xref: /freebsd/sys/kern/kern_ntptime.c (revision 873fbcd776b5c6e0b7caa1f1f87cc91a12d339db)
19454b2d8SWarner Losh /*-
29454b2d8SWarner Losh  ***********************************************************************
33f31c649SGarrett Wollman  *								       *
424dbea46SJohn Hay  * Copyright (c) David L. Mills 1993-2001			       *
53f31c649SGarrett Wollman  *								       *
6c68996e2SPoul-Henning Kamp  * Permission to use, copy, modify, and distribute this software and   *
7c68996e2SPoul-Henning Kamp  * its documentation for any purpose and without fee is hereby	       *
8c68996e2SPoul-Henning Kamp  * granted, provided that the above copyright notice appears in all    *
9c68996e2SPoul-Henning Kamp  * copies and that both the copyright notice and this permission       *
10c68996e2SPoul-Henning Kamp  * notice appear in supporting documentation, and that the name	       *
11c68996e2SPoul-Henning Kamp  * University of Delaware not be used in advertising or publicity      *
12c68996e2SPoul-Henning Kamp  * pertaining to distribution of the software without specific,	       *
13c68996e2SPoul-Henning Kamp  * written prior permission. The University of Delaware makes no       *
14c68996e2SPoul-Henning Kamp  * representations about the suitability this software for any	       *
15c68996e2SPoul-Henning Kamp  * purpose. It is provided "as is" without express or implied	       *
16c68996e2SPoul-Henning Kamp  * warranty.							       *
173f31c649SGarrett Wollman  *								       *
18c68996e2SPoul-Henning Kamp  **********************************************************************/
193f31c649SGarrett Wollman 
203f31c649SGarrett Wollman /*
21c68996e2SPoul-Henning Kamp  * Adapted from the original sources for FreeBSD and timecounters by:
2232c20357SPoul-Henning Kamp  * Poul-Henning Kamp <phk@FreeBSD.org>.
233f31c649SGarrett Wollman  *
24c68996e2SPoul-Henning Kamp  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25c68996e2SPoul-Henning Kamp  * date so I have retained only the 64bit version and included it directly
26c68996e2SPoul-Henning Kamp  * in this file.
27885bd8e4SJohn Hay  *
28c68996e2SPoul-Henning Kamp  * Only minor changes done to interface with the timecounters over in
29c68996e2SPoul-Henning Kamp  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30c68996e2SPoul-Henning Kamp  * confusing and/or plain wrong in that context.
313f31c649SGarrett Wollman  */
32e0d781f3SEivind Eklund 
33677b542eSDavid E. O'Brien #include <sys/cdefs.h>
34677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$");
35677b542eSDavid E. O'Brien 
3632c20357SPoul-Henning Kamp #include "opt_ntp.h"
3732c20357SPoul-Henning Kamp 
383f31c649SGarrett Wollman #include <sys/param.h>
393f31c649SGarrett Wollman #include <sys/systm.h>
40d2d3e875SBruce Evans #include <sys/sysproto.h>
413f31c649SGarrett Wollman #include <sys/kernel.h>
42acd3428bSRobert Watson #include <sys/priv.h>
433f31c649SGarrett Wollman #include <sys/proc.h>
446f1e8c18SMatthew Dillon #include <sys/lock.h>
456f1e8c18SMatthew Dillon #include <sys/mutex.h>
46c68996e2SPoul-Henning Kamp #include <sys/time.h>
473f31c649SGarrett Wollman #include <sys/timex.h>
4891266b96SPoul-Henning Kamp #include <sys/timetc.h>
49938ee3ceSPoul-Henning Kamp #include <sys/timepps.h>
50b88ec951SJohn Baldwin #include <sys/syscallsubr.h>
513f31c649SGarrett Wollman #include <sys/sysctl.h>
523f31c649SGarrett Wollman 
533f31c649SGarrett Wollman /*
54c68996e2SPoul-Henning Kamp  * Single-precision macros for 64-bit machines
553f31c649SGarrett Wollman  */
56bcfe6d8bSPoul-Henning Kamp typedef int64_t l_fp;
57c68996e2SPoul-Henning Kamp #define L_ADD(v, u)	((v) += (u))
58c68996e2SPoul-Henning Kamp #define L_SUB(v, u)	((v) -= (u))
59bcfe6d8bSPoul-Henning Kamp #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
60c68996e2SPoul-Henning Kamp #define L_NEG(v)	((v) = -(v))
61c68996e2SPoul-Henning Kamp #define L_RSHIFT(v, n) \
62c68996e2SPoul-Henning Kamp 	do { \
63c68996e2SPoul-Henning Kamp 		if ((v) < 0) \
64c68996e2SPoul-Henning Kamp 			(v) = -(-(v) >> (n)); \
65c68996e2SPoul-Henning Kamp 		else \
66c68996e2SPoul-Henning Kamp 			(v) = (v) >> (n); \
67c68996e2SPoul-Henning Kamp 	} while (0)
68c68996e2SPoul-Henning Kamp #define L_MPY(v, a)	((v) *= (a))
69c68996e2SPoul-Henning Kamp #define L_CLR(v)	((v) = 0)
70c68996e2SPoul-Henning Kamp #define L_ISNEG(v)	((v) < 0)
71bcfe6d8bSPoul-Henning Kamp #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
72c68996e2SPoul-Henning Kamp #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
736f70df15SPoul-Henning Kamp 
746f70df15SPoul-Henning Kamp /*
75c68996e2SPoul-Henning Kamp  * Generic NTP kernel interface
766f70df15SPoul-Henning Kamp  *
77c68996e2SPoul-Henning Kamp  * These routines constitute the Network Time Protocol (NTP) interfaces
78c68996e2SPoul-Henning Kamp  * for user and daemon application programs. The ntp_gettime() routine
79c68996e2SPoul-Henning Kamp  * provides the time, maximum error (synch distance) and estimated error
80c68996e2SPoul-Henning Kamp  * (dispersion) to client user application programs. The ntp_adjtime()
81c68996e2SPoul-Henning Kamp  * routine is used by the NTP daemon to adjust the system clock to an
82c68996e2SPoul-Henning Kamp  * externally derived time. The time offset and related variables set by
83c68996e2SPoul-Henning Kamp  * this routine are used by other routines in this module to adjust the
84c68996e2SPoul-Henning Kamp  * phase and frequency of the clock discipline loop which controls the
85c68996e2SPoul-Henning Kamp  * system clock.
866f70df15SPoul-Henning Kamp  *
87f425c1f6SPoul-Henning Kamp  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
88c68996e2SPoul-Henning Kamp  * defined), the time at each tick interrupt is derived directly from
89c68996e2SPoul-Henning Kamp  * the kernel time variable. When the kernel time is reckoned in
90f425c1f6SPoul-Henning Kamp  * microseconds, (NTP_NANO undefined), the time is derived from the
91f425c1f6SPoul-Henning Kamp  * kernel time variable together with a variable representing the
92f425c1f6SPoul-Henning Kamp  * leftover nanoseconds at the last tick interrupt. In either case, the
93f425c1f6SPoul-Henning Kamp  * current nanosecond time is reckoned from these values plus an
94f425c1f6SPoul-Henning Kamp  * interpolated value derived by the clock routines in another
95f425c1f6SPoul-Henning Kamp  * architecture-specific module. The interpolation can use either a
96f425c1f6SPoul-Henning Kamp  * dedicated counter or a processor cycle counter (PCC) implemented in
97f425c1f6SPoul-Henning Kamp  * some architectures.
986f70df15SPoul-Henning Kamp  *
99c68996e2SPoul-Henning Kamp  * Note that all routines must run at priority splclock or higher.
1006f70df15SPoul-Henning Kamp  */
101c68996e2SPoul-Henning Kamp /*
102c68996e2SPoul-Henning Kamp  * Phase/frequency-lock loop (PLL/FLL) definitions
103c68996e2SPoul-Henning Kamp  *
104c68996e2SPoul-Henning Kamp  * The nanosecond clock discipline uses two variable types, time
105c68996e2SPoul-Henning Kamp  * variables and frequency variables. Both types are represented as 64-
106c68996e2SPoul-Henning Kamp  * bit fixed-point quantities with the decimal point between two 32-bit
107c68996e2SPoul-Henning Kamp  * halves. On a 32-bit machine, each half is represented as a single
108c68996e2SPoul-Henning Kamp  * word and mathematical operations are done using multiple-precision
109c68996e2SPoul-Henning Kamp  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
110c68996e2SPoul-Henning Kamp  * used.
111c68996e2SPoul-Henning Kamp  *
112c68996e2SPoul-Henning Kamp  * A time variable is a signed 64-bit fixed-point number in ns and
113c68996e2SPoul-Henning Kamp  * fraction. It represents the remaining time offset to be amortized
114c68996e2SPoul-Henning Kamp  * over succeeding tick interrupts. The maximum time offset is about
115f425c1f6SPoul-Henning Kamp  * 0.5 s and the resolution is about 2.3e-10 ns.
116c68996e2SPoul-Henning Kamp  *
117c68996e2SPoul-Henning Kamp  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
118c68996e2SPoul-Henning Kamp  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
119c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120c68996e2SPoul-Henning Kamp  * |s s s|			 ns				   |
121c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
122c68996e2SPoul-Henning Kamp  * |			    fraction				   |
123c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
124c68996e2SPoul-Henning Kamp  *
125c68996e2SPoul-Henning Kamp  * A frequency variable is a signed 64-bit fixed-point number in ns/s
126c68996e2SPoul-Henning Kamp  * and fraction. It represents the ns and fraction to be added to the
127c68996e2SPoul-Henning Kamp  * kernel time variable at each second. The maximum frequency offset is
128f425c1f6SPoul-Henning Kamp  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
129c68996e2SPoul-Henning Kamp  *
130c68996e2SPoul-Henning Kamp  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
131c68996e2SPoul-Henning Kamp  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
132c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133c68996e2SPoul-Henning Kamp  * |s s s s s s s s s s s s s|	          ns/s			   |
134c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
135c68996e2SPoul-Henning Kamp  * |			    fraction				   |
136c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
137c68996e2SPoul-Henning Kamp  */
138c68996e2SPoul-Henning Kamp /*
139c68996e2SPoul-Henning Kamp  * The following variables establish the state of the PLL/FLL and the
140c68996e2SPoul-Henning Kamp  * residual time and frequency offset of the local clock.
141c68996e2SPoul-Henning Kamp  */
142c68996e2SPoul-Henning Kamp #define SHIFT_PLL	4		/* PLL loop gain (shift) */
143c68996e2SPoul-Henning Kamp #define SHIFT_FLL	2		/* FLL loop gain (shift) */
144c68996e2SPoul-Henning Kamp 
145c68996e2SPoul-Henning Kamp static int time_state = TIME_OK;	/* clock state */
146c68996e2SPoul-Henning Kamp static int time_status = STA_UNSYNC;	/* clock status bits */
14797804a5cSPoul-Henning Kamp static long time_tai;			/* TAI offset (s) */
14897804a5cSPoul-Henning Kamp static long time_monitor;		/* last time offset scaled (ns) */
149c68996e2SPoul-Henning Kamp static long time_constant;		/* poll interval (shift) (s) */
150c68996e2SPoul-Henning Kamp static long time_precision = 1;		/* clock precision (ns) */
151c68996e2SPoul-Henning Kamp static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
152c68996e2SPoul-Henning Kamp static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
153c68996e2SPoul-Henning Kamp static long time_reftime;		/* time at last adjustment (s) */
154c68996e2SPoul-Henning Kamp static l_fp time_offset;		/* time offset (ns) */
155c68996e2SPoul-Henning Kamp static l_fp time_freq;			/* frequency offset (ns/s) */
15697804a5cSPoul-Henning Kamp static l_fp time_adj;			/* tick adjust (ns/s) */
1573f31c649SGarrett Wollman 
158e1d970f1SPoul-Henning Kamp static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
159e1d970f1SPoul-Henning Kamp 
1603f31c649SGarrett Wollman #ifdef PPS_SYNC
1613f31c649SGarrett Wollman /*
162c68996e2SPoul-Henning Kamp  * The following variables are used when a pulse-per-second (PPS) signal
163c68996e2SPoul-Henning Kamp  * is available and connected via a modem control lead. They establish
164c68996e2SPoul-Henning Kamp  * the engineering parameters of the clock discipline loop when
165c68996e2SPoul-Henning Kamp  * controlled by the PPS signal.
1663f31c649SGarrett Wollman  */
167c68996e2SPoul-Henning Kamp #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
16824dbea46SJohn Hay #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
16982e84c5bSPoul-Henning Kamp #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
170c68996e2SPoul-Henning Kamp #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
171c68996e2SPoul-Henning Kamp #define PPS_VALID	120		/* PPS signal watchdog max (s) */
17282e84c5bSPoul-Henning Kamp #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
17382e84c5bSPoul-Henning Kamp #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
174c68996e2SPoul-Henning Kamp 
17582e84c5bSPoul-Henning Kamp static struct timespec pps_tf[3];	/* phase median filter */
176c68996e2SPoul-Henning Kamp static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
177f425c1f6SPoul-Henning Kamp static long pps_fcount;			/* frequency accumulator */
17882e84c5bSPoul-Henning Kamp static long pps_jitter;			/* nominal jitter (ns) */
17982e84c5bSPoul-Henning Kamp static long pps_stabil;			/* nominal stability (scaled ns/s) */
180c68996e2SPoul-Henning Kamp static long pps_lastsec;		/* time at last calibration (s) */
181c68996e2SPoul-Henning Kamp static int pps_valid;			/* signal watchdog counter */
182c68996e2SPoul-Henning Kamp static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
18382e84c5bSPoul-Henning Kamp static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
184c68996e2SPoul-Henning Kamp static int pps_intcnt;			/* wander counter */
1856f70df15SPoul-Henning Kamp 
1866f70df15SPoul-Henning Kamp /*
1876f70df15SPoul-Henning Kamp  * PPS signal quality monitors
1886f70df15SPoul-Henning Kamp  */
189c68996e2SPoul-Henning Kamp static long pps_calcnt;			/* calibration intervals */
190c68996e2SPoul-Henning Kamp static long pps_jitcnt;			/* jitter limit exceeded */
191c68996e2SPoul-Henning Kamp static long pps_stbcnt;			/* stability limit exceeded */
192c68996e2SPoul-Henning Kamp static long pps_errcnt;			/* calibration errors */
1933f31c649SGarrett Wollman #endif /* PPS_SYNC */
194c68996e2SPoul-Henning Kamp /*
195c68996e2SPoul-Henning Kamp  * End of phase/frequency-lock loop (PLL/FLL) definitions
196c68996e2SPoul-Henning Kamp  */
1973f31c649SGarrett Wollman 
198c68996e2SPoul-Henning Kamp static void ntp_init(void);
199c68996e2SPoul-Henning Kamp static void hardupdate(long offset);
200932cfd41SMark Santcroos static void ntp_gettime1(struct ntptimeval *ntvp);
201c68996e2SPoul-Henning Kamp 
202932cfd41SMark Santcroos static void
203932cfd41SMark Santcroos ntp_gettime1(struct ntptimeval *ntvp)
204c68996e2SPoul-Henning Kamp {
205c68996e2SPoul-Henning Kamp 	struct timespec atv;	/* nanosecond time */
206c68996e2SPoul-Henning Kamp 
20775b82238SRobert Watson 	GIANT_REQUIRED;
20875b82238SRobert Watson 
209c68996e2SPoul-Henning Kamp 	nanotime(&atv);
210932cfd41SMark Santcroos 	ntvp->time.tv_sec = atv.tv_sec;
211932cfd41SMark Santcroos 	ntvp->time.tv_nsec = atv.tv_nsec;
212932cfd41SMark Santcroos 	ntvp->maxerror = time_maxerror;
213932cfd41SMark Santcroos 	ntvp->esterror = time_esterror;
214932cfd41SMark Santcroos 	ntvp->tai = time_tai;
215932cfd41SMark Santcroos 	ntvp->time_state = time_state;
216c68996e2SPoul-Henning Kamp 
217c68996e2SPoul-Henning Kamp 	/*
218c68996e2SPoul-Henning Kamp 	 * Status word error decode. If any of these conditions occur,
219c68996e2SPoul-Henning Kamp 	 * an error is returned, instead of the status word. Most
220c68996e2SPoul-Henning Kamp 	 * applications will care only about the fact the system clock
221c68996e2SPoul-Henning Kamp 	 * may not be trusted, not about the details.
222c68996e2SPoul-Henning Kamp 	 *
223c68996e2SPoul-Henning Kamp 	 * Hardware or software error
224c68996e2SPoul-Henning Kamp 	 */
225c68996e2SPoul-Henning Kamp 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
226c68996e2SPoul-Henning Kamp 
227c68996e2SPoul-Henning Kamp 	/*
228c68996e2SPoul-Henning Kamp 	 * PPS signal lost when either time or frequency synchronization
229c68996e2SPoul-Henning Kamp 	 * requested
230c68996e2SPoul-Henning Kamp 	 */
231c68996e2SPoul-Henning Kamp 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
232c68996e2SPoul-Henning Kamp 	    !(time_status & STA_PPSSIGNAL)) ||
233c68996e2SPoul-Henning Kamp 
234c68996e2SPoul-Henning Kamp 	/*
235c68996e2SPoul-Henning Kamp 	 * PPS jitter exceeded when time synchronization requested
236c68996e2SPoul-Henning Kamp 	 */
237c68996e2SPoul-Henning Kamp 	    (time_status & STA_PPSTIME &&
238c68996e2SPoul-Henning Kamp 	    time_status & STA_PPSJITTER) ||
239c68996e2SPoul-Henning Kamp 
240c68996e2SPoul-Henning Kamp 	/*
241c68996e2SPoul-Henning Kamp 	 * PPS wander exceeded or calibration error when frequency
242c68996e2SPoul-Henning Kamp 	 * synchronization requested
243c68996e2SPoul-Henning Kamp 	 */
244c68996e2SPoul-Henning Kamp 	    (time_status & STA_PPSFREQ &&
245c68996e2SPoul-Henning Kamp 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
246932cfd41SMark Santcroos 		ntvp->time_state = TIME_ERROR;
247932cfd41SMark Santcroos }
248932cfd41SMark Santcroos 
2499b7fe7e4SMark Santcroos /*
2509b7fe7e4SMark Santcroos  * ntp_gettime() - NTP user application interface
2519b7fe7e4SMark Santcroos  *
252873fbcd7SRobert Watson  * See the timex.h header file for synopsis and API description.  Note that
253873fbcd7SRobert Watson  * the TAI offset is returned in the ntvtimeval.tai structure member.
2549b7fe7e4SMark Santcroos  */
255932cfd41SMark Santcroos #ifndef _SYS_SYSPROTO_H_
256932cfd41SMark Santcroos struct ntp_gettime_args {
257932cfd41SMark Santcroos 	struct ntptimeval *ntvp;
258932cfd41SMark Santcroos };
259932cfd41SMark Santcroos #endif
260932cfd41SMark Santcroos /* ARGSUSED */
261932cfd41SMark Santcroos int
262932cfd41SMark Santcroos ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
263932cfd41SMark Santcroos {
264932cfd41SMark Santcroos 	struct ntptimeval ntv;
265932cfd41SMark Santcroos 
26675b82238SRobert Watson 	mtx_lock(&Giant);
267932cfd41SMark Santcroos 	ntp_gettime1(&ntv);
26875b82238SRobert Watson 	mtx_unlock(&Giant);
269932cfd41SMark Santcroos 
270fe18f385SWarner Losh 	td->td_retval[0] = ntv.time_state;
271932cfd41SMark Santcroos 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
272932cfd41SMark Santcroos }
273932cfd41SMark Santcroos 
274932cfd41SMark Santcroos static int
275932cfd41SMark Santcroos ntp_sysctl(SYSCTL_HANDLER_ARGS)
276932cfd41SMark Santcroos {
277932cfd41SMark Santcroos 	struct ntptimeval ntv;	/* temporary structure */
278932cfd41SMark Santcroos 
279932cfd41SMark Santcroos 	ntp_gettime1(&ntv);
280932cfd41SMark Santcroos 
281932cfd41SMark Santcroos 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
282c68996e2SPoul-Henning Kamp }
283c68996e2SPoul-Henning Kamp 
284c68996e2SPoul-Henning Kamp SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
285c68996e2SPoul-Henning Kamp SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
286c68996e2SPoul-Henning Kamp 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
287c68996e2SPoul-Henning Kamp 
2885968e18bSPoul-Henning Kamp #ifdef PPS_SYNC
28982e84c5bSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
2906a77f60dSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
2918925e63cSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
2927fd299cbSPoul-Henning Kamp 
2937fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
2947fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
2955968e18bSPoul-Henning Kamp #endif
296873fbcd7SRobert Watson 
297c68996e2SPoul-Henning Kamp /*
298c68996e2SPoul-Henning Kamp  * ntp_adjtime() - NTP daemon application interface
299c68996e2SPoul-Henning Kamp  *
300873fbcd7SRobert Watson  * See the timex.h header file for synopsis and API description.  Note that
301873fbcd7SRobert Watson  * the timex.constant structure member has a dual purpose to set the time
302873fbcd7SRobert Watson  * constant and to set the TAI offset.
303c68996e2SPoul-Henning Kamp  */
304c68996e2SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_
305c68996e2SPoul-Henning Kamp struct ntp_adjtime_args {
306c68996e2SPoul-Henning Kamp 	struct timex *tp;
307c68996e2SPoul-Henning Kamp };
308c68996e2SPoul-Henning Kamp #endif
309c68996e2SPoul-Henning Kamp 
310c68996e2SPoul-Henning Kamp int
311b40ce416SJulian Elischer ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
312c68996e2SPoul-Henning Kamp {
313c68996e2SPoul-Henning Kamp 	struct timex ntv;	/* temporary structure */
314f425c1f6SPoul-Henning Kamp 	long freq;		/* frequency ns/s) */
315c68996e2SPoul-Henning Kamp 	int modes;		/* mode bits from structure */
316c68996e2SPoul-Henning Kamp 	int s;			/* caller priority */
317c68996e2SPoul-Henning Kamp 	int error;
318c68996e2SPoul-Henning Kamp 
319c68996e2SPoul-Henning Kamp 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
320c68996e2SPoul-Henning Kamp 	if (error)
321c68996e2SPoul-Henning Kamp 		return(error);
322c68996e2SPoul-Henning Kamp 
323c68996e2SPoul-Henning Kamp 	/*
324c68996e2SPoul-Henning Kamp 	 * Update selected clock variables - only the superuser can
325c68996e2SPoul-Henning Kamp 	 * change anything. Note that there is no error checking here on
326c68996e2SPoul-Henning Kamp 	 * the assumption the superuser should know what it is doing.
32797804a5cSPoul-Henning Kamp 	 * Note that either the time constant or TAI offset are loaded
32824dbea46SJohn Hay 	 * from the ntv.constant member, depending on the mode bits. If
32924dbea46SJohn Hay 	 * the STA_PLL bit in the status word is cleared, the state and
33024dbea46SJohn Hay 	 * status words are reset to the initial values at boot.
331c68996e2SPoul-Henning Kamp 	 */
3326f1e8c18SMatthew Dillon 	mtx_lock(&Giant);
333c68996e2SPoul-Henning Kamp 	modes = ntv.modes;
334fafbe352SPoul-Henning Kamp 	if (modes)
335acd3428bSRobert Watson 		error = priv_check(td, PRIV_NTP_ADJTIME);
336c68996e2SPoul-Henning Kamp 	if (error)
3376f1e8c18SMatthew Dillon 		goto done2;
338c68996e2SPoul-Henning Kamp 	s = splclock();
339c68996e2SPoul-Henning Kamp 	if (modes & MOD_MAXERROR)
340c68996e2SPoul-Henning Kamp 		time_maxerror = ntv.maxerror;
341c68996e2SPoul-Henning Kamp 	if (modes & MOD_ESTERROR)
342c68996e2SPoul-Henning Kamp 		time_esterror = ntv.esterror;
343c68996e2SPoul-Henning Kamp 	if (modes & MOD_STATUS) {
34424dbea46SJohn Hay 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
34524dbea46SJohn Hay 			time_state = TIME_OK;
34624dbea46SJohn Hay 			time_status = STA_UNSYNC;
34724dbea46SJohn Hay #ifdef PPS_SYNC
34824dbea46SJohn Hay 			pps_shift = PPS_FAVG;
34924dbea46SJohn Hay #endif /* PPS_SYNC */
35024dbea46SJohn Hay 		}
351c68996e2SPoul-Henning Kamp 		time_status &= STA_RONLY;
352c68996e2SPoul-Henning Kamp 		time_status |= ntv.status & ~STA_RONLY;
353c68996e2SPoul-Henning Kamp 	}
354f425c1f6SPoul-Henning Kamp 	if (modes & MOD_TIMECONST) {
355f425c1f6SPoul-Henning Kamp 		if (ntv.constant < 0)
356f425c1f6SPoul-Henning Kamp 			time_constant = 0;
357f425c1f6SPoul-Henning Kamp 		else if (ntv.constant > MAXTC)
358f425c1f6SPoul-Henning Kamp 			time_constant = MAXTC;
359f425c1f6SPoul-Henning Kamp 		else
360c68996e2SPoul-Henning Kamp 			time_constant = ntv.constant;
361f425c1f6SPoul-Henning Kamp 	}
36297804a5cSPoul-Henning Kamp 	if (modes & MOD_TAI) {
36397804a5cSPoul-Henning Kamp 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
36497804a5cSPoul-Henning Kamp 			time_tai = ntv.constant;
36597804a5cSPoul-Henning Kamp 	}
36682e84c5bSPoul-Henning Kamp #ifdef PPS_SYNC
36782e84c5bSPoul-Henning Kamp 	if (modes & MOD_PPSMAX) {
36882e84c5bSPoul-Henning Kamp 		if (ntv.shift < PPS_FAVG)
36982e84c5bSPoul-Henning Kamp 			pps_shiftmax = PPS_FAVG;
37082e84c5bSPoul-Henning Kamp 		else if (ntv.shift > PPS_FAVGMAX)
37182e84c5bSPoul-Henning Kamp 			pps_shiftmax = PPS_FAVGMAX;
37282e84c5bSPoul-Henning Kamp 		else
37382e84c5bSPoul-Henning Kamp 			pps_shiftmax = ntv.shift;
37482e84c5bSPoul-Henning Kamp 	}
37582e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */
376c68996e2SPoul-Henning Kamp 	if (modes & MOD_NANO)
377c68996e2SPoul-Henning Kamp 		time_status |= STA_NANO;
378c68996e2SPoul-Henning Kamp 	if (modes & MOD_MICRO)
379c68996e2SPoul-Henning Kamp 		time_status &= ~STA_NANO;
380c68996e2SPoul-Henning Kamp 	if (modes & MOD_CLKB)
381c68996e2SPoul-Henning Kamp 		time_status |= STA_CLK;
382c68996e2SPoul-Henning Kamp 	if (modes & MOD_CLKA)
383c68996e2SPoul-Henning Kamp 		time_status &= ~STA_CLK;
38424dbea46SJohn Hay 	if (modes & MOD_FREQUENCY) {
38524dbea46SJohn Hay 		freq = (ntv.freq * 1000LL) >> 16;
38624dbea46SJohn Hay 		if (freq > MAXFREQ)
38724dbea46SJohn Hay 			L_LINT(time_freq, MAXFREQ);
38824dbea46SJohn Hay 		else if (freq < -MAXFREQ)
38924dbea46SJohn Hay 			L_LINT(time_freq, -MAXFREQ);
390bcfe6d8bSPoul-Henning Kamp 		else {
391bcfe6d8bSPoul-Henning Kamp 			/*
392bcfe6d8bSPoul-Henning Kamp 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
393bcfe6d8bSPoul-Henning Kamp 			 * time_freq is [ns/s * 2^32]
394bcfe6d8bSPoul-Henning Kamp 			 */
395bcfe6d8bSPoul-Henning Kamp 			time_freq = ntv.freq * 1000LL * 65536LL;
396bcfe6d8bSPoul-Henning Kamp 		}
39724dbea46SJohn Hay #ifdef PPS_SYNC
39824dbea46SJohn Hay 		pps_freq = time_freq;
39924dbea46SJohn Hay #endif /* PPS_SYNC */
40024dbea46SJohn Hay 	}
401551260fcSPoul-Henning Kamp 	if (modes & MOD_OFFSET) {
402551260fcSPoul-Henning Kamp 		if (time_status & STA_NANO)
403551260fcSPoul-Henning Kamp 			hardupdate(ntv.offset);
404551260fcSPoul-Henning Kamp 		else
405551260fcSPoul-Henning Kamp 			hardupdate(ntv.offset * 1000);
406551260fcSPoul-Henning Kamp 	}
407c68996e2SPoul-Henning Kamp 
408c68996e2SPoul-Henning Kamp 	/*
40997804a5cSPoul-Henning Kamp 	 * Retrieve all clock variables. Note that the TAI offset is
41097804a5cSPoul-Henning Kamp 	 * returned only by ntp_gettime();
411c68996e2SPoul-Henning Kamp 	 */
412c68996e2SPoul-Henning Kamp 	if (time_status & STA_NANO)
413b9c6e8bdSPoul-Henning Kamp 		ntv.offset = L_GINT(time_offset);
414c68996e2SPoul-Henning Kamp 	else
415b9c6e8bdSPoul-Henning Kamp 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
41634cffbe3SPoul-Henning Kamp 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
417c68996e2SPoul-Henning Kamp 	ntv.maxerror = time_maxerror;
418c68996e2SPoul-Henning Kamp 	ntv.esterror = time_esterror;
419c68996e2SPoul-Henning Kamp 	ntv.status = time_status;
420f425c1f6SPoul-Henning Kamp 	ntv.constant = time_constant;
421c68996e2SPoul-Henning Kamp 	if (time_status & STA_NANO)
422c68996e2SPoul-Henning Kamp 		ntv.precision = time_precision;
423c68996e2SPoul-Henning Kamp 	else
424c68996e2SPoul-Henning Kamp 		ntv.precision = time_precision / 1000;
425c68996e2SPoul-Henning Kamp 	ntv.tolerance = MAXFREQ * SCALE_PPM;
426c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
427c68996e2SPoul-Henning Kamp 	ntv.shift = pps_shift;
42834cffbe3SPoul-Henning Kamp 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
429c68996e2SPoul-Henning Kamp 	if (time_status & STA_NANO)
430c68996e2SPoul-Henning Kamp 		ntv.jitter = pps_jitter;
431c68996e2SPoul-Henning Kamp 	else
432c68996e2SPoul-Henning Kamp 		ntv.jitter = pps_jitter / 1000;
433c68996e2SPoul-Henning Kamp 	ntv.stabil = pps_stabil;
434c68996e2SPoul-Henning Kamp 	ntv.calcnt = pps_calcnt;
435c68996e2SPoul-Henning Kamp 	ntv.errcnt = pps_errcnt;
436c68996e2SPoul-Henning Kamp 	ntv.jitcnt = pps_jitcnt;
437c68996e2SPoul-Henning Kamp 	ntv.stbcnt = pps_stbcnt;
438c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */
439c68996e2SPoul-Henning Kamp 	splx(s);
440c68996e2SPoul-Henning Kamp 
441c68996e2SPoul-Henning Kamp 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
442c68996e2SPoul-Henning Kamp 	if (error)
4436f1e8c18SMatthew Dillon 		goto done2;
444c68996e2SPoul-Henning Kamp 
445c68996e2SPoul-Henning Kamp 	/*
446c68996e2SPoul-Henning Kamp 	 * Status word error decode. See comments in
447c68996e2SPoul-Henning Kamp 	 * ntp_gettime() routine.
448c68996e2SPoul-Henning Kamp 	 */
449c68996e2SPoul-Henning Kamp 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
450c68996e2SPoul-Henning Kamp 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
451c68996e2SPoul-Henning Kamp 	    !(time_status & STA_PPSSIGNAL)) ||
452c68996e2SPoul-Henning Kamp 	    (time_status & STA_PPSTIME &&
453c68996e2SPoul-Henning Kamp 	    time_status & STA_PPSJITTER) ||
454c68996e2SPoul-Henning Kamp 	    (time_status & STA_PPSFREQ &&
4556f1e8c18SMatthew Dillon 	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
456b40ce416SJulian Elischer 		td->td_retval[0] = TIME_ERROR;
4576f1e8c18SMatthew Dillon 	} else {
458b40ce416SJulian Elischer 		td->td_retval[0] = time_state;
4596f1e8c18SMatthew Dillon 	}
4606f1e8c18SMatthew Dillon done2:
4616f1e8c18SMatthew Dillon 	mtx_unlock(&Giant);
462a5088017SPoul-Henning Kamp 	return (error);
463c68996e2SPoul-Henning Kamp }
464c68996e2SPoul-Henning Kamp 
465c68996e2SPoul-Henning Kamp /*
466c68996e2SPoul-Henning Kamp  * second_overflow() - called after ntp_tick_adjust()
467c68996e2SPoul-Henning Kamp  *
468c68996e2SPoul-Henning Kamp  * This routine is ordinarily called immediately following the above
469c68996e2SPoul-Henning Kamp  * routine ntp_tick_adjust(). While these two routines are normally
470c68996e2SPoul-Henning Kamp  * combined, they are separated here only for the purposes of
471c68996e2SPoul-Henning Kamp  * simulation.
472c68996e2SPoul-Henning Kamp  */
473c68996e2SPoul-Henning Kamp void
474b4a1d0deSPoul-Henning Kamp ntp_update_second(int64_t *adjustment, time_t *newsec)
475c68996e2SPoul-Henning Kamp {
476e1d970f1SPoul-Henning Kamp 	int tickrate;
47797804a5cSPoul-Henning Kamp 	l_fp ftemp;		/* 32/64-bit temporary */
478c68996e2SPoul-Henning Kamp 
47982e84c5bSPoul-Henning Kamp 	/*
48082e84c5bSPoul-Henning Kamp 	 * On rollover of the second both the nanosecond and microsecond
48182e84c5bSPoul-Henning Kamp 	 * clocks are updated and the state machine cranked as
48282e84c5bSPoul-Henning Kamp 	 * necessary. The phase adjustment to be used for the next
48382e84c5bSPoul-Henning Kamp 	 * second is calculated and the maximum error is increased by
48482e84c5bSPoul-Henning Kamp 	 * the tolerance.
48582e84c5bSPoul-Henning Kamp 	 */
486c68996e2SPoul-Henning Kamp 	time_maxerror += MAXFREQ / 1000;
487c68996e2SPoul-Henning Kamp 
488c68996e2SPoul-Henning Kamp 	/*
489c68996e2SPoul-Henning Kamp 	 * Leap second processing. If in leap-insert state at
490c68996e2SPoul-Henning Kamp 	 * the end of the day, the system clock is set back one
491c68996e2SPoul-Henning Kamp 	 * second; if in leap-delete state, the system clock is
492c68996e2SPoul-Henning Kamp 	 * set ahead one second. The nano_time() routine or
493c68996e2SPoul-Henning Kamp 	 * external clock driver will insure that reported time
494c68996e2SPoul-Henning Kamp 	 * is always monotonic.
495c68996e2SPoul-Henning Kamp 	 */
496c68996e2SPoul-Henning Kamp 	switch (time_state) {
497c68996e2SPoul-Henning Kamp 
498c68996e2SPoul-Henning Kamp 		/*
499c68996e2SPoul-Henning Kamp 		 * No warning.
500c68996e2SPoul-Henning Kamp 		 */
501c68996e2SPoul-Henning Kamp 		case TIME_OK:
502c68996e2SPoul-Henning Kamp 		if (time_status & STA_INS)
503c68996e2SPoul-Henning Kamp 			time_state = TIME_INS;
504c68996e2SPoul-Henning Kamp 		else if (time_status & STA_DEL)
505c68996e2SPoul-Henning Kamp 			time_state = TIME_DEL;
506c68996e2SPoul-Henning Kamp 		break;
507c68996e2SPoul-Henning Kamp 
508c68996e2SPoul-Henning Kamp 		/*
509c68996e2SPoul-Henning Kamp 		 * Insert second 23:59:60 following second
510c68996e2SPoul-Henning Kamp 		 * 23:59:59.
511c68996e2SPoul-Henning Kamp 		 */
512c68996e2SPoul-Henning Kamp 		case TIME_INS:
513c68996e2SPoul-Henning Kamp 		if (!(time_status & STA_INS))
514c68996e2SPoul-Henning Kamp 			time_state = TIME_OK;
515c68996e2SPoul-Henning Kamp 		else if ((*newsec) % 86400 == 0) {
516c68996e2SPoul-Henning Kamp 			(*newsec)--;
517c68996e2SPoul-Henning Kamp 			time_state = TIME_OOP;
518eac3c62bSWarner Losh 			time_tai++;
519c68996e2SPoul-Henning Kamp 		}
520c68996e2SPoul-Henning Kamp 		break;
521c68996e2SPoul-Henning Kamp 
522c68996e2SPoul-Henning Kamp 		/*
523c68996e2SPoul-Henning Kamp 		 * Delete second 23:59:59.
524c68996e2SPoul-Henning Kamp 		 */
525c68996e2SPoul-Henning Kamp 		case TIME_DEL:
526c68996e2SPoul-Henning Kamp 		if (!(time_status & STA_DEL))
527c68996e2SPoul-Henning Kamp 			time_state = TIME_OK;
528c68996e2SPoul-Henning Kamp 		else if (((*newsec) + 1) % 86400 == 0) {
529c68996e2SPoul-Henning Kamp 			(*newsec)++;
53097804a5cSPoul-Henning Kamp 			time_tai--;
531c68996e2SPoul-Henning Kamp 			time_state = TIME_WAIT;
532c68996e2SPoul-Henning Kamp 		}
533c68996e2SPoul-Henning Kamp 		break;
534c68996e2SPoul-Henning Kamp 
535c68996e2SPoul-Henning Kamp 		/*
536c68996e2SPoul-Henning Kamp 		 * Insert second in progress.
537c68996e2SPoul-Henning Kamp 		 */
538c68996e2SPoul-Henning Kamp 		case TIME_OOP:
539c68996e2SPoul-Henning Kamp 			time_state = TIME_WAIT;
540c68996e2SPoul-Henning Kamp 		break;
541c68996e2SPoul-Henning Kamp 
542c68996e2SPoul-Henning Kamp 		/*
543c68996e2SPoul-Henning Kamp 		 * Wait for status bits to clear.
544c68996e2SPoul-Henning Kamp 		 */
545c68996e2SPoul-Henning Kamp 		case TIME_WAIT:
546c68996e2SPoul-Henning Kamp 		if (!(time_status & (STA_INS | STA_DEL)))
547c68996e2SPoul-Henning Kamp 			time_state = TIME_OK;
548c68996e2SPoul-Henning Kamp 	}
549c68996e2SPoul-Henning Kamp 
550c68996e2SPoul-Henning Kamp 	/*
55182e84c5bSPoul-Henning Kamp 	 * Compute the total time adjustment for the next second
55282e84c5bSPoul-Henning Kamp 	 * in ns. The offset is reduced by a factor depending on
55382e84c5bSPoul-Henning Kamp 	 * whether the PPS signal is operating. Note that the
55482e84c5bSPoul-Henning Kamp 	 * value is in effect scaled by the clock frequency,
55582e84c5bSPoul-Henning Kamp 	 * since the adjustment is added at each tick interrupt.
556c68996e2SPoul-Henning Kamp 	 */
55797804a5cSPoul-Henning Kamp 	ftemp = time_offset;
558c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
55997804a5cSPoul-Henning Kamp 	/* XXX even if PPS signal dies we should finish adjustment ? */
56097804a5cSPoul-Henning Kamp 	if (time_status & STA_PPSTIME && time_status &
56197804a5cSPoul-Henning Kamp 	    STA_PPSSIGNAL)
56297804a5cSPoul-Henning Kamp 		L_RSHIFT(ftemp, pps_shift);
56397804a5cSPoul-Henning Kamp 	else
56497804a5cSPoul-Henning Kamp 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
56582e84c5bSPoul-Henning Kamp #else
56697804a5cSPoul-Henning Kamp 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
56782e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */
56897804a5cSPoul-Henning Kamp 	time_adj = ftemp;
56997804a5cSPoul-Henning Kamp 	L_SUB(time_offset, ftemp);
570c68996e2SPoul-Henning Kamp 	L_ADD(time_adj, time_freq);
571e1d970f1SPoul-Henning Kamp 
572e1d970f1SPoul-Henning Kamp 	/*
573e1d970f1SPoul-Henning Kamp 	 * Apply any correction from adjtime(2).  If more than one second
574e1d970f1SPoul-Henning Kamp 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
575e1d970f1SPoul-Henning Kamp 	 * until the last second is slewed the final < 500 usecs.
576e1d970f1SPoul-Henning Kamp 	 */
577e1d970f1SPoul-Henning Kamp 	if (time_adjtime != 0) {
578e1d970f1SPoul-Henning Kamp 		if (time_adjtime > 1000000)
579e1d970f1SPoul-Henning Kamp 			tickrate = 5000;
580e1d970f1SPoul-Henning Kamp 		else if (time_adjtime < -1000000)
581e1d970f1SPoul-Henning Kamp 			tickrate = -5000;
582e1d970f1SPoul-Henning Kamp 		else if (time_adjtime > 500)
583e1d970f1SPoul-Henning Kamp 			tickrate = 500;
584e1d970f1SPoul-Henning Kamp 		else if (time_adjtime < -500)
585e1d970f1SPoul-Henning Kamp 			tickrate = -500;
586e1d970f1SPoul-Henning Kamp 		else
587bcfe6d8bSPoul-Henning Kamp 			tickrate = time_adjtime;
588e1d970f1SPoul-Henning Kamp 		time_adjtime -= tickrate;
589e1d970f1SPoul-Henning Kamp 		L_LINT(ftemp, tickrate * 1000);
590e1d970f1SPoul-Henning Kamp 		L_ADD(time_adj, ftemp);
591e1d970f1SPoul-Henning Kamp 	}
592b4a1d0deSPoul-Henning Kamp 	*adjustment = time_adj;
593e1d970f1SPoul-Henning Kamp 
594c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
595c68996e2SPoul-Henning Kamp 	if (pps_valid > 0)
596c68996e2SPoul-Henning Kamp 		pps_valid--;
597c68996e2SPoul-Henning Kamp 	else
59824dbea46SJohn Hay 		time_status &= ~STA_PPSSIGNAL;
599c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */
600c68996e2SPoul-Henning Kamp }
601c68996e2SPoul-Henning Kamp 
602c68996e2SPoul-Henning Kamp /*
603c68996e2SPoul-Henning Kamp  * ntp_init() - initialize variables and structures
604c68996e2SPoul-Henning Kamp  *
605c68996e2SPoul-Henning Kamp  * This routine must be called after the kernel variables hz and tick
606c68996e2SPoul-Henning Kamp  * are set or changed and before the next tick interrupt. In this
607c68996e2SPoul-Henning Kamp  * particular implementation, these values are assumed set elsewhere in
608c68996e2SPoul-Henning Kamp  * the kernel. The design allows the clock frequency and tick interval
609c68996e2SPoul-Henning Kamp  * to be changed while the system is running. So, this routine should
610c68996e2SPoul-Henning Kamp  * probably be integrated with the code that does that.
611c68996e2SPoul-Henning Kamp  */
612c68996e2SPoul-Henning Kamp static void
613c68996e2SPoul-Henning Kamp ntp_init()
614c68996e2SPoul-Henning Kamp {
615c68996e2SPoul-Henning Kamp 
616c68996e2SPoul-Henning Kamp 	/*
617c68996e2SPoul-Henning Kamp 	 * The following variables are initialized only at startup. Only
618c68996e2SPoul-Henning Kamp 	 * those structures not cleared by the compiler need to be
619c68996e2SPoul-Henning Kamp 	 * initialized, and these only in the simulator. In the actual
620c68996e2SPoul-Henning Kamp 	 * kernel, any nonzero values here will quickly evaporate.
621c68996e2SPoul-Henning Kamp 	 */
622c68996e2SPoul-Henning Kamp 	L_CLR(time_offset);
623c68996e2SPoul-Henning Kamp 	L_CLR(time_freq);
624c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
62582e84c5bSPoul-Henning Kamp 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
62682e84c5bSPoul-Henning Kamp 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
62782e84c5bSPoul-Henning Kamp 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
628f425c1f6SPoul-Henning Kamp 	pps_fcount = 0;
629c68996e2SPoul-Henning Kamp 	L_CLR(pps_freq);
630c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */
631c68996e2SPoul-Henning Kamp }
632c68996e2SPoul-Henning Kamp 
633ff292556SPeter Wemm SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
6346f70df15SPoul-Henning Kamp 
6356f70df15SPoul-Henning Kamp /*
6366f70df15SPoul-Henning Kamp  * hardupdate() - local clock update
6376f70df15SPoul-Henning Kamp  *
6386f70df15SPoul-Henning Kamp  * This routine is called by ntp_adjtime() to update the local clock
6396f70df15SPoul-Henning Kamp  * phase and frequency. The implementation is of an adaptive-parameter,
6406f70df15SPoul-Henning Kamp  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
6416f70df15SPoul-Henning Kamp  * time and frequency offset estimates for each call. If the kernel PPS
6426f70df15SPoul-Henning Kamp  * discipline code is configured (PPS_SYNC), the PPS signal itself
6436f70df15SPoul-Henning Kamp  * determines the new time offset, instead of the calling argument.
6446f70df15SPoul-Henning Kamp  * Presumably, calls to ntp_adjtime() occur only when the caller
6456f70df15SPoul-Henning Kamp  * believes the local clock is valid within some bound (+-128 ms with
6466f70df15SPoul-Henning Kamp  * NTP). If the caller's time is far different than the PPS time, an
6476f70df15SPoul-Henning Kamp  * argument will ensue, and it's not clear who will lose.
6486f70df15SPoul-Henning Kamp  *
649c68996e2SPoul-Henning Kamp  * For uncompensated quartz crystal oscillators and nominal update
650c68996e2SPoul-Henning Kamp  * intervals less than 256 s, operation should be in phase-lock mode,
651c68996e2SPoul-Henning Kamp  * where the loop is disciplined to phase. For update intervals greater
652c68996e2SPoul-Henning Kamp  * than 1024 s, operation should be in frequency-lock mode, where the
653c68996e2SPoul-Henning Kamp  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
654c68996e2SPoul-Henning Kamp  * is selected by the STA_MODE status bit.
6556f70df15SPoul-Henning Kamp  */
6566f70df15SPoul-Henning Kamp static void
657c68996e2SPoul-Henning Kamp hardupdate(offset)
658c68996e2SPoul-Henning Kamp 	long offset;		/* clock offset (ns) */
6596f70df15SPoul-Henning Kamp {
66097804a5cSPoul-Henning Kamp 	long mtemp;
661c68996e2SPoul-Henning Kamp 	l_fp ftemp;
6626f70df15SPoul-Henning Kamp 
663c68996e2SPoul-Henning Kamp 	/*
664c68996e2SPoul-Henning Kamp 	 * Select how the phase is to be controlled and from which
665c68996e2SPoul-Henning Kamp 	 * source. If the PPS signal is present and enabled to
666c68996e2SPoul-Henning Kamp 	 * discipline the time, the PPS offset is used; otherwise, the
667c68996e2SPoul-Henning Kamp 	 * argument offset is used.
668c68996e2SPoul-Henning Kamp 	 */
66982e84c5bSPoul-Henning Kamp 	if (!(time_status & STA_PLL))
67082e84c5bSPoul-Henning Kamp 		return;
67197804a5cSPoul-Henning Kamp 	if (!(time_status & STA_PPSTIME && time_status &
67297804a5cSPoul-Henning Kamp 	    STA_PPSSIGNAL)) {
67397804a5cSPoul-Henning Kamp 		if (offset > MAXPHASE)
67497804a5cSPoul-Henning Kamp 			time_monitor = MAXPHASE;
67597804a5cSPoul-Henning Kamp 		else if (offset < -MAXPHASE)
67697804a5cSPoul-Henning Kamp 			time_monitor = -MAXPHASE;
67797804a5cSPoul-Henning Kamp 		else
67897804a5cSPoul-Henning Kamp 			time_monitor = offset;
67997804a5cSPoul-Henning Kamp 		L_LINT(time_offset, time_monitor);
68097804a5cSPoul-Henning Kamp 	}
6816f70df15SPoul-Henning Kamp 
6826f70df15SPoul-Henning Kamp 	/*
683c68996e2SPoul-Henning Kamp 	 * Select how the frequency is to be controlled and in which
684c68996e2SPoul-Henning Kamp 	 * mode (PLL or FLL). If the PPS signal is present and enabled
685c68996e2SPoul-Henning Kamp 	 * to discipline the frequency, the PPS frequency is used;
686c68996e2SPoul-Henning Kamp 	 * otherwise, the argument offset is used to compute it.
6876f70df15SPoul-Henning Kamp 	 */
688c68996e2SPoul-Henning Kamp 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
689c68996e2SPoul-Henning Kamp 		time_reftime = time_second;
690c68996e2SPoul-Henning Kamp 		return;
691c68996e2SPoul-Henning Kamp 	}
6926f70df15SPoul-Henning Kamp 	if (time_status & STA_FREQHOLD || time_reftime == 0)
693227ee8a1SPoul-Henning Kamp 		time_reftime = time_second;
694227ee8a1SPoul-Henning Kamp 	mtemp = time_second - time_reftime;
69597804a5cSPoul-Henning Kamp 	L_LINT(ftemp, time_monitor);
696c68996e2SPoul-Henning Kamp 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
697c68996e2SPoul-Henning Kamp 	L_MPY(ftemp, mtemp);
698c68996e2SPoul-Henning Kamp 	L_ADD(time_freq, ftemp);
699c68996e2SPoul-Henning Kamp 	time_status &= ~STA_MODE;
70097804a5cSPoul-Henning Kamp 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
70197804a5cSPoul-Henning Kamp 	    MAXSEC)) {
70297804a5cSPoul-Henning Kamp 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
70382e84c5bSPoul-Henning Kamp 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
70482e84c5bSPoul-Henning Kamp 		L_ADD(time_freq, ftemp);
70582e84c5bSPoul-Henning Kamp 		time_status |= STA_MODE;
706c68996e2SPoul-Henning Kamp 	}
707227ee8a1SPoul-Henning Kamp 	time_reftime = time_second;
708c68996e2SPoul-Henning Kamp 	if (L_GINT(time_freq) > MAXFREQ)
709c68996e2SPoul-Henning Kamp 		L_LINT(time_freq, MAXFREQ);
710c68996e2SPoul-Henning Kamp 	else if (L_GINT(time_freq) < -MAXFREQ)
711c68996e2SPoul-Henning Kamp 		L_LINT(time_freq, -MAXFREQ);
7123f31c649SGarrett Wollman }
7133f31c649SGarrett Wollman 
7146f70df15SPoul-Henning Kamp #ifdef PPS_SYNC
7156f70df15SPoul-Henning Kamp /*
7166f70df15SPoul-Henning Kamp  * hardpps() - discipline CPU clock oscillator to external PPS signal
7176f70df15SPoul-Henning Kamp  *
7186f70df15SPoul-Henning Kamp  * This routine is called at each PPS interrupt in order to discipline
71997804a5cSPoul-Henning Kamp  * the CPU clock oscillator to the PPS signal. There are two independent
72097804a5cSPoul-Henning Kamp  * first-order feedback loops, one for the phase, the other for the
72197804a5cSPoul-Henning Kamp  * frequency. The phase loop measures and grooms the PPS phase offset
72297804a5cSPoul-Henning Kamp  * and leaves it in a handy spot for the seconds overflow routine. The
72397804a5cSPoul-Henning Kamp  * frequency loop averages successive PPS phase differences and
72497804a5cSPoul-Henning Kamp  * calculates the PPS frequency offset, which is also processed by the
72597804a5cSPoul-Henning Kamp  * seconds overflow routine. The code requires the caller to capture the
72697804a5cSPoul-Henning Kamp  * time and architecture-dependent hardware counter values in
72797804a5cSPoul-Henning Kamp  * nanoseconds at the on-time PPS signal transition.
7286f70df15SPoul-Henning Kamp  *
729c68996e2SPoul-Henning Kamp  * Note that, on some Unix systems this routine runs at an interrupt
7306f70df15SPoul-Henning Kamp  * priority level higher than the timer interrupt routine hardclock().
7316f70df15SPoul-Henning Kamp  * Therefore, the variables used are distinct from the hardclock()
732c68996e2SPoul-Henning Kamp  * variables, except for the actual time and frequency variables, which
733c68996e2SPoul-Henning Kamp  * are determined by this routine and updated atomically.
7346f70df15SPoul-Henning Kamp  */
7356f70df15SPoul-Henning Kamp void
736c68996e2SPoul-Henning Kamp hardpps(tsp, nsec)
737c68996e2SPoul-Henning Kamp 	struct timespec *tsp;	/* time at PPS */
738c68996e2SPoul-Henning Kamp 	long nsec;		/* hardware counter at PPS */
7396f70df15SPoul-Henning Kamp {
74097804a5cSPoul-Henning Kamp 	long u_sec, u_nsec, v_nsec; /* temps */
741c68996e2SPoul-Henning Kamp 	l_fp ftemp;
7426f70df15SPoul-Henning Kamp 
7436f70df15SPoul-Henning Kamp 	/*
74497804a5cSPoul-Henning Kamp 	 * The signal is first processed by a range gate and frequency
74597804a5cSPoul-Henning Kamp 	 * discriminator. The range gate rejects noise spikes outside
74697804a5cSPoul-Henning Kamp 	 * the range +-500 us. The frequency discriminator rejects input
74797804a5cSPoul-Henning Kamp 	 * signals with apparent frequency outside the range 1 +-500
74897804a5cSPoul-Henning Kamp 	 * PPM. If two hits occur in the same second, we ignore the
74997804a5cSPoul-Henning Kamp 	 * later hit; if not and a hit occurs outside the range gate,
75097804a5cSPoul-Henning Kamp 	 * keep the later hit for later comparison, but do not process
75197804a5cSPoul-Henning Kamp 	 * it.
7526f70df15SPoul-Henning Kamp 	 */
753c68996e2SPoul-Henning Kamp 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
754c68996e2SPoul-Henning Kamp 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
755c68996e2SPoul-Henning Kamp 	pps_valid = PPS_VALID;
756c68996e2SPoul-Henning Kamp 	u_sec = tsp->tv_sec;
757c68996e2SPoul-Henning Kamp 	u_nsec = tsp->tv_nsec;
758c68996e2SPoul-Henning Kamp 	if (u_nsec >= (NANOSECOND >> 1)) {
759c68996e2SPoul-Henning Kamp 		u_nsec -= NANOSECOND;
760c68996e2SPoul-Henning Kamp 		u_sec++;
7616f70df15SPoul-Henning Kamp 	}
76282e84c5bSPoul-Henning Kamp 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
76324dbea46SJohn Hay 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
76424dbea46SJohn Hay 	    MAXFREQ)
765c68996e2SPoul-Henning Kamp 		return;
766c68996e2SPoul-Henning Kamp 	pps_tf[2] = pps_tf[1];
767c68996e2SPoul-Henning Kamp 	pps_tf[1] = pps_tf[0];
76882e84c5bSPoul-Henning Kamp 	pps_tf[0].tv_sec = u_sec;
76982e84c5bSPoul-Henning Kamp 	pps_tf[0].tv_nsec = u_nsec;
7706f70df15SPoul-Henning Kamp 
7716f70df15SPoul-Henning Kamp 	/*
772c68996e2SPoul-Henning Kamp 	 * Compute the difference between the current and previous
773c68996e2SPoul-Henning Kamp 	 * counter values. If the difference exceeds 0.5 s, assume it
774c68996e2SPoul-Henning Kamp 	 * has wrapped around, so correct 1.0 s. If the result exceeds
775c68996e2SPoul-Henning Kamp 	 * the tick interval, the sample point has crossed a tick
776c68996e2SPoul-Henning Kamp 	 * boundary during the last second, so correct the tick. Very
777c68996e2SPoul-Henning Kamp 	 * intricate.
778c68996e2SPoul-Henning Kamp 	 */
77932c20357SPoul-Henning Kamp 	u_nsec = nsec;
780c68996e2SPoul-Henning Kamp 	if (u_nsec > (NANOSECOND >> 1))
781c68996e2SPoul-Henning Kamp 		u_nsec -= NANOSECOND;
782c68996e2SPoul-Henning Kamp 	else if (u_nsec < -(NANOSECOND >> 1))
783c68996e2SPoul-Henning Kamp 		u_nsec += NANOSECOND;
784884ab557SPoul-Henning Kamp 	pps_fcount += u_nsec;
78524dbea46SJohn Hay 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
786c68996e2SPoul-Henning Kamp 		return;
787c68996e2SPoul-Henning Kamp 	time_status &= ~STA_PPSJITTER;
788c68996e2SPoul-Henning Kamp 
789c68996e2SPoul-Henning Kamp 	/*
790c68996e2SPoul-Henning Kamp 	 * A three-stage median filter is used to help denoise the PPS
7916f70df15SPoul-Henning Kamp 	 * time. The median sample becomes the time offset estimate; the
7926f70df15SPoul-Henning Kamp 	 * difference between the other two samples becomes the time
7936f70df15SPoul-Henning Kamp 	 * dispersion (jitter) estimate.
7946f70df15SPoul-Henning Kamp 	 */
79582e84c5bSPoul-Henning Kamp 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
79682e84c5bSPoul-Henning Kamp 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
79782e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
79882e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
79982e84c5bSPoul-Henning Kamp 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
80082e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
80182e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
8026f70df15SPoul-Henning Kamp 		} else {
80382e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
80482e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
805c68996e2SPoul-Henning Kamp 		}
806c68996e2SPoul-Henning Kamp 	} else {
80782e84c5bSPoul-Henning Kamp 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
80882e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
80982e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
81082e84c5bSPoul-Henning Kamp 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
81182e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
81282e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
813c68996e2SPoul-Henning Kamp 		} else {
81482e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
81582e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
8166f70df15SPoul-Henning Kamp 		}
8176f70df15SPoul-Henning Kamp 	}
8186f70df15SPoul-Henning Kamp 
8196f70df15SPoul-Henning Kamp 	/*
820c68996e2SPoul-Henning Kamp 	 * Nominal jitter is due to PPS signal noise and interrupt
82197804a5cSPoul-Henning Kamp 	 * latency. If it exceeds the popcorn threshold, the sample is
82297804a5cSPoul-Henning Kamp 	 * discarded. otherwise, if so enabled, the time offset is
82397804a5cSPoul-Henning Kamp 	 * updated. We can tolerate a modest loss of data here without
82497804a5cSPoul-Henning Kamp 	 * much degrading time accuracy.
8256f70df15SPoul-Henning Kamp 	 */
82682e84c5bSPoul-Henning Kamp 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
827c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSJITTER;
828c68996e2SPoul-Henning Kamp 		pps_jitcnt++;
829c68996e2SPoul-Henning Kamp 	} else if (time_status & STA_PPSTIME) {
83097804a5cSPoul-Henning Kamp 		time_monitor = -v_nsec;
83197804a5cSPoul-Henning Kamp 		L_LINT(time_offset, time_monitor);
832c68996e2SPoul-Henning Kamp 	}
833c68996e2SPoul-Henning Kamp 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
83482e84c5bSPoul-Henning Kamp 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
835c68996e2SPoul-Henning Kamp 	if (u_sec < (1 << pps_shift))
836c68996e2SPoul-Henning Kamp 		return;
837c68996e2SPoul-Henning Kamp 
838c68996e2SPoul-Henning Kamp 	/*
839c68996e2SPoul-Henning Kamp 	 * At the end of the calibration interval the difference between
840c68996e2SPoul-Henning Kamp 	 * the first and last counter values becomes the scaled
841c68996e2SPoul-Henning Kamp 	 * frequency. It will later be divided by the length of the
842c68996e2SPoul-Henning Kamp 	 * interval to determine the frequency update. If the frequency
843c68996e2SPoul-Henning Kamp 	 * exceeds a sanity threshold, or if the actual calibration
844c68996e2SPoul-Henning Kamp 	 * interval is not equal to the expected length, the data are
845c68996e2SPoul-Henning Kamp 	 * discarded. We can tolerate a modest loss of data here without
84697804a5cSPoul-Henning Kamp 	 * much degrading frequency accuracy.
847c68996e2SPoul-Henning Kamp 	 */
848c68996e2SPoul-Henning Kamp 	pps_calcnt++;
849884ab557SPoul-Henning Kamp 	v_nsec = -pps_fcount;
85082e84c5bSPoul-Henning Kamp 	pps_lastsec = pps_tf[0].tv_sec;
851884ab557SPoul-Henning Kamp 	pps_fcount = 0;
852c68996e2SPoul-Henning Kamp 	u_nsec = MAXFREQ << pps_shift;
853c68996e2SPoul-Henning Kamp 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
854c68996e2SPoul-Henning Kamp 	    pps_shift)) {
855c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSERROR;
856c68996e2SPoul-Henning Kamp 		pps_errcnt++;
857c68996e2SPoul-Henning Kamp 		return;
858c68996e2SPoul-Henning Kamp 	}
859c68996e2SPoul-Henning Kamp 
860c68996e2SPoul-Henning Kamp 	/*
86182e84c5bSPoul-Henning Kamp 	 * Here the raw frequency offset and wander (stability) is
86282e84c5bSPoul-Henning Kamp 	 * calculated. If the wander is less than the wander threshold
86382e84c5bSPoul-Henning Kamp 	 * for four consecutive averaging intervals, the interval is
86482e84c5bSPoul-Henning Kamp 	 * doubled; if it is greater than the threshold for four
86582e84c5bSPoul-Henning Kamp 	 * consecutive intervals, the interval is halved. The scaled
86682e84c5bSPoul-Henning Kamp 	 * frequency offset is converted to frequency offset. The
86782e84c5bSPoul-Henning Kamp 	 * stability metric is calculated as the average of recent
86882e84c5bSPoul-Henning Kamp 	 * frequency changes, but is used only for performance
869c68996e2SPoul-Henning Kamp 	 * monitoring.
870c68996e2SPoul-Henning Kamp 	 */
871c68996e2SPoul-Henning Kamp 	L_LINT(ftemp, v_nsec);
872c68996e2SPoul-Henning Kamp 	L_RSHIFT(ftemp, pps_shift);
873c68996e2SPoul-Henning Kamp 	L_SUB(ftemp, pps_freq);
874c68996e2SPoul-Henning Kamp 	u_nsec = L_GINT(ftemp);
87582e84c5bSPoul-Henning Kamp 	if (u_nsec > PPS_MAXWANDER) {
87682e84c5bSPoul-Henning Kamp 		L_LINT(ftemp, PPS_MAXWANDER);
877c68996e2SPoul-Henning Kamp 		pps_intcnt--;
878c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSWANDER;
879c68996e2SPoul-Henning Kamp 		pps_stbcnt++;
88082e84c5bSPoul-Henning Kamp 	} else if (u_nsec < -PPS_MAXWANDER) {
88182e84c5bSPoul-Henning Kamp 		L_LINT(ftemp, -PPS_MAXWANDER);
882c68996e2SPoul-Henning Kamp 		pps_intcnt--;
883c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSWANDER;
884c68996e2SPoul-Henning Kamp 		pps_stbcnt++;
885c68996e2SPoul-Henning Kamp 	} else {
8866f70df15SPoul-Henning Kamp 		pps_intcnt++;
8876f70df15SPoul-Henning Kamp 	}
88897804a5cSPoul-Henning Kamp 	if (pps_intcnt >= 4) {
889c68996e2SPoul-Henning Kamp 		pps_intcnt = 4;
89082e84c5bSPoul-Henning Kamp 		if (pps_shift < pps_shiftmax) {
891c68996e2SPoul-Henning Kamp 			pps_shift++;
892c68996e2SPoul-Henning Kamp 			pps_intcnt = 0;
893c68996e2SPoul-Henning Kamp 		}
89497804a5cSPoul-Henning Kamp 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
895c68996e2SPoul-Henning Kamp 		pps_intcnt = -4;
896c68996e2SPoul-Henning Kamp 		if (pps_shift > PPS_FAVG) {
897c68996e2SPoul-Henning Kamp 			pps_shift--;
898c68996e2SPoul-Henning Kamp 			pps_intcnt = 0;
899c68996e2SPoul-Henning Kamp 		}
900c68996e2SPoul-Henning Kamp 	}
901c68996e2SPoul-Henning Kamp 	if (u_nsec < 0)
902c68996e2SPoul-Henning Kamp 		u_nsec = -u_nsec;
903c68996e2SPoul-Henning Kamp 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
9049ada5a50SPoul-Henning Kamp 
905c68996e2SPoul-Henning Kamp 	/*
90682e84c5bSPoul-Henning Kamp 	 * The PPS frequency is recalculated and clamped to the maximum
90782e84c5bSPoul-Henning Kamp 	 * MAXFREQ. If enabled, the system clock frequency is updated as
90882e84c5bSPoul-Henning Kamp 	 * well.
909c68996e2SPoul-Henning Kamp 	 */
910c68996e2SPoul-Henning Kamp 	L_ADD(pps_freq, ftemp);
911c68996e2SPoul-Henning Kamp 	u_nsec = L_GINT(pps_freq);
912c68996e2SPoul-Henning Kamp 	if (u_nsec > MAXFREQ)
913c68996e2SPoul-Henning Kamp 		L_LINT(pps_freq, MAXFREQ);
914c68996e2SPoul-Henning Kamp 	else if (u_nsec < -MAXFREQ)
915c68996e2SPoul-Henning Kamp 		L_LINT(pps_freq, -MAXFREQ);
91697804a5cSPoul-Henning Kamp 	if (time_status & STA_PPSFREQ)
917c68996e2SPoul-Henning Kamp 		time_freq = pps_freq;
918c68996e2SPoul-Henning Kamp }
9196f70df15SPoul-Henning Kamp #endif /* PPS_SYNC */
920e1d970f1SPoul-Henning Kamp 
921e1d970f1SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_
922e1d970f1SPoul-Henning Kamp struct adjtime_args {
923e1d970f1SPoul-Henning Kamp 	struct timeval *delta;
924e1d970f1SPoul-Henning Kamp 	struct timeval *olddelta;
925e1d970f1SPoul-Henning Kamp };
926e1d970f1SPoul-Henning Kamp #endif
927e1d970f1SPoul-Henning Kamp /* ARGSUSED */
928e1d970f1SPoul-Henning Kamp int
929e1d970f1SPoul-Henning Kamp adjtime(struct thread *td, struct adjtime_args *uap)
930e1d970f1SPoul-Henning Kamp {
931b88ec951SJohn Baldwin 	struct timeval delta, olddelta, *deltap;
932b88ec951SJohn Baldwin 	int error;
933b88ec951SJohn Baldwin 
934b88ec951SJohn Baldwin 	if (uap->delta) {
935b88ec951SJohn Baldwin 		error = copyin(uap->delta, &delta, sizeof(delta));
936b88ec951SJohn Baldwin 		if (error)
937b88ec951SJohn Baldwin 			return (error);
938b88ec951SJohn Baldwin 		deltap = &delta;
939b88ec951SJohn Baldwin 	} else
940b88ec951SJohn Baldwin 		deltap = NULL;
941b88ec951SJohn Baldwin 	error = kern_adjtime(td, deltap, &olddelta);
942b88ec951SJohn Baldwin 	if (uap->olddelta && error == 0)
943b88ec951SJohn Baldwin 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
944b88ec951SJohn Baldwin 	return (error);
945b88ec951SJohn Baldwin }
946b88ec951SJohn Baldwin 
947b88ec951SJohn Baldwin int
948b88ec951SJohn Baldwin kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
949b88ec951SJohn Baldwin {
950e1d970f1SPoul-Henning Kamp 	struct timeval atv;
951e1d970f1SPoul-Henning Kamp 	int error;
952e1d970f1SPoul-Henning Kamp 
953acd3428bSRobert Watson 	if ((error = priv_check(td, PRIV_ADJTIME)))
9543bdd2d06SPoul-Henning Kamp 		return (error);
9553bdd2d06SPoul-Henning Kamp 
9563bdd2d06SPoul-Henning Kamp 	mtx_lock(&Giant);
957b88ec951SJohn Baldwin 	if (olddelta) {
958e1d970f1SPoul-Henning Kamp 		atv.tv_sec = time_adjtime / 1000000;
959e1d970f1SPoul-Henning Kamp 		atv.tv_usec = time_adjtime % 1000000;
960e1d970f1SPoul-Henning Kamp 		if (atv.tv_usec < 0) {
961e1d970f1SPoul-Henning Kamp 			atv.tv_usec += 1000000;
962e1d970f1SPoul-Henning Kamp 			atv.tv_sec--;
963e1d970f1SPoul-Henning Kamp 		}
964b88ec951SJohn Baldwin 		*olddelta = atv;
965e1d970f1SPoul-Henning Kamp 	}
966b88ec951SJohn Baldwin 	if (delta)
967b88ec951SJohn Baldwin 		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
968b88ec951SJohn Baldwin 		    delta->tv_usec;
969e1d970f1SPoul-Henning Kamp 	mtx_unlock(&Giant);
970e1d970f1SPoul-Henning Kamp 	return (error);
971e1d970f1SPoul-Henning Kamp }
972e1d970f1SPoul-Henning Kamp 
973