henning Kamp if (pps_shift > PPS_FAVG) { 892c68996e2SPoul-Henning Kamp pps_shift--; 893c68996e2SPoul-Henning Kamp pps_intcnt = 0; 894c68996e2SPoul-Henning Kamp } 895c68996e2SPoul-Henning Kamp } 896c68996e2SPoul-Henning Kamp if (u_nsec < 0) 897c68996e2SPoul-Henning Kamp u_nsec = -u_nsec; 898c68996e2SPoul-Henning Kamp pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG; 8999ada5a50SPoul-Henning Kamp 900c68996e2SPoul-Henning Kamp /* 90182e84c5bSPoul-Henning Kamp * The PPS frequency is recalculated and clamped to the maximum 90282e84c5bSPoul-Henning Kamp * MAXFREQ. If enabled, the system clock frequency is updated as 90382e84c5bSPoul-Henning Kamp * well. 904c68996e2SPoul-Henning Kamp */ 905c68996e2SPoul-Henning Kamp L_ADD(pps_freq, ftemp); 906c68996e2SPoul-Henning Kamp u_nsec = L_GINT(pps_freq); 907c68996e2SPoul-Henning Kamp if (u_nsec > MAXFREQ) 908c68996e2SPoul-Henning Kamp L_LINT(pps_freq, MAXFREQ); 909c68996e2SPoul-Henning Kamp else if (u_nsec < -MAXFREQ) 910c68996e2SPoul-Henning Kamp L_LINT(pps_freq, -MAXFREQ); 91197804a5cSPoul-Henning Kamp if (time_status & STA_PPSFREQ) 912c68996e2SPoul-Henning Kamp time_freq = pps_freq; 913c68996e2SPoul-Henning Kamp } 9146f70df15SPoul-Henning Kamp #endif /* PPS_SYNC */ 915e1d970f1SPoul-Henning Kamp 916e1d970f1SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_ 917e1d970f1SPoul-Henning Kamp struct adjtime_args { 918e1d970f1SPoul-Henning Kamp struct timeval *delta; 919e1d970f1SPoul-Henning Kamp struct timeval *olddelta; 920e1d970f1SPoul-Henning Kamp }; 921e1d970f1SPoul-Henning Kamp #endif 922e1d970f1SPoul-Henning Kamp /* 923e1d970f1SPoul-Henning Kamp * MPSAFE 924e1d970f1SPoul-Henning Kamp */ 925e1d970f1SPoul-Henning Kamp /* ARGSUSED */ 926e1d970f1SPoul-Henning Kamp int 927e1d970f1SPoul-Henning Kamp adjtime(struct thread *td, struct adjtime_args *uap) 928e1d970f1SPoul-Henning Kamp { 929e1d970f1SPoul-Henning Kamp struct timeval atv; 930e1d970f1SPoul-Henning Kamp int error; 931e1d970f1SPoul-Henning Kamp 932e1d970f1SPoul-Henning Kamp if ((error = suser(td))) 9333bdd2d06SPoul-Henning Kamp return (error); 9343bdd2d06SPoul-Henning Kamp 9353bdd2d06SPoul-Henning Kamp mtx_lock(&Giant); 936e1d970f1SPoul-Henning Kamp if (uap->olddelta) { 937e1d970f1SPoul-Henning Kamp atv.tv_sec = time_adjtime / 1000000; 938e1d970f1SPoul-Henning Kamp atv.tv_usec = time_adjtime % 1000000; 939e1d970f1SPoul-Henning Kamp if (atv.tv_usec < 0) { 940e1d970f1SPoul-Henning Kamp atv.tv_usec += 1000000; 941e1d970f1SPoul-Henning Kamp atv.tv_sec--; 942e1d970f1SPoul-Henning Kamp } 943e1d970f1SPoul-Henning Kamp error = copyout(&atv, uap->olddelta, sizeof(atv)); 944e1d970f1SPoul-Henning Kamp if (error) 945e1d970f1SPoul-Henning Kamp goto done2; 946e1d970f1SPoul-Henning Kamp } 947e1d970f1SPoul-Henning Kamp if (uap->delta) { 948e1d970f1SPoul-Henning Kamp error = copyin(uap->delta, &atv, sizeof(atv)); 949e1d970f1SPoul-Henning Kamp if (error) 950e1d970f1SPoul-Henning Kamp goto done2; 951e1d970f1SPoul-Henning Kamp time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec; 952e1d970f1SPoul-Henning Kamp } 953e1d970f1SPoul-Henning Kamp done2: 954e1d970f1SPoul-Henning Kamp mtx_unlock(&Giant); 955e1d970f1SPoul-Henning Kamp return (error); 956e1d970f1SPoul-Henning Kamp } 957e1d970f1SPoul-Henning Kamp 958