xref: /freebsd/sys/kern/kern_ntptime.c (revision 240577c2a7442ca79256cdf359bbcea39d2ee216)
19454b2d8SWarner Losh /*-
29454b2d8SWarner Losh  ***********************************************************************
33f31c649SGarrett Wollman  *								       *
424dbea46SJohn Hay  * Copyright (c) David L. Mills 1993-2001			       *
53f31c649SGarrett Wollman  *								       *
6c68996e2SPoul-Henning Kamp  * Permission to use, copy, modify, and distribute this software and   *
7c68996e2SPoul-Henning Kamp  * its documentation for any purpose and without fee is hereby	       *
8c68996e2SPoul-Henning Kamp  * granted, provided that the above copyright notice appears in all    *
9c68996e2SPoul-Henning Kamp  * copies and that both the copyright notice and this permission       *
10c68996e2SPoul-Henning Kamp  * notice appear in supporting documentation, and that the name	       *
11c68996e2SPoul-Henning Kamp  * University of Delaware not be used in advertising or publicity      *
12c68996e2SPoul-Henning Kamp  * pertaining to distribution of the software without specific,	       *
13c68996e2SPoul-Henning Kamp  * written prior permission. The University of Delaware makes no       *
14c68996e2SPoul-Henning Kamp  * representations about the suitability this software for any	       *
15c68996e2SPoul-Henning Kamp  * purpose. It is provided "as is" without express or implied	       *
16c68996e2SPoul-Henning Kamp  * warranty.							       *
173f31c649SGarrett Wollman  *								       *
18c68996e2SPoul-Henning Kamp  **********************************************************************/
193f31c649SGarrett Wollman 
203f31c649SGarrett Wollman /*
21c68996e2SPoul-Henning Kamp  * Adapted from the original sources for FreeBSD and timecounters by:
2232c20357SPoul-Henning Kamp  * Poul-Henning Kamp <phk@FreeBSD.org>.
233f31c649SGarrett Wollman  *
24c68996e2SPoul-Henning Kamp  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25c68996e2SPoul-Henning Kamp  * date so I have retained only the 64bit version and included it directly
26c68996e2SPoul-Henning Kamp  * in this file.
27885bd8e4SJohn Hay  *
28c68996e2SPoul-Henning Kamp  * Only minor changes done to interface with the timecounters over in
29c68996e2SPoul-Henning Kamp  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30c68996e2SPoul-Henning Kamp  * confusing and/or plain wrong in that context.
313f31c649SGarrett Wollman  */
32e0d781f3SEivind Eklund 
33677b542eSDavid E. O'Brien #include <sys/cdefs.h>
34677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$");
35677b542eSDavid E. O'Brien 
3632c20357SPoul-Henning Kamp #include "opt_ntp.h"
3732c20357SPoul-Henning Kamp 
383f31c649SGarrett Wollman #include <sys/param.h>
393f31c649SGarrett Wollman #include <sys/systm.h>
40d2d3e875SBruce Evans #include <sys/sysproto.h>
415c7e270fSAndriy Gapon #include <sys/eventhandler.h>
423f31c649SGarrett Wollman #include <sys/kernel.h>
43acd3428bSRobert Watson #include <sys/priv.h>
443f31c649SGarrett Wollman #include <sys/proc.h>
456f1e8c18SMatthew Dillon #include <sys/lock.h>
466f1e8c18SMatthew Dillon #include <sys/mutex.h>
47c68996e2SPoul-Henning Kamp #include <sys/time.h>
483f31c649SGarrett Wollman #include <sys/timex.h>
4991266b96SPoul-Henning Kamp #include <sys/timetc.h>
50938ee3ceSPoul-Henning Kamp #include <sys/timepps.h>
51b88ec951SJohn Baldwin #include <sys/syscallsubr.h>
523f31c649SGarrett Wollman #include <sys/sysctl.h>
533f31c649SGarrett Wollman 
543f31c649SGarrett Wollman /*
55c68996e2SPoul-Henning Kamp  * Single-precision macros for 64-bit machines
563f31c649SGarrett Wollman  */
57bcfe6d8bSPoul-Henning Kamp typedef int64_t l_fp;
58c68996e2SPoul-Henning Kamp #define L_ADD(v, u)	((v) += (u))
59c68996e2SPoul-Henning Kamp #define L_SUB(v, u)	((v) -= (u))
60bcfe6d8bSPoul-Henning Kamp #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
61c68996e2SPoul-Henning Kamp #define L_NEG(v)	((v) = -(v))
62c68996e2SPoul-Henning Kamp #define L_RSHIFT(v, n) \
63c68996e2SPoul-Henning Kamp 	do { \
64c68996e2SPoul-Henning Kamp 		if ((v) < 0) \
65c68996e2SPoul-Henning Kamp 			(v) = -(-(v) >> (n)); \
66c68996e2SPoul-Henning Kamp 		else \
67c68996e2SPoul-Henning Kamp 			(v) = (v) >> (n); \
68c68996e2SPoul-Henning Kamp 	} while (0)
69c68996e2SPoul-Henning Kamp #define L_MPY(v, a)	((v) *= (a))
70c68996e2SPoul-Henning Kamp #define L_CLR(v)	((v) = 0)
71c68996e2SPoul-Henning Kamp #define L_ISNEG(v)	((v) < 0)
72bcfe6d8bSPoul-Henning Kamp #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
73c68996e2SPoul-Henning Kamp #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
746f70df15SPoul-Henning Kamp 
756f70df15SPoul-Henning Kamp /*
76c68996e2SPoul-Henning Kamp  * Generic NTP kernel interface
776f70df15SPoul-Henning Kamp  *
78c68996e2SPoul-Henning Kamp  * These routines constitute the Network Time Protocol (NTP) interfaces
79c68996e2SPoul-Henning Kamp  * for user and daemon application programs. The ntp_gettime() routine
80c68996e2SPoul-Henning Kamp  * provides the time, maximum error (synch distance) and estimated error
81c68996e2SPoul-Henning Kamp  * (dispersion) to client user application programs. The ntp_adjtime()
82c68996e2SPoul-Henning Kamp  * routine is used by the NTP daemon to adjust the system clock to an
83c68996e2SPoul-Henning Kamp  * externally derived time. The time offset and related variables set by
84c68996e2SPoul-Henning Kamp  * this routine are used by other routines in this module to adjust the
85c68996e2SPoul-Henning Kamp  * phase and frequency of the clock discipline loop which controls the
86c68996e2SPoul-Henning Kamp  * system clock.
876f70df15SPoul-Henning Kamp  *
88f425c1f6SPoul-Henning Kamp  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
89c68996e2SPoul-Henning Kamp  * defined), the time at each tick interrupt is derived directly from
90c68996e2SPoul-Henning Kamp  * the kernel time variable. When the kernel time is reckoned in
91f425c1f6SPoul-Henning Kamp  * microseconds, (NTP_NANO undefined), the time is derived from the
92f425c1f6SPoul-Henning Kamp  * kernel time variable together with a variable representing the
93f425c1f6SPoul-Henning Kamp  * leftover nanoseconds at the last tick interrupt. In either case, the
94f425c1f6SPoul-Henning Kamp  * current nanosecond time is reckoned from these values plus an
95f425c1f6SPoul-Henning Kamp  * interpolated value derived by the clock routines in another
96f425c1f6SPoul-Henning Kamp  * architecture-specific module. The interpolation can use either a
97f425c1f6SPoul-Henning Kamp  * dedicated counter or a processor cycle counter (PCC) implemented in
98f425c1f6SPoul-Henning Kamp  * some architectures.
996f70df15SPoul-Henning Kamp  *
100c68996e2SPoul-Henning Kamp  * Note that all routines must run at priority splclock or higher.
1016f70df15SPoul-Henning Kamp  */
102c68996e2SPoul-Henning Kamp /*
103c68996e2SPoul-Henning Kamp  * Phase/frequency-lock loop (PLL/FLL) definitions
104c68996e2SPoul-Henning Kamp  *
105c68996e2SPoul-Henning Kamp  * The nanosecond clock discipline uses two variable types, time
106c68996e2SPoul-Henning Kamp  * variables and frequency variables. Both types are represented as 64-
107c68996e2SPoul-Henning Kamp  * bit fixed-point quantities with the decimal point between two 32-bit
108c68996e2SPoul-Henning Kamp  * halves. On a 32-bit machine, each half is represented as a single
109c68996e2SPoul-Henning Kamp  * word and mathematical operations are done using multiple-precision
110c68996e2SPoul-Henning Kamp  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
111c68996e2SPoul-Henning Kamp  * used.
112c68996e2SPoul-Henning Kamp  *
113c68996e2SPoul-Henning Kamp  * A time variable is a signed 64-bit fixed-point number in ns and
114c68996e2SPoul-Henning Kamp  * fraction. It represents the remaining time offset to be amortized
115c68996e2SPoul-Henning Kamp  * over succeeding tick interrupts. The maximum time offset is about
116f425c1f6SPoul-Henning Kamp  * 0.5 s and the resolution is about 2.3e-10 ns.
117c68996e2SPoul-Henning Kamp  *
118c68996e2SPoul-Henning Kamp  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
119c68996e2SPoul-Henning Kamp  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
120c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121c68996e2SPoul-Henning Kamp  * |s s s|			 ns				   |
122c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
123c68996e2SPoul-Henning Kamp  * |			    fraction				   |
124c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125c68996e2SPoul-Henning Kamp  *
126c68996e2SPoul-Henning Kamp  * A frequency variable is a signed 64-bit fixed-point number in ns/s
127c68996e2SPoul-Henning Kamp  * and fraction. It represents the ns and fraction to be added to the
128c68996e2SPoul-Henning Kamp  * kernel time variable at each second. The maximum frequency offset is
129f425c1f6SPoul-Henning Kamp  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
130c68996e2SPoul-Henning Kamp  *
131c68996e2SPoul-Henning Kamp  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
132c68996e2SPoul-Henning Kamp  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
133c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134c68996e2SPoul-Henning Kamp  * |s s s s s s s s s s s s s|	          ns/s			   |
135c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136c68996e2SPoul-Henning Kamp  * |			    fraction				   |
137c68996e2SPoul-Henning Kamp  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138c68996e2SPoul-Henning Kamp  */
139c68996e2SPoul-Henning Kamp /*
140c68996e2SPoul-Henning Kamp  * The following variables establish the state of the PLL/FLL and the
141c68996e2SPoul-Henning Kamp  * residual time and frequency offset of the local clock.
142c68996e2SPoul-Henning Kamp  */
143c68996e2SPoul-Henning Kamp #define SHIFT_PLL	4		/* PLL loop gain (shift) */
144c68996e2SPoul-Henning Kamp #define SHIFT_FLL	2		/* FLL loop gain (shift) */
145c68996e2SPoul-Henning Kamp 
146c68996e2SPoul-Henning Kamp static int time_state = TIME_OK;	/* clock state */
147c68996e2SPoul-Henning Kamp static int time_status = STA_UNSYNC;	/* clock status bits */
14897804a5cSPoul-Henning Kamp static long time_tai;			/* TAI offset (s) */
14997804a5cSPoul-Henning Kamp static long time_monitor;		/* last time offset scaled (ns) */
150c68996e2SPoul-Henning Kamp static long time_constant;		/* poll interval (shift) (s) */
151c68996e2SPoul-Henning Kamp static long time_precision = 1;		/* clock precision (ns) */
152c68996e2SPoul-Henning Kamp static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
153c68996e2SPoul-Henning Kamp static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
154c68996e2SPoul-Henning Kamp static long time_reftime;		/* time at last adjustment (s) */
155c68996e2SPoul-Henning Kamp static l_fp time_offset;		/* time offset (ns) */
156c68996e2SPoul-Henning Kamp static l_fp time_freq;			/* frequency offset (ns/s) */
15797804a5cSPoul-Henning Kamp static l_fp time_adj;			/* tick adjust (ns/s) */
1583f31c649SGarrett Wollman 
159e1d970f1SPoul-Henning Kamp static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
160e1d970f1SPoul-Henning Kamp 
1613f31c649SGarrett Wollman #ifdef PPS_SYNC
1623f31c649SGarrett Wollman /*
163c68996e2SPoul-Henning Kamp  * The following variables are used when a pulse-per-second (PPS) signal
164c68996e2SPoul-Henning Kamp  * is available and connected via a modem control lead. They establish
165c68996e2SPoul-Henning Kamp  * the engineering parameters of the clock discipline loop when
166c68996e2SPoul-Henning Kamp  * controlled by the PPS signal.
1673f31c649SGarrett Wollman  */
168c68996e2SPoul-Henning Kamp #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
16924dbea46SJohn Hay #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
17082e84c5bSPoul-Henning Kamp #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
171c68996e2SPoul-Henning Kamp #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
172c68996e2SPoul-Henning Kamp #define PPS_VALID	120		/* PPS signal watchdog max (s) */
17382e84c5bSPoul-Henning Kamp #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
17482e84c5bSPoul-Henning Kamp #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
175c68996e2SPoul-Henning Kamp 
17682e84c5bSPoul-Henning Kamp static struct timespec pps_tf[3];	/* phase median filter */
177c68996e2SPoul-Henning Kamp static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
178f425c1f6SPoul-Henning Kamp static long pps_fcount;			/* frequency accumulator */
17982e84c5bSPoul-Henning Kamp static long pps_jitter;			/* nominal jitter (ns) */
18082e84c5bSPoul-Henning Kamp static long pps_stabil;			/* nominal stability (scaled ns/s) */
181c68996e2SPoul-Henning Kamp static long pps_lastsec;		/* time at last calibration (s) */
182c68996e2SPoul-Henning Kamp static int pps_valid;			/* signal watchdog counter */
183c68996e2SPoul-Henning Kamp static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
18482e84c5bSPoul-Henning Kamp static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
185c68996e2SPoul-Henning Kamp static int pps_intcnt;			/* wander counter */
1866f70df15SPoul-Henning Kamp 
1876f70df15SPoul-Henning Kamp /*
1886f70df15SPoul-Henning Kamp  * PPS signal quality monitors
1896f70df15SPoul-Henning Kamp  */
190c68996e2SPoul-Henning Kamp static long pps_calcnt;			/* calibration intervals */
191c68996e2SPoul-Henning Kamp static long pps_jitcnt;			/* jitter limit exceeded */
192c68996e2SPoul-Henning Kamp static long pps_stbcnt;			/* stability limit exceeded */
193c68996e2SPoul-Henning Kamp static long pps_errcnt;			/* calibration errors */
1943f31c649SGarrett Wollman #endif /* PPS_SYNC */
195c68996e2SPoul-Henning Kamp /*
196c68996e2SPoul-Henning Kamp  * End of phase/frequency-lock loop (PLL/FLL) definitions
197c68996e2SPoul-Henning Kamp  */
1983f31c649SGarrett Wollman 
199c68996e2SPoul-Henning Kamp static void ntp_init(void);
200c68996e2SPoul-Henning Kamp static void hardupdate(long offset);
201932cfd41SMark Santcroos static void ntp_gettime1(struct ntptimeval *ntvp);
2029a9ae42aSAndriy Gapon static int ntp_is_time_error(void);
203c68996e2SPoul-Henning Kamp 
2049a9ae42aSAndriy Gapon static int
2059a9ae42aSAndriy Gapon ntp_is_time_error(void)
206c68996e2SPoul-Henning Kamp {
207c68996e2SPoul-Henning Kamp 	/*
208c68996e2SPoul-Henning Kamp 	 * Status word error decode. If any of these conditions occur,
209c68996e2SPoul-Henning Kamp 	 * an error is returned, instead of the status word. Most
210c68996e2SPoul-Henning Kamp 	 * applications will care only about the fact the system clock
211c68996e2SPoul-Henning Kamp 	 * may not be trusted, not about the details.
212c68996e2SPoul-Henning Kamp 	 *
213c68996e2SPoul-Henning Kamp 	 * Hardware or software error
214c68996e2SPoul-Henning Kamp 	 */
215c68996e2SPoul-Henning Kamp 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
216c68996e2SPoul-Henning Kamp 
217c68996e2SPoul-Henning Kamp 	/*
218c68996e2SPoul-Henning Kamp 	 * PPS signal lost when either time or frequency synchronization
219c68996e2SPoul-Henning Kamp 	 * requested
220c68996e2SPoul-Henning Kamp 	 */
221c68996e2SPoul-Henning Kamp 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
222c68996e2SPoul-Henning Kamp 	    !(time_status & STA_PPSSIGNAL)) ||
223c68996e2SPoul-Henning Kamp 
224c68996e2SPoul-Henning Kamp 	/*
225c68996e2SPoul-Henning Kamp 	 * PPS jitter exceeded when time synchronization requested
226c68996e2SPoul-Henning Kamp 	 */
227c68996e2SPoul-Henning Kamp 	    (time_status & STA_PPSTIME &&
228c68996e2SPoul-Henning Kamp 	    time_status & STA_PPSJITTER) ||
229c68996e2SPoul-Henning Kamp 
230c68996e2SPoul-Henning Kamp 	/*
231c68996e2SPoul-Henning Kamp 	 * PPS wander exceeded or calibration error when frequency
232c68996e2SPoul-Henning Kamp 	 * synchronization requested
233c68996e2SPoul-Henning Kamp 	 */
234c68996e2SPoul-Henning Kamp 	    (time_status & STA_PPSFREQ &&
235c68996e2SPoul-Henning Kamp 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
2369a9ae42aSAndriy Gapon 		return (1);
2379a9ae42aSAndriy Gapon 
2389a9ae42aSAndriy Gapon 	return (0);
2399a9ae42aSAndriy Gapon }
2409a9ae42aSAndriy Gapon 
2419a9ae42aSAndriy Gapon static void
2429a9ae42aSAndriy Gapon ntp_gettime1(struct ntptimeval *ntvp)
2439a9ae42aSAndriy Gapon {
2449a9ae42aSAndriy Gapon 	struct timespec atv;	/* nanosecond time */
2459a9ae42aSAndriy Gapon 
2469a9ae42aSAndriy Gapon 	GIANT_REQUIRED;
2479a9ae42aSAndriy Gapon 
2489a9ae42aSAndriy Gapon 	nanotime(&atv);
2499a9ae42aSAndriy Gapon 	ntvp->time.tv_sec = atv.tv_sec;
2509a9ae42aSAndriy Gapon 	ntvp->time.tv_nsec = atv.tv_nsec;
2519a9ae42aSAndriy Gapon 	ntvp->maxerror = time_maxerror;
2529a9ae42aSAndriy Gapon 	ntvp->esterror = time_esterror;
2539a9ae42aSAndriy Gapon 	ntvp->tai = time_tai;
2549a9ae42aSAndriy Gapon 	ntvp->time_state = time_state;
2559a9ae42aSAndriy Gapon 
2569a9ae42aSAndriy Gapon 	if (ntp_is_time_error())
257932cfd41SMark Santcroos 		ntvp->time_state = TIME_ERROR;
258932cfd41SMark Santcroos }
259932cfd41SMark Santcroos 
2609b7fe7e4SMark Santcroos /*
2619b7fe7e4SMark Santcroos  * ntp_gettime() - NTP user application interface
2629b7fe7e4SMark Santcroos  *
263873fbcd7SRobert Watson  * See the timex.h header file for synopsis and API description.  Note that
264873fbcd7SRobert Watson  * the TAI offset is returned in the ntvtimeval.tai structure member.
2659b7fe7e4SMark Santcroos  */
266932cfd41SMark Santcroos #ifndef _SYS_SYSPROTO_H_
267932cfd41SMark Santcroos struct ntp_gettime_args {
268932cfd41SMark Santcroos 	struct ntptimeval *ntvp;
269932cfd41SMark Santcroos };
270932cfd41SMark Santcroos #endif
271932cfd41SMark Santcroos /* ARGSUSED */
272932cfd41SMark Santcroos int
273932cfd41SMark Santcroos ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
274932cfd41SMark Santcroos {
275932cfd41SMark Santcroos 	struct ntptimeval ntv;
276932cfd41SMark Santcroos 
27775b82238SRobert Watson 	mtx_lock(&Giant);
278932cfd41SMark Santcroos 	ntp_gettime1(&ntv);
27975b82238SRobert Watson 	mtx_unlock(&Giant);
280932cfd41SMark Santcroos 
281fe18f385SWarner Losh 	td->td_retval[0] = ntv.time_state;
282932cfd41SMark Santcroos 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
283932cfd41SMark Santcroos }
284932cfd41SMark Santcroos 
285932cfd41SMark Santcroos static int
286932cfd41SMark Santcroos ntp_sysctl(SYSCTL_HANDLER_ARGS)
287932cfd41SMark Santcroos {
288932cfd41SMark Santcroos 	struct ntptimeval ntv;	/* temporary structure */
289932cfd41SMark Santcroos 
290932cfd41SMark Santcroos 	ntp_gettime1(&ntv);
291932cfd41SMark Santcroos 
292932cfd41SMark Santcroos 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
293c68996e2SPoul-Henning Kamp }
294c68996e2SPoul-Henning Kamp 
295c68996e2SPoul-Henning Kamp SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
296c68996e2SPoul-Henning Kamp SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
297c68996e2SPoul-Henning Kamp 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
298c68996e2SPoul-Henning Kamp 
2995968e18bSPoul-Henning Kamp #ifdef PPS_SYNC
30082e84c5bSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
3016a77f60dSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
302*240577c2SMatthew D Fleming SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
303*240577c2SMatthew D Fleming     &time_monitor, 0, "");
3047fd299cbSPoul-Henning Kamp 
3057fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
3067fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
3075968e18bSPoul-Henning Kamp #endif
308873fbcd7SRobert Watson 
309c68996e2SPoul-Henning Kamp /*
310c68996e2SPoul-Henning Kamp  * ntp_adjtime() - NTP daemon application interface
311c68996e2SPoul-Henning Kamp  *
312873fbcd7SRobert Watson  * See the timex.h header file for synopsis and API description.  Note that
313873fbcd7SRobert Watson  * the timex.constant structure member has a dual purpose to set the time
314873fbcd7SRobert Watson  * constant and to set the TAI offset.
315c68996e2SPoul-Henning Kamp  */
316c68996e2SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_
317c68996e2SPoul-Henning Kamp struct ntp_adjtime_args {
318c68996e2SPoul-Henning Kamp 	struct timex *tp;
319c68996e2SPoul-Henning Kamp };
320c68996e2SPoul-Henning Kamp #endif
321c68996e2SPoul-Henning Kamp 
322c68996e2SPoul-Henning Kamp int
323b40ce416SJulian Elischer ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
324c68996e2SPoul-Henning Kamp {
325c68996e2SPoul-Henning Kamp 	struct timex ntv;	/* temporary structure */
326f425c1f6SPoul-Henning Kamp 	long freq;		/* frequency ns/s) */
327c68996e2SPoul-Henning Kamp 	int modes;		/* mode bits from structure */
328c68996e2SPoul-Henning Kamp 	int s;			/* caller priority */
329c68996e2SPoul-Henning Kamp 	int error;
330c68996e2SPoul-Henning Kamp 
331c68996e2SPoul-Henning Kamp 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
332c68996e2SPoul-Henning Kamp 	if (error)
333c68996e2SPoul-Henning Kamp 		return(error);
334c68996e2SPoul-Henning Kamp 
335c68996e2SPoul-Henning Kamp 	/*
336c68996e2SPoul-Henning Kamp 	 * Update selected clock variables - only the superuser can
337c68996e2SPoul-Henning Kamp 	 * change anything. Note that there is no error checking here on
338c68996e2SPoul-Henning Kamp 	 * the assumption the superuser should know what it is doing.
33997804a5cSPoul-Henning Kamp 	 * Note that either the time constant or TAI offset are loaded
34024dbea46SJohn Hay 	 * from the ntv.constant member, depending on the mode bits. If
34124dbea46SJohn Hay 	 * the STA_PLL bit in the status word is cleared, the state and
34224dbea46SJohn Hay 	 * status words are reset to the initial values at boot.
343c68996e2SPoul-Henning Kamp 	 */
3446f1e8c18SMatthew Dillon 	mtx_lock(&Giant);
345c68996e2SPoul-Henning Kamp 	modes = ntv.modes;
346fafbe352SPoul-Henning Kamp 	if (modes)
347acd3428bSRobert Watson 		error = priv_check(td, PRIV_NTP_ADJTIME);
348c68996e2SPoul-Henning Kamp 	if (error)
3496f1e8c18SMatthew Dillon 		goto done2;
350c68996e2SPoul-Henning Kamp 	s = splclock();
351c68996e2SPoul-Henning Kamp 	if (modes & MOD_MAXERROR)
352c68996e2SPoul-Henning Kamp 		time_maxerror = ntv.maxerror;
353c68996e2SPoul-Henning Kamp 	if (modes & MOD_ESTERROR)
354c68996e2SPoul-Henning Kamp 		time_esterror = ntv.esterror;
355c68996e2SPoul-Henning Kamp 	if (modes & MOD_STATUS) {
35624dbea46SJohn Hay 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
35724dbea46SJohn Hay 			time_state = TIME_OK;
35824dbea46SJohn Hay 			time_status = STA_UNSYNC;
35924dbea46SJohn Hay #ifdef PPS_SYNC
36024dbea46SJohn Hay 			pps_shift = PPS_FAVG;
36124dbea46SJohn Hay #endif /* PPS_SYNC */
36224dbea46SJohn Hay 		}
363c68996e2SPoul-Henning Kamp 		time_status &= STA_RONLY;
364c68996e2SPoul-Henning Kamp 		time_status |= ntv.status & ~STA_RONLY;
365c68996e2SPoul-Henning Kamp 	}
366f425c1f6SPoul-Henning Kamp 	if (modes & MOD_TIMECONST) {
367f425c1f6SPoul-Henning Kamp 		if (ntv.constant < 0)
368f425c1f6SPoul-Henning Kamp 			time_constant = 0;
369f425c1f6SPoul-Henning Kamp 		else if (ntv.constant > MAXTC)
370f425c1f6SPoul-Henning Kamp 			time_constant = MAXTC;
371f425c1f6SPoul-Henning Kamp 		else
372c68996e2SPoul-Henning Kamp 			time_constant = ntv.constant;
373f425c1f6SPoul-Henning Kamp 	}
37497804a5cSPoul-Henning Kamp 	if (modes & MOD_TAI) {
37597804a5cSPoul-Henning Kamp 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
37697804a5cSPoul-Henning Kamp 			time_tai = ntv.constant;
37797804a5cSPoul-Henning Kamp 	}
37882e84c5bSPoul-Henning Kamp #ifdef PPS_SYNC
37982e84c5bSPoul-Henning Kamp 	if (modes & MOD_PPSMAX) {
38082e84c5bSPoul-Henning Kamp 		if (ntv.shift < PPS_FAVG)
38182e84c5bSPoul-Henning Kamp 			pps_shiftmax = PPS_FAVG;
38282e84c5bSPoul-Henning Kamp 		else if (ntv.shift > PPS_FAVGMAX)
38382e84c5bSPoul-Henning Kamp 			pps_shiftmax = PPS_FAVGMAX;
38482e84c5bSPoul-Henning Kamp 		else
38582e84c5bSPoul-Henning Kamp 			pps_shiftmax = ntv.shift;
38682e84c5bSPoul-Henning Kamp 	}
38782e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */
388c68996e2SPoul-Henning Kamp 	if (modes & MOD_NANO)
389c68996e2SPoul-Henning Kamp 		time_status |= STA_NANO;
390c68996e2SPoul-Henning Kamp 	if (modes & MOD_MICRO)
391c68996e2SPoul-Henning Kamp 		time_status &= ~STA_NANO;
392c68996e2SPoul-Henning Kamp 	if (modes & MOD_CLKB)
393c68996e2SPoul-Henning Kamp 		time_status |= STA_CLK;
394c68996e2SPoul-Henning Kamp 	if (modes & MOD_CLKA)
395c68996e2SPoul-Henning Kamp 		time_status &= ~STA_CLK;
39624dbea46SJohn Hay 	if (modes & MOD_FREQUENCY) {
39724dbea46SJohn Hay 		freq = (ntv.freq * 1000LL) >> 16;
39824dbea46SJohn Hay 		if (freq > MAXFREQ)
39924dbea46SJohn Hay 			L_LINT(time_freq, MAXFREQ);
40024dbea46SJohn Hay 		else if (freq < -MAXFREQ)
40124dbea46SJohn Hay 			L_LINT(time_freq, -MAXFREQ);
402bcfe6d8bSPoul-Henning Kamp 		else {
403bcfe6d8bSPoul-Henning Kamp 			/*
404bcfe6d8bSPoul-Henning Kamp 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
405bcfe6d8bSPoul-Henning Kamp 			 * time_freq is [ns/s * 2^32]
406bcfe6d8bSPoul-Henning Kamp 			 */
407bcfe6d8bSPoul-Henning Kamp 			time_freq = ntv.freq * 1000LL * 65536LL;
408bcfe6d8bSPoul-Henning Kamp 		}
40924dbea46SJohn Hay #ifdef PPS_SYNC
41024dbea46SJohn Hay 		pps_freq = time_freq;
41124dbea46SJohn Hay #endif /* PPS_SYNC */
41224dbea46SJohn Hay 	}
413551260fcSPoul-Henning Kamp 	if (modes & MOD_OFFSET) {
414551260fcSPoul-Henning Kamp 		if (time_status & STA_NANO)
415551260fcSPoul-Henning Kamp 			hardupdate(ntv.offset);
416551260fcSPoul-Henning Kamp 		else
417551260fcSPoul-Henning Kamp 			hardupdate(ntv.offset * 1000);
418551260fcSPoul-Henning Kamp 	}
419c68996e2SPoul-Henning Kamp 
420c68996e2SPoul-Henning Kamp 	/*
42197804a5cSPoul-Henning Kamp 	 * Retrieve all clock variables. Note that the TAI offset is
42297804a5cSPoul-Henning Kamp 	 * returned only by ntp_gettime();
423c68996e2SPoul-Henning Kamp 	 */
424c68996e2SPoul-Henning Kamp 	if (time_status & STA_NANO)
425b9c6e8bdSPoul-Henning Kamp 		ntv.offset = L_GINT(time_offset);
426c68996e2SPoul-Henning Kamp 	else
427b9c6e8bdSPoul-Henning Kamp 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
42834cffbe3SPoul-Henning Kamp 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
429c68996e2SPoul-Henning Kamp 	ntv.maxerror = time_maxerror;
430c68996e2SPoul-Henning Kamp 	ntv.esterror = time_esterror;
431c68996e2SPoul-Henning Kamp 	ntv.status = time_status;
432f425c1f6SPoul-Henning Kamp 	ntv.constant = time_constant;
433c68996e2SPoul-Henning Kamp 	if (time_status & STA_NANO)
434c68996e2SPoul-Henning Kamp 		ntv.precision = time_precision;
435c68996e2SPoul-Henning Kamp 	else
436c68996e2SPoul-Henning Kamp 		ntv.precision = time_precision / 1000;
437c68996e2SPoul-Henning Kamp 	ntv.tolerance = MAXFREQ * SCALE_PPM;
438c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
439c68996e2SPoul-Henning Kamp 	ntv.shift = pps_shift;
44034cffbe3SPoul-Henning Kamp 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
441c68996e2SPoul-Henning Kamp 	if (time_status & STA_NANO)
442c68996e2SPoul-Henning Kamp 		ntv.jitter = pps_jitter;
443c68996e2SPoul-Henning Kamp 	else
444c68996e2SPoul-Henning Kamp 		ntv.jitter = pps_jitter / 1000;
445c68996e2SPoul-Henning Kamp 	ntv.stabil = pps_stabil;
446c68996e2SPoul-Henning Kamp 	ntv.calcnt = pps_calcnt;
447c68996e2SPoul-Henning Kamp 	ntv.errcnt = pps_errcnt;
448c68996e2SPoul-Henning Kamp 	ntv.jitcnt = pps_jitcnt;
449c68996e2SPoul-Henning Kamp 	ntv.stbcnt = pps_stbcnt;
450c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */
451c68996e2SPoul-Henning Kamp 	splx(s);
452c68996e2SPoul-Henning Kamp 
453c68996e2SPoul-Henning Kamp 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
454c68996e2SPoul-Henning Kamp 	if (error)
4556f1e8c18SMatthew Dillon 		goto done2;
456c68996e2SPoul-Henning Kamp 
4579a9ae42aSAndriy Gapon 	if (ntp_is_time_error())
458b40ce416SJulian Elischer 		td->td_retval[0] = TIME_ERROR;
4599a9ae42aSAndriy Gapon 	else
460b40ce416SJulian Elischer 		td->td_retval[0] = time_state;
4619a9ae42aSAndriy Gapon 
4626f1e8c18SMatthew Dillon done2:
4636f1e8c18SMatthew Dillon 	mtx_unlock(&Giant);
464a5088017SPoul-Henning Kamp 	return (error);
465c68996e2SPoul-Henning Kamp }
466c68996e2SPoul-Henning Kamp 
467c68996e2SPoul-Henning Kamp /*
468c68996e2SPoul-Henning Kamp  * second_overflow() - called after ntp_tick_adjust()
469c68996e2SPoul-Henning Kamp  *
470c68996e2SPoul-Henning Kamp  * This routine is ordinarily called immediately following the above
471c68996e2SPoul-Henning Kamp  * routine ntp_tick_adjust(). While these two routines are normally
472c68996e2SPoul-Henning Kamp  * combined, they are separated here only for the purposes of
473c68996e2SPoul-Henning Kamp  * simulation.
474c68996e2SPoul-Henning Kamp  */
475c68996e2SPoul-Henning Kamp void
476b4a1d0deSPoul-Henning Kamp ntp_update_second(int64_t *adjustment, time_t *newsec)
477c68996e2SPoul-Henning Kamp {
478e1d970f1SPoul-Henning Kamp 	int tickrate;
47997804a5cSPoul-Henning Kamp 	l_fp ftemp;		/* 32/64-bit temporary */
480c68996e2SPoul-Henning Kamp 
48182e84c5bSPoul-Henning Kamp 	/*
48282e84c5bSPoul-Henning Kamp 	 * On rollover of the second both the nanosecond and microsecond
48382e84c5bSPoul-Henning Kamp 	 * clocks are updated and the state machine cranked as
48482e84c5bSPoul-Henning Kamp 	 * necessary. The phase adjustment to be used for the next
48582e84c5bSPoul-Henning Kamp 	 * second is calculated and the maximum error is increased by
48682e84c5bSPoul-Henning Kamp 	 * the tolerance.
48782e84c5bSPoul-Henning Kamp 	 */
488c68996e2SPoul-Henning Kamp 	time_maxerror += MAXFREQ / 1000;
489c68996e2SPoul-Henning Kamp 
490c68996e2SPoul-Henning Kamp 	/*
491c68996e2SPoul-Henning Kamp 	 * Leap second processing. If in leap-insert state at
492c68996e2SPoul-Henning Kamp 	 * the end of the day, the system clock is set back one
493c68996e2SPoul-Henning Kamp 	 * second; if in leap-delete state, the system clock is
494c68996e2SPoul-Henning Kamp 	 * set ahead one second. The nano_time() routine or
495c68996e2SPoul-Henning Kamp 	 * external clock driver will insure that reported time
496c68996e2SPoul-Henning Kamp 	 * is always monotonic.
497c68996e2SPoul-Henning Kamp 	 */
498c68996e2SPoul-Henning Kamp 	switch (time_state) {
499c68996e2SPoul-Henning Kamp 
500c68996e2SPoul-Henning Kamp 		/*
501c68996e2SPoul-Henning Kamp 		 * No warning.
502c68996e2SPoul-Henning Kamp 		 */
503c68996e2SPoul-Henning Kamp 		case TIME_OK:
504c68996e2SPoul-Henning Kamp 		if (time_status & STA_INS)
505c68996e2SPoul-Henning Kamp 			time_state = TIME_INS;
506c68996e2SPoul-Henning Kamp 		else if (time_status & STA_DEL)
507c68996e2SPoul-Henning Kamp 			time_state = TIME_DEL;
508c68996e2SPoul-Henning Kamp 		break;
509c68996e2SPoul-Henning Kamp 
510c68996e2SPoul-Henning Kamp 		/*
511c68996e2SPoul-Henning Kamp 		 * Insert second 23:59:60 following second
512c68996e2SPoul-Henning Kamp 		 * 23:59:59.
513c68996e2SPoul-Henning Kamp 		 */
514c68996e2SPoul-Henning Kamp 		case TIME_INS:
515c68996e2SPoul-Henning Kamp 		if (!(time_status & STA_INS))
516c68996e2SPoul-Henning Kamp 			time_state = TIME_OK;
517c68996e2SPoul-Henning Kamp 		else if ((*newsec) % 86400 == 0) {
518c68996e2SPoul-Henning Kamp 			(*newsec)--;
519c68996e2SPoul-Henning Kamp 			time_state = TIME_OOP;
520eac3c62bSWarner Losh 			time_tai++;
521c68996e2SPoul-Henning Kamp 		}
522c68996e2SPoul-Henning Kamp 		break;
523c68996e2SPoul-Henning Kamp 
524c68996e2SPoul-Henning Kamp 		/*
525c68996e2SPoul-Henning Kamp 		 * Delete second 23:59:59.
526c68996e2SPoul-Henning Kamp 		 */
527c68996e2SPoul-Henning Kamp 		case TIME_DEL:
528c68996e2SPoul-Henning Kamp 		if (!(time_status & STA_DEL))
529c68996e2SPoul-Henning Kamp 			time_state = TIME_OK;
530c68996e2SPoul-Henning Kamp 		else if (((*newsec) + 1) % 86400 == 0) {
531c68996e2SPoul-Henning Kamp 			(*newsec)++;
53297804a5cSPoul-Henning Kamp 			time_tai--;
533c68996e2SPoul-Henning Kamp 			time_state = TIME_WAIT;
534c68996e2SPoul-Henning Kamp 		}
535c68996e2SPoul-Henning Kamp 		break;
536c68996e2SPoul-Henning Kamp 
537c68996e2SPoul-Henning Kamp 		/*
538c68996e2SPoul-Henning Kamp 		 * Insert second in progress.
539c68996e2SPoul-Henning Kamp 		 */
540c68996e2SPoul-Henning Kamp 		case TIME_OOP:
541c68996e2SPoul-Henning Kamp 			time_state = TIME_WAIT;
542c68996e2SPoul-Henning Kamp 		break;
543c68996e2SPoul-Henning Kamp 
544c68996e2SPoul-Henning Kamp 		/*
545c68996e2SPoul-Henning Kamp 		 * Wait for status bits to clear.
546c68996e2SPoul-Henning Kamp 		 */
547c68996e2SPoul-Henning Kamp 		case TIME_WAIT:
548c68996e2SPoul-Henning Kamp 		if (!(time_status & (STA_INS | STA_DEL)))
549c68996e2SPoul-Henning Kamp 			time_state = TIME_OK;
550c68996e2SPoul-Henning Kamp 	}
551c68996e2SPoul-Henning Kamp 
552c68996e2SPoul-Henning Kamp 	/*
55382e84c5bSPoul-Henning Kamp 	 * Compute the total time adjustment for the next second
55482e84c5bSPoul-Henning Kamp 	 * in ns. The offset is reduced by a factor depending on
55582e84c5bSPoul-Henning Kamp 	 * whether the PPS signal is operating. Note that the
55682e84c5bSPoul-Henning Kamp 	 * value is in effect scaled by the clock frequency,
55782e84c5bSPoul-Henning Kamp 	 * since the adjustment is added at each tick interrupt.
558c68996e2SPoul-Henning Kamp 	 */
55997804a5cSPoul-Henning Kamp 	ftemp = time_offset;
560c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
56197804a5cSPoul-Henning Kamp 	/* XXX even if PPS signal dies we should finish adjustment ? */
56297804a5cSPoul-Henning Kamp 	if (time_status & STA_PPSTIME && time_status &
56397804a5cSPoul-Henning Kamp 	    STA_PPSSIGNAL)
56497804a5cSPoul-Henning Kamp 		L_RSHIFT(ftemp, pps_shift);
56597804a5cSPoul-Henning Kamp 	else
56697804a5cSPoul-Henning Kamp 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
56782e84c5bSPoul-Henning Kamp #else
56897804a5cSPoul-Henning Kamp 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
56982e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */
57097804a5cSPoul-Henning Kamp 	time_adj = ftemp;
57197804a5cSPoul-Henning Kamp 	L_SUB(time_offset, ftemp);
572c68996e2SPoul-Henning Kamp 	L_ADD(time_adj, time_freq);
573e1d970f1SPoul-Henning Kamp 
574e1d970f1SPoul-Henning Kamp 	/*
575e1d970f1SPoul-Henning Kamp 	 * Apply any correction from adjtime(2).  If more than one second
576e1d970f1SPoul-Henning Kamp 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
577e1d970f1SPoul-Henning Kamp 	 * until the last second is slewed the final < 500 usecs.
578e1d970f1SPoul-Henning Kamp 	 */
579e1d970f1SPoul-Henning Kamp 	if (time_adjtime != 0) {
580e1d970f1SPoul-Henning Kamp 		if (time_adjtime > 1000000)
581e1d970f1SPoul-Henning Kamp 			tickrate = 5000;
582e1d970f1SPoul-Henning Kamp 		else if (time_adjtime < -1000000)
583e1d970f1SPoul-Henning Kamp 			tickrate = -5000;
584e1d970f1SPoul-Henning Kamp 		else if (time_adjtime > 500)
585e1d970f1SPoul-Henning Kamp 			tickrate = 500;
586e1d970f1SPoul-Henning Kamp 		else if (time_adjtime < -500)
587e1d970f1SPoul-Henning Kamp 			tickrate = -500;
588e1d970f1SPoul-Henning Kamp 		else
589bcfe6d8bSPoul-Henning Kamp 			tickrate = time_adjtime;
590e1d970f1SPoul-Henning Kamp 		time_adjtime -= tickrate;
591e1d970f1SPoul-Henning Kamp 		L_LINT(ftemp, tickrate * 1000);
592e1d970f1SPoul-Henning Kamp 		L_ADD(time_adj, ftemp);
593e1d970f1SPoul-Henning Kamp 	}
594b4a1d0deSPoul-Henning Kamp 	*adjustment = time_adj;
595e1d970f1SPoul-Henning Kamp 
596c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
597c68996e2SPoul-Henning Kamp 	if (pps_valid > 0)
598c68996e2SPoul-Henning Kamp 		pps_valid--;
599c68996e2SPoul-Henning Kamp 	else
60024dbea46SJohn Hay 		time_status &= ~STA_PPSSIGNAL;
601c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */
602c68996e2SPoul-Henning Kamp }
603c68996e2SPoul-Henning Kamp 
604c68996e2SPoul-Henning Kamp /*
605c68996e2SPoul-Henning Kamp  * ntp_init() - initialize variables and structures
606c68996e2SPoul-Henning Kamp  *
607c68996e2SPoul-Henning Kamp  * This routine must be called after the kernel variables hz and tick
608c68996e2SPoul-Henning Kamp  * are set or changed and before the next tick interrupt. In this
609c68996e2SPoul-Henning Kamp  * particular implementation, these values are assumed set elsewhere in
610c68996e2SPoul-Henning Kamp  * the kernel. The design allows the clock frequency and tick interval
611c68996e2SPoul-Henning Kamp  * to be changed while the system is running. So, this routine should
612c68996e2SPoul-Henning Kamp  * probably be integrated with the code that does that.
613c68996e2SPoul-Henning Kamp  */
614c68996e2SPoul-Henning Kamp static void
615c68996e2SPoul-Henning Kamp ntp_init()
616c68996e2SPoul-Henning Kamp {
617c68996e2SPoul-Henning Kamp 
618c68996e2SPoul-Henning Kamp 	/*
619c68996e2SPoul-Henning Kamp 	 * The following variables are initialized only at startup. Only
620c68996e2SPoul-Henning Kamp 	 * those structures not cleared by the compiler need to be
621c68996e2SPoul-Henning Kamp 	 * initialized, and these only in the simulator. In the actual
622c68996e2SPoul-Henning Kamp 	 * kernel, any nonzero values here will quickly evaporate.
623c68996e2SPoul-Henning Kamp 	 */
624c68996e2SPoul-Henning Kamp 	L_CLR(time_offset);
625c68996e2SPoul-Henning Kamp 	L_CLR(time_freq);
626c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC
62782e84c5bSPoul-Henning Kamp 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
62882e84c5bSPoul-Henning Kamp 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
62982e84c5bSPoul-Henning Kamp 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
630f425c1f6SPoul-Henning Kamp 	pps_fcount = 0;
631c68996e2SPoul-Henning Kamp 	L_CLR(pps_freq);
632c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */
633c68996e2SPoul-Henning Kamp }
634c68996e2SPoul-Henning Kamp 
635237fdd78SRobert Watson SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
6366f70df15SPoul-Henning Kamp 
6376f70df15SPoul-Henning Kamp /*
6386f70df15SPoul-Henning Kamp  * hardupdate() - local clock update
6396f70df15SPoul-Henning Kamp  *
6406f70df15SPoul-Henning Kamp  * This routine is called by ntp_adjtime() to update the local clock
6416f70df15SPoul-Henning Kamp  * phase and frequency. The implementation is of an adaptive-parameter,
6426f70df15SPoul-Henning Kamp  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
6436f70df15SPoul-Henning Kamp  * time and frequency offset estimates for each call. If the kernel PPS
6446f70df15SPoul-Henning Kamp  * discipline code is configured (PPS_SYNC), the PPS signal itself
6456f70df15SPoul-Henning Kamp  * determines the new time offset, instead of the calling argument.
6466f70df15SPoul-Henning Kamp  * Presumably, calls to ntp_adjtime() occur only when the caller
6476f70df15SPoul-Henning Kamp  * believes the local clock is valid within some bound (+-128 ms with
6486f70df15SPoul-Henning Kamp  * NTP). If the caller's time is far different than the PPS time, an
6496f70df15SPoul-Henning Kamp  * argument will ensue, and it's not clear who will lose.
6506f70df15SPoul-Henning Kamp  *
651c68996e2SPoul-Henning Kamp  * For uncompensated quartz crystal oscillators and nominal update
652c68996e2SPoul-Henning Kamp  * intervals less than 256 s, operation should be in phase-lock mode,
653c68996e2SPoul-Henning Kamp  * where the loop is disciplined to phase. For update intervals greater
654c68996e2SPoul-Henning Kamp  * than 1024 s, operation should be in frequency-lock mode, where the
655c68996e2SPoul-Henning Kamp  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
656c68996e2SPoul-Henning Kamp  * is selected by the STA_MODE status bit.
6576f70df15SPoul-Henning Kamp  */
6586f70df15SPoul-Henning Kamp static void
659c68996e2SPoul-Henning Kamp hardupdate(offset)
660c68996e2SPoul-Henning Kamp 	long offset;		/* clock offset (ns) */
6616f70df15SPoul-Henning Kamp {
66297804a5cSPoul-Henning Kamp 	long mtemp;
663c68996e2SPoul-Henning Kamp 	l_fp ftemp;
6646f70df15SPoul-Henning Kamp 
665c68996e2SPoul-Henning Kamp 	/*
666c68996e2SPoul-Henning Kamp 	 * Select how the phase is to be controlled and from which
667c68996e2SPoul-Henning Kamp 	 * source. If the PPS signal is present and enabled to
668c68996e2SPoul-Henning Kamp 	 * discipline the time, the PPS offset is used; otherwise, the
669c68996e2SPoul-Henning Kamp 	 * argument offset is used.
670c68996e2SPoul-Henning Kamp 	 */
67182e84c5bSPoul-Henning Kamp 	if (!(time_status & STA_PLL))
67282e84c5bSPoul-Henning Kamp 		return;
67397804a5cSPoul-Henning Kamp 	if (!(time_status & STA_PPSTIME && time_status &
67497804a5cSPoul-Henning Kamp 	    STA_PPSSIGNAL)) {
67597804a5cSPoul-Henning Kamp 		if (offset > MAXPHASE)
67697804a5cSPoul-Henning Kamp 			time_monitor = MAXPHASE;
67797804a5cSPoul-Henning Kamp 		else if (offset < -MAXPHASE)
67897804a5cSPoul-Henning Kamp 			time_monitor = -MAXPHASE;
67997804a5cSPoul-Henning Kamp 		else
68097804a5cSPoul-Henning Kamp 			time_monitor = offset;
68197804a5cSPoul-Henning Kamp 		L_LINT(time_offset, time_monitor);
68297804a5cSPoul-Henning Kamp 	}
6836f70df15SPoul-Henning Kamp 
6846f70df15SPoul-Henning Kamp 	/*
685c68996e2SPoul-Henning Kamp 	 * Select how the frequency is to be controlled and in which
686c68996e2SPoul-Henning Kamp 	 * mode (PLL or FLL). If the PPS signal is present and enabled
687c68996e2SPoul-Henning Kamp 	 * to discipline the frequency, the PPS frequency is used;
688c68996e2SPoul-Henning Kamp 	 * otherwise, the argument offset is used to compute it.
6896f70df15SPoul-Henning Kamp 	 */
690c68996e2SPoul-Henning Kamp 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
691c68996e2SPoul-Henning Kamp 		time_reftime = time_second;
692c68996e2SPoul-Henning Kamp 		return;
693c68996e2SPoul-Henning Kamp 	}
6946f70df15SPoul-Henning Kamp 	if (time_status & STA_FREQHOLD || time_reftime == 0)
695227ee8a1SPoul-Henning Kamp 		time_reftime = time_second;
696227ee8a1SPoul-Henning Kamp 	mtemp = time_second - time_reftime;
69797804a5cSPoul-Henning Kamp 	L_LINT(ftemp, time_monitor);
698c68996e2SPoul-Henning Kamp 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
699c68996e2SPoul-Henning Kamp 	L_MPY(ftemp, mtemp);
700c68996e2SPoul-Henning Kamp 	L_ADD(time_freq, ftemp);
701c68996e2SPoul-Henning Kamp 	time_status &= ~STA_MODE;
70297804a5cSPoul-Henning Kamp 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
70397804a5cSPoul-Henning Kamp 	    MAXSEC)) {
70497804a5cSPoul-Henning Kamp 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
70582e84c5bSPoul-Henning Kamp 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
70682e84c5bSPoul-Henning Kamp 		L_ADD(time_freq, ftemp);
70782e84c5bSPoul-Henning Kamp 		time_status |= STA_MODE;
708c68996e2SPoul-Henning Kamp 	}
709227ee8a1SPoul-Henning Kamp 	time_reftime = time_second;
710c68996e2SPoul-Henning Kamp 	if (L_GINT(time_freq) > MAXFREQ)
711c68996e2SPoul-Henning Kamp 		L_LINT(time_freq, MAXFREQ);
712c68996e2SPoul-Henning Kamp 	else if (L_GINT(time_freq) < -MAXFREQ)
713c68996e2SPoul-Henning Kamp 		L_LINT(time_freq, -MAXFREQ);
7143f31c649SGarrett Wollman }
7153f31c649SGarrett Wollman 
7166f70df15SPoul-Henning Kamp #ifdef PPS_SYNC
7176f70df15SPoul-Henning Kamp /*
7186f70df15SPoul-Henning Kamp  * hardpps() - discipline CPU clock oscillator to external PPS signal
7196f70df15SPoul-Henning Kamp  *
7206f70df15SPoul-Henning Kamp  * This routine is called at each PPS interrupt in order to discipline
72197804a5cSPoul-Henning Kamp  * the CPU clock oscillator to the PPS signal. There are two independent
72297804a5cSPoul-Henning Kamp  * first-order feedback loops, one for the phase, the other for the
72397804a5cSPoul-Henning Kamp  * frequency. The phase loop measures and grooms the PPS phase offset
72497804a5cSPoul-Henning Kamp  * and leaves it in a handy spot for the seconds overflow routine. The
72597804a5cSPoul-Henning Kamp  * frequency loop averages successive PPS phase differences and
72697804a5cSPoul-Henning Kamp  * calculates the PPS frequency offset, which is also processed by the
72797804a5cSPoul-Henning Kamp  * seconds overflow routine. The code requires the caller to capture the
72897804a5cSPoul-Henning Kamp  * time and architecture-dependent hardware counter values in
72997804a5cSPoul-Henning Kamp  * nanoseconds at the on-time PPS signal transition.
7306f70df15SPoul-Henning Kamp  *
731c68996e2SPoul-Henning Kamp  * Note that, on some Unix systems this routine runs at an interrupt
7326f70df15SPoul-Henning Kamp  * priority level higher than the timer interrupt routine hardclock().
7336f70df15SPoul-Henning Kamp  * Therefore, the variables used are distinct from the hardclock()
734c68996e2SPoul-Henning Kamp  * variables, except for the actual time and frequency variables, which
735c68996e2SPoul-Henning Kamp  * are determined by this routine and updated atomically.
7366f70df15SPoul-Henning Kamp  */
7376f70df15SPoul-Henning Kamp void
738c68996e2SPoul-Henning Kamp hardpps(tsp, nsec)
739c68996e2SPoul-Henning Kamp 	struct timespec *tsp;	/* time at PPS */
740c68996e2SPoul-Henning Kamp 	long nsec;		/* hardware counter at PPS */
7416f70df15SPoul-Henning Kamp {
74297804a5cSPoul-Henning Kamp 	long u_sec, u_nsec, v_nsec; /* temps */
743c68996e2SPoul-Henning Kamp 	l_fp ftemp;
7446f70df15SPoul-Henning Kamp 
7456f70df15SPoul-Henning Kamp 	/*
74697804a5cSPoul-Henning Kamp 	 * The signal is first processed by a range gate and frequency
74797804a5cSPoul-Henning Kamp 	 * discriminator. The range gate rejects noise spikes outside
74897804a5cSPoul-Henning Kamp 	 * the range +-500 us. The frequency discriminator rejects input
74997804a5cSPoul-Henning Kamp 	 * signals with apparent frequency outside the range 1 +-500
75097804a5cSPoul-Henning Kamp 	 * PPM. If two hits occur in the same second, we ignore the
75197804a5cSPoul-Henning Kamp 	 * later hit; if not and a hit occurs outside the range gate,
75297804a5cSPoul-Henning Kamp 	 * keep the later hit for later comparison, but do not process
75397804a5cSPoul-Henning Kamp 	 * it.
7546f70df15SPoul-Henning Kamp 	 */
755c68996e2SPoul-Henning Kamp 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
756c68996e2SPoul-Henning Kamp 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
757c68996e2SPoul-Henning Kamp 	pps_valid = PPS_VALID;
758c68996e2SPoul-Henning Kamp 	u_sec = tsp->tv_sec;
759c68996e2SPoul-Henning Kamp 	u_nsec = tsp->tv_nsec;
760c68996e2SPoul-Henning Kamp 	if (u_nsec >= (NANOSECOND >> 1)) {
761c68996e2SPoul-Henning Kamp 		u_nsec -= NANOSECOND;
762c68996e2SPoul-Henning Kamp 		u_sec++;
7636f70df15SPoul-Henning Kamp 	}
76482e84c5bSPoul-Henning Kamp 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
76524dbea46SJohn Hay 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
76624dbea46SJohn Hay 	    MAXFREQ)
767c68996e2SPoul-Henning Kamp 		return;
768c68996e2SPoul-Henning Kamp 	pps_tf[2] = pps_tf[1];
769c68996e2SPoul-Henning Kamp 	pps_tf[1] = pps_tf[0];
77082e84c5bSPoul-Henning Kamp 	pps_tf[0].tv_sec = u_sec;
77182e84c5bSPoul-Henning Kamp 	pps_tf[0].tv_nsec = u_nsec;
7726f70df15SPoul-Henning Kamp 
7736f70df15SPoul-Henning Kamp 	/*
774c68996e2SPoul-Henning Kamp 	 * Compute the difference between the current and previous
775c68996e2SPoul-Henning Kamp 	 * counter values. If the difference exceeds 0.5 s, assume it
776c68996e2SPoul-Henning Kamp 	 * has wrapped around, so correct 1.0 s. If the result exceeds
777c68996e2SPoul-Henning Kamp 	 * the tick interval, the sample point has crossed a tick
778c68996e2SPoul-Henning Kamp 	 * boundary during the last second, so correct the tick. Very
779c68996e2SPoul-Henning Kamp 	 * intricate.
780c68996e2SPoul-Henning Kamp 	 */
78132c20357SPoul-Henning Kamp 	u_nsec = nsec;
782c68996e2SPoul-Henning Kamp 	if (u_nsec > (NANOSECOND >> 1))
783c68996e2SPoul-Henning Kamp 		u_nsec -= NANOSECOND;
784c68996e2SPoul-Henning Kamp 	else if (u_nsec < -(NANOSECOND >> 1))
785c68996e2SPoul-Henning Kamp 		u_nsec += NANOSECOND;
786884ab557SPoul-Henning Kamp 	pps_fcount += u_nsec;
78724dbea46SJohn Hay 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
788c68996e2SPoul-Henning Kamp 		return;
789c68996e2SPoul-Henning Kamp 	time_status &= ~STA_PPSJITTER;
790c68996e2SPoul-Henning Kamp 
791c68996e2SPoul-Henning Kamp 	/*
792c68996e2SPoul-Henning Kamp 	 * A three-stage median filter is used to help denoise the PPS
7936f70df15SPoul-Henning Kamp 	 * time. The median sample becomes the time offset estimate; the
7946f70df15SPoul-Henning Kamp 	 * difference between the other two samples becomes the time
7956f70df15SPoul-Henning Kamp 	 * dispersion (jitter) estimate.
7966f70df15SPoul-Henning Kamp 	 */
79782e84c5bSPoul-Henning Kamp 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
79882e84c5bSPoul-Henning Kamp 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
79982e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
80082e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
80182e84c5bSPoul-Henning Kamp 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
80282e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
80382e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
8046f70df15SPoul-Henning Kamp 		} else {
80582e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
80682e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
807c68996e2SPoul-Henning Kamp 		}
808c68996e2SPoul-Henning Kamp 	} else {
80982e84c5bSPoul-Henning Kamp 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
81082e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
81182e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
81282e84c5bSPoul-Henning Kamp 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
81382e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
81482e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
815c68996e2SPoul-Henning Kamp 		} else {
81682e84c5bSPoul-Henning Kamp 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
81782e84c5bSPoul-Henning Kamp 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
8186f70df15SPoul-Henning Kamp 		}
8196f70df15SPoul-Henning Kamp 	}
8206f70df15SPoul-Henning Kamp 
8216f70df15SPoul-Henning Kamp 	/*
822c68996e2SPoul-Henning Kamp 	 * Nominal jitter is due to PPS signal noise and interrupt
82397804a5cSPoul-Henning Kamp 	 * latency. If it exceeds the popcorn threshold, the sample is
82497804a5cSPoul-Henning Kamp 	 * discarded. otherwise, if so enabled, the time offset is
82597804a5cSPoul-Henning Kamp 	 * updated. We can tolerate a modest loss of data here without
82697804a5cSPoul-Henning Kamp 	 * much degrading time accuracy.
8276f70df15SPoul-Henning Kamp 	 */
82882e84c5bSPoul-Henning Kamp 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
829c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSJITTER;
830c68996e2SPoul-Henning Kamp 		pps_jitcnt++;
831c68996e2SPoul-Henning Kamp 	} else if (time_status & STA_PPSTIME) {
83297804a5cSPoul-Henning Kamp 		time_monitor = -v_nsec;
83397804a5cSPoul-Henning Kamp 		L_LINT(time_offset, time_monitor);
834c68996e2SPoul-Henning Kamp 	}
835c68996e2SPoul-Henning Kamp 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
83682e84c5bSPoul-Henning Kamp 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
837c68996e2SPoul-Henning Kamp 	if (u_sec < (1 << pps_shift))
838c68996e2SPoul-Henning Kamp 		return;
839c68996e2SPoul-Henning Kamp 
840c68996e2SPoul-Henning Kamp 	/*
841c68996e2SPoul-Henning Kamp 	 * At the end of the calibration interval the difference between
842c68996e2SPoul-Henning Kamp 	 * the first and last counter values becomes the scaled
843c68996e2SPoul-Henning Kamp 	 * frequency. It will later be divided by the length of the
844c68996e2SPoul-Henning Kamp 	 * interval to determine the frequency update. If the frequency
845c68996e2SPoul-Henning Kamp 	 * exceeds a sanity threshold, or if the actual calibration
846c68996e2SPoul-Henning Kamp 	 * interval is not equal to the expected length, the data are
847c68996e2SPoul-Henning Kamp 	 * discarded. We can tolerate a modest loss of data here without
84897804a5cSPoul-Henning Kamp 	 * much degrading frequency accuracy.
849c68996e2SPoul-Henning Kamp 	 */
850c68996e2SPoul-Henning Kamp 	pps_calcnt++;
851884ab557SPoul-Henning Kamp 	v_nsec = -pps_fcount;
85282e84c5bSPoul-Henning Kamp 	pps_lastsec = pps_tf[0].tv_sec;
853884ab557SPoul-Henning Kamp 	pps_fcount = 0;
854c68996e2SPoul-Henning Kamp 	u_nsec = MAXFREQ << pps_shift;
855c68996e2SPoul-Henning Kamp 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
856c68996e2SPoul-Henning Kamp 	    pps_shift)) {
857c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSERROR;
858c68996e2SPoul-Henning Kamp 		pps_errcnt++;
859c68996e2SPoul-Henning Kamp 		return;
860c68996e2SPoul-Henning Kamp 	}
861c68996e2SPoul-Henning Kamp 
862c68996e2SPoul-Henning Kamp 	/*
86382e84c5bSPoul-Henning Kamp 	 * Here the raw frequency offset and wander (stability) is
86482e84c5bSPoul-Henning Kamp 	 * calculated. If the wander is less than the wander threshold
86582e84c5bSPoul-Henning Kamp 	 * for four consecutive averaging intervals, the interval is
86682e84c5bSPoul-Henning Kamp 	 * doubled; if it is greater than the threshold for four
86782e84c5bSPoul-Henning Kamp 	 * consecutive intervals, the interval is halved. The scaled
86882e84c5bSPoul-Henning Kamp 	 * frequency offset is converted to frequency offset. The
86982e84c5bSPoul-Henning Kamp 	 * stability metric is calculated as the average of recent
87082e84c5bSPoul-Henning Kamp 	 * frequency changes, but is used only for performance
871c68996e2SPoul-Henning Kamp 	 * monitoring.
872c68996e2SPoul-Henning Kamp 	 */
873c68996e2SPoul-Henning Kamp 	L_LINT(ftemp, v_nsec);
874c68996e2SPoul-Henning Kamp 	L_RSHIFT(ftemp, pps_shift);
875c68996e2SPoul-Henning Kamp 	L_SUB(ftemp, pps_freq);
876c68996e2SPoul-Henning Kamp 	u_nsec = L_GINT(ftemp);
87782e84c5bSPoul-Henning Kamp 	if (u_nsec > PPS_MAXWANDER) {
87882e84c5bSPoul-Henning Kamp 		L_LINT(ftemp, PPS_MAXWANDER);
879c68996e2SPoul-Henning Kamp 		pps_intcnt--;
880c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSWANDER;
881c68996e2SPoul-Henning Kamp 		pps_stbcnt++;
88282e84c5bSPoul-Henning Kamp 	} else if (u_nsec < -PPS_MAXWANDER) {
88382e84c5bSPoul-Henning Kamp 		L_LINT(ftemp, -PPS_MAXWANDER);
884c68996e2SPoul-Henning Kamp 		pps_intcnt--;
885c68996e2SPoul-Henning Kamp 		time_status |= STA_PPSWANDER;
886c68996e2SPoul-Henning Kamp 		pps_stbcnt++;
887c68996e2SPoul-Henning Kamp 	} else {
8886f70df15SPoul-Henning Kamp 		pps_intcnt++;
8896f70df15SPoul-Henning Kamp 	}
89097804a5cSPoul-Henning Kamp 	if (pps_intcnt >= 4) {
891c68996e2SPoul-Henning Kamp 		pps_intcnt = 4;
89282e84c5bSPoul-Henning Kamp 		if (pps_shift < pps_shiftmax) {
893c68996e2SPoul-Henning Kamp 			pps_shift++;
894c68996e2SPoul-Henning Kamp 			pps_intcnt = 0;
895c68996e2SPoul-Henning Kamp 		}
89697804a5cSPoul-Henning Kamp 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
897c68996e2SPoul-Henning Kamp 		pps_intcnt = -4;
898c68996e2SPoul-Henning Kamp 		if (pps_shift > PPS_FAVG) {
899c68996e2SPoul-Henning Kamp 			pps_shift--;
900c68996e2SPoul-Henning Kamp 			pps_intcnt = 0;
901c68996e2SPoul-Henning Kamp 		}
902c68996e2SPoul-Henning Kamp 	}
903c68996e2SPoul-Henning Kamp 	if (u_nsec < 0)
904c68996e2SPoul-Henning Kamp 		u_nsec = -u_nsec;
905c68996e2SPoul-Henning Kamp 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
9069ada5a50SPoul-Henning Kamp 
907c68996e2SPoul-Henning Kamp 	/*
90882e84c5bSPoul-Henning Kamp 	 * The PPS frequency is recalculated and clamped to the maximum
90982e84c5bSPoul-Henning Kamp 	 * MAXFREQ. If enabled, the system clock frequency is updated as
91082e84c5bSPoul-Henning Kamp 	 * well.
911c68996e2SPoul-Henning Kamp 	 */
912c68996e2SPoul-Henning Kamp 	L_ADD(pps_freq, ftemp);
913c68996e2SPoul-Henning Kamp 	u_nsec = L_GINT(pps_freq);
914c68996e2SPoul-Henning Kamp 	if (u_nsec > MAXFREQ)
915c68996e2SPoul-Henning Kamp 		L_LINT(pps_freq, MAXFREQ);
916c68996e2SPoul-Henning Kamp 	else if (u_nsec < -MAXFREQ)
917c68996e2SPoul-Henning Kamp 		L_LINT(pps_freq, -MAXFREQ);
91897804a5cSPoul-Henning Kamp 	if (time_status & STA_PPSFREQ)
919c68996e2SPoul-Henning Kamp 		time_freq = pps_freq;
920c68996e2SPoul-Henning Kamp }
9216f70df15SPoul-Henning Kamp #endif /* PPS_SYNC */
922e1d970f1SPoul-Henning Kamp 
923e1d970f1SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_
924e1d970f1SPoul-Henning Kamp struct adjtime_args {
925e1d970f1SPoul-Henning Kamp 	struct timeval *delta;
926e1d970f1SPoul-Henning Kamp 	struct timeval *olddelta;
927e1d970f1SPoul-Henning Kamp };
928e1d970f1SPoul-Henning Kamp #endif
929e1d970f1SPoul-Henning Kamp /* ARGSUSED */
930e1d970f1SPoul-Henning Kamp int
931e1d970f1SPoul-Henning Kamp adjtime(struct thread *td, struct adjtime_args *uap)
932e1d970f1SPoul-Henning Kamp {
933b88ec951SJohn Baldwin 	struct timeval delta, olddelta, *deltap;
934b88ec951SJohn Baldwin 	int error;
935b88ec951SJohn Baldwin 
936b88ec951SJohn Baldwin 	if (uap->delta) {
937b88ec951SJohn Baldwin 		error = copyin(uap->delta, &delta, sizeof(delta));
938b88ec951SJohn Baldwin 		if (error)
939b88ec951SJohn Baldwin 			return (error);
940b88ec951SJohn Baldwin 		deltap = &delta;
941b88ec951SJohn Baldwin 	} else
942b88ec951SJohn Baldwin 		deltap = NULL;
943b88ec951SJohn Baldwin 	error = kern_adjtime(td, deltap, &olddelta);
944b88ec951SJohn Baldwin 	if (uap->olddelta && error == 0)
945b88ec951SJohn Baldwin 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
946b88ec951SJohn Baldwin 	return (error);
947b88ec951SJohn Baldwin }
948b88ec951SJohn Baldwin 
949b88ec951SJohn Baldwin int
950b88ec951SJohn Baldwin kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
951b88ec951SJohn Baldwin {
952e1d970f1SPoul-Henning Kamp 	struct timeval atv;
953e1d970f1SPoul-Henning Kamp 	int error;
954e1d970f1SPoul-Henning Kamp 
9553bdd2d06SPoul-Henning Kamp 	mtx_lock(&Giant);
956b88ec951SJohn Baldwin 	if (olddelta) {
957e1d970f1SPoul-Henning Kamp 		atv.tv_sec = time_adjtime / 1000000;
958e1d970f1SPoul-Henning Kamp 		atv.tv_usec = time_adjtime % 1000000;
959e1d970f1SPoul-Henning Kamp 		if (atv.tv_usec < 0) {
960e1d970f1SPoul-Henning Kamp 			atv.tv_usec += 1000000;
961e1d970f1SPoul-Henning Kamp 			atv.tv_sec--;
962e1d970f1SPoul-Henning Kamp 		}
963b88ec951SJohn Baldwin 		*olddelta = atv;
964e1d970f1SPoul-Henning Kamp 	}
965b4be6ef2SRobert Watson 	if (delta) {
966b4be6ef2SRobert Watson 		if ((error = priv_check(td, PRIV_ADJTIME))) {
967e1d970f1SPoul-Henning Kamp 			mtx_unlock(&Giant);
968e1d970f1SPoul-Henning Kamp 			return (error);
969e1d970f1SPoul-Henning Kamp 		}
970b4be6ef2SRobert Watson 		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
971b4be6ef2SRobert Watson 		    delta->tv_usec;
972b4be6ef2SRobert Watson 	}
973b4be6ef2SRobert Watson 	mtx_unlock(&Giant);
974b4be6ef2SRobert Watson 	return (0);
975b4be6ef2SRobert Watson }
976e1d970f1SPoul-Henning Kamp 
9775c7e270fSAndriy Gapon static struct callout resettodr_callout;
9785c7e270fSAndriy Gapon static int resettodr_period = 1800;
9795c7e270fSAndriy Gapon 
9805c7e270fSAndriy Gapon static void
9815c7e270fSAndriy Gapon periodic_resettodr(void *arg __unused)
9825c7e270fSAndriy Gapon {
9835c7e270fSAndriy Gapon 
9845c7e270fSAndriy Gapon 	if (!ntp_is_time_error()) {
9855c7e270fSAndriy Gapon 		mtx_lock(&Giant);
9865c7e270fSAndriy Gapon 		resettodr();
9875c7e270fSAndriy Gapon 		mtx_unlock(&Giant);
9885c7e270fSAndriy Gapon 	}
9895c7e270fSAndriy Gapon 	if (resettodr_period > 0)
9905c7e270fSAndriy Gapon 		callout_schedule(&resettodr_callout, resettodr_period * hz);
9915c7e270fSAndriy Gapon }
9925c7e270fSAndriy Gapon 
9935c7e270fSAndriy Gapon static void
9945c7e270fSAndriy Gapon shutdown_resettodr(void *arg __unused, int howto __unused)
9955c7e270fSAndriy Gapon {
9965c7e270fSAndriy Gapon 
9975c7e270fSAndriy Gapon 	callout_drain(&resettodr_callout);
9985c7e270fSAndriy Gapon 	if (resettodr_period > 0 && !ntp_is_time_error()) {
9995c7e270fSAndriy Gapon 		mtx_lock(&Giant);
10005c7e270fSAndriy Gapon 		resettodr();
10015c7e270fSAndriy Gapon 		mtx_unlock(&Giant);
10025c7e270fSAndriy Gapon 	}
10035c7e270fSAndriy Gapon }
10045c7e270fSAndriy Gapon 
10055c7e270fSAndriy Gapon static int
10065c7e270fSAndriy Gapon sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
10075c7e270fSAndriy Gapon {
10085c7e270fSAndriy Gapon 	int error;
10095c7e270fSAndriy Gapon 
10105c7e270fSAndriy Gapon 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
10115c7e270fSAndriy Gapon 	if (error || !req->newptr)
10125c7e270fSAndriy Gapon 		return (error);
10135c7e270fSAndriy Gapon 	if (resettodr_period == 0)
10145c7e270fSAndriy Gapon 		callout_stop(&resettodr_callout);
10155c7e270fSAndriy Gapon 	else
10165c7e270fSAndriy Gapon 		callout_reset(&resettodr_callout, resettodr_period * hz,
10175c7e270fSAndriy Gapon 		    periodic_resettodr, NULL);
10185c7e270fSAndriy Gapon 	return (0);
10195c7e270fSAndriy Gapon }
10205c7e270fSAndriy Gapon 
10215c7e270fSAndriy Gapon SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
10225c7e270fSAndriy Gapon 	&resettodr_period, 1800, sysctl_resettodr_period, "I",
10235c7e270fSAndriy Gapon 	"Save system time to RTC with this period (in seconds)");
10245c7e270fSAndriy Gapon TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
10255c7e270fSAndriy Gapon 
10265c7e270fSAndriy Gapon static void
10275c7e270fSAndriy Gapon start_periodic_resettodr(void *arg __unused)
10285c7e270fSAndriy Gapon {
10295c7e270fSAndriy Gapon 
10305c7e270fSAndriy Gapon 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
10315c7e270fSAndriy Gapon 	    SHUTDOWN_PRI_FIRST);
10325c7e270fSAndriy Gapon 	callout_init(&resettodr_callout, 1);
10335c7e270fSAndriy Gapon 	if (resettodr_period == 0)
10345c7e270fSAndriy Gapon 		return;
10355c7e270fSAndriy Gapon 	callout_reset(&resettodr_callout, resettodr_period * hz,
10365c7e270fSAndriy Gapon 	    periodic_resettodr, NULL);
10375c7e270fSAndriy Gapon }
10385c7e270fSAndriy Gapon 
10397b9df13bSAndriy Gapon SYSINIT(periodic_resettodr, SI_SUB_RUN_SCHEDULER, SI_ORDER_MIDDLE,
10405c7e270fSAndriy Gapon 	start_periodic_resettodr, NULL);
1041