19454b2d8SWarner Losh /*- 29454b2d8SWarner Losh *********************************************************************** 33f31c649SGarrett Wollman * * 424dbea46SJohn Hay * Copyright (c) David L. Mills 1993-2001 * 53f31c649SGarrett Wollman * * 6c68996e2SPoul-Henning Kamp * Permission to use, copy, modify, and distribute this software and * 7c68996e2SPoul-Henning Kamp * its documentation for any purpose and without fee is hereby * 8c68996e2SPoul-Henning Kamp * granted, provided that the above copyright notice appears in all * 9c68996e2SPoul-Henning Kamp * copies and that both the copyright notice and this permission * 10c68996e2SPoul-Henning Kamp * notice appear in supporting documentation, and that the name * 11c68996e2SPoul-Henning Kamp * University of Delaware not be used in advertising or publicity * 12c68996e2SPoul-Henning Kamp * pertaining to distribution of the software without specific, * 13c68996e2SPoul-Henning Kamp * written prior permission. The University of Delaware makes no * 14c68996e2SPoul-Henning Kamp * representations about the suitability this software for any * 15c68996e2SPoul-Henning Kamp * purpose. It is provided "as is" without express or implied * 16c68996e2SPoul-Henning Kamp * warranty. * 173f31c649SGarrett Wollman * * 18c68996e2SPoul-Henning Kamp **********************************************************************/ 193f31c649SGarrett Wollman 203f31c649SGarrett Wollman /* 21c68996e2SPoul-Henning Kamp * Adapted from the original sources for FreeBSD and timecounters by: 2232c20357SPoul-Henning Kamp * Poul-Henning Kamp <phk@FreeBSD.org>. 233f31c649SGarrett Wollman * 24c68996e2SPoul-Henning Kamp * The 32bit version of the "LP" macros seems a bit past its "sell by" 25c68996e2SPoul-Henning Kamp * date so I have retained only the 64bit version and included it directly 26c68996e2SPoul-Henning Kamp * in this file. 27885bd8e4SJohn Hay * 28c68996e2SPoul-Henning Kamp * Only minor changes done to interface with the timecounters over in 29c68996e2SPoul-Henning Kamp * sys/kern/kern_clock.c. Some of the comments below may be (even more) 30c68996e2SPoul-Henning Kamp * confusing and/or plain wrong in that context. 313f31c649SGarrett Wollman */ 32e0d781f3SEivind Eklund 33677b542eSDavid E. O'Brien #include <sys/cdefs.h> 34677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$"); 35677b542eSDavid E. O'Brien 3632c20357SPoul-Henning Kamp #include "opt_ntp.h" 3732c20357SPoul-Henning Kamp 383f31c649SGarrett Wollman #include <sys/param.h> 393f31c649SGarrett Wollman #include <sys/systm.h> 40d2d3e875SBruce Evans #include <sys/sysproto.h> 41*5c7e270fSAndriy Gapon #include <sys/eventhandler.h> 423f31c649SGarrett Wollman #include <sys/kernel.h> 43acd3428bSRobert Watson #include <sys/priv.h> 443f31c649SGarrett Wollman #include <sys/proc.h> 456f1e8c18SMatthew Dillon #include <sys/lock.h> 466f1e8c18SMatthew Dillon #include <sys/mutex.h> 47c68996e2SPoul-Henning Kamp #include <sys/time.h> 483f31c649SGarrett Wollman #include <sys/timex.h> 4991266b96SPoul-Henning Kamp #include <sys/timetc.h> 50938ee3ceSPoul-Henning Kamp #include <sys/timepps.h> 51b88ec951SJohn Baldwin #include <sys/syscallsubr.h> 523f31c649SGarrett Wollman #include <sys/sysctl.h> 533f31c649SGarrett Wollman 543f31c649SGarrett Wollman /* 55c68996e2SPoul-Henning Kamp * Single-precision macros for 64-bit machines 563f31c649SGarrett Wollman */ 57bcfe6d8bSPoul-Henning Kamp typedef int64_t l_fp; 58c68996e2SPoul-Henning Kamp #define L_ADD(v, u) ((v) += (u)) 59c68996e2SPoul-Henning Kamp #define L_SUB(v, u) ((v) -= (u)) 60bcfe6d8bSPoul-Henning Kamp #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32) 61c68996e2SPoul-Henning Kamp #define L_NEG(v) ((v) = -(v)) 62c68996e2SPoul-Henning Kamp #define L_RSHIFT(v, n) \ 63c68996e2SPoul-Henning Kamp do { \ 64c68996e2SPoul-Henning Kamp if ((v) < 0) \ 65c68996e2SPoul-Henning Kamp (v) = -(-(v) >> (n)); \ 66c68996e2SPoul-Henning Kamp else \ 67c68996e2SPoul-Henning Kamp (v) = (v) >> (n); \ 68c68996e2SPoul-Henning Kamp } while (0) 69c68996e2SPoul-Henning Kamp #define L_MPY(v, a) ((v) *= (a)) 70c68996e2SPoul-Henning Kamp #define L_CLR(v) ((v) = 0) 71c68996e2SPoul-Henning Kamp #define L_ISNEG(v) ((v) < 0) 72bcfe6d8bSPoul-Henning Kamp #define L_LINT(v, a) ((v) = (int64_t)(a) << 32) 73c68996e2SPoul-Henning Kamp #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32) 746f70df15SPoul-Henning Kamp 756f70df15SPoul-Henning Kamp /* 76c68996e2SPoul-Henning Kamp * Generic NTP kernel interface 776f70df15SPoul-Henning Kamp * 78c68996e2SPoul-Henning Kamp * These routines constitute the Network Time Protocol (NTP) interfaces 79c68996e2SPoul-Henning Kamp * for user and daemon application programs. The ntp_gettime() routine 80c68996e2SPoul-Henning Kamp * provides the time, maximum error (synch distance) and estimated error 81c68996e2SPoul-Henning Kamp * (dispersion) to client user application programs. The ntp_adjtime() 82c68996e2SPoul-Henning Kamp * routine is used by the NTP daemon to adjust the system clock to an 83c68996e2SPoul-Henning Kamp * externally derived time. The time offset and related variables set by 84c68996e2SPoul-Henning Kamp * this routine are used by other routines in this module to adjust the 85c68996e2SPoul-Henning Kamp * phase and frequency of the clock discipline loop which controls the 86c68996e2SPoul-Henning Kamp * system clock. 876f70df15SPoul-Henning Kamp * 88f425c1f6SPoul-Henning Kamp * When the kernel time is reckoned directly in nanoseconds (NTP_NANO 89c68996e2SPoul-Henning Kamp * defined), the time at each tick interrupt is derived directly from 90c68996e2SPoul-Henning Kamp * the kernel time variable. When the kernel time is reckoned in 91f425c1f6SPoul-Henning Kamp * microseconds, (NTP_NANO undefined), the time is derived from the 92f425c1f6SPoul-Henning Kamp * kernel time variable together with a variable representing the 93f425c1f6SPoul-Henning Kamp * leftover nanoseconds at the last tick interrupt. In either case, the 94f425c1f6SPoul-Henning Kamp * current nanosecond time is reckoned from these values plus an 95f425c1f6SPoul-Henning Kamp * interpolated value derived by the clock routines in another 96f425c1f6SPoul-Henning Kamp * architecture-specific module. The interpolation can use either a 97f425c1f6SPoul-Henning Kamp * dedicated counter or a processor cycle counter (PCC) implemented in 98f425c1f6SPoul-Henning Kamp * some architectures. 996f70df15SPoul-Henning Kamp * 100c68996e2SPoul-Henning Kamp * Note that all routines must run at priority splclock or higher. 1016f70df15SPoul-Henning Kamp */ 102c68996e2SPoul-Henning Kamp /* 103c68996e2SPoul-Henning Kamp * Phase/frequency-lock loop (PLL/FLL) definitions 104c68996e2SPoul-Henning Kamp * 105c68996e2SPoul-Henning Kamp * The nanosecond clock discipline uses two variable types, time 106c68996e2SPoul-Henning Kamp * variables and frequency variables. Both types are represented as 64- 107c68996e2SPoul-Henning Kamp * bit fixed-point quantities with the decimal point between two 32-bit 108c68996e2SPoul-Henning Kamp * halves. On a 32-bit machine, each half is represented as a single 109c68996e2SPoul-Henning Kamp * word and mathematical operations are done using multiple-precision 110c68996e2SPoul-Henning Kamp * arithmetic. On a 64-bit machine, ordinary computer arithmetic is 111c68996e2SPoul-Henning Kamp * used. 112c68996e2SPoul-Henning Kamp * 113c68996e2SPoul-Henning Kamp * A time variable is a signed 64-bit fixed-point number in ns and 114c68996e2SPoul-Henning Kamp * fraction. It represents the remaining time offset to be amortized 115c68996e2SPoul-Henning Kamp * over succeeding tick interrupts. The maximum time offset is about 116f425c1f6SPoul-Henning Kamp * 0.5 s and the resolution is about 2.3e-10 ns. 117c68996e2SPoul-Henning Kamp * 118c68996e2SPoul-Henning Kamp * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 119c68996e2SPoul-Henning Kamp * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 120c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 121c68996e2SPoul-Henning Kamp * |s s s| ns | 122c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 123c68996e2SPoul-Henning Kamp * | fraction | 124c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 125c68996e2SPoul-Henning Kamp * 126c68996e2SPoul-Henning Kamp * A frequency variable is a signed 64-bit fixed-point number in ns/s 127c68996e2SPoul-Henning Kamp * and fraction. It represents the ns and fraction to be added to the 128c68996e2SPoul-Henning Kamp * kernel time variable at each second. The maximum frequency offset is 129f425c1f6SPoul-Henning Kamp * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s. 130c68996e2SPoul-Henning Kamp * 131c68996e2SPoul-Henning Kamp * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 132c68996e2SPoul-Henning Kamp * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 133c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 134c68996e2SPoul-Henning Kamp * |s s s s s s s s s s s s s| ns/s | 135c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 136c68996e2SPoul-Henning Kamp * | fraction | 137c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 138c68996e2SPoul-Henning Kamp */ 139c68996e2SPoul-Henning Kamp /* 140c68996e2SPoul-Henning Kamp * The following variables establish the state of the PLL/FLL and the 141c68996e2SPoul-Henning Kamp * residual time and frequency offset of the local clock. 142c68996e2SPoul-Henning Kamp */ 143c68996e2SPoul-Henning Kamp #define SHIFT_PLL 4 /* PLL loop gain (shift) */ 144c68996e2SPoul-Henning Kamp #define SHIFT_FLL 2 /* FLL loop gain (shift) */ 145c68996e2SPoul-Henning Kamp 146c68996e2SPoul-Henning Kamp static int time_state = TIME_OK; /* clock state */ 147c68996e2SPoul-Henning Kamp static int time_status = STA_UNSYNC; /* clock status bits */ 14897804a5cSPoul-Henning Kamp static long time_tai; /* TAI offset (s) */ 14997804a5cSPoul-Henning Kamp static long time_monitor; /* last time offset scaled (ns) */ 150c68996e2SPoul-Henning Kamp static long time_constant; /* poll interval (shift) (s) */ 151c68996e2SPoul-Henning Kamp static long time_precision = 1; /* clock precision (ns) */ 152c68996e2SPoul-Henning Kamp static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */ 153c68996e2SPoul-Henning Kamp static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */ 154c68996e2SPoul-Henning Kamp static long time_reftime; /* time at last adjustment (s) */ 155c68996e2SPoul-Henning Kamp static l_fp time_offset; /* time offset (ns) */ 156c68996e2SPoul-Henning Kamp static l_fp time_freq; /* frequency offset (ns/s) */ 15797804a5cSPoul-Henning Kamp static l_fp time_adj; /* tick adjust (ns/s) */ 1583f31c649SGarrett Wollman 159e1d970f1SPoul-Henning Kamp static int64_t time_adjtime; /* correction from adjtime(2) (usec) */ 160e1d970f1SPoul-Henning Kamp 1613f31c649SGarrett Wollman #ifdef PPS_SYNC 1623f31c649SGarrett Wollman /* 163c68996e2SPoul-Henning Kamp * The following variables are used when a pulse-per-second (PPS) signal 164c68996e2SPoul-Henning Kamp * is available and connected via a modem control lead. They establish 165c68996e2SPoul-Henning Kamp * the engineering parameters of the clock discipline loop when 166c68996e2SPoul-Henning Kamp * controlled by the PPS signal. 1673f31c649SGarrett Wollman */ 168c68996e2SPoul-Henning Kamp #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */ 16924dbea46SJohn Hay #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */ 17082e84c5bSPoul-Henning Kamp #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */ 171c68996e2SPoul-Henning Kamp #define PPS_PAVG 4 /* phase avg interval (s) (shift) */ 172c68996e2SPoul-Henning Kamp #define PPS_VALID 120 /* PPS signal watchdog max (s) */ 17382e84c5bSPoul-Henning Kamp #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */ 17482e84c5bSPoul-Henning Kamp #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */ 175c68996e2SPoul-Henning Kamp 17682e84c5bSPoul-Henning Kamp static struct timespec pps_tf[3]; /* phase median filter */ 177c68996e2SPoul-Henning Kamp static l_fp pps_freq; /* scaled frequency offset (ns/s) */ 178f425c1f6SPoul-Henning Kamp static long pps_fcount; /* frequency accumulator */ 17982e84c5bSPoul-Henning Kamp static long pps_jitter; /* nominal jitter (ns) */ 18082e84c5bSPoul-Henning Kamp static long pps_stabil; /* nominal stability (scaled ns/s) */ 181c68996e2SPoul-Henning Kamp static long pps_lastsec; /* time at last calibration (s) */ 182c68996e2SPoul-Henning Kamp static int pps_valid; /* signal watchdog counter */ 183c68996e2SPoul-Henning Kamp static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */ 18482e84c5bSPoul-Henning Kamp static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */ 185c68996e2SPoul-Henning Kamp static int pps_intcnt; /* wander counter */ 1866f70df15SPoul-Henning Kamp 1876f70df15SPoul-Henning Kamp /* 1886f70df15SPoul-Henning Kamp * PPS signal quality monitors 1896f70df15SPoul-Henning Kamp */ 190c68996e2SPoul-Henning Kamp static long pps_calcnt; /* calibration intervals */ 191c68996e2SPoul-Henning Kamp static long pps_jitcnt; /* jitter limit exceeded */ 192c68996e2SPoul-Henning Kamp static long pps_stbcnt; /* stability limit exceeded */ 193c68996e2SPoul-Henning Kamp static long pps_errcnt; /* calibration errors */ 1943f31c649SGarrett Wollman #endif /* PPS_SYNC */ 195c68996e2SPoul-Henning Kamp /* 196c68996e2SPoul-Henning Kamp * End of phase/frequency-lock loop (PLL/FLL) definitions 197c68996e2SPoul-Henning Kamp */ 1983f31c649SGarrett Wollman 199c68996e2SPoul-Henning Kamp static void ntp_init(void); 200c68996e2SPoul-Henning Kamp static void hardupdate(long offset); 201932cfd41SMark Santcroos static void ntp_gettime1(struct ntptimeval *ntvp); 2029a9ae42aSAndriy Gapon static int ntp_is_time_error(void); 203c68996e2SPoul-Henning Kamp 2049a9ae42aSAndriy Gapon static int 2059a9ae42aSAndriy Gapon ntp_is_time_error(void) 206c68996e2SPoul-Henning Kamp { 207c68996e2SPoul-Henning Kamp /* 208c68996e2SPoul-Henning Kamp * Status word error decode. If any of these conditions occur, 209c68996e2SPoul-Henning Kamp * an error is returned, instead of the status word. Most 210c68996e2SPoul-Henning Kamp * applications will care only about the fact the system clock 211c68996e2SPoul-Henning Kamp * may not be trusted, not about the details. 212c68996e2SPoul-Henning Kamp * 213c68996e2SPoul-Henning Kamp * Hardware or software error 214c68996e2SPoul-Henning Kamp */ 215c68996e2SPoul-Henning Kamp if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || 216c68996e2SPoul-Henning Kamp 217c68996e2SPoul-Henning Kamp /* 218c68996e2SPoul-Henning Kamp * PPS signal lost when either time or frequency synchronization 219c68996e2SPoul-Henning Kamp * requested 220c68996e2SPoul-Henning Kamp */ 221c68996e2SPoul-Henning Kamp (time_status & (STA_PPSFREQ | STA_PPSTIME) && 222c68996e2SPoul-Henning Kamp !(time_status & STA_PPSSIGNAL)) || 223c68996e2SPoul-Henning Kamp 224c68996e2SPoul-Henning Kamp /* 225c68996e2SPoul-Henning Kamp * PPS jitter exceeded when time synchronization requested 226c68996e2SPoul-Henning Kamp */ 227c68996e2SPoul-Henning Kamp (time_status & STA_PPSTIME && 228c68996e2SPoul-Henning Kamp time_status & STA_PPSJITTER) || 229c68996e2SPoul-Henning Kamp 230c68996e2SPoul-Henning Kamp /* 231c68996e2SPoul-Henning Kamp * PPS wander exceeded or calibration error when frequency 232c68996e2SPoul-Henning Kamp * synchronization requested 233c68996e2SPoul-Henning Kamp */ 234c68996e2SPoul-Henning Kamp (time_status & STA_PPSFREQ && 235c68996e2SPoul-Henning Kamp time_status & (STA_PPSWANDER | STA_PPSERROR))) 2369a9ae42aSAndriy Gapon return (1); 2379a9ae42aSAndriy Gapon 2389a9ae42aSAndriy Gapon return (0); 2399a9ae42aSAndriy Gapon } 2409a9ae42aSAndriy Gapon 2419a9ae42aSAndriy Gapon static void 2429a9ae42aSAndriy Gapon ntp_gettime1(struct ntptimeval *ntvp) 2439a9ae42aSAndriy Gapon { 2449a9ae42aSAndriy Gapon struct timespec atv; /* nanosecond time */ 2459a9ae42aSAndriy Gapon 2469a9ae42aSAndriy Gapon GIANT_REQUIRED; 2479a9ae42aSAndriy Gapon 2489a9ae42aSAndriy Gapon nanotime(&atv); 2499a9ae42aSAndriy Gapon ntvp->time.tv_sec = atv.tv_sec; 2509a9ae42aSAndriy Gapon ntvp->time.tv_nsec = atv.tv_nsec; 2519a9ae42aSAndriy Gapon ntvp->maxerror = time_maxerror; 2529a9ae42aSAndriy Gapon ntvp->esterror = time_esterror; 2539a9ae42aSAndriy Gapon ntvp->tai = time_tai; 2549a9ae42aSAndriy Gapon ntvp->time_state = time_state; 2559a9ae42aSAndriy Gapon 2569a9ae42aSAndriy Gapon if (ntp_is_time_error()) 257932cfd41SMark Santcroos ntvp->time_state = TIME_ERROR; 258932cfd41SMark Santcroos } 259932cfd41SMark Santcroos 2609b7fe7e4SMark Santcroos /* 2619b7fe7e4SMark Santcroos * ntp_gettime() - NTP user application interface 2629b7fe7e4SMark Santcroos * 263873fbcd7SRobert Watson * See the timex.h header file for synopsis and API description. Note that 264873fbcd7SRobert Watson * the TAI offset is returned in the ntvtimeval.tai structure member. 2659b7fe7e4SMark Santcroos */ 266932cfd41SMark Santcroos #ifndef _SYS_SYSPROTO_H_ 267932cfd41SMark Santcroos struct ntp_gettime_args { 268932cfd41SMark Santcroos struct ntptimeval *ntvp; 269932cfd41SMark Santcroos }; 270932cfd41SMark Santcroos #endif 271932cfd41SMark Santcroos /* ARGSUSED */ 272932cfd41SMark Santcroos int 273932cfd41SMark Santcroos ntp_gettime(struct thread *td, struct ntp_gettime_args *uap) 274932cfd41SMark Santcroos { 275932cfd41SMark Santcroos struct ntptimeval ntv; 276932cfd41SMark Santcroos 27775b82238SRobert Watson mtx_lock(&Giant); 278932cfd41SMark Santcroos ntp_gettime1(&ntv); 27975b82238SRobert Watson mtx_unlock(&Giant); 280932cfd41SMark Santcroos 281fe18f385SWarner Losh td->td_retval[0] = ntv.time_state; 282932cfd41SMark Santcroos return (copyout(&ntv, uap->ntvp, sizeof(ntv))); 283932cfd41SMark Santcroos } 284932cfd41SMark Santcroos 285932cfd41SMark Santcroos static int 286932cfd41SMark Santcroos ntp_sysctl(SYSCTL_HANDLER_ARGS) 287932cfd41SMark Santcroos { 288932cfd41SMark Santcroos struct ntptimeval ntv; /* temporary structure */ 289932cfd41SMark Santcroos 290932cfd41SMark Santcroos ntp_gettime1(&ntv); 291932cfd41SMark Santcroos 292932cfd41SMark Santcroos return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req)); 293c68996e2SPoul-Henning Kamp } 294c68996e2SPoul-Henning Kamp 295c68996e2SPoul-Henning Kamp SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, ""); 296c68996e2SPoul-Henning Kamp SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD, 297c68996e2SPoul-Henning Kamp 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", ""); 298c68996e2SPoul-Henning Kamp 2995968e18bSPoul-Henning Kamp #ifdef PPS_SYNC 30082e84c5bSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, ""); 3016a77f60dSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, ""); 3028925e63cSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, ""); 3037fd299cbSPoul-Henning Kamp 3047fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", ""); 3057fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", ""); 3065968e18bSPoul-Henning Kamp #endif 307873fbcd7SRobert Watson 308c68996e2SPoul-Henning Kamp /* 309c68996e2SPoul-Henning Kamp * ntp_adjtime() - NTP daemon application interface 310c68996e2SPoul-Henning Kamp * 311873fbcd7SRobert Watson * See the timex.h header file for synopsis and API description. Note that 312873fbcd7SRobert Watson * the timex.constant structure member has a dual purpose to set the time 313873fbcd7SRobert Watson * constant and to set the TAI offset. 314c68996e2SPoul-Henning Kamp */ 315c68996e2SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_ 316c68996e2SPoul-Henning Kamp struct ntp_adjtime_args { 317c68996e2SPoul-Henning Kamp struct timex *tp; 318c68996e2SPoul-Henning Kamp }; 319c68996e2SPoul-Henning Kamp #endif 320c68996e2SPoul-Henning Kamp 321c68996e2SPoul-Henning Kamp int 322b40ce416SJulian Elischer ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap) 323c68996e2SPoul-Henning Kamp { 324c68996e2SPoul-Henning Kamp struct timex ntv; /* temporary structure */ 325f425c1f6SPoul-Henning Kamp long freq; /* frequency ns/s) */ 326c68996e2SPoul-Henning Kamp int modes; /* mode bits from structure */ 327c68996e2SPoul-Henning Kamp int s; /* caller priority */ 328c68996e2SPoul-Henning Kamp int error; 329c68996e2SPoul-Henning Kamp 330c68996e2SPoul-Henning Kamp error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv)); 331c68996e2SPoul-Henning Kamp if (error) 332c68996e2SPoul-Henning Kamp return(error); 333c68996e2SPoul-Henning Kamp 334c68996e2SPoul-Henning Kamp /* 335c68996e2SPoul-Henning Kamp * Update selected clock variables - only the superuser can 336c68996e2SPoul-Henning Kamp * change anything. Note that there is no error checking here on 337c68996e2SPoul-Henning Kamp * the assumption the superuser should know what it is doing. 33897804a5cSPoul-Henning Kamp * Note that either the time constant or TAI offset are loaded 33924dbea46SJohn Hay * from the ntv.constant member, depending on the mode bits. If 34024dbea46SJohn Hay * the STA_PLL bit in the status word is cleared, the state and 34124dbea46SJohn Hay * status words are reset to the initial values at boot. 342c68996e2SPoul-Henning Kamp */ 3436f1e8c18SMatthew Dillon mtx_lock(&Giant); 344c68996e2SPoul-Henning Kamp modes = ntv.modes; 345fafbe352SPoul-Henning Kamp if (modes) 346acd3428bSRobert Watson error = priv_check(td, PRIV_NTP_ADJTIME); 347c68996e2SPoul-Henning Kamp if (error) 3486f1e8c18SMatthew Dillon goto done2; 349c68996e2SPoul-Henning Kamp s = splclock(); 350c68996e2SPoul-Henning Kamp if (modes & MOD_MAXERROR) 351c68996e2SPoul-Henning Kamp time_maxerror = ntv.maxerror; 352c68996e2SPoul-Henning Kamp if (modes & MOD_ESTERROR) 353c68996e2SPoul-Henning Kamp time_esterror = ntv.esterror; 354c68996e2SPoul-Henning Kamp if (modes & MOD_STATUS) { 35524dbea46SJohn Hay if (time_status & STA_PLL && !(ntv.status & STA_PLL)) { 35624dbea46SJohn Hay time_state = TIME_OK; 35724dbea46SJohn Hay time_status = STA_UNSYNC; 35824dbea46SJohn Hay #ifdef PPS_SYNC 35924dbea46SJohn Hay pps_shift = PPS_FAVG; 36024dbea46SJohn Hay #endif /* PPS_SYNC */ 36124dbea46SJohn Hay } 362c68996e2SPoul-Henning Kamp time_status &= STA_RONLY; 363c68996e2SPoul-Henning Kamp time_status |= ntv.status & ~STA_RONLY; 364c68996e2SPoul-Henning Kamp } 365f425c1f6SPoul-Henning Kamp if (modes & MOD_TIMECONST) { 366f425c1f6SPoul-Henning Kamp if (ntv.constant < 0) 367f425c1f6SPoul-Henning Kamp time_constant = 0; 368f425c1f6SPoul-Henning Kamp else if (ntv.constant > MAXTC) 369f425c1f6SPoul-Henning Kamp time_constant = MAXTC; 370f425c1f6SPoul-Henning Kamp else 371c68996e2SPoul-Henning Kamp time_constant = ntv.constant; 372f425c1f6SPoul-Henning Kamp } 37397804a5cSPoul-Henning Kamp if (modes & MOD_TAI) { 37497804a5cSPoul-Henning Kamp if (ntv.constant > 0) /* XXX zero & negative numbers ? */ 37597804a5cSPoul-Henning Kamp time_tai = ntv.constant; 37697804a5cSPoul-Henning Kamp } 37782e84c5bSPoul-Henning Kamp #ifdef PPS_SYNC 37882e84c5bSPoul-Henning Kamp if (modes & MOD_PPSMAX) { 37982e84c5bSPoul-Henning Kamp if (ntv.shift < PPS_FAVG) 38082e84c5bSPoul-Henning Kamp pps_shiftmax = PPS_FAVG; 38182e84c5bSPoul-Henning Kamp else if (ntv.shift > PPS_FAVGMAX) 38282e84c5bSPoul-Henning Kamp pps_shiftmax = PPS_FAVGMAX; 38382e84c5bSPoul-Henning Kamp else 38482e84c5bSPoul-Henning Kamp pps_shiftmax = ntv.shift; 38582e84c5bSPoul-Henning Kamp } 38682e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */ 387c68996e2SPoul-Henning Kamp if (modes & MOD_NANO) 388c68996e2SPoul-Henning Kamp time_status |= STA_NANO; 389c68996e2SPoul-Henning Kamp if (modes & MOD_MICRO) 390c68996e2SPoul-Henning Kamp time_status &= ~STA_NANO; 391c68996e2SPoul-Henning Kamp if (modes & MOD_CLKB) 392c68996e2SPoul-Henning Kamp time_status |= STA_CLK; 393c68996e2SPoul-Henning Kamp if (modes & MOD_CLKA) 394c68996e2SPoul-Henning Kamp time_status &= ~STA_CLK; 39524dbea46SJohn Hay if (modes & MOD_FREQUENCY) { 39624dbea46SJohn Hay freq = (ntv.freq * 1000LL) >> 16; 39724dbea46SJohn Hay if (freq > MAXFREQ) 39824dbea46SJohn Hay L_LINT(time_freq, MAXFREQ); 39924dbea46SJohn Hay else if (freq < -MAXFREQ) 40024dbea46SJohn Hay L_LINT(time_freq, -MAXFREQ); 401bcfe6d8bSPoul-Henning Kamp else { 402bcfe6d8bSPoul-Henning Kamp /* 403bcfe6d8bSPoul-Henning Kamp * ntv.freq is [PPM * 2^16] = [us/s * 2^16] 404bcfe6d8bSPoul-Henning Kamp * time_freq is [ns/s * 2^32] 405bcfe6d8bSPoul-Henning Kamp */ 406bcfe6d8bSPoul-Henning Kamp time_freq = ntv.freq * 1000LL * 65536LL; 407bcfe6d8bSPoul-Henning Kamp } 40824dbea46SJohn Hay #ifdef PPS_SYNC 40924dbea46SJohn Hay pps_freq = time_freq; 41024dbea46SJohn Hay #endif /* PPS_SYNC */ 41124dbea46SJohn Hay } 412551260fcSPoul-Henning Kamp if (modes & MOD_OFFSET) { 413551260fcSPoul-Henning Kamp if (time_status & STA_NANO) 414551260fcSPoul-Henning Kamp hardupdate(ntv.offset); 415551260fcSPoul-Henning Kamp else 416551260fcSPoul-Henning Kamp hardupdate(ntv.offset * 1000); 417551260fcSPoul-Henning Kamp } 418c68996e2SPoul-Henning Kamp 419c68996e2SPoul-Henning Kamp /* 42097804a5cSPoul-Henning Kamp * Retrieve all clock variables. Note that the TAI offset is 42197804a5cSPoul-Henning Kamp * returned only by ntp_gettime(); 422c68996e2SPoul-Henning Kamp */ 423c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 424b9c6e8bdSPoul-Henning Kamp ntv.offset = L_GINT(time_offset); 425c68996e2SPoul-Henning Kamp else 426b9c6e8bdSPoul-Henning Kamp ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */ 42734cffbe3SPoul-Henning Kamp ntv.freq = L_GINT((time_freq / 1000LL) << 16); 428c68996e2SPoul-Henning Kamp ntv.maxerror = time_maxerror; 429c68996e2SPoul-Henning Kamp ntv.esterror = time_esterror; 430c68996e2SPoul-Henning Kamp ntv.status = time_status; 431f425c1f6SPoul-Henning Kamp ntv.constant = time_constant; 432c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 433c68996e2SPoul-Henning Kamp ntv.precision = time_precision; 434c68996e2SPoul-Henning Kamp else 435c68996e2SPoul-Henning Kamp ntv.precision = time_precision / 1000; 436c68996e2SPoul-Henning Kamp ntv.tolerance = MAXFREQ * SCALE_PPM; 437c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 438c68996e2SPoul-Henning Kamp ntv.shift = pps_shift; 43934cffbe3SPoul-Henning Kamp ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16); 440c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 441c68996e2SPoul-Henning Kamp ntv.jitter = pps_jitter; 442c68996e2SPoul-Henning Kamp else 443c68996e2SPoul-Henning Kamp ntv.jitter = pps_jitter / 1000; 444c68996e2SPoul-Henning Kamp ntv.stabil = pps_stabil; 445c68996e2SPoul-Henning Kamp ntv.calcnt = pps_calcnt; 446c68996e2SPoul-Henning Kamp ntv.errcnt = pps_errcnt; 447c68996e2SPoul-Henning Kamp ntv.jitcnt = pps_jitcnt; 448c68996e2SPoul-Henning Kamp ntv.stbcnt = pps_stbcnt; 449c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 450c68996e2SPoul-Henning Kamp splx(s); 451c68996e2SPoul-Henning Kamp 452c68996e2SPoul-Henning Kamp error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv)); 453c68996e2SPoul-Henning Kamp if (error) 4546f1e8c18SMatthew Dillon goto done2; 455c68996e2SPoul-Henning Kamp 456c68996e2SPoul-Henning Kamp /* 457c68996e2SPoul-Henning Kamp * Status word error decode. See comments in 458c68996e2SPoul-Henning Kamp * ntp_gettime() routine. 459c68996e2SPoul-Henning Kamp */ 4609a9ae42aSAndriy Gapon if (ntp_is_time_error()) 461b40ce416SJulian Elischer td->td_retval[0] = TIME_ERROR; 4629a9ae42aSAndriy Gapon else 463b40ce416SJulian Elischer td->td_retval[0] = time_state; 4649a9ae42aSAndriy Gapon 4656f1e8c18SMatthew Dillon done2: 4666f1e8c18SMatthew Dillon mtx_unlock(&Giant); 467a5088017SPoul-Henning Kamp return (error); 468c68996e2SPoul-Henning Kamp } 469c68996e2SPoul-Henning Kamp 470c68996e2SPoul-Henning Kamp /* 471c68996e2SPoul-Henning Kamp * second_overflow() - called after ntp_tick_adjust() 472c68996e2SPoul-Henning Kamp * 473c68996e2SPoul-Henning Kamp * This routine is ordinarily called immediately following the above 474c68996e2SPoul-Henning Kamp * routine ntp_tick_adjust(). While these two routines are normally 475c68996e2SPoul-Henning Kamp * combined, they are separated here only for the purposes of 476c68996e2SPoul-Henning Kamp * simulation. 477c68996e2SPoul-Henning Kamp */ 478c68996e2SPoul-Henning Kamp void 479b4a1d0deSPoul-Henning Kamp ntp_update_second(int64_t *adjustment, time_t *newsec) 480c68996e2SPoul-Henning Kamp { 481e1d970f1SPoul-Henning Kamp int tickrate; 48297804a5cSPoul-Henning Kamp l_fp ftemp; /* 32/64-bit temporary */ 483c68996e2SPoul-Henning Kamp 48482e84c5bSPoul-Henning Kamp /* 48582e84c5bSPoul-Henning Kamp * On rollover of the second both the nanosecond and microsecond 48682e84c5bSPoul-Henning Kamp * clocks are updated and the state machine cranked as 48782e84c5bSPoul-Henning Kamp * necessary. The phase adjustment to be used for the next 48882e84c5bSPoul-Henning Kamp * second is calculated and the maximum error is increased by 48982e84c5bSPoul-Henning Kamp * the tolerance. 49082e84c5bSPoul-Henning Kamp */ 491c68996e2SPoul-Henning Kamp time_maxerror += MAXFREQ / 1000; 492c68996e2SPoul-Henning Kamp 493c68996e2SPoul-Henning Kamp /* 494c68996e2SPoul-Henning Kamp * Leap second processing. If in leap-insert state at 495c68996e2SPoul-Henning Kamp * the end of the day, the system clock is set back one 496c68996e2SPoul-Henning Kamp * second; if in leap-delete state, the system clock is 497c68996e2SPoul-Henning Kamp * set ahead one second. The nano_time() routine or 498c68996e2SPoul-Henning Kamp * external clock driver will insure that reported time 499c68996e2SPoul-Henning Kamp * is always monotonic. 500c68996e2SPoul-Henning Kamp */ 501c68996e2SPoul-Henning Kamp switch (time_state) { 502c68996e2SPoul-Henning Kamp 503c68996e2SPoul-Henning Kamp /* 504c68996e2SPoul-Henning Kamp * No warning. 505c68996e2SPoul-Henning Kamp */ 506c68996e2SPoul-Henning Kamp case TIME_OK: 507c68996e2SPoul-Henning Kamp if (time_status & STA_INS) 508c68996e2SPoul-Henning Kamp time_state = TIME_INS; 509c68996e2SPoul-Henning Kamp else if (time_status & STA_DEL) 510c68996e2SPoul-Henning Kamp time_state = TIME_DEL; 511c68996e2SPoul-Henning Kamp break; 512c68996e2SPoul-Henning Kamp 513c68996e2SPoul-Henning Kamp /* 514c68996e2SPoul-Henning Kamp * Insert second 23:59:60 following second 515c68996e2SPoul-Henning Kamp * 23:59:59. 516c68996e2SPoul-Henning Kamp */ 517c68996e2SPoul-Henning Kamp case TIME_INS: 518c68996e2SPoul-Henning Kamp if (!(time_status & STA_INS)) 519c68996e2SPoul-Henning Kamp time_state = TIME_OK; 520c68996e2SPoul-Henning Kamp else if ((*newsec) % 86400 == 0) { 521c68996e2SPoul-Henning Kamp (*newsec)--; 522c68996e2SPoul-Henning Kamp time_state = TIME_OOP; 523eac3c62bSWarner Losh time_tai++; 524c68996e2SPoul-Henning Kamp } 525c68996e2SPoul-Henning Kamp break; 526c68996e2SPoul-Henning Kamp 527c68996e2SPoul-Henning Kamp /* 528c68996e2SPoul-Henning Kamp * Delete second 23:59:59. 529c68996e2SPoul-Henning Kamp */ 530c68996e2SPoul-Henning Kamp case TIME_DEL: 531c68996e2SPoul-Henning Kamp if (!(time_status & STA_DEL)) 532c68996e2SPoul-Henning Kamp time_state = TIME_OK; 533c68996e2SPoul-Henning Kamp else if (((*newsec) + 1) % 86400 == 0) { 534c68996e2SPoul-Henning Kamp (*newsec)++; 53597804a5cSPoul-Henning Kamp time_tai--; 536c68996e2SPoul-Henning Kamp time_state = TIME_WAIT; 537c68996e2SPoul-Henning Kamp } 538c68996e2SPoul-Henning Kamp break; 539c68996e2SPoul-Henning Kamp 540c68996e2SPoul-Henning Kamp /* 541c68996e2SPoul-Henning Kamp * Insert second in progress. 542c68996e2SPoul-Henning Kamp */ 543c68996e2SPoul-Henning Kamp case TIME_OOP: 544c68996e2SPoul-Henning Kamp time_state = TIME_WAIT; 545c68996e2SPoul-Henning Kamp break; 546c68996e2SPoul-Henning Kamp 547c68996e2SPoul-Henning Kamp /* 548c68996e2SPoul-Henning Kamp * Wait for status bits to clear. 549c68996e2SPoul-Henning Kamp */ 550c68996e2SPoul-Henning Kamp case TIME_WAIT: 551c68996e2SPoul-Henning Kamp if (!(time_status & (STA_INS | STA_DEL))) 552c68996e2SPoul-Henning Kamp time_state = TIME_OK; 553c68996e2SPoul-Henning Kamp } 554c68996e2SPoul-Henning Kamp 555c68996e2SPoul-Henning Kamp /* 55682e84c5bSPoul-Henning Kamp * Compute the total time adjustment for the next second 55782e84c5bSPoul-Henning Kamp * in ns. The offset is reduced by a factor depending on 55882e84c5bSPoul-Henning Kamp * whether the PPS signal is operating. Note that the 55982e84c5bSPoul-Henning Kamp * value is in effect scaled by the clock frequency, 56082e84c5bSPoul-Henning Kamp * since the adjustment is added at each tick interrupt. 561c68996e2SPoul-Henning Kamp */ 56297804a5cSPoul-Henning Kamp ftemp = time_offset; 563c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 56497804a5cSPoul-Henning Kamp /* XXX even if PPS signal dies we should finish adjustment ? */ 56597804a5cSPoul-Henning Kamp if (time_status & STA_PPSTIME && time_status & 56697804a5cSPoul-Henning Kamp STA_PPSSIGNAL) 56797804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, pps_shift); 56897804a5cSPoul-Henning Kamp else 56997804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 57082e84c5bSPoul-Henning Kamp #else 57197804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 57282e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */ 57397804a5cSPoul-Henning Kamp time_adj = ftemp; 57497804a5cSPoul-Henning Kamp L_SUB(time_offset, ftemp); 575c68996e2SPoul-Henning Kamp L_ADD(time_adj, time_freq); 576e1d970f1SPoul-Henning Kamp 577e1d970f1SPoul-Henning Kamp /* 578e1d970f1SPoul-Henning Kamp * Apply any correction from adjtime(2). If more than one second 579e1d970f1SPoul-Henning Kamp * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM) 580e1d970f1SPoul-Henning Kamp * until the last second is slewed the final < 500 usecs. 581e1d970f1SPoul-Henning Kamp */ 582e1d970f1SPoul-Henning Kamp if (time_adjtime != 0) { 583e1d970f1SPoul-Henning Kamp if (time_adjtime > 1000000) 584e1d970f1SPoul-Henning Kamp tickrate = 5000; 585e1d970f1SPoul-Henning Kamp else if (time_adjtime < -1000000) 586e1d970f1SPoul-Henning Kamp tickrate = -5000; 587e1d970f1SPoul-Henning Kamp else if (time_adjtime > 500) 588e1d970f1SPoul-Henning Kamp tickrate = 500; 589e1d970f1SPoul-Henning Kamp else if (time_adjtime < -500) 590e1d970f1SPoul-Henning Kamp tickrate = -500; 591e1d970f1SPoul-Henning Kamp else 592bcfe6d8bSPoul-Henning Kamp tickrate = time_adjtime; 593e1d970f1SPoul-Henning Kamp time_adjtime -= tickrate; 594e1d970f1SPoul-Henning Kamp L_LINT(ftemp, tickrate * 1000); 595e1d970f1SPoul-Henning Kamp L_ADD(time_adj, ftemp); 596e1d970f1SPoul-Henning Kamp } 597b4a1d0deSPoul-Henning Kamp *adjustment = time_adj; 598e1d970f1SPoul-Henning Kamp 599c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 600c68996e2SPoul-Henning Kamp if (pps_valid > 0) 601c68996e2SPoul-Henning Kamp pps_valid--; 602c68996e2SPoul-Henning Kamp else 60324dbea46SJohn Hay time_status &= ~STA_PPSSIGNAL; 604c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 605c68996e2SPoul-Henning Kamp } 606c68996e2SPoul-Henning Kamp 607c68996e2SPoul-Henning Kamp /* 608c68996e2SPoul-Henning Kamp * ntp_init() - initialize variables and structures 609c68996e2SPoul-Henning Kamp * 610c68996e2SPoul-Henning Kamp * This routine must be called after the kernel variables hz and tick 611c68996e2SPoul-Henning Kamp * are set or changed and before the next tick interrupt. In this 612c68996e2SPoul-Henning Kamp * particular implementation, these values are assumed set elsewhere in 613c68996e2SPoul-Henning Kamp * the kernel. The design allows the clock frequency and tick interval 614c68996e2SPoul-Henning Kamp * to be changed while the system is running. So, this routine should 615c68996e2SPoul-Henning Kamp * probably be integrated with the code that does that. 616c68996e2SPoul-Henning Kamp */ 617c68996e2SPoul-Henning Kamp static void 618c68996e2SPoul-Henning Kamp ntp_init() 619c68996e2SPoul-Henning Kamp { 620c68996e2SPoul-Henning Kamp 621c68996e2SPoul-Henning Kamp /* 622c68996e2SPoul-Henning Kamp * The following variables are initialized only at startup. Only 623c68996e2SPoul-Henning Kamp * those structures not cleared by the compiler need to be 624c68996e2SPoul-Henning Kamp * initialized, and these only in the simulator. In the actual 625c68996e2SPoul-Henning Kamp * kernel, any nonzero values here will quickly evaporate. 626c68996e2SPoul-Henning Kamp */ 627c68996e2SPoul-Henning Kamp L_CLR(time_offset); 628c68996e2SPoul-Henning Kamp L_CLR(time_freq); 629c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 63082e84c5bSPoul-Henning Kamp pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0; 63182e84c5bSPoul-Henning Kamp pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0; 63282e84c5bSPoul-Henning Kamp pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0; 633f425c1f6SPoul-Henning Kamp pps_fcount = 0; 634c68996e2SPoul-Henning Kamp L_CLR(pps_freq); 635c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 636c68996e2SPoul-Henning Kamp } 637c68996e2SPoul-Henning Kamp 638237fdd78SRobert Watson SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL); 6396f70df15SPoul-Henning Kamp 6406f70df15SPoul-Henning Kamp /* 6416f70df15SPoul-Henning Kamp * hardupdate() - local clock update 6426f70df15SPoul-Henning Kamp * 6436f70df15SPoul-Henning Kamp * This routine is called by ntp_adjtime() to update the local clock 6446f70df15SPoul-Henning Kamp * phase and frequency. The implementation is of an adaptive-parameter, 6456f70df15SPoul-Henning Kamp * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 6466f70df15SPoul-Henning Kamp * time and frequency offset estimates for each call. If the kernel PPS 6476f70df15SPoul-Henning Kamp * discipline code is configured (PPS_SYNC), the PPS signal itself 6486f70df15SPoul-Henning Kamp * determines the new time offset, instead of the calling argument. 6496f70df15SPoul-Henning Kamp * Presumably, calls to ntp_adjtime() occur only when the caller 6506f70df15SPoul-Henning Kamp * believes the local clock is valid within some bound (+-128 ms with 6516f70df15SPoul-Henning Kamp * NTP). If the caller's time is far different than the PPS time, an 6526f70df15SPoul-Henning Kamp * argument will ensue, and it's not clear who will lose. 6536f70df15SPoul-Henning Kamp * 654c68996e2SPoul-Henning Kamp * For uncompensated quartz crystal oscillators and nominal update 655c68996e2SPoul-Henning Kamp * intervals less than 256 s, operation should be in phase-lock mode, 656c68996e2SPoul-Henning Kamp * where the loop is disciplined to phase. For update intervals greater 657c68996e2SPoul-Henning Kamp * than 1024 s, operation should be in frequency-lock mode, where the 658c68996e2SPoul-Henning Kamp * loop is disciplined to frequency. Between 256 s and 1024 s, the mode 659c68996e2SPoul-Henning Kamp * is selected by the STA_MODE status bit. 6606f70df15SPoul-Henning Kamp */ 6616f70df15SPoul-Henning Kamp static void 662c68996e2SPoul-Henning Kamp hardupdate(offset) 663c68996e2SPoul-Henning Kamp long offset; /* clock offset (ns) */ 6646f70df15SPoul-Henning Kamp { 66597804a5cSPoul-Henning Kamp long mtemp; 666c68996e2SPoul-Henning Kamp l_fp ftemp; 6676f70df15SPoul-Henning Kamp 668c68996e2SPoul-Henning Kamp /* 669c68996e2SPoul-Henning Kamp * Select how the phase is to be controlled and from which 670c68996e2SPoul-Henning Kamp * source. If the PPS signal is present and enabled to 671c68996e2SPoul-Henning Kamp * discipline the time, the PPS offset is used; otherwise, the 672c68996e2SPoul-Henning Kamp * argument offset is used. 673c68996e2SPoul-Henning Kamp */ 67482e84c5bSPoul-Henning Kamp if (!(time_status & STA_PLL)) 67582e84c5bSPoul-Henning Kamp return; 67697804a5cSPoul-Henning Kamp if (!(time_status & STA_PPSTIME && time_status & 67797804a5cSPoul-Henning Kamp STA_PPSSIGNAL)) { 67897804a5cSPoul-Henning Kamp if (offset > MAXPHASE) 67997804a5cSPoul-Henning Kamp time_monitor = MAXPHASE; 68097804a5cSPoul-Henning Kamp else if (offset < -MAXPHASE) 68197804a5cSPoul-Henning Kamp time_monitor = -MAXPHASE; 68297804a5cSPoul-Henning Kamp else 68397804a5cSPoul-Henning Kamp time_monitor = offset; 68497804a5cSPoul-Henning Kamp L_LINT(time_offset, time_monitor); 68597804a5cSPoul-Henning Kamp } 6866f70df15SPoul-Henning Kamp 6876f70df15SPoul-Henning Kamp /* 688c68996e2SPoul-Henning Kamp * Select how the frequency is to be controlled and in which 689c68996e2SPoul-Henning Kamp * mode (PLL or FLL). If the PPS signal is present and enabled 690c68996e2SPoul-Henning Kamp * to discipline the frequency, the PPS frequency is used; 691c68996e2SPoul-Henning Kamp * otherwise, the argument offset is used to compute it. 6926f70df15SPoul-Henning Kamp */ 693c68996e2SPoul-Henning Kamp if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) { 694c68996e2SPoul-Henning Kamp time_reftime = time_second; 695c68996e2SPoul-Henning Kamp return; 696c68996e2SPoul-Henning Kamp } 6976f70df15SPoul-Henning Kamp if (time_status & STA_FREQHOLD || time_reftime == 0) 698227ee8a1SPoul-Henning Kamp time_reftime = time_second; 699227ee8a1SPoul-Henning Kamp mtemp = time_second - time_reftime; 70097804a5cSPoul-Henning Kamp L_LINT(ftemp, time_monitor); 701c68996e2SPoul-Henning Kamp L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1); 702c68996e2SPoul-Henning Kamp L_MPY(ftemp, mtemp); 703c68996e2SPoul-Henning Kamp L_ADD(time_freq, ftemp); 704c68996e2SPoul-Henning Kamp time_status &= ~STA_MODE; 70597804a5cSPoul-Henning Kamp if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > 70697804a5cSPoul-Henning Kamp MAXSEC)) { 70797804a5cSPoul-Henning Kamp L_LINT(ftemp, (time_monitor << 4) / mtemp); 70882e84c5bSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_FLL + 4); 70982e84c5bSPoul-Henning Kamp L_ADD(time_freq, ftemp); 71082e84c5bSPoul-Henning Kamp time_status |= STA_MODE; 711c68996e2SPoul-Henning Kamp } 712227ee8a1SPoul-Henning Kamp time_reftime = time_second; 713c68996e2SPoul-Henning Kamp if (L_GINT(time_freq) > MAXFREQ) 714c68996e2SPoul-Henning Kamp L_LINT(time_freq, MAXFREQ); 715c68996e2SPoul-Henning Kamp else if (L_GINT(time_freq) < -MAXFREQ) 716c68996e2SPoul-Henning Kamp L_LINT(time_freq, -MAXFREQ); 7173f31c649SGarrett Wollman } 7183f31c649SGarrett Wollman 7196f70df15SPoul-Henning Kamp #ifdef PPS_SYNC 7206f70df15SPoul-Henning Kamp /* 7216f70df15SPoul-Henning Kamp * hardpps() - discipline CPU clock oscillator to external PPS signal 7226f70df15SPoul-Henning Kamp * 7236f70df15SPoul-Henning Kamp * This routine is called at each PPS interrupt in order to discipline 72497804a5cSPoul-Henning Kamp * the CPU clock oscillator to the PPS signal. There are two independent 72597804a5cSPoul-Henning Kamp * first-order feedback loops, one for the phase, the other for the 72697804a5cSPoul-Henning Kamp * frequency. The phase loop measures and grooms the PPS phase offset 72797804a5cSPoul-Henning Kamp * and leaves it in a handy spot for the seconds overflow routine. The 72897804a5cSPoul-Henning Kamp * frequency loop averages successive PPS phase differences and 72997804a5cSPoul-Henning Kamp * calculates the PPS frequency offset, which is also processed by the 73097804a5cSPoul-Henning Kamp * seconds overflow routine. The code requires the caller to capture the 73197804a5cSPoul-Henning Kamp * time and architecture-dependent hardware counter values in 73297804a5cSPoul-Henning Kamp * nanoseconds at the on-time PPS signal transition. 7336f70df15SPoul-Henning Kamp * 734c68996e2SPoul-Henning Kamp * Note that, on some Unix systems this routine runs at an interrupt 7356f70df15SPoul-Henning Kamp * priority level higher than the timer interrupt routine hardclock(). 7366f70df15SPoul-Henning Kamp * Therefore, the variables used are distinct from the hardclock() 737c68996e2SPoul-Henning Kamp * variables, except for the actual time and frequency variables, which 738c68996e2SPoul-Henning Kamp * are determined by this routine and updated atomically. 7396f70df15SPoul-Henning Kamp */ 7406f70df15SPoul-Henning Kamp void 741c68996e2SPoul-Henning Kamp hardpps(tsp, nsec) 742c68996e2SPoul-Henning Kamp struct timespec *tsp; /* time at PPS */ 743c68996e2SPoul-Henning Kamp long nsec; /* hardware counter at PPS */ 7446f70df15SPoul-Henning Kamp { 74597804a5cSPoul-Henning Kamp long u_sec, u_nsec, v_nsec; /* temps */ 746c68996e2SPoul-Henning Kamp l_fp ftemp; 7476f70df15SPoul-Henning Kamp 7486f70df15SPoul-Henning Kamp /* 74997804a5cSPoul-Henning Kamp * The signal is first processed by a range gate and frequency 75097804a5cSPoul-Henning Kamp * discriminator. The range gate rejects noise spikes outside 75197804a5cSPoul-Henning Kamp * the range +-500 us. The frequency discriminator rejects input 75297804a5cSPoul-Henning Kamp * signals with apparent frequency outside the range 1 +-500 75397804a5cSPoul-Henning Kamp * PPM. If two hits occur in the same second, we ignore the 75497804a5cSPoul-Henning Kamp * later hit; if not and a hit occurs outside the range gate, 75597804a5cSPoul-Henning Kamp * keep the later hit for later comparison, but do not process 75697804a5cSPoul-Henning Kamp * it. 7576f70df15SPoul-Henning Kamp */ 758c68996e2SPoul-Henning Kamp time_status |= STA_PPSSIGNAL | STA_PPSJITTER; 759c68996e2SPoul-Henning Kamp time_status &= ~(STA_PPSWANDER | STA_PPSERROR); 760c68996e2SPoul-Henning Kamp pps_valid = PPS_VALID; 761c68996e2SPoul-Henning Kamp u_sec = tsp->tv_sec; 762c68996e2SPoul-Henning Kamp u_nsec = tsp->tv_nsec; 763c68996e2SPoul-Henning Kamp if (u_nsec >= (NANOSECOND >> 1)) { 764c68996e2SPoul-Henning Kamp u_nsec -= NANOSECOND; 765c68996e2SPoul-Henning Kamp u_sec++; 7666f70df15SPoul-Henning Kamp } 76782e84c5bSPoul-Henning Kamp v_nsec = u_nsec - pps_tf[0].tv_nsec; 76824dbea46SJohn Hay if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - 76924dbea46SJohn Hay MAXFREQ) 770c68996e2SPoul-Henning Kamp return; 771c68996e2SPoul-Henning Kamp pps_tf[2] = pps_tf[1]; 772c68996e2SPoul-Henning Kamp pps_tf[1] = pps_tf[0]; 77382e84c5bSPoul-Henning Kamp pps_tf[0].tv_sec = u_sec; 77482e84c5bSPoul-Henning Kamp pps_tf[0].tv_nsec = u_nsec; 7756f70df15SPoul-Henning Kamp 7766f70df15SPoul-Henning Kamp /* 777c68996e2SPoul-Henning Kamp * Compute the difference between the current and previous 778c68996e2SPoul-Henning Kamp * counter values. If the difference exceeds 0.5 s, assume it 779c68996e2SPoul-Henning Kamp * has wrapped around, so correct 1.0 s. If the result exceeds 780c68996e2SPoul-Henning Kamp * the tick interval, the sample point has crossed a tick 781c68996e2SPoul-Henning Kamp * boundary during the last second, so correct the tick. Very 782c68996e2SPoul-Henning Kamp * intricate. 783c68996e2SPoul-Henning Kamp */ 78432c20357SPoul-Henning Kamp u_nsec = nsec; 785c68996e2SPoul-Henning Kamp if (u_nsec > (NANOSECOND >> 1)) 786c68996e2SPoul-Henning Kamp u_nsec -= NANOSECOND; 787c68996e2SPoul-Henning Kamp else if (u_nsec < -(NANOSECOND >> 1)) 788c68996e2SPoul-Henning Kamp u_nsec += NANOSECOND; 789884ab557SPoul-Henning Kamp pps_fcount += u_nsec; 79024dbea46SJohn Hay if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) 791c68996e2SPoul-Henning Kamp return; 792c68996e2SPoul-Henning Kamp time_status &= ~STA_PPSJITTER; 793c68996e2SPoul-Henning Kamp 794c68996e2SPoul-Henning Kamp /* 795c68996e2SPoul-Henning Kamp * A three-stage median filter is used to help denoise the PPS 7966f70df15SPoul-Henning Kamp * time. The median sample becomes the time offset estimate; the 7976f70df15SPoul-Henning Kamp * difference between the other two samples becomes the time 7986f70df15SPoul-Henning Kamp * dispersion (jitter) estimate. 7996f70df15SPoul-Henning Kamp */ 80082e84c5bSPoul-Henning Kamp if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) { 80182e84c5bSPoul-Henning Kamp if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) { 80282e84c5bSPoul-Henning Kamp v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */ 80382e84c5bSPoul-Henning Kamp u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec; 80482e84c5bSPoul-Henning Kamp } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) { 80582e84c5bSPoul-Henning Kamp v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */ 80682e84c5bSPoul-Henning Kamp u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec; 8076f70df15SPoul-Henning Kamp } else { 80882e84c5bSPoul-Henning Kamp v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */ 80982e84c5bSPoul-Henning Kamp u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec; 810c68996e2SPoul-Henning Kamp } 811c68996e2SPoul-Henning Kamp } else { 81282e84c5bSPoul-Henning Kamp if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) { 81382e84c5bSPoul-Henning Kamp v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */ 81482e84c5bSPoul-Henning Kamp u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec; 81582e84c5bSPoul-Henning Kamp } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) { 81682e84c5bSPoul-Henning Kamp v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */ 81782e84c5bSPoul-Henning Kamp u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec; 818c68996e2SPoul-Henning Kamp } else { 81982e84c5bSPoul-Henning Kamp v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */ 82082e84c5bSPoul-Henning Kamp u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec; 8216f70df15SPoul-Henning Kamp } 8226f70df15SPoul-Henning Kamp } 8236f70df15SPoul-Henning Kamp 8246f70df15SPoul-Henning Kamp /* 825c68996e2SPoul-Henning Kamp * Nominal jitter is due to PPS signal noise and interrupt 82697804a5cSPoul-Henning Kamp * latency. If it exceeds the popcorn threshold, the sample is 82797804a5cSPoul-Henning Kamp * discarded. otherwise, if so enabled, the time offset is 82897804a5cSPoul-Henning Kamp * updated. We can tolerate a modest loss of data here without 82997804a5cSPoul-Henning Kamp * much degrading time accuracy. 8306f70df15SPoul-Henning Kamp */ 83182e84c5bSPoul-Henning Kamp if (u_nsec > (pps_jitter << PPS_POPCORN)) { 832c68996e2SPoul-Henning Kamp time_status |= STA_PPSJITTER; 833c68996e2SPoul-Henning Kamp pps_jitcnt++; 834c68996e2SPoul-Henning Kamp } else if (time_status & STA_PPSTIME) { 83597804a5cSPoul-Henning Kamp time_monitor = -v_nsec; 83697804a5cSPoul-Henning Kamp L_LINT(time_offset, time_monitor); 837c68996e2SPoul-Henning Kamp } 838c68996e2SPoul-Henning Kamp pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG; 83982e84c5bSPoul-Henning Kamp u_sec = pps_tf[0].tv_sec - pps_lastsec; 840c68996e2SPoul-Henning Kamp if (u_sec < (1 << pps_shift)) 841c68996e2SPoul-Henning Kamp return; 842c68996e2SPoul-Henning Kamp 843c68996e2SPoul-Henning Kamp /* 844c68996e2SPoul-Henning Kamp * At the end of the calibration interval the difference between 845c68996e2SPoul-Henning Kamp * the first and last counter values becomes the scaled 846c68996e2SPoul-Henning Kamp * frequency. It will later be divided by the length of the 847c68996e2SPoul-Henning Kamp * interval to determine the frequency update. If the frequency 848c68996e2SPoul-Henning Kamp * exceeds a sanity threshold, or if the actual calibration 849c68996e2SPoul-Henning Kamp * interval is not equal to the expected length, the data are 850c68996e2SPoul-Henning Kamp * discarded. We can tolerate a modest loss of data here without 85197804a5cSPoul-Henning Kamp * much degrading frequency accuracy. 852c68996e2SPoul-Henning Kamp */ 853c68996e2SPoul-Henning Kamp pps_calcnt++; 854884ab557SPoul-Henning Kamp v_nsec = -pps_fcount; 85582e84c5bSPoul-Henning Kamp pps_lastsec = pps_tf[0].tv_sec; 856884ab557SPoul-Henning Kamp pps_fcount = 0; 857c68996e2SPoul-Henning Kamp u_nsec = MAXFREQ << pps_shift; 858c68996e2SPoul-Henning Kamp if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << 859c68996e2SPoul-Henning Kamp pps_shift)) { 860c68996e2SPoul-Henning Kamp time_status |= STA_PPSERROR; 861c68996e2SPoul-Henning Kamp pps_errcnt++; 862c68996e2SPoul-Henning Kamp return; 863c68996e2SPoul-Henning Kamp } 864c68996e2SPoul-Henning Kamp 865c68996e2SPoul-Henning Kamp /* 86682e84c5bSPoul-Henning Kamp * Here the raw frequency offset and wander (stability) is 86782e84c5bSPoul-Henning Kamp * calculated. If the wander is less than the wander threshold 86882e84c5bSPoul-Henning Kamp * for four consecutive averaging intervals, the interval is 86982e84c5bSPoul-Henning Kamp * doubled; if it is greater than the threshold for four 87082e84c5bSPoul-Henning Kamp * consecutive intervals, the interval is halved. The scaled 87182e84c5bSPoul-Henning Kamp * frequency offset is converted to frequency offset. The 87282e84c5bSPoul-Henning Kamp * stability metric is calculated as the average of recent 87382e84c5bSPoul-Henning Kamp * frequency changes, but is used only for performance 874c68996e2SPoul-Henning Kamp * monitoring. 875c68996e2SPoul-Henning Kamp */ 876c68996e2SPoul-Henning Kamp L_LINT(ftemp, v_nsec); 877c68996e2SPoul-Henning Kamp L_RSHIFT(ftemp, pps_shift); 878c68996e2SPoul-Henning Kamp L_SUB(ftemp, pps_freq); 879c68996e2SPoul-Henning Kamp u_nsec = L_GINT(ftemp); 88082e84c5bSPoul-Henning Kamp if (u_nsec > PPS_MAXWANDER) { 88182e84c5bSPoul-Henning Kamp L_LINT(ftemp, PPS_MAXWANDER); 882c68996e2SPoul-Henning Kamp pps_intcnt--; 883c68996e2SPoul-Henning Kamp time_status |= STA_PPSWANDER; 884c68996e2SPoul-Henning Kamp pps_stbcnt++; 88582e84c5bSPoul-Henning Kamp } else if (u_nsec < -PPS_MAXWANDER) { 88682e84c5bSPoul-Henning Kamp L_LINT(ftemp, -PPS_MAXWANDER); 887c68996e2SPoul-Henning Kamp pps_intcnt--; 888c68996e2SPoul-Henning Kamp time_status |= STA_PPSWANDER; 889c68996e2SPoul-Henning Kamp pps_stbcnt++; 890c68996e2SPoul-Henning Kamp } else { 8916f70df15SPoul-Henning Kamp pps_intcnt++; 8926f70df15SPoul-Henning Kamp } 89397804a5cSPoul-Henning Kamp if (pps_intcnt >= 4) { 894c68996e2SPoul-Henning Kamp pps_intcnt = 4; 89582e84c5bSPoul-Henning Kamp if (pps_shift < pps_shiftmax) { 896c68996e2SPoul-Henning Kamp pps_shift++; 897c68996e2SPoul-Henning Kamp pps_intcnt = 0; 898c68996e2SPoul-Henning Kamp } 89997804a5cSPoul-Henning Kamp } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) { 900c68996e2SPoul-Henning Kamp pps_intcnt = -4; 901c68996e2SPoul-Henning Kamp if (pps_shift > PPS_FAVG) { 902c68996e2SPoul-Henning Kamp pps_shift--; 903c68996e2SPoul-Henning Kamp pps_intcnt = 0; 904c68996e2SPoul-Henning Kamp } 905c68996e2SPoul-Henning Kamp } 906c68996e2SPoul-Henning Kamp if (u_nsec < 0) 907c68996e2SPoul-Henning Kamp u_nsec = -u_nsec; 908c68996e2SPoul-Henning Kamp pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG; 9099ada5a50SPoul-Henning Kamp 910c68996e2SPoul-Henning Kamp /* 91182e84c5bSPoul-Henning Kamp * The PPS frequency is recalculated and clamped to the maximum 91282e84c5bSPoul-Henning Kamp * MAXFREQ. If enabled, the system clock frequency is updated as 91382e84c5bSPoul-Henning Kamp * well. 914c68996e2SPoul-Henning Kamp */ 915c68996e2SPoul-Henning Kamp L_ADD(pps_freq, ftemp); 916c68996e2SPoul-Henning Kamp u_nsec = L_GINT(pps_freq); 917c68996e2SPoul-Henning Kamp if (u_nsec > MAXFREQ) 918c68996e2SPoul-Henning Kamp L_LINT(pps_freq, MAXFREQ); 919c68996e2SPoul-Henning Kamp else if (u_nsec < -MAXFREQ) 920c68996e2SPoul-Henning Kamp L_LINT(pps_freq, -MAXFREQ); 92197804a5cSPoul-Henning Kamp if (time_status & STA_PPSFREQ) 922c68996e2SPoul-Henning Kamp time_freq = pps_freq; 923c68996e2SPoul-Henning Kamp } 9246f70df15SPoul-Henning Kamp #endif /* PPS_SYNC */ 925e1d970f1SPoul-Henning Kamp 926e1d970f1SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_ 927e1d970f1SPoul-Henning Kamp struct adjtime_args { 928e1d970f1SPoul-Henning Kamp struct timeval *delta; 929e1d970f1SPoul-Henning Kamp struct timeval *olddelta; 930e1d970f1SPoul-Henning Kamp }; 931e1d970f1SPoul-Henning Kamp #endif 932e1d970f1SPoul-Henning Kamp /* ARGSUSED */ 933e1d970f1SPoul-Henning Kamp int 934e1d970f1SPoul-Henning Kamp adjtime(struct thread *td, struct adjtime_args *uap) 935e1d970f1SPoul-Henning Kamp { 936b88ec951SJohn Baldwin struct timeval delta, olddelta, *deltap; 937b88ec951SJohn Baldwin int error; 938b88ec951SJohn Baldwin 939b88ec951SJohn Baldwin if (uap->delta) { 940b88ec951SJohn Baldwin error = copyin(uap->delta, &delta, sizeof(delta)); 941b88ec951SJohn Baldwin if (error) 942b88ec951SJohn Baldwin return (error); 943b88ec951SJohn Baldwin deltap = δ 944b88ec951SJohn Baldwin } else 945b88ec951SJohn Baldwin deltap = NULL; 946b88ec951SJohn Baldwin error = kern_adjtime(td, deltap, &olddelta); 947b88ec951SJohn Baldwin if (uap->olddelta && error == 0) 948b88ec951SJohn Baldwin error = copyout(&olddelta, uap->olddelta, sizeof(olddelta)); 949b88ec951SJohn Baldwin return (error); 950b88ec951SJohn Baldwin } 951b88ec951SJohn Baldwin 952b88ec951SJohn Baldwin int 953b88ec951SJohn Baldwin kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta) 954b88ec951SJohn Baldwin { 955e1d970f1SPoul-Henning Kamp struct timeval atv; 956e1d970f1SPoul-Henning Kamp int error; 957e1d970f1SPoul-Henning Kamp 9583bdd2d06SPoul-Henning Kamp mtx_lock(&Giant); 959b88ec951SJohn Baldwin if (olddelta) { 960e1d970f1SPoul-Henning Kamp atv.tv_sec = time_adjtime / 1000000; 961e1d970f1SPoul-Henning Kamp atv.tv_usec = time_adjtime % 1000000; 962e1d970f1SPoul-Henning Kamp if (atv.tv_usec < 0) { 963e1d970f1SPoul-Henning Kamp atv.tv_usec += 1000000; 964e1d970f1SPoul-Henning Kamp atv.tv_sec--; 965e1d970f1SPoul-Henning Kamp } 966b88ec951SJohn Baldwin *olddelta = atv; 967e1d970f1SPoul-Henning Kamp } 968b4be6ef2SRobert Watson if (delta) { 969b4be6ef2SRobert Watson if ((error = priv_check(td, PRIV_ADJTIME))) { 970e1d970f1SPoul-Henning Kamp mtx_unlock(&Giant); 971e1d970f1SPoul-Henning Kamp return (error); 972e1d970f1SPoul-Henning Kamp } 973b4be6ef2SRobert Watson time_adjtime = (int64_t)delta->tv_sec * 1000000 + 974b4be6ef2SRobert Watson delta->tv_usec; 975b4be6ef2SRobert Watson } 976b4be6ef2SRobert Watson mtx_unlock(&Giant); 977b4be6ef2SRobert Watson return (0); 978b4be6ef2SRobert Watson } 979e1d970f1SPoul-Henning Kamp 980*5c7e270fSAndriy Gapon static struct callout resettodr_callout; 981*5c7e270fSAndriy Gapon static int resettodr_period = 1800; 982*5c7e270fSAndriy Gapon 983*5c7e270fSAndriy Gapon static void 984*5c7e270fSAndriy Gapon periodic_resettodr(void *arg __unused) 985*5c7e270fSAndriy Gapon { 986*5c7e270fSAndriy Gapon 987*5c7e270fSAndriy Gapon if (!ntp_is_time_error()) { 988*5c7e270fSAndriy Gapon mtx_lock(&Giant); 989*5c7e270fSAndriy Gapon resettodr(); 990*5c7e270fSAndriy Gapon mtx_unlock(&Giant); 991*5c7e270fSAndriy Gapon } 992*5c7e270fSAndriy Gapon if (resettodr_period > 0) 993*5c7e270fSAndriy Gapon callout_schedule(&resettodr_callout, resettodr_period * hz); 994*5c7e270fSAndriy Gapon } 995*5c7e270fSAndriy Gapon 996*5c7e270fSAndriy Gapon static void 997*5c7e270fSAndriy Gapon shutdown_resettodr(void *arg __unused, int howto __unused) 998*5c7e270fSAndriy Gapon { 999*5c7e270fSAndriy Gapon 1000*5c7e270fSAndriy Gapon callout_drain(&resettodr_callout); 1001*5c7e270fSAndriy Gapon if (resettodr_period > 0 && !ntp_is_time_error()) { 1002*5c7e270fSAndriy Gapon mtx_lock(&Giant); 1003*5c7e270fSAndriy Gapon resettodr(); 1004*5c7e270fSAndriy Gapon mtx_unlock(&Giant); 1005*5c7e270fSAndriy Gapon } 1006*5c7e270fSAndriy Gapon } 1007*5c7e270fSAndriy Gapon 1008*5c7e270fSAndriy Gapon static int 1009*5c7e270fSAndriy Gapon sysctl_resettodr_period(SYSCTL_HANDLER_ARGS) 1010*5c7e270fSAndriy Gapon { 1011*5c7e270fSAndriy Gapon int error; 1012*5c7e270fSAndriy Gapon 1013*5c7e270fSAndriy Gapon error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); 1014*5c7e270fSAndriy Gapon if (error || !req->newptr) 1015*5c7e270fSAndriy Gapon return (error); 1016*5c7e270fSAndriy Gapon if (resettodr_period == 0) 1017*5c7e270fSAndriy Gapon callout_stop(&resettodr_callout); 1018*5c7e270fSAndriy Gapon else 1019*5c7e270fSAndriy Gapon callout_reset(&resettodr_callout, resettodr_period * hz, 1020*5c7e270fSAndriy Gapon periodic_resettodr, NULL); 1021*5c7e270fSAndriy Gapon return (0); 1022*5c7e270fSAndriy Gapon } 1023*5c7e270fSAndriy Gapon 1024*5c7e270fSAndriy Gapon SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW, 1025*5c7e270fSAndriy Gapon &resettodr_period, 1800, sysctl_resettodr_period, "I", 1026*5c7e270fSAndriy Gapon "Save system time to RTC with this period (in seconds)"); 1027*5c7e270fSAndriy Gapon TUNABLE_INT("machdep.rtc_save_period", &resettodr_period); 1028*5c7e270fSAndriy Gapon 1029*5c7e270fSAndriy Gapon static void 1030*5c7e270fSAndriy Gapon start_periodic_resettodr(void *arg __unused) 1031*5c7e270fSAndriy Gapon { 1032*5c7e270fSAndriy Gapon 1033*5c7e270fSAndriy Gapon EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL, 1034*5c7e270fSAndriy Gapon SHUTDOWN_PRI_FIRST); 1035*5c7e270fSAndriy Gapon callout_init(&resettodr_callout, 1); 1036*5c7e270fSAndriy Gapon if (resettodr_period == 0) 1037*5c7e270fSAndriy Gapon return; 1038*5c7e270fSAndriy Gapon callout_reset(&resettodr_callout, resettodr_period * hz, 1039*5c7e270fSAndriy Gapon periodic_resettodr, NULL); 1040*5c7e270fSAndriy Gapon } 1041*5c7e270fSAndriy Gapon 1042*5c7e270fSAndriy Gapon SYSINIT(periodic_resettodr, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY - 1, 1043*5c7e270fSAndriy Gapon start_periodic_resettodr, NULL); 1044