xref: /freebsd/sys/kern/kern_ntptime.c (revision 5c7e270fcd36ef2b0a71a9aebc2f8de0525914f9)
19454b2d8SWarner Losh /*-
29454b2d8SWarner Losh  ***********************************************************************
33f31c649SGarrett Wollman  *								       *
424dbea46SJohn Hay  * Copyright (c) David L. Mills 1993-2001			       *
53f31c649SGarrett Wollman  *								       *
6c68996e2SPoul-Henning Kamp  * Permission to use, copy, modify, and distribute this software and   *
7c68996e2SPoul-Henning Kamp  * its documentation for any purpose and without fee is hereby	       *
8c68996e2SPoul-Henning Kamp  * granted, provided that the above copyright notice appears in all    *
9c68996e2SPoul-Henning Kamp  * copies and that both the copyright notice and this permission       *
10c68996e2SPoul-Henning Kamp  * notice appear in supporting documentation, and that the name	       *
11c68996e2SPoul-Henning Kamp  * University of Delaware not be used in advertising or publicity      *
12c68996e2SPoul-Henning Kamp  * pertaining to distribution of the software without specific,	       *
13c68996e2SPoul-Henning Kamp  * written prior permission. The University of Delaware makes no       *
14c68996e2SPoul-Henning Kamp  * representations about the suitability this software for any	       *
15c68996e2SPoul-Henning Kamp  * purpose. It is provided "as is" without express or implied	       *
16c68996e2SPoul-Henning Kamp  * warranty.							       *
173f31c649SGarrett Wollman  *								       *
18c68996e2SPoul-Henning Kamp  **********************************************************************/
193f31c649SGarrett Wollman 
203f31c649SGarrett Wollman /*
21c68996e2SPoul-Henning Kamp  * Adapted from the original sources for FreeBSD and timecounters by:
2232c20357SPoul-Henning Kamp  * Poul-Henning Kamp <phk@FreeBSD.org>.
233f31c649SGarrett Wollman  *
24c68996e2SPoul-Henning Kamp  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25c68996e2SPoul-Henning Kamp  * date so I have retained only the 64bit version and included it directly
26c68996e2SPoul-Henning Kamp  * in this file.
27885bd8e4SJohn Hay  *
28c68996e2SPoul-Henning Kamp  * Only minor changes done to interface with the timecounters over in
29c68996e2SPoul-Henning Kamp  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30c68996e2SPoul-Henning Kamp  * confusing and/or plain wrong in that context.
313f31c649SGarrett Wollman  */
32e0d781f3SEivind Eklund 
33677b542eSDavid E. O'Brien #include <sys/cdefs.h>
34677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$");
35677b542eSDavid E. O'Brien 
3632c20357SPoul-Henning Kamp #include "opt_ntp.h"
3732c20357SPoul-Henning Kamp 
383f31c649SGarrett Wollman #include <sys/param.h>
393f31c649SGarrett Wollman #include <sys/systm.h>
40d2d3e875SBruce Evans #include <sys/sysproto.h>
41*5c7e270fSAndriy Gapon #include <sys/eventhandler.h>
423f31c649SGarrett Wollman #include <sys/kernel.h>
43acd3428bSRobert Watson #include <sys/priv.h>
443f31c649SGarrett Wollman #include <sys/proc.h>
456f1e8c18SMatthew Dillon #include <sys/lock.h>
466f1e8c18SMatthew Dillon #include <sys/mutex.h>
47c68996e2SPoul-Henning Kamp #include <sys/time.h>
483f31c649SGarrett Wollman #include <sys/timex.h>
4991266b96SPoul-Henning Kamp #include <sys/timetc.h>
50938ee3ceSPoul-Henning Kamp #include <sys/timepps.h>
51b88ec951SJohn Baldwin #include <sys/syscallsubr.h>
523f31c649SGarrett Wollman #include <sys/sysctl.h>
533f31c649SGarrett Wollman 
543f31c649SGarrett Wollman /*
55c68996e2SPoul-Henning Kamp  * Single-precision macros for 64-bit machines
563f31c649SGarrett Wollman  */
57bcfe6d8bSPoul-Henning Kamp typedef int64_t l_fp;
58c68996e2SPoul-Henning Kamp #define L_ADD(v, u)	((v) += (u))
59c68996e2SPoul-Henning Kamp #define L_SUB(v, u)	((v) -= (u))
60bcfe6d8bSPoul-Henning Kamp #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
61c68996e2SPoul-Henning Kamp #define L_NEG(v)	((v) = -(v))
62c68996e2SPoul-Henning Kamp #define L_RSHIFT(v, n) \
63c68996e2SPoul-Henning Kamp 	do { \
64c68996e2SPoul-Henning Kamp 		if ((v) < 0) \
65c68996e2SPoul-Henning Kamp 			(v) = -(-(v) >> (n)); \
66c68996e2SPoul-Henning Kamp 		else \
67c68996e2SPoul-Henning Kamp 			(v) = (v) >> (n); \
68c68996e2SPoul-Henning Kamp 	} while (0)
69c68996e2SPoul-Henning Kamp #define L_MPY(v, a)	((v) *= (a))
70c68996e2SPoul-Henning Kamp #define L_CLR(v)	((v) = 0)
71c68996e2SPoul-Henning Kamp #define L_ISNEG(v)	((v) < 0)
72bcfe6d8bSPoul-Henning Kamp #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
73c68996e2SPoul-Henning Kamp #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
746f70df15SPoul-Henning Kamp 
756f70df15SPoul-Henning Kamp /*
76c68996e2SPoul-Henning Kamp  * Generic NTP kernel interface
776f70df15SPoul-Henning Kamp  *
78c68996e2SPoul-Henning Kamp  * These routines constitute the Network Time Protocol (NTP) interfaces
79c68996e2SPoul-Henning Kamp  * for user and daemon application programs. The ntp_gettime() routine
80c68996e2SPoul-Henning Kamp  * provides the time, maximum error (synch distance) and estimated error
81c68996e2SPoul-Henning Kamp  * (dispersion) to client user application programs. The ntp_adjtime()
82c68996e2SPoul-Henning Kamp  * routine is used by the NTP daemon to adjust the system clock to an
83c68996e2SPoul-Henning Kamp  * externally derived time. The time offset and related variables set by
84c68996e2SPoul-Henning Kamp  * this routine are used by other routines in this module to adjust the
85c68996e2SPoul-Henning Kamp  * phase and frequency of the clock discipline loop which controls the
86c68996e2SPoul-Henning Kamp  * system clock.
876f70df15SPoul-Henning Kamp  *
88f425c1f6SPoul-Henning Kamp  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
89c68996e2SPoul-Henning Kamp  * defined), the time at each tick interrupt is derived directly from
90c68996e2SPoul-Henning Kamp  * the kernel time variable. When the kernel time is reckoned in
91f425c1f6SPoul-Henning Kamp  * microseconds, (NTP_NANO undefined), the time is derived from the
92f425c1f6SPoul-Henning Kamp  * kernel time variable together with a variable representing the
93f425c1f6SPoul-Henning Kamp  * leftover nanoseconds at the last tick interrupt. In either case, the
94f425c1f6SPoul-Henning Kamp  * current nanosecond time is reckoned from these values plus an
95f425c1f6SPoul-Henning Kamp  * interpolated value derived by the clock routines in another
96f425c1f6SPoul-Henning Kamp  * architecture-specific module. The interpolation can use either a
97f425c1f6SPoul-Henning Kamp  * dedicated counter or a processor cycle counter (PCC) implemented in
98f425c1f6SPoul-Henning Kamp  * some architectures.
996f70df15SPoul-Henning Kamp  *
100c68996e2SPoul-Henning Kamp  * Note that all routines must run at priority splclock or higher.
1016f70df15SPoul-Henning Kamp  */
102c68996e2SPoul-Henning Kamp /*
103c68996e2SPoul-Henning Kamp  * Phase/frequency-lock loop (PLL/FLL) definitions
104c68996e2SPoul-Henning Kamp  *
105c68996e2SPoul-Henning Kamp  * The nanosecond clock discipline uses two variable types, time
106c68996e2SPoul-Henning Kamp  * variables and frequency variables. Both types are represented as 64-
107c68996e2SPoul-Henning Kamp  * bit fixed-point quantities with the decimal point between two 32-bit
108c68996e2SPoul-Henning Kamp  * halves. On a 32-bit machine, each half is represented as a single
109c68996e2SPoul-Henning Kamp  * word and mathematical operations are done using multiple-precision
110c68996e2SPoul-Henning Kamp  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
111c68996e2SPoul-Henning Kamp  * used.
112c68996e2SPoul-Henning Kamp  *
113c68996e2SPoul-Henning Kamp  * A time variable is a signed 64-bit fixed-point number in ns and
114c68996e2SPoul-Henning Kamp  * fraction. It represents the remaining time offset to be amortized
115c68996e2SPoul-Henning Kamp  * over succeeding tick interrupts. The maximum time offset is about
116f425c1f6SPoul-Henning Kamp  * 0.5 s and the resolution is about 2.3e-10 ns.
117c68996e2SPoul-Henning Kamp  *
118c68996e2SPoul-Henning Kamp  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
119c68996e2SPoul-Henning Kamp  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
120c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121c68996e2SPoul-Henning Kamp  * |s s s|			 ns				   |
122c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
123c68996e2SPoul-Henning Kamp  * |			    fraction				   |
124c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125c68996e2SPoul-Henning Kamp  *
126c68996e2SPoul-Henning Kamp  * A frequency variable is a signed 64-bit fixed-point number in ns/s
127c68996e2SPoul-Henning Kamp  * and fraction. It represents the ns and fraction to be added to the
128c68996e2SPoul-Henning Kamp  * kernel time variable at each second. The maximum frequency offset is
129f425c1f6SPoul-Henning Kamp  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
130c68996e2SPoul-Henning Kamp  *
131c68996e2SPoul-Henning Kamp  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
132c68996e2SPoul-Henning Kamp  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
133c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134c68996e2SPoul-Henning Kamp  * |s s s s s s s s s s s s s|	          ns/s			   |
135c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136c68996e2SPoul-Henning Kamp  * |			    fraction				   |
137c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138c68996e2SPoul-Henning Kamp  */
139c68996e2SPoul-Henning Kamp /*
140c68996e2SPoul-Henning Kamp  * The following variables establish the state of the PLL/FLL and the
141c68996e2SPoul-Henning Kamp  * residual time and frequency offset of the local clock.
142c68996e2SPoul-Henning Kamp  */
143c68996e2SPoul-Henning Kamp #define SHIFT_PLL	4		/* PLL loop gain (shift) */
144c68996e2SPoul-Henning Kamp #define SHIFT_FLL	2		/* FLL loop gain (shift) */
145c68996e2SPoul-Henning Kamp 
146c68996e2SPoul-Henning Kamp static int time_state = TIME_OK;	/* clock state */
147c68996e2SPoul-Henning Kamp static int time_status = STA_UNSYNC;	/* clock status bits */
14897804a5cSPoul-Henning Kamp static long time_tai;			/* TAI offset (s) */
14997804a5cSPoul-Henning Kamp static long time_monitor;		/* last time offset scaled (ns) */
150c68996e2SPoul-Henning Kamp static long time_constant;		/* poll interval (shift) (s) */
151c68996e2SPoul-Henning Kamp static long time_precision = 1;		/* clock precision (ns) */
152c68996e2SPoul-Henning Kamp static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
153c68996e2SPoul-Henning Kamp static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
154c68996e2SPoul-Henning Kamp static long time_reftime;		/* time at last adjustment (s) */
155c68996e2SPoul-Henning Kamp static l_fp time_offset;		/* time offset (ns) */
156c68996e2SPoul-Henning Kamp static l_fp time_freq;			/* frequency offset (ns/s) */
15797804a5cSPoul-Henning Kamp static l_fp time_adj;			/* tick adjust (ns/s) */
1583f31c649SGarrett Wollman 
159e1d970f1SPoul-Henning Kamp static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
160e1d970f1SPoul-Henning Kamp 
1613f31c649SGarrett Wollman #ifdef PPS_SYNC
1623f31c649SGarrett Wollman /*
163c68996e2SPoul-Henning Kamp  * The following variables are used when a pulse-per-second (PPS) signal
164c68996e2SPoul-Henning Kamp  * is available and connected via a modem control lead. They establish
165c68996e2SPoul-Henning Kamp  * the engineering parameters of the clock discipline loop when
166c68996e2SPoul-Henning Kamp  * controlled by the PPS signal.
1673f31c649SGarrett Wollman  */
168c68996e2SPoul-Henning Kamp #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
16924dbea46SJohn Hay #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
17082e84c5bSPoul-Henning Kamp #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
171c68996e2SPoul-Henning Kamp #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
172c68996e2SPoul-Henning Kamp #define PPS_VALID	120		/* PPS signal watchdog max (s) */
17382e84c5bSPoul-Henning Kamp #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
17482e84c5bSPoul-Henning Kamp #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
175c68996e2SPoul-Henning Kamp 
17682e84c5bSPoul-Henning Kamp static struct timespec pps_tf[3];	/* phase median filter */
177c68996e2SPoul-Henning Kamp static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
178f425c1f6SPoul-Henning Kamp static long pps_fcount;			/* frequency accumulator */
17982e84c5bSPoul-Henning Kamp static long pps_jitter;			/* nominal jitter (ns) */
18082e84c5bSPoul-Henning Kamp static long pps_stabil;			/* nominal stability (scaled ns/s) */
181c68996e2SPoul-Henning Kamp static long pps_lastsec;		/* time at last calibration (s) */
182c68996e2SPoul-Henning Kamp static int pps_valid;			/* signal watchdog counter */
183c68996e2SPoul-Henning Kamp static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
18482e84c5bSPoul-Henning Kamp static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
185c68996e2SPoul-Henning Kamp static int pps_intcnt;			/* wander counter */
1866f70df15SPoul-Henning Kamp 
1876f70df15SPoul-Henning Kamp /*
1886f70df15SPoul-Henning Kamp  * PPS signal quality monitors
1896f70df15SPoul-Henning Kamp  */
190c68996e2SPoul-Henning Kamp static long pps_calcnt;			/* calibration intervals */
191c68996e2SPoul-Henning Kamp static long pps_jitcnt;			/* jitter limit exceeded */
192c68996e2SPoul-Henning Kamp static long pps_stbcnt;			/* stability limit exceeded */
193c68996e2SPoul-Henning Kamp static long pps_errcnt;			/* calibration errors */
1943f31c649SGarrett Wollman #endif /* PPS_SYNC */
195c68996e2SPoul-Henning Kamp /*
196c68996e2SPoul-Henning Kamp  * End of phase/frequency-lock loop (PLL/FLL) definitions
197c68996e2SPoul-Henning Kamp  */
1983f31c649SGarrett Wollman 
199c68996e2SPoul-Henning Kamp static void ntp_init(void);
200c68996e2SPoul-Henning Kamp static void hardupdate(long offset);
201932cfd41SMark Santcroos static void ntp_gettime1(struct ntptimeval *ntvp);
2029a9ae42aSAndriy Gapon static int ntp_is_time_error(void);
203c68996e2SPoul-Henning Kamp 
2049a9ae42aSAndriy Gapon static int
2059a9ae42aSAndriy Gapon ntp_is_time_error(void)
206c68996e2SPoul-Henning Kamp {
207c68996e2SPoul-Henning Kamp 	/*
208c68996e2SPoul-Henning Kamp 	 * Status word error decode. If any of these conditions occur,
209c68996e2SPoul-Henning Kamp 	 * an error is returned, instead of the status word. Most
210c68996e2SPoul-Henning Kamp 	 * applications will care only about the fact the system clock
211c68996e2SPoul-Henning Kamp 	 * may not be trusted, not about the details.
212c68996e2SPoul-Henning Kamp 	 *
213c68996e2SPoul-Henning Kamp 	 * Hardware or software error
214c68996e2SPoul-Henning Kamp 	 */
215c68996e2SPoul-Henning Kamp 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
216c68996e2SPoul-Henning Kamp 
217c68996e2SPoul-Henning Kamp 	/*
218c68996e2SPoul-Henning Kamp 	 * PPS signal lost when either time or frequency synchronization
219c68996e2SPoul-Henning Kamp 	 * requested
220c68996e2SPoul-Henning Kamp 	 */
221c68996e2SPoul-Henning Kamp 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
222c68996e2SPoul-Henning Kamp 	    !(time_status & STA_PPSSIGNAL)) ||
223c68996e2SPoul-Henning Kamp 
224c68996e2SPoul-Henning Kamp 	/*
225c68996e2SPoul-Henning Kamp 	 * PPS jitter exceeded when time synchronization requested
226c68996e2SPoul-Henning Kamp 	 */
227c68996e2SPoul-Henning Kamp 	    (time_status & STA_PPSTIME &&
228c68996e2SPoul-Henning Kamp 	    time_status & STA_PPSJITTER) ||
229c68996e2SPoul-Henning Kamp 
230c68996e2SPoul-Henning Kamp 	/*
231c68996e2SPoul-Henning Kamp 	 * PPS wander exceeded or calibration error when frequency
232c68996e2SPoul-Henning Kamp 	 * synchronization requested
233c68996e2SPoul-Henning Kamp 	 */
234c68996e2SPoul-Henning Kamp 	    (time_status & STA_PPSFREQ &&
235c68996e2SPoul-Henning Kamp 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
2369a9ae42aSAndriy Gapon 		return (1);
2379a9ae42aSAndriy Gapon 
2389a9ae42aSAndriy Gapon 	return (0);
2399a9ae42aSAndriy Gapon }
2409a9ae42aSAndriy Gapon 
2419a9ae42aSAndriy Gapon static void
2429a9ae42aSAndriy Gapon ntp_gettime1(struct ntptimeval *ntvp)
2439a9ae42aSAndriy Gapon {
2449a9ae42aSAndriy Gapon 	struct timespec atv;	/* nanosecond time */
2459a9ae42aSAndriy Gapon 
2469a9ae42aSAndriy Gapon 	GIANT_REQUIRED;
2479a9ae42aSAndriy Gapon 
2489a9ae42aSAndriy Gapon 	nanotime(&atv);
2499a9ae42aSAndriy Gapon 	ntvp->time.tv_sec = atv.tv_sec;
2509a9ae42aSAndriy Gapon 	ntvp->time.tv_nsec = atv.tv_nsec;
2519a9ae42aSAndriy Gapon 	ntvp->maxerror = time_maxerror;
2529a9ae42aSAndriy Gapon 	ntvp->esterror = time_esterror;
2539a9ae42aSAndriy Gapon 	ntvp->tai = time_tai;
2549a9ae42aSAndriy Gapon 	ntvp->time_state = time_state;
2559a9ae42aSAndriy Gapon 
2569a9ae42aSAndriy Gapon 	if (ntp_is_time_error())
257932cfd41SMark Santcroos 		ntvp->time_state = TIME_ERROR;
258932cfd41SMark Santcroos }
259932cfd41SMark Santcroos 
2609b7fe7e4SMark Santcroos /*
2619b7fe7e4SMark Santcroos  * ntp_gettime() - NTP user application interface
2629b7fe7e4SMark Santcroos  *
263873fbcd7SRobert Watson  * See the timex.h header file for synopsis and API description.  Note that
264873fbcd7SRobert Watson  * the TAI offset is returned in the ntvtimeval.tai structure member.
2659b7fe7e4SMark Santcroos  */
266932cfd41SMark Santcroos #ifndef _SYS_SYSPROTO_H_
267932cfd41SMark Santcroos struct ntp_gettime_args {
268932cfd41SMark Santcroos 	struct ntptimeval *ntvp;
269932cfd41SMark Santcroos };
270932cfd41SMark Santcroos #endif
271932cfd41SMark Santcroos /* ARGSUSED */
272932cfd41SMark Santcroos int
273932cfd41SMark Santcroos ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
274932cfd41SMark Santcroos {
275932cfd41SMark Santcroos 	struct ntptimeval ntv;
276932cfd41SMark Santcroos 
27775b82238SRobert Watson 	mtx_lock(&Giant);
278932cfd41SMark Santcroos 	ntp_gettime1(&ntv);
27975b82238SRobert Watson 	mtx_unlock(&Giant);
280932cfd41SMark Santcroos 
281fe18f385SWarner Losh 	td->td_retval[0] = ntv.time_state;
282932cfd41SMark Santcroos 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
283932cfd41SMark Santcroos }
284932cfd41SMark Santcroos 
285932cfd41SMark Santcroos static int
286932cfd41SMark Santcroos ntp_sysctl(SYSCTL_HANDLER_ARGS)
287932cfd41SMark Santcroos {
288932cfd41SMark Santcroos 	struct ntptimeval ntv;	/* temporary structure */
289932cfd41SMark Santcroos 
290932cfd41SMark Santcroos 	ntp_gettime1(&ntv);
291932cfd41SMark Santcroos 
292932cfd41SMark Santcroos 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
293c68996e2SPoul-Henning Kamp }
294c68996e2SPoul-Henning Kamp 
295c68996e2SPoul-Henning Kamp SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
296c68996e2SPoul-Henning Kamp SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
297c68996e2SPoul-Henning Kamp 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
298c68996e2SPoul-Henning Kamp 
2995968e18bSPoul-Henning Kamp #ifdef PPS_SYNC
30082e84c5bSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
3016a77f60dSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
3028925e63cSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
3037fd299cbSPoul-Henning Kamp 
3047fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
3057fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
3065968e18bSPoul-Henning Kamp #endif
307873fbcd7SRobert Watson 
308c68996e2SPoul-Henning Kamp /*
309c68996e2SPoul-Henning Kamp  * ntp_adjtime() - NTP daemon application interface
310c68996e2SPoul-Henning Kamp  *
311873fbcd7SRobert Watson  * See the timex.h header file for synopsis and API description.  Note that
312873fbcd7SRobert Watson  * the timex.constant structure member has a dual purpose to set the time
313873fbcd7SRobert Watson  * constant and to set the TAI offset.
314c68996e2SPoul-Henning Kamp  */
315c68996e2SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_
316c68996e2SPoul-Henning Kamp struct ntp_adjtime_args {
317c68996e2SPoul-Henning Kamp 	struct timex *tp;
318c68996e2SPoul-Henning Kamp };
319c68996e2SPoul-Henning Kamp #endif
320c68996e2SPoul-Henning Kamp 
321c68996e2SPoul-Henning Kamp int
322b40ce416SJulian Elischer ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
323c68996e2SPoul-Henning Kamp {
324c68996e2SPoul-Henning Kamp 	struct timex ntv;	/* temporary structure */
325f425c1f6SPoul-Henning Kamp 	long freq;		/* frequency ns/s) */
326c68996e2SPoul-Henning Kamp 	int modes;		/* mode bits from structure */
327c68996e2SPoul-Henning Kamp 	int s;			/* caller priority */
328c68996e2SPoul-Henning Kamp 	int error;
329c68996e2SPoul-Henning Kamp 
330c68996e2SPoul-Henning Kamp 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
331c68996e2SPoul-Henning Kamp 	if (error)
332c68996e2SPoul-Henning Kamp 		return(error);
333c68996e2SPoul-Henning Kamp 
334c68996e2SPoul-Henning Kamp 	/*
335c68996e2SPoul-Henning Kamp 	 * Update selected clock variables - only the superuser can
336c68996e2SPoul-Henning Kamp 	 * change anything. Note that there is no error checking here on
337c68996e2SPoul-Henning Kamp 	 * the assumption the superuser should know what it is doing.
33897804a5cSPoul-Henning Kamp 	 * Note that either the time constant or TAI offset are loaded
33924dbea46SJohn Hay 	 * from the ntv.constant member, depending on the mode bits. If
34024dbea46SJohn Hay 	 * the STA_PLL bit in the status word is cleared, the state and
34124dbea46SJohn Hay 	 * status words are reset to the initial values at boot.
342c68996e2SPoul-Henning Kamp 	 */
3436f1e8c18SMatthew Dillon 	mtx_lock(&Giant);
344c68996e2SPoul-Henning Kamp 	modes = ntv.modes;
345fafbe352SPoul-Henning Kamp 	if (modes)
346acd3428bSRobert Watson 		error = priv_check(td, PRIV_NTP_ADJTIME);
347c68996e2SPoul-Henning Kamp 	if (error)
3486f1e8c18SMatthew Dillon 		goto done2;
349c68996e2SPoul-Henning Kamp 	s = splclock();
350c68996e2SPoul-Henning Kamp 	if (modes & MOD_MAXERROR)
351c68996e2SPoul-Henning Kamp 		time_maxerror = ntv.maxerror;
352c68996e2SPoul-Henning Kamp 	if (modes & MOD_ESTERROR)
353c68996e2SPoul-Henning Kamp 		time_esterror = ntv.esterror;
354c68996e2SPoul-Henning Kamp 	if (modes & MOD_STATUS) {
35524dbea46SJohn Hay 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
35624dbea46SJohn Hay 			time_state = TIME_OK;
35724dbea46SJohn Hay 			time_status = STA_UNSYNC;
35824dbea46SJohn Hay #ifdef PPS_SYNC
35924dbea46SJohn Hay 			pps_shift = PPS_FAVG;
36024dbea46SJohn Hay #endif /* PPS_SYNC */
36124dbea46SJohn Hay 		}
362c68996e2SPoul-Henning Kamp 		time_status &= STA_RONLY;
363c68996e2SPoul-Henning Kamp 		time_status |= ntv.status & ~STA_RONLY;
364c68996e2SPoul-Henning Kamp 	}
365f425c1f6SPoul-Henning Kamp 	if (modes & MOD_TIMECONST) {
366f425c1f6SPoul-Henning Kamp 		if (ntv.constant < 0)
367f425c1f6SPoul-Henning Kamp 			time_constant = 0;
368f425c1f6SPoul-Henning Kamp 		else if (ntv.constant > MAXTC)
369f425c1f6SPoul-Henning Kamp 			time_constant = MAXTC;
370f425c1f6SPoul-Henning Kamp 		else
371c68996e2SPoul-Henning Kamp 			time_constant = ntv.constant;
372f425c1f6SPoul-Henning Kamp 	}
37397804a5cSPoul-Henning Kamp 	if (modes & MOD_TAI) {
37497804a5cSPoul-Henning Kamp 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
37597804a5cSPoul-Henning Kamp 			time_tai = ntv.constant;
37697804a5cSPoul-Henning Kamp 	}
37782e84c5bSPoul-Henning Kamp #ifdef PPS_SYNC
37882e84c5bSPoul-Henning Kamp 	if (modes & MOD_PPSMAX) {
37982e84c5bSPoul-Henning Kamp 		if (ntv.shift < PPS_FAVG)
38082e84c5bSPoul-Henning Kamp 			pps_shiftmax = PPS_FAVG;
38182e84c5bSPoul-Henning Kamp 		else if (ntv.shift > PPS_FAVGMAX)
38282e84c5bSPoul-Henning Kamp 			pps_shiftmax = PPS_FAVGMAX;
38382e84c5bSPoul-Henning Kamp 		else
38482e84c5bSPoul-Henning Kamp 			pps_shiftmax = ntv.shift;
38582e84c5bSPoul-Henning Kamp 	}
38682e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */
387c68996e2SPoul-Henning Kamp 	if (modes & MOD_NANO)
388c68996e2SPoul-Henning Kamp 		time_status |= STA_NANO;
389c68996e2SPoul-Henning Kamp 	if (modes & MOD_MICRO)
390c68996e2SPoul-Henning Kamp 		time_status &= ~STA_NANO;
391c68996e2SPoul-Henning Kamp 	if (modes & MOD_CLKB)
392c68996e2SPoul-Henning Kamp 		time_status |= STA_CLK;
393c68996e2SPoul-Henning Kamp 	if (modes & MOD_CLKA)
394c68996e2SPoul-Henning Kamp 		time_status &= ~STA_CLK;
39524dbea46SJohn Hay 	if (modes & MOD_FREQUENCY) {
39624dbea46SJohn Hay 		freq = (ntv.freq * 1000LL) >> 16;
39724dbea46SJohn Hay 		if (freq > MAXFREQ)
39824dbea46SJohn Hay 			L_LINT(time_freq, MAXFREQ);
39924dbea46SJohn Hay 		else if (freq < -MAXFREQ)
40024dbea46SJohn Hay 			L_LINT(time_freq, -MAXFREQ);
401bcfe6d8bSPoul-Henning Kamp 		else {
402bcfe6d8bSPoul-Henning Kamp 			/*
403bcfe6d8bSPoul-Henning Kamp 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
404bcfe6d8bSPoul-Henning Kamp 			 * time_freq is [ns/s * 2^32]
405bcfe6d8bSPoul-Henning Kamp 			 */
406bcfe6d8bSPoul-Henning Kamp 			time_freq = ntv.freq * 1000LL * 65536LL;
407bcfe6d8bSPoul-Henning Kamp 		}
40824dbea46SJohn Hay #ifdef PPS_SYNC
40924dbea46SJohn Hay 		pps_freq = time_freq;
41024dbea46SJohn Hay #endif /* PPS_SYNC */
41124dbea46SJohn Hay 	}
412551260fcSPoul-Henning Kamp 	if (modes & MOD_OFFSET) {
413551260fcSPoul-Henning Kamp 		if (time_status & STA_NANO)
414551260fcSPoul-Henning Kamp 			hardupdate(ntv.offset);
415551260fcSPoul-Henning Kamp 		else
416551260fcSPoul-Henning Kamp 			hardupdate(ntv.offset * 1000);
417551260fcSPoul-Henning Kamp 	}
418c68996e2SPoul-Henning Kamp 
419c68996e2SPoul-Henning Kamp 	/*
42097804a5cSPoul-Henning Kamp 	 * Retrieve all clock variables. Note that the TAI offset is
42197804a5cSPoul-Henning Kamp 	 * returned only by ntp_gettime();
422c68996e2SPoul-Henning Kamp 	 */
423c68996e2SPoul-Henning Kamp 	if (time_status & STA_NANO)
424b9c6e8bdSPoul-Henning Kamp 		ntv.offset = L_GINT(time_offset);
425c68996e2SPoul-Henning Kamp 	else
426b9c6e8bdSPoul-Henning Kamp 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
42734cffbe3SPoul-Henning Kamp 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
428c68996e2SPoul-Henning Kamp 	ntv.maxerror = time_maxerror;
429c68996e2SPoul-Henning Kamp 	ntv.esterror = time_esterror;
430c68996e2SPoul-Henning Kamp 	ntv.status = time_status;
431f425c1f6SPoul-Henning Kamp 	ntv.constant = time_constant;
432c68996e2SPoul-Henning Kamp 	if (time_status & STA_NANO)
433c68996e2SPoul-Henning Kamp 		ntv.precision = time_precision;
434c68996e2SPoul-Henning Kamp 	else
435c68996e2SPoul-Henning Kamp 		ntv.precision = time_precision / 1000;
436c68996e2SPoul-Henning Kamp 	ntv.tolerance = MAXFREQ * SCALE_PPM;
437c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
438c68996e2SPoul-Henning Kamp 	ntv.shift = pps_shift;
43934cffbe3SPoul-Henning Kamp 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
440c68996e2SPoul-Henning Kamp 	if (time_status & STA_NANO)
441c68996e2SPoul-Henning Kamp 		ntv.jitter = pps_jitter;
442c68996e2SPoul-Henning Kamp 	else
443c68996e2SPoul-Henning Kamp 		ntv.jitter = pps_jitter / 1000;
444c68996e2SPoul-Henning Kamp 	ntv.stabil = pps_stabil;
445c68996e2SPoul-Henning Kamp 	ntv.calcnt = pps_calcnt;
446c68996e2SPoul-Henning Kamp 	ntv.errcnt = pps_errcnt;
447c68996e2SPoul-Henning Kamp 	ntv.jitcnt = pps_jitcnt;
448c68996e2SPoul-Henning Kamp 	ntv.stbcnt = pps_stbcnt;
449c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */
450c68996e2SPoul-Henning Kamp 	splx(s);
451c68996e2SPoul-Henning Kamp 
452c68996e2SPoul-Henning Kamp 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
453c68996e2SPoul-Henning Kamp 	if (error)
4546f1e8c18SMatthew Dillon 		goto done2;
455c68996e2SPoul-Henning Kamp 
456c68996e2SPoul-Henning Kamp 	/*
457c68996e2SPoul-Henning Kamp 	 * Status word error decode. See comments in
458c68996e2SPoul-Henning Kamp 	 * ntp_gettime() routine.
459c68996e2SPoul-Henning Kamp 	 */
4609a9ae42aSAndriy Gapon 	if (ntp_is_time_error())
461b40ce416SJulian Elischer 		td->td_retval[0] = TIME_ERROR;
4629a9ae42aSAndriy Gapon 	else
463b40ce416SJulian Elischer 		td->td_retval[0] = time_state;
4649a9ae42aSAndriy Gapon 
4656f1e8c18SMatthew Dillon done2:
4666f1e8c18SMatthew Dillon 	mtx_unlock(&Giant);
467a5088017SPoul-Henning Kamp 	return (error);
468c68996e2SPoul-Henning Kamp }
469c68996e2SPoul-Henning Kamp 
470c68996e2SPoul-Henning Kamp /*
471c68996e2SPoul-Henning Kamp  * second_overflow() - called after ntp_tick_adjust()
472c68996e2SPoul-Henning Kamp  *
473c68996e2SPoul-Henning Kamp  * This routine is ordinarily called immediately following the above
474c68996e2SPoul-Henning Kamp  * routine ntp_tick_adjust(). While these two routines are normally
475c68996e2SPoul-Henning Kamp  * combined, they are separated here only for the purposes of
476c68996e2SPoul-Henning Kamp  * simulation.
477c68996e2SPoul-Henning Kamp  */
478c68996e2SPoul-Henning Kamp void
479b4a1d0deSPoul-Henning Kamp ntp_update_second(int64_t *adjustment, time_t *newsec)
480c68996e2SPoul-Henning Kamp {
481e1d970f1SPoul-Henning Kamp 	int tickrate;
48297804a5cSPoul-Henning Kamp 	l_fp ftemp;		/* 32/64-bit temporary */
483c68996e2SPoul-Henning Kamp 
48482e84c5bSPoul-Henning Kamp 	/*
48582e84c5bSPoul-Henning Kamp 	 * On rollover of the second both the nanosecond and microsecond
48682e84c5bSPoul-Henning Kamp 	 * clocks are updated and the state machine cranked as
48782e84c5bSPoul-Henning Kamp 	 * necessary. The phase adjustment to be used for the next
48882e84c5bSPoul-Henning Kamp 	 * second is calculated and the maximum error is increased by
48982e84c5bSPoul-Henning Kamp 	 * the tolerance.
49082e84c5bSPoul-Henning Kamp 	 */
491c68996e2SPoul-Henning Kamp 	time_maxerror += MAXFREQ / 1000;
492c68996e2SPoul-Henning Kamp 
493c68996e2SPoul-Henning Kamp 	/*
494c68996e2SPoul-Henning Kamp 	 * Leap second processing. If in leap-insert state at
495c68996e2SPoul-Henning Kamp 	 * the end of the day, the system clock is set back one
496c68996e2SPoul-Henning Kamp 	 * second; if in leap-delete state, the system clock is
497c68996e2SPoul-Henning Kamp 	 * set ahead one second. The nano_time() routine or
498c68996e2SPoul-Henning Kamp 	 * external clock driver will insure that reported time
499c68996e2SPoul-Henning Kamp 	 * is always monotonic.
500c68996e2SPoul-Henning Kamp 	 */
501c68996e2SPoul-Henning Kamp 	switch (time_state) {
502c68996e2SPoul-Henning Kamp 
503c68996e2SPoul-Henning Kamp 		/*
504c68996e2SPoul-Henning Kamp 		 * No warning.
505c68996e2SPoul-Henning Kamp 		 */
506c68996e2SPoul-Henning Kamp 		case TIME_OK:
507c68996e2SPoul-Henning Kamp 		if (time_status & STA_INS)
508c68996e2SPoul-Henning Kamp 			time_state = TIME_INS;
509c68996e2SPoul-Henning Kamp 		else if (time_status & STA_DEL)
510c68996e2SPoul-Henning Kamp 			time_state = TIME_DEL;
511c68996e2SPoul-Henning Kamp 		break;
512c68996e2SPoul-Henning Kamp 
513c68996e2SPoul-Henning Kamp 		/*
514c68996e2SPoul-Henning Kamp 		 * Insert second 23:59:60 following second
515c68996e2SPoul-Henning Kamp 		 * 23:59:59.
516c68996e2SPoul-Henning Kamp 		 */
517c68996e2SPoul-Henning Kamp 		case TIME_INS:
518c68996e2SPoul-Henning Kamp 		if (!(time_status & STA_INS))
519c68996e2SPoul-Henning Kamp 			time_state = TIME_OK;
520c68996e2SPoul-Henning Kamp 		else if ((*newsec) % 86400 == 0) {
521c68996e2SPoul-Henning Kamp 			(*newsec)--;
522c68996e2SPoul-Henning Kamp 			time_state = TIME_OOP;
523eac3c62bSWarner Losh 			time_tai++;
524c68996e2SPoul-Henning Kamp 		}
525c68996e2SPoul-Henning Kamp 		break;
526c68996e2SPoul-Henning Kamp 
527c68996e2SPoul-Henning Kamp 		/*
528c68996e2SPoul-Henning Kamp 		 * Delete second 23:59:59.
529c68996e2SPoul-Henning Kamp 		 */
530c68996e2SPoul-Henning Kamp 		case TIME_DEL:
531c68996e2SPoul-Henning Kamp 		if (!(time_status & STA_DEL))
532c68996e2SPoul-Henning Kamp 			time_state = TIME_OK;
533c68996e2SPoul-Henning Kamp 		else if (((*newsec) + 1) % 86400 == 0) {
534c68996e2SPoul-Henning Kamp 			(*newsec)++;
53597804a5cSPoul-Henning Kamp 			time_tai--;
536c68996e2SPoul-Henning Kamp 			time_state = TIME_WAIT;
537c68996e2SPoul-Henning Kamp 		}
538c68996e2SPoul-Henning Kamp 		break;
539c68996e2SPoul-Henning Kamp 
540c68996e2SPoul-Henning Kamp 		/*
541c68996e2SPoul-Henning Kamp 		 * Insert second in progress.
542c68996e2SPoul-Henning Kamp 		 */
543c68996e2SPoul-Henning Kamp 		case TIME_OOP:
544c68996e2SPoul-Henning Kamp 			time_state = TIME_WAIT;
545c68996e2SPoul-Henning Kamp 		break;
546c68996e2SPoul-Henning Kamp 
547c68996e2SPoul-Henning Kamp 		/*
548c68996e2SPoul-Henning Kamp 		 * Wait for status bits to clear.
549c68996e2SPoul-Henning Kamp 		 */
550c68996e2SPoul-Henning Kamp 		case TIME_WAIT:
551c68996e2SPoul-Henning Kamp 		if (!(time_status & (STA_INS | STA_DEL)))
552c68996e2SPoul-Henning Kamp 			time_state = TIME_OK;
553c68996e2SPoul-Henning Kamp 	}
554c68996e2SPoul-Henning Kamp 
555c68996e2SPoul-Henning Kamp 	/*
55682e84c5bSPoul-Henning Kamp 	 * Compute the total time adjustment for the next second
55782e84c5bSPoul-Henning Kamp 	 * in ns. The offset is reduced by a factor depending on
55882e84c5bSPoul-Henning Kamp 	 * whether the PPS signal is operating. Note that the
55982e84c5bSPoul-Henning Kamp 	 * value is in effect scaled by the clock frequency,
56082e84c5bSPoul-Henning Kamp 	 * since the adjustment is added at each tick interrupt.
561c68996e2SPoul-Henning Kamp 	 */
56297804a5cSPoul-Henning Kamp 	ftemp = time_offset;
563c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
56497804a5cSPoul-Henning Kamp 	/* XXX even if PPS signal dies we should finish adjustment ? */
56597804a5cSPoul-Henning Kamp 	if (time_status & STA_PPSTIME && time_status &
56697804a5cSPoul-Henning Kamp 	    STA_PPSSIGNAL)
56797804a5cSPoul-Henning Kamp 		L_RSHIFT(ftemp, pps_shift);
56897804a5cSPoul-Henning Kamp 	else
56997804a5cSPoul-Henning Kamp 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
57082e84c5bSPoul-Henning Kamp #else
57197804a5cSPoul-Henning Kamp 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
57282e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */
57397804a5cSPoul-Henning Kamp 	time_adj = ftemp;
57497804a5cSPoul-Henning Kamp 	L_SUB(time_offset, ftemp);
575c68996e2SPoul-Henning Kamp 	L_ADD(time_adj, time_freq);
576e1d970f1SPoul-Henning Kamp 
577e1d970f1SPoul-Henning Kamp 	/*
578e1d970f1SPoul-Henning Kamp 	 * Apply any correction from adjtime(2).  If more than one second
579e1d970f1SPoul-Henning Kamp 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
580e1d970f1SPoul-Henning Kamp 	 * until the last second is slewed the final < 500 usecs.
581e1d970f1SPoul-Henning Kamp 	 */
582e1d970f1SPoul-Henning Kamp 	if (time_adjtime != 0) {
583e1d970f1SPoul-Henning Kamp 		if (time_adjtime > 1000000)
584e1d970f1SPoul-Henning Kamp 			tickrate = 5000;
585e1d970f1SPoul-Henning Kamp 		else if (time_adjtime < -1000000)
586e1d970f1SPoul-Henning Kamp 			tickrate = -5000;
587e1d970f1SPoul-Henning Kamp 		else if (time_adjtime > 500)
588e1d970f1SPoul-Henning Kamp 			tickrate = 500;
589e1d970f1SPoul-Henning Kamp 		else if (time_adjtime < -500)
590e1d970f1SPoul-Henning Kamp 			tickrate = -500;
591e1d970f1SPoul-Henning Kamp 		else
592bcfe6d8bSPoul-Henning Kamp 			tickrate = time_adjtime;
593e1d970f1SPoul-Henning Kamp 		time_adjtime -= tickrate;
594e1d970f1SPoul-Henning Kamp 		L_LINT(ftemp, tickrate * 1000);
595e1d970f1SPoul-Henning Kamp 		L_ADD(time_adj, ftemp);
596e1d970f1SPoul-Henning Kamp 	}
597b4a1d0deSPoul-Henning Kamp 	*adjustment = time_adj;
598e1d970f1SPoul-Henning Kamp 
599c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
600c68996e2SPoul-Henning Kamp 	if (pps_valid > 0)
601c68996e2SPoul-Henning Kamp 		pps_valid--;
602c68996e2SPoul-Henning Kamp 	else
60324dbea46SJohn Hay 		time_status &= ~STA_PPSSIGNAL;
604c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */
605c68996e2SPoul-Henning Kamp }
606c68996e2SPoul-Henning Kamp 
607c68996e2SPoul-Henning Kamp /*
608c68996e2SPoul-Henning Kamp  * ntp_init() - initialize variables and structures
609c68996e2SPoul-Henning Kamp  *
610c68996e2SPoul-Henning Kamp  * This routine must be called after the kernel variables hz and tick
611c68996e2SPoul-Henning Kamp  * are set or changed and before the next tick interrupt. In this
612c68996e2SPoul-Henning Kamp  * particular implementation, these values are assumed set elsewhere in
613c68996e2SPoul-Henning Kamp  * the kernel. The design allows the clock frequency and tick interval
614c68996e2SPoul-Henning Kamp  * to be changed while the system is running. So, this routine should
615c68996e2SPoul-Henning Kamp  * probably be integrated with the code that does that.
616c68996e2SPoul-Henning Kamp  */
617c68996e2SPoul-Henning Kamp static void
618c68996e2SPoul-Henning Kamp ntp_init()
619c68996e2SPoul-Henning Kamp {
620c68996e2SPoul-Henning Kamp 
621c68996e2SPoul-Henning Kamp 	/*
622c68996e2SPoul-Henning Kamp 	 * The following variables are initialized only at startup. Only
623c68996e2SPoul-Henning Kamp 	 * those structures not cleared by the compiler need to be
624c68996e2SPoul-Henning Kamp 	 * initialized, and these only in the simulator. In the actual
625c68996e2SPoul-Henning Kamp 	 * kernel, any nonzero values here will quickly evaporate.
626c68996e2SPoul-Henning Kamp 	 */
627c68996e2SPoul-Henning Kamp 	L_CLR(time_offset);
628c68996e2SPoul-Henning Kamp 	L_CLR(time_freq);
629c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
63082e84c5bSPoul-Henning Kamp 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
63182e84c5bSPoul-Henning Kamp 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
63282e84c5bSPoul-Henning Kamp 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
633f425c1f6SPoul-Henning Kamp 	pps_fcount = 0;
634c68996e2SPoul-Henning Kamp 	L_CLR(pps_freq);
635c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */
636c68996e2SPoul-Henning Kamp }
637c68996e2SPoul-Henning Kamp 
638237fdd78SRobert Watson SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
6396f70df15SPoul-Henning Kamp 
6406f70df15SPoul-Henning Kamp /*
6416f70df15SPoul-Henning Kamp  * hardupdate() - local clock update
6426f70df15SPoul-Henning Kamp  *
6436f70df15SPoul-Henning Kamp  * This routine is called by ntp_adjtime() to update the local clock
6446f70df15SPoul-Henning Kamp  * phase and frequency. The implementation is of an adaptive-parameter,
6456f70df15SPoul-Henning Kamp  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
6466f70df15SPoul-Henning Kamp  * time and frequency offset estimates for each call. If the kernel PPS
6476f70df15SPoul-Henning Kamp  * discipline code is configured (PPS_SYNC), the PPS signal itself
6486f70df15SPoul-Henning Kamp  * determines the new time offset, instead of the calling argument.
6496f70df15SPoul-Henning Kamp  * Presumably, calls to ntp_adjtime() occur only when the caller
6506f70df15SPoul-Henning Kamp  * believes the local clock is valid within some bound (+-128 ms with
6516f70df15SPoul-Henning Kamp  * NTP). If the caller's time is far different than the PPS time, an
6526f70df15SPoul-Henning Kamp  * argument will ensue, and it's not clear who will lose.
6536f70df15SPoul-Henning Kamp  *
654c68996e2SPoul-Henning Kamp  * For uncompensated quartz crystal oscillators and nominal update
655c68996e2SPoul-Henning Kamp  * intervals less than 256 s, operation should be in phase-lock mode,
656c68996e2SPoul-Henning Kamp  * where the loop is disciplined to phase. For update intervals greater
657c68996e2SPoul-Henning Kamp  * than 1024 s, operation should be in frequency-lock mode, where the
658c68996e2SPoul-Henning Kamp  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
659c68996e2SPoul-Henning Kamp  * is selected by the STA_MODE status bit.
6606f70df15SPoul-Henning Kamp  */
6616f70df15SPoul-Henning Kamp static void
662c68996e2SPoul-Henning Kamp hardupdate(offset)
663c68996e2SPoul-Henning Kamp 	long offset;		/* clock offset (ns) */
6646f70df15SPoul-Henning Kamp {
66597804a5cSPoul-Henning Kamp 	long mtemp;
666c68996e2SPoul-Henning Kamp 	l_fp ftemp;
6676f70df15SPoul-Henning Kamp 
668c68996e2SPoul-Henning Kamp 	/*
669c68996e2SPoul-Henning Kamp 	 * Select how the phase is to be controlled and from which
670c68996e2SPoul-Henning Kamp 	 * source. If the PPS signal is present and enabled to
671c68996e2SPoul-Henning Kamp 	 * discipline the time, the PPS offset is used; otherwise, the
672c68996e2SPoul-Henning Kamp 	 * argument offset is used.
673c68996e2SPoul-Henning Kamp 	 */
67482e84c5bSPoul-Henning Kamp 	if (!(time_status & STA_PLL))
67582e84c5bSPoul-Henning Kamp 		return;
67697804a5cSPoul-Henning Kamp 	if (!(time_status & STA_PPSTIME && time_status &
67797804a5cSPoul-Henning Kamp 	    STA_PPSSIGNAL)) {
67897804a5cSPoul-Henning Kamp 		if (offset > MAXPHASE)
67997804a5cSPoul-Henning Kamp 			time_monitor = MAXPHASE;
68097804a5cSPoul-Henning Kamp 		else if (offset < -MAXPHASE)
68197804a5cSPoul-Henning Kamp 			time_monitor = -MAXPHASE;
68297804a5cSPoul-Henning Kamp 		else
68397804a5cSPoul-Henning Kamp 			time_monitor = offset;
68497804a5cSPoul-Henning Kamp 		L_LINT(time_offset, time_monitor);
68597804a5cSPoul-Henning Kamp 	}
6866f70df15SPoul-Henning Kamp 
6876f70df15SPoul-Henning Kamp 	/*
688c68996e2SPoul-Henning Kamp 	 * Select how the frequency is to be controlled and in which
689c68996e2SPoul-Henning Kamp 	 * mode (PLL or FLL). If the PPS signal is present and enabled
690c68996e2SPoul-Henning Kamp 	 * to discipline the frequency, the PPS frequency is used;
691c68996e2SPoul-Henning Kamp 	 * otherwise, the argument offset is used to compute it.
6926f70df15SPoul-Henning Kamp 	 */
693c68996e2SPoul-Henning Kamp 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
694c68996e2SPoul-Henning Kamp 		time_reftime = time_second;
695c68996e2SPoul-Henning Kamp 		return;
696c68996e2SPoul-Henning Kamp 	}
6976f70df15SPoul-Henning Kamp 	if (time_status & STA_FREQHOLD || time_reftime == 0)
698227ee8a1SPoul-Henning Kamp 		time_reftime = time_second;
699227ee8a1SPoul-Henning Kamp 	mtemp = time_second - time_reftime;
70097804a5cSPoul-Henning Kamp 	L_LINT(ftemp, time_monitor);
701c68996e2SPoul-Henning Kamp 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
702c68996e2SPoul-Henning Kamp 	L_MPY(ftemp, mtemp);
703c68996e2SPoul-Henning Kamp 	L_ADD(time_freq, ftemp);
704c68996e2SPoul-Henning Kamp 	time_status &= ~STA_MODE;
70597804a5cSPoul-Henning Kamp 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
70697804a5cSPoul-Henning Kamp 	    MAXSEC)) {
70797804a5cSPoul-Henning Kamp 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
70882e84c5bSPoul-Henning Kamp 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
70982e84c5bSPoul-Henning Kamp 		L_ADD(time_freq, ftemp);
71082e84c5bSPoul-Henning Kamp 		time_status |= STA_MODE;
711c68996e2SPoul-Henning Kamp 	}
712227ee8a1SPoul-Henning Kamp 	time_reftime = time_second;
713c68996e2SPoul-Henning Kamp 	if (L_GINT(time_freq) > MAXFREQ)
714c68996e2SPoul-Henning Kamp 		L_LINT(time_freq, MAXFREQ);
715c68996e2SPoul-Henning Kamp 	else if (L_GINT(time_freq) < -MAXFREQ)
716c68996e2SPoul-Henning Kamp 		L_LINT(time_freq, -MAXFREQ);
7173f31c649SGarrett Wollman }
7183f31c649SGarrett Wollman 
7196f70df15SPoul-Henning Kamp #ifdef PPS_SYNC
7206f70df15SPoul-Henning Kamp /*
7216f70df15SPoul-Henning Kamp  * hardpps() - discipline CPU clock oscillator to external PPS signal
7226f70df15SPoul-Henning Kamp  *
7236f70df15SPoul-Henning Kamp  * This routine is called at each PPS interrupt in order to discipline
72497804a5cSPoul-Henning Kamp  * the CPU clock oscillator to the PPS signal. There are two independent
72597804a5cSPoul-Henning Kamp  * first-order feedback loops, one for the phase, the other for the
72697804a5cSPoul-Henning Kamp  * frequency. The phase loop measures and grooms the PPS phase offset
72797804a5cSPoul-Henning Kamp  * and leaves it in a handy spot for the seconds overflow routine. The
72897804a5cSPoul-Henning Kamp  * frequency loop averages successive PPS phase differences and
72997804a5cSPoul-Henning Kamp  * calculates the PPS frequency offset, which is also processed by the
73097804a5cSPoul-Henning Kamp  * seconds overflow routine. The code requires the caller to capture the
73197804a5cSPoul-Henning Kamp  * time and architecture-dependent hardware counter values in
73297804a5cSPoul-Henning Kamp  * nanoseconds at the on-time PPS signal transition.
7336f70df15SPoul-Henning Kamp  *
734c68996e2SPoul-Henning Kamp  * Note that, on some Unix systems this routine runs at an interrupt
7356f70df15SPoul-Henning Kamp  * priority level higher than the timer interrupt routine hardclock().
7366f70df15SPoul-Henning Kamp  * Therefore, the variables used are distinct from the hardclock()
737c68996e2SPoul-Henning Kamp  * variables, except for the actual time and frequency variables, which
738c68996e2SPoul-Henning Kamp  * are determined by this routine and updated atomically.
7396f70df15SPoul-Henning Kamp  */
7406f70df15SPoul-Henning Kamp void
741c68996e2SPoul-Henning Kamp hardpps(tsp, nsec)
742c68996e2SPoul-Henning Kamp 	struct timespec *tsp;	/* time at PPS */
743c68996e2SPoul-Henning Kamp 	long nsec;		/* hardware counter at PPS */
7446f70df15SPoul-Henning Kamp {
74597804a5cSPoul-Henning Kamp 	long u_sec, u_nsec, v_nsec; /* temps */
746c68996e2SPoul-Henning Kamp 	l_fp ftemp;
7476f70df15SPoul-Henning Kamp 
7486f70df15SPoul-Henning Kamp 	/*
74997804a5cSPoul-Henning Kamp 	 * The signal is first processed by a range gate and frequency
75097804a5cSPoul-Henning Kamp 	 * discriminator. The range gate rejects noise spikes outside
75197804a5cSPoul-Henning Kamp 	 * the range +-500 us. The frequency discriminator rejects input
75297804a5cSPoul-Henning Kamp 	 * signals with apparent frequency outside the range 1 +-500
75397804a5cSPoul-Henning Kamp 	 * PPM. If two hits occur in the same second, we ignore the
75497804a5cSPoul-Henning Kamp 	 * later hit; if not and a hit occurs outside the range gate,
75597804a5cSPoul-Henning Kamp 	 * keep the later hit for later comparison, but do not process
75697804a5cSPoul-Henning Kamp 	 * it.
7576f70df15SPoul-Henning Kamp 	 */
758c68996e2SPoul-Henning Kamp 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
759c68996e2SPoul-Henning Kamp 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
760c68996e2SPoul-Henning Kamp 	pps_valid = PPS_VALID;
761c68996e2SPoul-Henning Kamp 	u_sec = tsp->tv_sec;
762c68996e2SPoul-Henning Kamp 	u_nsec = tsp->tv_nsec;
763c68996e2SPoul-Henning Kamp 	if (u_nsec >= (NANOSECOND >> 1)) {
764c68996e2SPoul-Henning Kamp 		u_nsec -= NANOSECOND;
765c68996e2SPoul-Henning Kamp 		u_sec++;
7666f70df15SPoul-Henning Kamp 	}
76782e84c5bSPoul-Henning Kamp 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
76824dbea46SJohn Hay 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
76924dbea46SJohn Hay 	    MAXFREQ)
770c68996e2SPoul-Henning Kamp 		return;
771c68996e2SPoul-Henning Kamp 	pps_tf[2] = pps_tf[1];
772c68996e2SPoul-Henning Kamp 	pps_tf[1] = pps_tf[0];
77382e84c5bSPoul-Henning Kamp 	pps_tf[0].tv_sec = u_sec;
77482e84c5bSPoul-Henning Kamp 	pps_tf[0].tv_nsec = u_nsec;
7756f70df15SPoul-Henning Kamp 
7766f70df15SPoul-Henning Kamp 	/*
777c68996e2SPoul-Henning Kamp 	 * Compute the difference between the current and previous
778c68996e2SPoul-Henning Kamp 	 * counter values. If the difference exceeds 0.5 s, assume it
779c68996e2SPoul-Henning Kamp 	 * has wrapped around, so correct 1.0 s. If the result exceeds
780c68996e2SPoul-Henning Kamp 	 * the tick interval, the sample point has crossed a tick
781c68996e2SPoul-Henning Kamp 	 * boundary during the last second, so correct the tick. Very
782c68996e2SPoul-Henning Kamp 	 * intricate.
783c68996e2SPoul-Henning Kamp 	 */
78432c20357SPoul-Henning Kamp 	u_nsec = nsec;
785c68996e2SPoul-Henning Kamp 	if (u_nsec > (NANOSECOND >> 1))
786c68996e2SPoul-Henning Kamp 		u_nsec -= NANOSECOND;
787c68996e2SPoul-Henning Kamp 	else if (u_nsec < -(NANOSECOND >> 1))
788c68996e2SPoul-Henning Kamp 		u_nsec += NANOSECOND;
789884ab557SPoul-Henning Kamp 	pps_fcount += u_nsec;
79024dbea46SJohn Hay 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
791c68996e2SPoul-Henning Kamp 		return;
792c68996e2SPoul-Henning Kamp 	time_status &= ~STA_PPSJITTER;
793c68996e2SPoul-Henning Kamp 
794c68996e2SPoul-Henning Kamp 	/*
795c68996e2SPoul-Henning Kamp 	 * A three-stage median filter is used to help denoise the PPS
7966f70df15SPoul-Henning Kamp 	 * time. The median sample becomes the time offset estimate; the
7976f70df15SPoul-Henning Kamp 	 * difference between the other two samples becomes the time
7986f70df15SPoul-Henning Kamp 	 * dispersion (jitter) estimate.
7996f70df15SPoul-Henning Kamp 	 */
80082e84c5bSPoul-Henning Kamp 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
80182e84c5bSPoul-Henning Kamp 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
80282e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
80382e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
80482e84c5bSPoul-Henning Kamp 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
80582e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
80682e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
8076f70df15SPoul-Henning Kamp 		} else {
80882e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
80982e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
810c68996e2SPoul-Henning Kamp 		}
811c68996e2SPoul-Henning Kamp 	} else {
81282e84c5bSPoul-Henning Kamp 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
81382e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
81482e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
81582e84c5bSPoul-Henning Kamp 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
81682e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
81782e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
818c68996e2SPoul-Henning Kamp 		} else {
81982e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
82082e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
8216f70df15SPoul-Henning Kamp 		}
8226f70df15SPoul-Henning Kamp 	}
8236f70df15SPoul-Henning Kamp 
8246f70df15SPoul-Henning Kamp 	/*
825c68996e2SPoul-Henning Kamp 	 * Nominal jitter is due to PPS signal noise and interrupt
82697804a5cSPoul-Henning Kamp 	 * latency. If it exceeds the popcorn threshold, the sample is
82797804a5cSPoul-Henning Kamp 	 * discarded. otherwise, if so enabled, the time offset is
82897804a5cSPoul-Henning Kamp 	 * updated. We can tolerate a modest loss of data here without
82997804a5cSPoul-Henning Kamp 	 * much degrading time accuracy.
8306f70df15SPoul-Henning Kamp 	 */
83182e84c5bSPoul-Henning Kamp 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
832c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSJITTER;
833c68996e2SPoul-Henning Kamp 		pps_jitcnt++;
834c68996e2SPoul-Henning Kamp 	} else if (time_status & STA_PPSTIME) {
83597804a5cSPoul-Henning Kamp 		time_monitor = -v_nsec;
83697804a5cSPoul-Henning Kamp 		L_LINT(time_offset, time_monitor);
837c68996e2SPoul-Henning Kamp 	}
838c68996e2SPoul-Henning Kamp 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
83982e84c5bSPoul-Henning Kamp 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
840c68996e2SPoul-Henning Kamp 	if (u_sec < (1 << pps_shift))
841c68996e2SPoul-Henning Kamp 		return;
842c68996e2SPoul-Henning Kamp 
843c68996e2SPoul-Henning Kamp 	/*
844c68996e2SPoul-Henning Kamp 	 * At the end of the calibration interval the difference between
845c68996e2SPoul-Henning Kamp 	 * the first and last counter values becomes the scaled
846c68996e2SPoul-Henning Kamp 	 * frequency. It will later be divided by the length of the
847c68996e2SPoul-Henning Kamp 	 * interval to determine the frequency update. If the frequency
848c68996e2SPoul-Henning Kamp 	 * exceeds a sanity threshold, or if the actual calibration
849c68996e2SPoul-Henning Kamp 	 * interval is not equal to the expected length, the data are
850c68996e2SPoul-Henning Kamp 	 * discarded. We can tolerate a modest loss of data here without
85197804a5cSPoul-Henning Kamp 	 * much degrading frequency accuracy.
852c68996e2SPoul-Henning Kamp 	 */
853c68996e2SPoul-Henning Kamp 	pps_calcnt++;
854884ab557SPoul-Henning Kamp 	v_nsec = -pps_fcount;
85582e84c5bSPoul-Henning Kamp 	pps_lastsec = pps_tf[0].tv_sec;
856884ab557SPoul-Henning Kamp 	pps_fcount = 0;
857c68996e2SPoul-Henning Kamp 	u_nsec = MAXFREQ << pps_shift;
858c68996e2SPoul-Henning Kamp 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
859c68996e2SPoul-Henning Kamp 	    pps_shift)) {
860c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSERROR;
861c68996e2SPoul-Henning Kamp 		pps_errcnt++;
862c68996e2SPoul-Henning Kamp 		return;
863c68996e2SPoul-Henning Kamp 	}
864c68996e2SPoul-Henning Kamp 
865c68996e2SPoul-Henning Kamp 	/*
86682e84c5bSPoul-Henning Kamp 	 * Here the raw frequency offset and wander (stability) is
86782e84c5bSPoul-Henning Kamp 	 * calculated. If the wander is less than the wander threshold
86882e84c5bSPoul-Henning Kamp 	 * for four consecutive averaging intervals, the interval is
86982e84c5bSPoul-Henning Kamp 	 * doubled; if it is greater than the threshold for four
87082e84c5bSPoul-Henning Kamp 	 * consecutive intervals, the interval is halved. The scaled
87182e84c5bSPoul-Henning Kamp 	 * frequency offset is converted to frequency offset. The
87282e84c5bSPoul-Henning Kamp 	 * stability metric is calculated as the average of recent
87382e84c5bSPoul-Henning Kamp 	 * frequency changes, but is used only for performance
874c68996e2SPoul-Henning Kamp 	 * monitoring.
875c68996e2SPoul-Henning Kamp 	 */
876c68996e2SPoul-Henning Kamp 	L_LINT(ftemp, v_nsec);
877c68996e2SPoul-Henning Kamp 	L_RSHIFT(ftemp, pps_shift);
878c68996e2SPoul-Henning Kamp 	L_SUB(ftemp, pps_freq);
879c68996e2SPoul-Henning Kamp 	u_nsec = L_GINT(ftemp);
88082e84c5bSPoul-Henning Kamp 	if (u_nsec > PPS_MAXWANDER) {
88182e84c5bSPoul-Henning Kamp 		L_LINT(ftemp, PPS_MAXWANDER);
882c68996e2SPoul-Henning Kamp 		pps_intcnt--;
883c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSWANDER;
884c68996e2SPoul-Henning Kamp 		pps_stbcnt++;
88582e84c5bSPoul-Henning Kamp 	} else if (u_nsec < -PPS_MAXWANDER) {
88682e84c5bSPoul-Henning Kamp 		L_LINT(ftemp, -PPS_MAXWANDER);
887c68996e2SPoul-Henning Kamp 		pps_intcnt--;
888c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSWANDER;
889c68996e2SPoul-Henning Kamp 		pps_stbcnt++;
890c68996e2SPoul-Henning Kamp 	} else {
8916f70df15SPoul-Henning Kamp 		pps_intcnt++;
8926f70df15SPoul-Henning Kamp 	}
89397804a5cSPoul-Henning Kamp 	if (pps_intcnt >= 4) {
894c68996e2SPoul-Henning Kamp 		pps_intcnt = 4;
89582e84c5bSPoul-Henning Kamp 		if (pps_shift < pps_shiftmax) {
896c68996e2SPoul-Henning Kamp 			pps_shift++;
897c68996e2SPoul-Henning Kamp 			pps_intcnt = 0;
898c68996e2SPoul-Henning Kamp 		}
89997804a5cSPoul-Henning Kamp 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
900c68996e2SPoul-Henning Kamp 		pps_intcnt = -4;
901c68996e2SPoul-Henning Kamp 		if (pps_shift > PPS_FAVG) {
902c68996e2SPoul-Henning Kamp 			pps_shift--;
903c68996e2SPoul-Henning Kamp 			pps_intcnt = 0;
904c68996e2SPoul-Henning Kamp 		}
905c68996e2SPoul-Henning Kamp 	}
906c68996e2SPoul-Henning Kamp 	if (u_nsec < 0)
907c68996e2SPoul-Henning Kamp 		u_nsec = -u_nsec;
908c68996e2SPoul-Henning Kamp 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
9099ada5a50SPoul-Henning Kamp 
910c68996e2SPoul-Henning Kamp 	/*
91182e84c5bSPoul-Henning Kamp 	 * The PPS frequency is recalculated and clamped to the maximum
91282e84c5bSPoul-Henning Kamp 	 * MAXFREQ. If enabled, the system clock frequency is updated as
91382e84c5bSPoul-Henning Kamp 	 * well.
914c68996e2SPoul-Henning Kamp 	 */
915c68996e2SPoul-Henning Kamp 	L_ADD(pps_freq, ftemp);
916c68996e2SPoul-Henning Kamp 	u_nsec = L_GINT(pps_freq);
917c68996e2SPoul-Henning Kamp 	if (u_nsec > MAXFREQ)
918c68996e2SPoul-Henning Kamp 		L_LINT(pps_freq, MAXFREQ);
919c68996e2SPoul-Henning Kamp 	else if (u_nsec < -MAXFREQ)
920c68996e2SPoul-Henning Kamp 		L_LINT(pps_freq, -MAXFREQ);
92197804a5cSPoul-Henning Kamp 	if (time_status & STA_PPSFREQ)
922c68996e2SPoul-Henning Kamp 		time_freq = pps_freq;
923c68996e2SPoul-Henning Kamp }
9246f70df15SPoul-Henning Kamp #endif /* PPS_SYNC */
925e1d970f1SPoul-Henning Kamp 
926e1d970f1SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_
927e1d970f1SPoul-Henning Kamp struct adjtime_args {
928e1d970f1SPoul-Henning Kamp 	struct timeval *delta;
929e1d970f1SPoul-Henning Kamp 	struct timeval *olddelta;
930e1d970f1SPoul-Henning Kamp };
931e1d970f1SPoul-Henning Kamp #endif
932e1d970f1SPoul-Henning Kamp /* ARGSUSED */
933e1d970f1SPoul-Henning Kamp int
934e1d970f1SPoul-Henning Kamp adjtime(struct thread *td, struct adjtime_args *uap)
935e1d970f1SPoul-Henning Kamp {
936b88ec951SJohn Baldwin 	struct timeval delta, olddelta, *deltap;
937b88ec951SJohn Baldwin 	int error;
938b88ec951SJohn Baldwin 
939b88ec951SJohn Baldwin 	if (uap->delta) {
940b88ec951SJohn Baldwin 		error = copyin(uap->delta, &delta, sizeof(delta));
941b88ec951SJohn Baldwin 		if (error)
942b88ec951SJohn Baldwin 			return (error);
943b88ec951SJohn Baldwin 		deltap = &delta;
944b88ec951SJohn Baldwin 	} else
945b88ec951SJohn Baldwin 		deltap = NULL;
946b88ec951SJohn Baldwin 	error = kern_adjtime(td, deltap, &olddelta);
947b88ec951SJohn Baldwin 	if (uap->olddelta && error == 0)
948b88ec951SJohn Baldwin 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
949b88ec951SJohn Baldwin 	return (error);
950b88ec951SJohn Baldwin }
951b88ec951SJohn Baldwin 
952b88ec951SJohn Baldwin int
953b88ec951SJohn Baldwin kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
954b88ec951SJohn Baldwin {
955e1d970f1SPoul-Henning Kamp 	struct timeval atv;
956e1d970f1SPoul-Henning Kamp 	int error;
957e1d970f1SPoul-Henning Kamp 
9583bdd2d06SPoul-Henning Kamp 	mtx_lock(&Giant);
959b88ec951SJohn Baldwin 	if (olddelta) {
960e1d970f1SPoul-Henning Kamp 		atv.tv_sec = time_adjtime / 1000000;
961e1d970f1SPoul-Henning Kamp 		atv.tv_usec = time_adjtime % 1000000;
962e1d970f1SPoul-Henning Kamp 		if (atv.tv_usec < 0) {
963e1d970f1SPoul-Henning Kamp 			atv.tv_usec += 1000000;
964e1d970f1SPoul-Henning Kamp 			atv.tv_sec--;
965e1d970f1SPoul-Henning Kamp 		}
966b88ec951SJohn Baldwin 		*olddelta = atv;
967e1d970f1SPoul-Henning Kamp 	}
968b4be6ef2SRobert Watson 	if (delta) {
969b4be6ef2SRobert Watson 		if ((error = priv_check(td, PRIV_ADJTIME))) {
970e1d970f1SPoul-Henning Kamp 			mtx_unlock(&Giant);
971e1d970f1SPoul-Henning Kamp 			return (error);
972e1d970f1SPoul-Henning Kamp 		}
973b4be6ef2SRobert Watson 		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
974b4be6ef2SRobert Watson 		    delta->tv_usec;
975b4be6ef2SRobert Watson 	}
976b4be6ef2SRobert Watson 	mtx_unlock(&Giant);
977b4be6ef2SRobert Watson 	return (0);
978b4be6ef2SRobert Watson }
979e1d970f1SPoul-Henning Kamp 
980*5c7e270fSAndriy Gapon static struct callout resettodr_callout;
981*5c7e270fSAndriy Gapon static int resettodr_period = 1800;
982*5c7e270fSAndriy Gapon 
983*5c7e270fSAndriy Gapon static void
984*5c7e270fSAndriy Gapon periodic_resettodr(void *arg __unused)
985*5c7e270fSAndriy Gapon {
986*5c7e270fSAndriy Gapon 
987*5c7e270fSAndriy Gapon 	if (!ntp_is_time_error()) {
988*5c7e270fSAndriy Gapon 		mtx_lock(&Giant);
989*5c7e270fSAndriy Gapon 		resettodr();
990*5c7e270fSAndriy Gapon 		mtx_unlock(&Giant);
991*5c7e270fSAndriy Gapon 	}
992*5c7e270fSAndriy Gapon 	if (resettodr_period > 0)
993*5c7e270fSAndriy Gapon 		callout_schedule(&resettodr_callout, resettodr_period * hz);
994*5c7e270fSAndriy Gapon }
995*5c7e270fSAndriy Gapon 
996*5c7e270fSAndriy Gapon static void
997*5c7e270fSAndriy Gapon shutdown_resettodr(void *arg __unused, int howto __unused)
998*5c7e270fSAndriy Gapon {
999*5c7e270fSAndriy Gapon 
1000*5c7e270fSAndriy Gapon 	callout_drain(&resettodr_callout);
1001*5c7e270fSAndriy Gapon 	if (resettodr_period > 0 && !ntp_is_time_error()) {
1002*5c7e270fSAndriy Gapon 		mtx_lock(&Giant);
1003*5c7e270fSAndriy Gapon 		resettodr();
1004*5c7e270fSAndriy Gapon 		mtx_unlock(&Giant);
1005*5c7e270fSAndriy Gapon 	}
1006*5c7e270fSAndriy Gapon }
1007*5c7e270fSAndriy Gapon 
1008*5c7e270fSAndriy Gapon static int
1009*5c7e270fSAndriy Gapon sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1010*5c7e270fSAndriy Gapon {
1011*5c7e270fSAndriy Gapon 	int error;
1012*5c7e270fSAndriy Gapon 
1013*5c7e270fSAndriy Gapon 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1014*5c7e270fSAndriy Gapon 	if (error || !req->newptr)
1015*5c7e270fSAndriy Gapon 		return (error);
1016*5c7e270fSAndriy Gapon 	if (resettodr_period == 0)
1017*5c7e270fSAndriy Gapon 		callout_stop(&resettodr_callout);
1018*5c7e270fSAndriy Gapon 	else
1019*5c7e270fSAndriy Gapon 		callout_reset(&resettodr_callout, resettodr_period * hz,
1020*5c7e270fSAndriy Gapon 		    periodic_resettodr, NULL);
1021*5c7e270fSAndriy Gapon 	return (0);
1022*5c7e270fSAndriy Gapon }
1023*5c7e270fSAndriy Gapon 
1024*5c7e270fSAndriy Gapon SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
1025*5c7e270fSAndriy Gapon 	&resettodr_period, 1800, sysctl_resettodr_period, "I",
1026*5c7e270fSAndriy Gapon 	"Save system time to RTC with this period (in seconds)");
1027*5c7e270fSAndriy Gapon TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
1028*5c7e270fSAndriy Gapon 
1029*5c7e270fSAndriy Gapon static void
1030*5c7e270fSAndriy Gapon start_periodic_resettodr(void *arg __unused)
1031*5c7e270fSAndriy Gapon {
1032*5c7e270fSAndriy Gapon 
1033*5c7e270fSAndriy Gapon 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1034*5c7e270fSAndriy Gapon 	    SHUTDOWN_PRI_FIRST);
1035*5c7e270fSAndriy Gapon 	callout_init(&resettodr_callout, 1);
1036*5c7e270fSAndriy Gapon 	if (resettodr_period == 0)
1037*5c7e270fSAndriy Gapon 		return;
1038*5c7e270fSAndriy Gapon 	callout_reset(&resettodr_callout, resettodr_period * hz,
1039*5c7e270fSAndriy Gapon 	    periodic_resettodr, NULL);
1040*5c7e270fSAndriy Gapon }
1041*5c7e270fSAndriy Gapon 
1042*5c7e270fSAndriy Gapon SYSINIT(periodic_resettodr, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY - 1,
1043*5c7e270fSAndriy Gapon 	start_periodic_resettodr, NULL);
1044