19454b2d8SWarner Losh /*- 29454b2d8SWarner Losh *********************************************************************** 33f31c649SGarrett Wollman * * 424dbea46SJohn Hay * Copyright (c) David L. Mills 1993-2001 * 53f31c649SGarrett Wollman * * 6c68996e2SPoul-Henning Kamp * Permission to use, copy, modify, and distribute this software and * 7c68996e2SPoul-Henning Kamp * its documentation for any purpose and without fee is hereby * 8c68996e2SPoul-Henning Kamp * granted, provided that the above copyright notice appears in all * 9c68996e2SPoul-Henning Kamp * copies and that both the copyright notice and this permission * 10c68996e2SPoul-Henning Kamp * notice appear in supporting documentation, and that the name * 11c68996e2SPoul-Henning Kamp * University of Delaware not be used in advertising or publicity * 12c68996e2SPoul-Henning Kamp * pertaining to distribution of the software without specific, * 13c68996e2SPoul-Henning Kamp * written prior permission. The University of Delaware makes no * 14c68996e2SPoul-Henning Kamp * representations about the suitability this software for any * 15c68996e2SPoul-Henning Kamp * purpose. It is provided "as is" without express or implied * 16c68996e2SPoul-Henning Kamp * warranty. * 173f31c649SGarrett Wollman * * 18c68996e2SPoul-Henning Kamp **********************************************************************/ 193f31c649SGarrett Wollman 203f31c649SGarrett Wollman /* 21c68996e2SPoul-Henning Kamp * Adapted from the original sources for FreeBSD and timecounters by: 2232c20357SPoul-Henning Kamp * Poul-Henning Kamp <phk@FreeBSD.org>. 233f31c649SGarrett Wollman * 24c68996e2SPoul-Henning Kamp * The 32bit version of the "LP" macros seems a bit past its "sell by" 25c68996e2SPoul-Henning Kamp * date so I have retained only the 64bit version and included it directly 26c68996e2SPoul-Henning Kamp * in this file. 27885bd8e4SJohn Hay * 28c68996e2SPoul-Henning Kamp * Only minor changes done to interface with the timecounters over in 29c68996e2SPoul-Henning Kamp * sys/kern/kern_clock.c. Some of the comments below may be (even more) 30c68996e2SPoul-Henning Kamp * confusing and/or plain wrong in that context. 313f31c649SGarrett Wollman */ 32e0d781f3SEivind Eklund 33677b542eSDavid E. O'Brien #include <sys/cdefs.h> 34677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$"); 35677b542eSDavid E. O'Brien 3632c20357SPoul-Henning Kamp #include "opt_ntp.h" 3732c20357SPoul-Henning Kamp 383f31c649SGarrett Wollman #include <sys/param.h> 393f31c649SGarrett Wollman #include <sys/systm.h> 40d2d3e875SBruce Evans #include <sys/sysproto.h> 415c7e270fSAndriy Gapon #include <sys/eventhandler.h> 423f31c649SGarrett Wollman #include <sys/kernel.h> 43acd3428bSRobert Watson #include <sys/priv.h> 443f31c649SGarrett Wollman #include <sys/proc.h> 456f1e8c18SMatthew Dillon #include <sys/lock.h> 466f1e8c18SMatthew Dillon #include <sys/mutex.h> 47c68996e2SPoul-Henning Kamp #include <sys/time.h> 483f31c649SGarrett Wollman #include <sys/timex.h> 4991266b96SPoul-Henning Kamp #include <sys/timetc.h> 50938ee3ceSPoul-Henning Kamp #include <sys/timepps.h> 51b88ec951SJohn Baldwin #include <sys/syscallsubr.h> 523f31c649SGarrett Wollman #include <sys/sysctl.h> 533f31c649SGarrett Wollman 543f31c649SGarrett Wollman /* 55c68996e2SPoul-Henning Kamp * Single-precision macros for 64-bit machines 563f31c649SGarrett Wollman */ 57bcfe6d8bSPoul-Henning Kamp typedef int64_t l_fp; 58c68996e2SPoul-Henning Kamp #define L_ADD(v, u) ((v) += (u)) 59c68996e2SPoul-Henning Kamp #define L_SUB(v, u) ((v) -= (u)) 60bcfe6d8bSPoul-Henning Kamp #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32) 61c68996e2SPoul-Henning Kamp #define L_NEG(v) ((v) = -(v)) 62c68996e2SPoul-Henning Kamp #define L_RSHIFT(v, n) \ 63c68996e2SPoul-Henning Kamp do { \ 64c68996e2SPoul-Henning Kamp if ((v) < 0) \ 65c68996e2SPoul-Henning Kamp (v) = -(-(v) >> (n)); \ 66c68996e2SPoul-Henning Kamp else \ 67c68996e2SPoul-Henning Kamp (v) = (v) >> (n); \ 68c68996e2SPoul-Henning Kamp } while (0) 69c68996e2SPoul-Henning Kamp #define L_MPY(v, a) ((v) *= (a)) 70c68996e2SPoul-Henning Kamp #define L_CLR(v) ((v) = 0) 71c68996e2SPoul-Henning Kamp #define L_ISNEG(v) ((v) < 0) 72bcfe6d8bSPoul-Henning Kamp #define L_LINT(v, a) ((v) = (int64_t)(a) << 32) 73c68996e2SPoul-Henning Kamp #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32) 746f70df15SPoul-Henning Kamp 756f70df15SPoul-Henning Kamp /* 76c68996e2SPoul-Henning Kamp * Generic NTP kernel interface 776f70df15SPoul-Henning Kamp * 78c68996e2SPoul-Henning Kamp * These routines constitute the Network Time Protocol (NTP) interfaces 79c68996e2SPoul-Henning Kamp * for user and daemon application programs. The ntp_gettime() routine 80c68996e2SPoul-Henning Kamp * provides the time, maximum error (synch distance) and estimated error 81c68996e2SPoul-Henning Kamp * (dispersion) to client user application programs. The ntp_adjtime() 82c68996e2SPoul-Henning Kamp * routine is used by the NTP daemon to adjust the system clock to an 83c68996e2SPoul-Henning Kamp * externally derived time. The time offset and related variables set by 84c68996e2SPoul-Henning Kamp * this routine are used by other routines in this module to adjust the 85c68996e2SPoul-Henning Kamp * phase and frequency of the clock discipline loop which controls the 86c68996e2SPoul-Henning Kamp * system clock. 876f70df15SPoul-Henning Kamp * 88f425c1f6SPoul-Henning Kamp * When the kernel time is reckoned directly in nanoseconds (NTP_NANO 89c68996e2SPoul-Henning Kamp * defined), the time at each tick interrupt is derived directly from 90c68996e2SPoul-Henning Kamp * the kernel time variable. When the kernel time is reckoned in 91f425c1f6SPoul-Henning Kamp * microseconds, (NTP_NANO undefined), the time is derived from the 92f425c1f6SPoul-Henning Kamp * kernel time variable together with a variable representing the 93f425c1f6SPoul-Henning Kamp * leftover nanoseconds at the last tick interrupt. In either case, the 94f425c1f6SPoul-Henning Kamp * current nanosecond time is reckoned from these values plus an 95f425c1f6SPoul-Henning Kamp * interpolated value derived by the clock routines in another 96f425c1f6SPoul-Henning Kamp * architecture-specific module. The interpolation can use either a 97f425c1f6SPoul-Henning Kamp * dedicated counter or a processor cycle counter (PCC) implemented in 98f425c1f6SPoul-Henning Kamp * some architectures. 996f70df15SPoul-Henning Kamp * 100c68996e2SPoul-Henning Kamp * Note that all routines must run at priority splclock or higher. 1016f70df15SPoul-Henning Kamp */ 102c68996e2SPoul-Henning Kamp /* 103c68996e2SPoul-Henning Kamp * Phase/frequency-lock loop (PLL/FLL) definitions 104c68996e2SPoul-Henning Kamp * 105c68996e2SPoul-Henning Kamp * The nanosecond clock discipline uses two variable types, time 106c68996e2SPoul-Henning Kamp * variables and frequency variables. Both types are represented as 64- 107c68996e2SPoul-Henning Kamp * bit fixed-point quantities with the decimal point between two 32-bit 108c68996e2SPoul-Henning Kamp * halves. On a 32-bit machine, each half is represented as a single 109c68996e2SPoul-Henning Kamp * word and mathematical operations are done using multiple-precision 110c68996e2SPoul-Henning Kamp * arithmetic. On a 64-bit machine, ordinary computer arithmetic is 111c68996e2SPoul-Henning Kamp * used. 112c68996e2SPoul-Henning Kamp * 113c68996e2SPoul-Henning Kamp * A time variable is a signed 64-bit fixed-point number in ns and 114c68996e2SPoul-Henning Kamp * fraction. It represents the remaining time offset to be amortized 115c68996e2SPoul-Henning Kamp * over succeeding tick interrupts. The maximum time offset is about 116f425c1f6SPoul-Henning Kamp * 0.5 s and the resolution is about 2.3e-10 ns. 117c68996e2SPoul-Henning Kamp * 118c68996e2SPoul-Henning Kamp * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 119c68996e2SPoul-Henning Kamp * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 120c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 121c68996e2SPoul-Henning Kamp * |s s s| ns | 122c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 123c68996e2SPoul-Henning Kamp * | fraction | 124c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 125c68996e2SPoul-Henning Kamp * 126c68996e2SPoul-Henning Kamp * A frequency variable is a signed 64-bit fixed-point number in ns/s 127c68996e2SPoul-Henning Kamp * and fraction. It represents the ns and fraction to be added to the 128c68996e2SPoul-Henning Kamp * kernel time variable at each second. The maximum frequency offset is 129f425c1f6SPoul-Henning Kamp * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s. 130c68996e2SPoul-Henning Kamp * 131c68996e2SPoul-Henning Kamp * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 132c68996e2SPoul-Henning Kamp * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 133c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 134c68996e2SPoul-Henning Kamp * |s s s s s s s s s s s s s| ns/s | 135c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 136c68996e2SPoul-Henning Kamp * | fraction | 137c68996e2SPoul-Henning Kamp * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 138c68996e2SPoul-Henning Kamp */ 139c68996e2SPoul-Henning Kamp /* 140c68996e2SPoul-Henning Kamp * The following variables establish the state of the PLL/FLL and the 141c68996e2SPoul-Henning Kamp * residual time and frequency offset of the local clock. 142c68996e2SPoul-Henning Kamp */ 143c68996e2SPoul-Henning Kamp #define SHIFT_PLL 4 /* PLL loop gain (shift) */ 144c68996e2SPoul-Henning Kamp #define SHIFT_FLL 2 /* FLL loop gain (shift) */ 145c68996e2SPoul-Henning Kamp 146c68996e2SPoul-Henning Kamp static int time_state = TIME_OK; /* clock state */ 147c68996e2SPoul-Henning Kamp static int time_status = STA_UNSYNC; /* clock status bits */ 14897804a5cSPoul-Henning Kamp static long time_tai; /* TAI offset (s) */ 14997804a5cSPoul-Henning Kamp static long time_monitor; /* last time offset scaled (ns) */ 150c68996e2SPoul-Henning Kamp static long time_constant; /* poll interval (shift) (s) */ 151c68996e2SPoul-Henning Kamp static long time_precision = 1; /* clock precision (ns) */ 152c68996e2SPoul-Henning Kamp static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */ 153c68996e2SPoul-Henning Kamp static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */ 154c68996e2SPoul-Henning Kamp static long time_reftime; /* time at last adjustment (s) */ 155c68996e2SPoul-Henning Kamp static l_fp time_offset; /* time offset (ns) */ 156c68996e2SPoul-Henning Kamp static l_fp time_freq; /* frequency offset (ns/s) */ 15797804a5cSPoul-Henning Kamp static l_fp time_adj; /* tick adjust (ns/s) */ 1583f31c649SGarrett Wollman 159e1d970f1SPoul-Henning Kamp static int64_t time_adjtime; /* correction from adjtime(2) (usec) */ 160e1d970f1SPoul-Henning Kamp 1613f31c649SGarrett Wollman #ifdef PPS_SYNC 1623f31c649SGarrett Wollman /* 163c68996e2SPoul-Henning Kamp * The following variables are used when a pulse-per-second (PPS) signal 164c68996e2SPoul-Henning Kamp * is available and connected via a modem control lead. They establish 165c68996e2SPoul-Henning Kamp * the engineering parameters of the clock discipline loop when 166c68996e2SPoul-Henning Kamp * controlled by the PPS signal. 1673f31c649SGarrett Wollman */ 168c68996e2SPoul-Henning Kamp #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */ 16924dbea46SJohn Hay #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */ 17082e84c5bSPoul-Henning Kamp #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */ 171c68996e2SPoul-Henning Kamp #define PPS_PAVG 4 /* phase avg interval (s) (shift) */ 172c68996e2SPoul-Henning Kamp #define PPS_VALID 120 /* PPS signal watchdog max (s) */ 17382e84c5bSPoul-Henning Kamp #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */ 17482e84c5bSPoul-Henning Kamp #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */ 175c68996e2SPoul-Henning Kamp 17682e84c5bSPoul-Henning Kamp static struct timespec pps_tf[3]; /* phase median filter */ 177c68996e2SPoul-Henning Kamp static l_fp pps_freq; /* scaled frequency offset (ns/s) */ 178f425c1f6SPoul-Henning Kamp static long pps_fcount; /* frequency accumulator */ 17982e84c5bSPoul-Henning Kamp static long pps_jitter; /* nominal jitter (ns) */ 18082e84c5bSPoul-Henning Kamp static long pps_stabil; /* nominal stability (scaled ns/s) */ 181c68996e2SPoul-Henning Kamp static long pps_lastsec; /* time at last calibration (s) */ 182c68996e2SPoul-Henning Kamp static int pps_valid; /* signal watchdog counter */ 183c68996e2SPoul-Henning Kamp static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */ 18482e84c5bSPoul-Henning Kamp static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */ 185c68996e2SPoul-Henning Kamp static int pps_intcnt; /* wander counter */ 1866f70df15SPoul-Henning Kamp 1876f70df15SPoul-Henning Kamp /* 1886f70df15SPoul-Henning Kamp * PPS signal quality monitors 1896f70df15SPoul-Henning Kamp */ 190c68996e2SPoul-Henning Kamp static long pps_calcnt; /* calibration intervals */ 191c68996e2SPoul-Henning Kamp static long pps_jitcnt; /* jitter limit exceeded */ 192c68996e2SPoul-Henning Kamp static long pps_stbcnt; /* stability limit exceeded */ 193c68996e2SPoul-Henning Kamp static long pps_errcnt; /* calibration errors */ 1943f31c649SGarrett Wollman #endif /* PPS_SYNC */ 195c68996e2SPoul-Henning Kamp /* 196c68996e2SPoul-Henning Kamp * End of phase/frequency-lock loop (PLL/FLL) definitions 197c68996e2SPoul-Henning Kamp */ 1983f31c649SGarrett Wollman 199c68996e2SPoul-Henning Kamp static void ntp_init(void); 200c68996e2SPoul-Henning Kamp static void hardupdate(long offset); 201932cfd41SMark Santcroos static void ntp_gettime1(struct ntptimeval *ntvp); 2029a9ae42aSAndriy Gapon static int ntp_is_time_error(void); 203c68996e2SPoul-Henning Kamp 2049a9ae42aSAndriy Gapon static int 2059a9ae42aSAndriy Gapon ntp_is_time_error(void) 206c68996e2SPoul-Henning Kamp { 207c68996e2SPoul-Henning Kamp /* 208c68996e2SPoul-Henning Kamp * Status word error decode. If any of these conditions occur, 209c68996e2SPoul-Henning Kamp * an error is returned, instead of the status word. Most 210c68996e2SPoul-Henning Kamp * applications will care only about the fact the system clock 211c68996e2SPoul-Henning Kamp * may not be trusted, not about the details. 212c68996e2SPoul-Henning Kamp * 213c68996e2SPoul-Henning Kamp * Hardware or software error 214c68996e2SPoul-Henning Kamp */ 215c68996e2SPoul-Henning Kamp if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || 216c68996e2SPoul-Henning Kamp 217c68996e2SPoul-Henning Kamp /* 218c68996e2SPoul-Henning Kamp * PPS signal lost when either time or frequency synchronization 219c68996e2SPoul-Henning Kamp * requested 220c68996e2SPoul-Henning Kamp */ 221c68996e2SPoul-Henning Kamp (time_status & (STA_PPSFREQ | STA_PPSTIME) && 222c68996e2SPoul-Henning Kamp !(time_status & STA_PPSSIGNAL)) || 223c68996e2SPoul-Henning Kamp 224c68996e2SPoul-Henning Kamp /* 225c68996e2SPoul-Henning Kamp * PPS jitter exceeded when time synchronization requested 226c68996e2SPoul-Henning Kamp */ 227c68996e2SPoul-Henning Kamp (time_status & STA_PPSTIME && 228c68996e2SPoul-Henning Kamp time_status & STA_PPSJITTER) || 229c68996e2SPoul-Henning Kamp 230c68996e2SPoul-Henning Kamp /* 231c68996e2SPoul-Henning Kamp * PPS wander exceeded or calibration error when frequency 232c68996e2SPoul-Henning Kamp * synchronization requested 233c68996e2SPoul-Henning Kamp */ 234c68996e2SPoul-Henning Kamp (time_status & STA_PPSFREQ && 235c68996e2SPoul-Henning Kamp time_status & (STA_PPSWANDER | STA_PPSERROR))) 2369a9ae42aSAndriy Gapon return (1); 2379a9ae42aSAndriy Gapon 2389a9ae42aSAndriy Gapon return (0); 2399a9ae42aSAndriy Gapon } 2409a9ae42aSAndriy Gapon 2419a9ae42aSAndriy Gapon static void 2429a9ae42aSAndriy Gapon ntp_gettime1(struct ntptimeval *ntvp) 2439a9ae42aSAndriy Gapon { 2449a9ae42aSAndriy Gapon struct timespec atv; /* nanosecond time */ 2459a9ae42aSAndriy Gapon 2469a9ae42aSAndriy Gapon GIANT_REQUIRED; 2479a9ae42aSAndriy Gapon 2489a9ae42aSAndriy Gapon nanotime(&atv); 2499a9ae42aSAndriy Gapon ntvp->time.tv_sec = atv.tv_sec; 2509a9ae42aSAndriy Gapon ntvp->time.tv_nsec = atv.tv_nsec; 2519a9ae42aSAndriy Gapon ntvp->maxerror = time_maxerror; 2529a9ae42aSAndriy Gapon ntvp->esterror = time_esterror; 2539a9ae42aSAndriy Gapon ntvp->tai = time_tai; 2549a9ae42aSAndriy Gapon ntvp->time_state = time_state; 2559a9ae42aSAndriy Gapon 2569a9ae42aSAndriy Gapon if (ntp_is_time_error()) 257932cfd41SMark Santcroos ntvp->time_state = TIME_ERROR; 258932cfd41SMark Santcroos } 259932cfd41SMark Santcroos 2609b7fe7e4SMark Santcroos /* 2619b7fe7e4SMark Santcroos * ntp_gettime() - NTP user application interface 2629b7fe7e4SMark Santcroos * 263873fbcd7SRobert Watson * See the timex.h header file for synopsis and API description. Note that 264873fbcd7SRobert Watson * the TAI offset is returned in the ntvtimeval.tai structure member. 2659b7fe7e4SMark Santcroos */ 266932cfd41SMark Santcroos #ifndef _SYS_SYSPROTO_H_ 267932cfd41SMark Santcroos struct ntp_gettime_args { 268932cfd41SMark Santcroos struct ntptimeval *ntvp; 269932cfd41SMark Santcroos }; 270932cfd41SMark Santcroos #endif 271932cfd41SMark Santcroos /* ARGSUSED */ 272932cfd41SMark Santcroos int 273932cfd41SMark Santcroos ntp_gettime(struct thread *td, struct ntp_gettime_args *uap) 274932cfd41SMark Santcroos { 275932cfd41SMark Santcroos struct ntptimeval ntv; 276932cfd41SMark Santcroos 27775b82238SRobert Watson mtx_lock(&Giant); 278932cfd41SMark Santcroos ntp_gettime1(&ntv); 27975b82238SRobert Watson mtx_unlock(&Giant); 280932cfd41SMark Santcroos 281fe18f385SWarner Losh td->td_retval[0] = ntv.time_state; 282932cfd41SMark Santcroos return (copyout(&ntv, uap->ntvp, sizeof(ntv))); 283932cfd41SMark Santcroos } 284932cfd41SMark Santcroos 285932cfd41SMark Santcroos static int 286932cfd41SMark Santcroos ntp_sysctl(SYSCTL_HANDLER_ARGS) 287932cfd41SMark Santcroos { 288932cfd41SMark Santcroos struct ntptimeval ntv; /* temporary structure */ 289932cfd41SMark Santcroos 290932cfd41SMark Santcroos ntp_gettime1(&ntv); 291932cfd41SMark Santcroos 292932cfd41SMark Santcroos return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req)); 293c68996e2SPoul-Henning Kamp } 294c68996e2SPoul-Henning Kamp 295c68996e2SPoul-Henning Kamp SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, ""); 296c68996e2SPoul-Henning Kamp SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD, 297c68996e2SPoul-Henning Kamp 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", ""); 298c68996e2SPoul-Henning Kamp 2995968e18bSPoul-Henning Kamp #ifdef PPS_SYNC 30082e84c5bSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, ""); 3016a77f60dSPoul-Henning Kamp SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, ""); 302*240577c2SMatthew D Fleming SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, 303*240577c2SMatthew D Fleming &time_monitor, 0, ""); 3047fd299cbSPoul-Henning Kamp 3057fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", ""); 3067fd299cbSPoul-Henning Kamp SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", ""); 3075968e18bSPoul-Henning Kamp #endif 308873fbcd7SRobert Watson 309c68996e2SPoul-Henning Kamp /* 310c68996e2SPoul-Henning Kamp * ntp_adjtime() - NTP daemon application interface 311c68996e2SPoul-Henning Kamp * 312873fbcd7SRobert Watson * See the timex.h header file for synopsis and API description. Note that 313873fbcd7SRobert Watson * the timex.constant structure member has a dual purpose to set the time 314873fbcd7SRobert Watson * constant and to set the TAI offset. 315c68996e2SPoul-Henning Kamp */ 316c68996e2SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_ 317c68996e2SPoul-Henning Kamp struct ntp_adjtime_args { 318c68996e2SPoul-Henning Kamp struct timex *tp; 319c68996e2SPoul-Henning Kamp }; 320c68996e2SPoul-Henning Kamp #endif 321c68996e2SPoul-Henning Kamp 322c68996e2SPoul-Henning Kamp int 323b40ce416SJulian Elischer ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap) 324c68996e2SPoul-Henning Kamp { 325c68996e2SPoul-Henning Kamp struct timex ntv; /* temporary structure */ 326f425c1f6SPoul-Henning Kamp long freq; /* frequency ns/s) */ 327c68996e2SPoul-Henning Kamp int modes; /* mode bits from structure */ 328c68996e2SPoul-Henning Kamp int s; /* caller priority */ 329c68996e2SPoul-Henning Kamp int error; 330c68996e2SPoul-Henning Kamp 331c68996e2SPoul-Henning Kamp error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv)); 332c68996e2SPoul-Henning Kamp if (error) 333c68996e2SPoul-Henning Kamp return(error); 334c68996e2SPoul-Henning Kamp 335c68996e2SPoul-Henning Kamp /* 336c68996e2SPoul-Henning Kamp * Update selected clock variables - only the superuser can 337c68996e2SPoul-Henning Kamp * change anything. Note that there is no error checking here on 338c68996e2SPoul-Henning Kamp * the assumption the superuser should know what it is doing. 33997804a5cSPoul-Henning Kamp * Note that either the time constant or TAI offset are loaded 34024dbea46SJohn Hay * from the ntv.constant member, depending on the mode bits. If 34124dbea46SJohn Hay * the STA_PLL bit in the status word is cleared, the state and 34224dbea46SJohn Hay * status words are reset to the initial values at boot. 343c68996e2SPoul-Henning Kamp */ 3446f1e8c18SMatthew Dillon mtx_lock(&Giant); 345c68996e2SPoul-Henning Kamp modes = ntv.modes; 346fafbe352SPoul-Henning Kamp if (modes) 347acd3428bSRobert Watson error = priv_check(td, PRIV_NTP_ADJTIME); 348c68996e2SPoul-Henning Kamp if (error) 3496f1e8c18SMatthew Dillon goto done2; 350c68996e2SPoul-Henning Kamp s = splclock(); 351c68996e2SPoul-Henning Kamp if (modes & MOD_MAXERROR) 352c68996e2SPoul-Henning Kamp time_maxerror = ntv.maxerror; 353c68996e2SPoul-Henning Kamp if (modes & MOD_ESTERROR) 354c68996e2SPoul-Henning Kamp time_esterror = ntv.esterror; 355c68996e2SPoul-Henning Kamp if (modes & MOD_STATUS) { 35624dbea46SJohn Hay if (time_status & STA_PLL && !(ntv.status & STA_PLL)) { 35724dbea46SJohn Hay time_state = TIME_OK; 35824dbea46SJohn Hay time_status = STA_UNSYNC; 35924dbea46SJohn Hay #ifdef PPS_SYNC 36024dbea46SJohn Hay pps_shift = PPS_FAVG; 36124dbea46SJohn Hay #endif /* PPS_SYNC */ 36224dbea46SJohn Hay } 363c68996e2SPoul-Henning Kamp time_status &= STA_RONLY; 364c68996e2SPoul-Henning Kamp time_status |= ntv.status & ~STA_RONLY; 365c68996e2SPoul-Henning Kamp } 366f425c1f6SPoul-Henning Kamp if (modes & MOD_TIMECONST) { 367f425c1f6SPoul-Henning Kamp if (ntv.constant < 0) 368f425c1f6SPoul-Henning Kamp time_constant = 0; 369f425c1f6SPoul-Henning Kamp else if (ntv.constant > MAXTC) 370f425c1f6SPoul-Henning Kamp time_constant = MAXTC; 371f425c1f6SPoul-Henning Kamp else 372c68996e2SPoul-Henning Kamp time_constant = ntv.constant; 373f425c1f6SPoul-Henning Kamp } 37497804a5cSPoul-Henning Kamp if (modes & MOD_TAI) { 37597804a5cSPoul-Henning Kamp if (ntv.constant > 0) /* XXX zero & negative numbers ? */ 37697804a5cSPoul-Henning Kamp time_tai = ntv.constant; 37797804a5cSPoul-Henning Kamp } 37882e84c5bSPoul-Henning Kamp #ifdef PPS_SYNC 37982e84c5bSPoul-Henning Kamp if (modes & MOD_PPSMAX) { 38082e84c5bSPoul-Henning Kamp if (ntv.shift < PPS_FAVG) 38182e84c5bSPoul-Henning Kamp pps_shiftmax = PPS_FAVG; 38282e84c5bSPoul-Henning Kamp else if (ntv.shift > PPS_FAVGMAX) 38382e84c5bSPoul-Henning Kamp pps_shiftmax = PPS_FAVGMAX; 38482e84c5bSPoul-Henning Kamp else 38582e84c5bSPoul-Henning Kamp pps_shiftmax = ntv.shift; 38682e84c5bSPoul-Henning Kamp } 38782e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */ 388c68996e2SPoul-Henning Kamp if (modes & MOD_NANO) 389c68996e2SPoul-Henning Kamp time_status |= STA_NANO; 390c68996e2SPoul-Henning Kamp if (modes & MOD_MICRO) 391c68996e2SPoul-Henning Kamp time_status &= ~STA_NANO; 392c68996e2SPoul-Henning Kamp if (modes & MOD_CLKB) 393c68996e2SPoul-Henning Kamp time_status |= STA_CLK; 394c68996e2SPoul-Henning Kamp if (modes & MOD_CLKA) 395c68996e2SPoul-Henning Kamp time_status &= ~STA_CLK; 39624dbea46SJohn Hay if (modes & MOD_FREQUENCY) { 39724dbea46SJohn Hay freq = (ntv.freq * 1000LL) >> 16; 39824dbea46SJohn Hay if (freq > MAXFREQ) 39924dbea46SJohn Hay L_LINT(time_freq, MAXFREQ); 40024dbea46SJohn Hay else if (freq < -MAXFREQ) 40124dbea46SJohn Hay L_LINT(time_freq, -MAXFREQ); 402bcfe6d8bSPoul-Henning Kamp else { 403bcfe6d8bSPoul-Henning Kamp /* 404bcfe6d8bSPoul-Henning Kamp * ntv.freq is [PPM * 2^16] = [us/s * 2^16] 405bcfe6d8bSPoul-Henning Kamp * time_freq is [ns/s * 2^32] 406bcfe6d8bSPoul-Henning Kamp */ 407bcfe6d8bSPoul-Henning Kamp time_freq = ntv.freq * 1000LL * 65536LL; 408bcfe6d8bSPoul-Henning Kamp } 40924dbea46SJohn Hay #ifdef PPS_SYNC 41024dbea46SJohn Hay pps_freq = time_freq; 41124dbea46SJohn Hay #endif /* PPS_SYNC */ 41224dbea46SJohn Hay } 413551260fcSPoul-Henning Kamp if (modes & MOD_OFFSET) { 414551260fcSPoul-Henning Kamp if (time_status & STA_NANO) 415551260fcSPoul-Henning Kamp hardupdate(ntv.offset); 416551260fcSPoul-Henning Kamp else 417551260fcSPoul-Henning Kamp hardupdate(ntv.offset * 1000); 418551260fcSPoul-Henning Kamp } 419c68996e2SPoul-Henning Kamp 420c68996e2SPoul-Henning Kamp /* 42197804a5cSPoul-Henning Kamp * Retrieve all clock variables. Note that the TAI offset is 42297804a5cSPoul-Henning Kamp * returned only by ntp_gettime(); 423c68996e2SPoul-Henning Kamp */ 424c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 425b9c6e8bdSPoul-Henning Kamp ntv.offset = L_GINT(time_offset); 426c68996e2SPoul-Henning Kamp else 427b9c6e8bdSPoul-Henning Kamp ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */ 42834cffbe3SPoul-Henning Kamp ntv.freq = L_GINT((time_freq / 1000LL) << 16); 429c68996e2SPoul-Henning Kamp ntv.maxerror = time_maxerror; 430c68996e2SPoul-Henning Kamp ntv.esterror = time_esterror; 431c68996e2SPoul-Henning Kamp ntv.status = time_status; 432f425c1f6SPoul-Henning Kamp ntv.constant = time_constant; 433c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 434c68996e2SPoul-Henning Kamp ntv.precision = time_precision; 435c68996e2SPoul-Henning Kamp else 436c68996e2SPoul-Henning Kamp ntv.precision = time_precision / 1000; 437c68996e2SPoul-Henning Kamp ntv.tolerance = MAXFREQ * SCALE_PPM; 438c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 439c68996e2SPoul-Henning Kamp ntv.shift = pps_shift; 44034cffbe3SPoul-Henning Kamp ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16); 441c68996e2SPoul-Henning Kamp if (time_status & STA_NANO) 442c68996e2SPoul-Henning Kamp ntv.jitter = pps_jitter; 443c68996e2SPoul-Henning Kamp else 444c68996e2SPoul-Henning Kamp ntv.jitter = pps_jitter / 1000; 445c68996e2SPoul-Henning Kamp ntv.stabil = pps_stabil; 446c68996e2SPoul-Henning Kamp ntv.calcnt = pps_calcnt; 447c68996e2SPoul-Henning Kamp ntv.errcnt = pps_errcnt; 448c68996e2SPoul-Henning Kamp ntv.jitcnt = pps_jitcnt; 449c68996e2SPoul-Henning Kamp ntv.stbcnt = pps_stbcnt; 450c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 451c68996e2SPoul-Henning Kamp splx(s); 452c68996e2SPoul-Henning Kamp 453c68996e2SPoul-Henning Kamp error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv)); 454c68996e2SPoul-Henning Kamp if (error) 4556f1e8c18SMatthew Dillon goto done2; 456c68996e2SPoul-Henning Kamp 4579a9ae42aSAndriy Gapon if (ntp_is_time_error()) 458b40ce416SJulian Elischer td->td_retval[0] = TIME_ERROR; 4599a9ae42aSAndriy Gapon else 460b40ce416SJulian Elischer td->td_retval[0] = time_state; 4619a9ae42aSAndriy Gapon 4626f1e8c18SMatthew Dillon done2: 4636f1e8c18SMatthew Dillon mtx_unlock(&Giant); 464a5088017SPoul-Henning Kamp return (error); 465c68996e2SPoul-Henning Kamp } 466c68996e2SPoul-Henning Kamp 467c68996e2SPoul-Henning Kamp /* 468c68996e2SPoul-Henning Kamp * second_overflow() - called after ntp_tick_adjust() 469c68996e2SPoul-Henning Kamp * 470c68996e2SPoul-Henning Kamp * This routine is ordinarily called immediately following the above 471c68996e2SPoul-Henning Kamp * routine ntp_tick_adjust(). While these two routines are normally 472c68996e2SPoul-Henning Kamp * combined, they are separated here only for the purposes of 473c68996e2SPoul-Henning Kamp * simulation. 474c68996e2SPoul-Henning Kamp */ 475c68996e2SPoul-Henning Kamp void 476b4a1d0deSPoul-Henning Kamp ntp_update_second(int64_t *adjustment, time_t *newsec) 477c68996e2SPoul-Henning Kamp { 478e1d970f1SPoul-Henning Kamp int tickrate; 47997804a5cSPoul-Henning Kamp l_fp ftemp; /* 32/64-bit temporary */ 480c68996e2SPoul-Henning Kamp 48182e84c5bSPoul-Henning Kamp /* 48282e84c5bSPoul-Henning Kamp * On rollover of the second both the nanosecond and microsecond 48382e84c5bSPoul-Henning Kamp * clocks are updated and the state machine cranked as 48482e84c5bSPoul-Henning Kamp * necessary. The phase adjustment to be used for the next 48582e84c5bSPoul-Henning Kamp * second is calculated and the maximum error is increased by 48682e84c5bSPoul-Henning Kamp * the tolerance. 48782e84c5bSPoul-Henning Kamp */ 488c68996e2SPoul-Henning Kamp time_maxerror += MAXFREQ / 1000; 489c68996e2SPoul-Henning Kamp 490c68996e2SPoul-Henning Kamp /* 491c68996e2SPoul-Henning Kamp * Leap second processing. If in leap-insert state at 492c68996e2SPoul-Henning Kamp * the end of the day, the system clock is set back one 493c68996e2SPoul-Henning Kamp * second; if in leap-delete state, the system clock is 494c68996e2SPoul-Henning Kamp * set ahead one second. The nano_time() routine or 495c68996e2SPoul-Henning Kamp * external clock driver will insure that reported time 496c68996e2SPoul-Henning Kamp * is always monotonic. 497c68996e2SPoul-Henning Kamp */ 498c68996e2SPoul-Henning Kamp switch (time_state) { 499c68996e2SPoul-Henning Kamp 500c68996e2SPoul-Henning Kamp /* 501c68996e2SPoul-Henning Kamp * No warning. 502c68996e2SPoul-Henning Kamp */ 503c68996e2SPoul-Henning Kamp case TIME_OK: 504c68996e2SPoul-Henning Kamp if (time_status & STA_INS) 505c68996e2SPoul-Henning Kamp time_state = TIME_INS; 506c68996e2SPoul-Henning Kamp else if (time_status & STA_DEL) 507c68996e2SPoul-Henning Kamp time_state = TIME_DEL; 508c68996e2SPoul-Henning Kamp break; 509c68996e2SPoul-Henning Kamp 510c68996e2SPoul-Henning Kamp /* 511c68996e2SPoul-Henning Kamp * Insert second 23:59:60 following second 512c68996e2SPoul-Henning Kamp * 23:59:59. 513c68996e2SPoul-Henning Kamp */ 514c68996e2SPoul-Henning Kamp case TIME_INS: 515c68996e2SPoul-Henning Kamp if (!(time_status & STA_INS)) 516c68996e2SPoul-Henning Kamp time_state = TIME_OK; 517c68996e2SPoul-Henning Kamp else if ((*newsec) % 86400 == 0) { 518c68996e2SPoul-Henning Kamp (*newsec)--; 519c68996e2SPoul-Henning Kamp time_state = TIME_OOP; 520eac3c62bSWarner Losh time_tai++; 521c68996e2SPoul-Henning Kamp } 522c68996e2SPoul-Henning Kamp break; 523c68996e2SPoul-Henning Kamp 524c68996e2SPoul-Henning Kamp /* 525c68996e2SPoul-Henning Kamp * Delete second 23:59:59. 526c68996e2SPoul-Henning Kamp */ 527c68996e2SPoul-Henning Kamp case TIME_DEL: 528c68996e2SPoul-Henning Kamp if (!(time_status & STA_DEL)) 529c68996e2SPoul-Henning Kamp time_state = TIME_OK; 530c68996e2SPoul-Henning Kamp else if (((*newsec) + 1) % 86400 == 0) { 531c68996e2SPoul-Henning Kamp (*newsec)++; 53297804a5cSPoul-Henning Kamp time_tai--; 533c68996e2SPoul-Henning Kamp time_state = TIME_WAIT; 534c68996e2SPoul-Henning Kamp } 535c68996e2SPoul-Henning Kamp break; 536c68996e2SPoul-Henning Kamp 537c68996e2SPoul-Henning Kamp /* 538c68996e2SPoul-Henning Kamp * Insert second in progress. 539c68996e2SPoul-Henning Kamp */ 540c68996e2SPoul-Henning Kamp case TIME_OOP: 541c68996e2SPoul-Henning Kamp time_state = TIME_WAIT; 542c68996e2SPoul-Henning Kamp break; 543c68996e2SPoul-Henning Kamp 544c68996e2SPoul-Henning Kamp /* 545c68996e2SPoul-Henning Kamp * Wait for status bits to clear. 546c68996e2SPoul-Henning Kamp */ 547c68996e2SPoul-Henning Kamp case TIME_WAIT: 548c68996e2SPoul-Henning Kamp if (!(time_status & (STA_INS | STA_DEL))) 549c68996e2SPoul-Henning Kamp time_state = TIME_OK; 550c68996e2SPoul-Henning Kamp } 551c68996e2SPoul-Henning Kamp 552c68996e2SPoul-Henning Kamp /* 55382e84c5bSPoul-Henning Kamp * Compute the total time adjustment for the next second 55482e84c5bSPoul-Henning Kamp * in ns. The offset is reduced by a factor depending on 55582e84c5bSPoul-Henning Kamp * whether the PPS signal is operating. Note that the 55682e84c5bSPoul-Henning Kamp * value is in effect scaled by the clock frequency, 55782e84c5bSPoul-Henning Kamp * since the adjustment is added at each tick interrupt. 558c68996e2SPoul-Henning Kamp */ 55997804a5cSPoul-Henning Kamp ftemp = time_offset; 560c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 56197804a5cSPoul-Henning Kamp /* XXX even if PPS signal dies we should finish adjustment ? */ 56297804a5cSPoul-Henning Kamp if (time_status & STA_PPSTIME && time_status & 56397804a5cSPoul-Henning Kamp STA_PPSSIGNAL) 56497804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, pps_shift); 56597804a5cSPoul-Henning Kamp else 56697804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 56782e84c5bSPoul-Henning Kamp #else 56897804a5cSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 56982e84c5bSPoul-Henning Kamp #endif /* PPS_SYNC */ 57097804a5cSPoul-Henning Kamp time_adj = ftemp; 57197804a5cSPoul-Henning Kamp L_SUB(time_offset, ftemp); 572c68996e2SPoul-Henning Kamp L_ADD(time_adj, time_freq); 573e1d970f1SPoul-Henning Kamp 574e1d970f1SPoul-Henning Kamp /* 575e1d970f1SPoul-Henning Kamp * Apply any correction from adjtime(2). If more than one second 576e1d970f1SPoul-Henning Kamp * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM) 577e1d970f1SPoul-Henning Kamp * until the last second is slewed the final < 500 usecs. 578e1d970f1SPoul-Henning Kamp */ 579e1d970f1SPoul-Henning Kamp if (time_adjtime != 0) { 580e1d970f1SPoul-Henning Kamp if (time_adjtime > 1000000) 581e1d970f1SPoul-Henning Kamp tickrate = 5000; 582e1d970f1SPoul-Henning Kamp else if (time_adjtime < -1000000) 583e1d970f1SPoul-Henning Kamp tickrate = -5000; 584e1d970f1SPoul-Henning Kamp else if (time_adjtime > 500) 585e1d970f1SPoul-Henning Kamp tickrate = 500; 586e1d970f1SPoul-Henning Kamp else if (time_adjtime < -500) 587e1d970f1SPoul-Henning Kamp tickrate = -500; 588e1d970f1SPoul-Henning Kamp else 589bcfe6d8bSPoul-Henning Kamp tickrate = time_adjtime; 590e1d970f1SPoul-Henning Kamp time_adjtime -= tickrate; 591e1d970f1SPoul-Henning Kamp L_LINT(ftemp, tickrate * 1000); 592e1d970f1SPoul-Henning Kamp L_ADD(time_adj, ftemp); 593e1d970f1SPoul-Henning Kamp } 594b4a1d0deSPoul-Henning Kamp *adjustment = time_adj; 595e1d970f1SPoul-Henning Kamp 596c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 597c68996e2SPoul-Henning Kamp if (pps_valid > 0) 598c68996e2SPoul-Henning Kamp pps_valid--; 599c68996e2SPoul-Henning Kamp else 60024dbea46SJohn Hay time_status &= ~STA_PPSSIGNAL; 601c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 602c68996e2SPoul-Henning Kamp } 603c68996e2SPoul-Henning Kamp 604c68996e2SPoul-Henning Kamp /* 605c68996e2SPoul-Henning Kamp * ntp_init() - initialize variables and structures 606c68996e2SPoul-Henning Kamp * 607c68996e2SPoul-Henning Kamp * This routine must be called after the kernel variables hz and tick 608c68996e2SPoul-Henning Kamp * are set or changed and before the next tick interrupt. In this 609c68996e2SPoul-Henning Kamp * particular implementation, these values are assumed set elsewhere in 610c68996e2SPoul-Henning Kamp * the kernel. The design allows the clock frequency and tick interval 611c68996e2SPoul-Henning Kamp * to be changed while the system is running. So, this routine should 612c68996e2SPoul-Henning Kamp * probably be integrated with the code that does that. 613c68996e2SPoul-Henning Kamp */ 614c68996e2SPoul-Henning Kamp static void 615c68996e2SPoul-Henning Kamp ntp_init() 616c68996e2SPoul-Henning Kamp { 617c68996e2SPoul-Henning Kamp 618c68996e2SPoul-Henning Kamp /* 619c68996e2SPoul-Henning Kamp * The following variables are initialized only at startup. Only 620c68996e2SPoul-Henning Kamp * those structures not cleared by the compiler need to be 621c68996e2SPoul-Henning Kamp * initialized, and these only in the simulator. In the actual 622c68996e2SPoul-Henning Kamp * kernel, any nonzero values here will quickly evaporate. 623c68996e2SPoul-Henning Kamp */ 624c68996e2SPoul-Henning Kamp L_CLR(time_offset); 625c68996e2SPoul-Henning Kamp L_CLR(time_freq); 626c68996e2SPoul-Henning Kamp #ifdef PPS_SYNC 62782e84c5bSPoul-Henning Kamp pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0; 62882e84c5bSPoul-Henning Kamp pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0; 62982e84c5bSPoul-Henning Kamp pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0; 630f425c1f6SPoul-Henning Kamp pps_fcount = 0; 631c68996e2SPoul-Henning Kamp L_CLR(pps_freq); 632c68996e2SPoul-Henning Kamp #endif /* PPS_SYNC */ 633c68996e2SPoul-Henning Kamp } 634c68996e2SPoul-Henning Kamp 635237fdd78SRobert Watson SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL); 6366f70df15SPoul-Henning Kamp 6376f70df15SPoul-Henning Kamp /* 6386f70df15SPoul-Henning Kamp * hardupdate() - local clock update 6396f70df15SPoul-Henning Kamp * 6406f70df15SPoul-Henning Kamp * This routine is called by ntp_adjtime() to update the local clock 6416f70df15SPoul-Henning Kamp * phase and frequency. The implementation is of an adaptive-parameter, 6426f70df15SPoul-Henning Kamp * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 6436f70df15SPoul-Henning Kamp * time and frequency offset estimates for each call. If the kernel PPS 6446f70df15SPoul-Henning Kamp * discipline code is configured (PPS_SYNC), the PPS signal itself 6456f70df15SPoul-Henning Kamp * determines the new time offset, instead of the calling argument. 6466f70df15SPoul-Henning Kamp * Presumably, calls to ntp_adjtime() occur only when the caller 6476f70df15SPoul-Henning Kamp * believes the local clock is valid within some bound (+-128 ms with 6486f70df15SPoul-Henning Kamp * NTP). If the caller's time is far different than the PPS time, an 6496f70df15SPoul-Henning Kamp * argument will ensue, and it's not clear who will lose. 6506f70df15SPoul-Henning Kamp * 651c68996e2SPoul-Henning Kamp * For uncompensated quartz crystal oscillators and nominal update 652c68996e2SPoul-Henning Kamp * intervals less than 256 s, operation should be in phase-lock mode, 653c68996e2SPoul-Henning Kamp * where the loop is disciplined to phase. For update intervals greater 654c68996e2SPoul-Henning Kamp * than 1024 s, operation should be in frequency-lock mode, where the 655c68996e2SPoul-Henning Kamp * loop is disciplined to frequency. Between 256 s and 1024 s, the mode 656c68996e2SPoul-Henning Kamp * is selected by the STA_MODE status bit. 6576f70df15SPoul-Henning Kamp */ 6586f70df15SPoul-Henning Kamp static void 659c68996e2SPoul-Henning Kamp hardupdate(offset) 660c68996e2SPoul-Henning Kamp long offset; /* clock offset (ns) */ 6616f70df15SPoul-Henning Kamp { 66297804a5cSPoul-Henning Kamp long mtemp; 663c68996e2SPoul-Henning Kamp l_fp ftemp; 6646f70df15SPoul-Henning Kamp 665c68996e2SPoul-Henning Kamp /* 666c68996e2SPoul-Henning Kamp * Select how the phase is to be controlled and from which 667c68996e2SPoul-Henning Kamp * source. If the PPS signal is present and enabled to 668c68996e2SPoul-Henning Kamp * discipline the time, the PPS offset is used; otherwise, the 669c68996e2SPoul-Henning Kamp * argument offset is used. 670c68996e2SPoul-Henning Kamp */ 67182e84c5bSPoul-Henning Kamp if (!(time_status & STA_PLL)) 67282e84c5bSPoul-Henning Kamp return; 67397804a5cSPoul-Henning Kamp if (!(time_status & STA_PPSTIME && time_status & 67497804a5cSPoul-Henning Kamp STA_PPSSIGNAL)) { 67597804a5cSPoul-Henning Kamp if (offset > MAXPHASE) 67697804a5cSPoul-Henning Kamp time_monitor = MAXPHASE; 67797804a5cSPoul-Henning Kamp else if (offset < -MAXPHASE) 67897804a5cSPoul-Henning Kamp time_monitor = -MAXPHASE; 67997804a5cSPoul-Henning Kamp else 68097804a5cSPoul-Henning Kamp time_monitor = offset; 68197804a5cSPoul-Henning Kamp L_LINT(time_offset, time_monitor); 68297804a5cSPoul-Henning Kamp } 6836f70df15SPoul-Henning Kamp 6846f70df15SPoul-Henning Kamp /* 685c68996e2SPoul-Henning Kamp * Select how the frequency is to be controlled and in which 686c68996e2SPoul-Henning Kamp * mode (PLL or FLL). If the PPS signal is present and enabled 687c68996e2SPoul-Henning Kamp * to discipline the frequency, the PPS frequency is used; 688c68996e2SPoul-Henning Kamp * otherwise, the argument offset is used to compute it. 6896f70df15SPoul-Henning Kamp */ 690c68996e2SPoul-Henning Kamp if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) { 691c68996e2SPoul-Henning Kamp time_reftime = time_second; 692c68996e2SPoul-Henning Kamp return; 693c68996e2SPoul-Henning Kamp } 6946f70df15SPoul-Henning Kamp if (time_status & STA_FREQHOLD || time_reftime == 0) 695227ee8a1SPoul-Henning Kamp time_reftime = time_second; 696227ee8a1SPoul-Henning Kamp mtemp = time_second - time_reftime; 69797804a5cSPoul-Henning Kamp L_LINT(ftemp, time_monitor); 698c68996e2SPoul-Henning Kamp L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1); 699c68996e2SPoul-Henning Kamp L_MPY(ftemp, mtemp); 700c68996e2SPoul-Henning Kamp L_ADD(time_freq, ftemp); 701c68996e2SPoul-Henning Kamp time_status &= ~STA_MODE; 70297804a5cSPoul-Henning Kamp if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > 70397804a5cSPoul-Henning Kamp MAXSEC)) { 70497804a5cSPoul-Henning Kamp L_LINT(ftemp, (time_monitor << 4) / mtemp); 70582e84c5bSPoul-Henning Kamp L_RSHIFT(ftemp, SHIFT_FLL + 4); 70682e84c5bSPoul-Henning Kamp L_ADD(time_freq, ftemp); 70782e84c5bSPoul-Henning Kamp time_status |= STA_MODE; 708c68996e2SPoul-Henning Kamp } 709227ee8a1SPoul-Henning Kamp time_reftime = time_second; 710c68996e2SPoul-Henning Kamp if (L_GINT(time_freq) > MAXFREQ) 711c68996e2SPoul-Henning Kamp L_LINT(time_freq, MAXFREQ); 712c68996e2SPoul-Henning Kamp else if (L_GINT(time_freq) < -MAXFREQ) 713c68996e2SPoul-Henning Kamp L_LINT(time_freq, -MAXFREQ); 7143f31c649SGarrett Wollman } 7153f31c649SGarrett Wollman 7166f70df15SPoul-Henning Kamp #ifdef PPS_SYNC 7176f70df15SPoul-Henning Kamp /* 7186f70df15SPoul-Henning Kamp * hardpps() - discipline CPU clock oscillator to external PPS signal 7196f70df15SPoul-Henning Kamp * 7206f70df15SPoul-Henning Kamp * This routine is called at each PPS interrupt in order to discipline 72197804a5cSPoul-Henning Kamp * the CPU clock oscillator to the PPS signal. There are two independent 72297804a5cSPoul-Henning Kamp * first-order feedback loops, one for the phase, the other for the 72397804a5cSPoul-Henning Kamp * frequency. The phase loop measures and grooms the PPS phase offset 72497804a5cSPoul-Henning Kamp * and leaves it in a handy spot for the seconds overflow routine. The 72597804a5cSPoul-Henning Kamp * frequency loop averages successive PPS phase differences and 72697804a5cSPoul-Henning Kamp * calculates the PPS frequency offset, which is also processed by the 72797804a5cSPoul-Henning Kamp * seconds overflow routine. The code requires the caller to capture the 72897804a5cSPoul-Henning Kamp * time and architecture-dependent hardware counter values in 72997804a5cSPoul-Henning Kamp * nanoseconds at the on-time PPS signal transition. 7306f70df15SPoul-Henning Kamp * 731c68996e2SPoul-Henning Kamp * Note that, on some Unix systems this routine runs at an interrupt 7326f70df15SPoul-Henning Kamp * priority level higher than the timer interrupt routine hardclock(). 7336f70df15SPoul-Henning Kamp * Therefore, the variables used are distinct from the hardclock() 734c68996e2SPoul-Henning Kamp * variables, except for the actual time and frequency variables, which 735c68996e2SPoul-Henning Kamp * are determined by this routine and updated atomically. 7366f70df15SPoul-Henning Kamp */ 7376f70df15SPoul-Henning Kamp void 738c68996e2SPoul-Henning Kamp hardpps(tsp, nsec) 739c68996e2SPoul-Henning Kamp struct timespec *tsp; /* time at PPS */ 740c68996e2SPoul-Henning Kamp long nsec; /* hardware counter at PPS */ 7416f70df15SPoul-Henning Kamp { 74297804a5cSPoul-Henning Kamp long u_sec, u_nsec, v_nsec; /* temps */ 743c68996e2SPoul-Henning Kamp l_fp ftemp; 7446f70df15SPoul-Henning Kamp 7456f70df15SPoul-Henning Kamp /* 74697804a5cSPoul-Henning Kamp * The signal is first processed by a range gate and frequency 74797804a5cSPoul-Henning Kamp * discriminator. The range gate rejects noise spikes outside 74897804a5cSPoul-Henning Kamp * the range +-500 us. The frequency discriminator rejects input 74997804a5cSPoul-Henning Kamp * signals with apparent frequency outside the range 1 +-500 75097804a5cSPoul-Henning Kamp * PPM. If two hits occur in the same second, we ignore the 75197804a5cSPoul-Henning Kamp * later hit; if not and a hit occurs outside the range gate, 75297804a5cSPoul-Henning Kamp * keep the later hit for later comparison, but do not process 75397804a5cSPoul-Henning Kamp * it. 7546f70df15SPoul-Henning Kamp */ 755c68996e2SPoul-Henning Kamp time_status |= STA_PPSSIGNAL | STA_PPSJITTER; 756c68996e2SPoul-Henning Kamp time_status &= ~(STA_PPSWANDER | STA_PPSERROR); 757c68996e2SPoul-Henning Kamp pps_valid = PPS_VALID; 758c68996e2SPoul-Henning Kamp u_sec = tsp->tv_sec; 759c68996e2SPoul-Henning Kamp u_nsec = tsp->tv_nsec; 760c68996e2SPoul-Henning Kamp if (u_nsec >= (NANOSECOND >> 1)) { 761c68996e2SPoul-Henning Kamp u_nsec -= NANOSECOND; 762c68996e2SPoul-Henning Kamp u_sec++; 7636f70df15SPoul-Henning Kamp } 76482e84c5bSPoul-Henning Kamp v_nsec = u_nsec - pps_tf[0].tv_nsec; 76524dbea46SJohn Hay if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - 76624dbea46SJohn Hay MAXFREQ) 767c68996e2SPoul-Henning Kamp return; 768c68996e2SPoul-Henning Kamp pps_tf[2] = pps_tf[1]; 769c68996e2SPoul-Henning Kamp pps_tf[1] = pps_tf[0]; 77082e84c5bSPoul-Henning Kamp pps_tf[0].tv_sec = u_sec; 77182e84c5bSPoul-Henning Kamp pps_tf[0].tv_nsec = u_nsec; 7726f70df15SPoul-Henning Kamp 7736f70df15SPoul-Henning Kamp /* 774c68996e2SPoul-Henning Kamp * Compute the difference between the current and previous 775c68996e2SPoul-Henning Kamp * counter values. If the difference exceeds 0.5 s, assume it 776c68996e2SPoul-Henning Kamp * has wrapped around, so correct 1.0 s. If the result exceeds 777c68996e2SPoul-Henning Kamp * the tick interval, the sample point has crossed a tick 778c68996e2SPoul-Henning Kamp * boundary during the last second, so correct the tick. Very 779c68996e2SPoul-Henning Kamp * intricate. 780c68996e2SPoul-Henning Kamp */ 78132c20357SPoul-Henning Kamp u_nsec = nsec; 782c68996e2SPoul-Henning Kamp if (u_nsec > (NANOSECOND >> 1)) 783c68996e2SPoul-Henning Kamp u_nsec -= NANOSECOND; 784c68996e2SPoul-Henning Kamp else if (u_nsec < -(NANOSECOND >> 1)) 785c68996e2SPoul-Henning Kamp u_nsec += NANOSECOND; 786884ab557SPoul-Henning Kamp pps_fcount += u_nsec; 78724dbea46SJohn Hay if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) 788c68996e2SPoul-Henning Kamp return; 789c68996e2SPoul-Henning Kamp time_status &= ~STA_PPSJITTER; 790c68996e2SPoul-Henning Kamp 791c68996e2SPoul-Henning Kamp /* 792c68996e2SPoul-Henning Kamp * A three-stage median filter is used to help denoise the PPS 7936f70df15SPoul-Henning Kamp * time. The median sample becomes the time offset estimate; the 7946f70df15SPoul-Henning Kamp * difference between the other two samples becomes the time 7956f70df15SPoul-Henning Kamp * dispersion (jitter) estimate. 7966f70df15SPoul-Henning Kamp */ 79782e84c5bSPoul-Henning Kamp if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) { 79882e84c5bSPoul-Henning Kamp if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) { 79982e84c5bSPoul-Henning Kamp v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */ 80082e84c5bSPoul-Henning Kamp u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec; 80182e84c5bSPoul-Henning Kamp } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) { 80282e84c5bSPoul-Henning Kamp v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */ 80382e84c5bSPoul-Henning Kamp u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec; 8046f70df15SPoul-Henning Kamp } else { 80582e84c5bSPoul-Henning Kamp v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */ 80682e84c5bSPoul-Henning Kamp u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec; 807c68996e2SPoul-Henning Kamp } 808c68996e2SPoul-Henning Kamp } else { 80982e84c5bSPoul-Henning Kamp if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) { 81082e84c5bSPoul-Henning Kamp v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */ 81182e84c5bSPoul-Henning Kamp u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec; 81282e84c5bSPoul-Henning Kamp } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) { 81382e84c5bSPoul-Henning Kamp v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */ 81482e84c5bSPoul-Henning Kamp u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec; 815c68996e2SPoul-Henning Kamp } else { 81682e84c5bSPoul-Henning Kamp v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */ 81782e84c5bSPoul-Henning Kamp u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec; 8186f70df15SPoul-Henning Kamp } 8196f70df15SPoul-Henning Kamp } 8206f70df15SPoul-Henning Kamp 8216f70df15SPoul-Henning Kamp /* 822c68996e2SPoul-Henning Kamp * Nominal jitter is due to PPS signal noise and interrupt 82397804a5cSPoul-Henning Kamp * latency. If it exceeds the popcorn threshold, the sample is 82497804a5cSPoul-Henning Kamp * discarded. otherwise, if so enabled, the time offset is 82597804a5cSPoul-Henning Kamp * updated. We can tolerate a modest loss of data here without 82697804a5cSPoul-Henning Kamp * much degrading time accuracy. 8276f70df15SPoul-Henning Kamp */ 82882e84c5bSPoul-Henning Kamp if (u_nsec > (pps_jitter << PPS_POPCORN)) { 829c68996e2SPoul-Henning Kamp time_status |= STA_PPSJITTER; 830c68996e2SPoul-Henning Kamp pps_jitcnt++; 831c68996e2SPoul-Henning Kamp } else if (time_status & STA_PPSTIME) { 83297804a5cSPoul-Henning Kamp time_monitor = -v_nsec; 83397804a5cSPoul-Henning Kamp L_LINT(time_offset, time_monitor); 834c68996e2SPoul-Henning Kamp } 835c68996e2SPoul-Henning Kamp pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG; 83682e84c5bSPoul-Henning Kamp u_sec = pps_tf[0].tv_sec - pps_lastsec; 837c68996e2SPoul-Henning Kamp if (u_sec < (1 << pps_shift)) 838c68996e2SPoul-Henning Kamp return; 839c68996e2SPoul-Henning Kamp 840c68996e2SPoul-Henning Kamp /* 841c68996e2SPoul-Henning Kamp * At the end of the calibration interval the difference between 842c68996e2SPoul-Henning Kamp * the first and last counter values becomes the scaled 843c68996e2SPoul-Henning Kamp * frequency. It will later be divided by the length of the 844c68996e2SPoul-Henning Kamp * interval to determine the frequency update. If the frequency 845c68996e2SPoul-Henning Kamp * exceeds a sanity threshold, or if the actual calibration 846c68996e2SPoul-Henning Kamp * interval is not equal to the expected length, the data are 847c68996e2SPoul-Henning Kamp * discarded. We can tolerate a modest loss of data here without 84897804a5cSPoul-Henning Kamp * much degrading frequency accuracy. 849c68996e2SPoul-Henning Kamp */ 850c68996e2SPoul-Henning Kamp pps_calcnt++; 851884ab557SPoul-Henning Kamp v_nsec = -pps_fcount; 85282e84c5bSPoul-Henning Kamp pps_lastsec = pps_tf[0].tv_sec; 853884ab557SPoul-Henning Kamp pps_fcount = 0; 854c68996e2SPoul-Henning Kamp u_nsec = MAXFREQ << pps_shift; 855c68996e2SPoul-Henning Kamp if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << 856c68996e2SPoul-Henning Kamp pps_shift)) { 857c68996e2SPoul-Henning Kamp time_status |= STA_PPSERROR; 858c68996e2SPoul-Henning Kamp pps_errcnt++; 859c68996e2SPoul-Henning Kamp return; 860c68996e2SPoul-Henning Kamp } 861c68996e2SPoul-Henning Kamp 862c68996e2SPoul-Henning Kamp /* 86382e84c5bSPoul-Henning Kamp * Here the raw frequency offset and wander (stability) is 86482e84c5bSPoul-Henning Kamp * calculated. If the wander is less than the wander threshold 86582e84c5bSPoul-Henning Kamp * for four consecutive averaging intervals, the interval is 86682e84c5bSPoul-Henning Kamp * doubled; if it is greater than the threshold for four 86782e84c5bSPoul-Henning Kamp * consecutive intervals, the interval is halved. The scaled 86882e84c5bSPoul-Henning Kamp * frequency offset is converted to frequency offset. The 86982e84c5bSPoul-Henning Kamp * stability metric is calculated as the average of recent 87082e84c5bSPoul-Henning Kamp * frequency changes, but is used only for performance 871c68996e2SPoul-Henning Kamp * monitoring. 872c68996e2SPoul-Henning Kamp */ 873c68996e2SPoul-Henning Kamp L_LINT(ftemp, v_nsec); 874c68996e2SPoul-Henning Kamp L_RSHIFT(ftemp, pps_shift); 875c68996e2SPoul-Henning Kamp L_SUB(ftemp, pps_freq); 876c68996e2SPoul-Henning Kamp u_nsec = L_GINT(ftemp); 87782e84c5bSPoul-Henning Kamp if (u_nsec > PPS_MAXWANDER) { 87882e84c5bSPoul-Henning Kamp L_LINT(ftemp, PPS_MAXWANDER); 879c68996e2SPoul-Henning Kamp pps_intcnt--; 880c68996e2SPoul-Henning Kamp time_status |= STA_PPSWANDER; 881c68996e2SPoul-Henning Kamp pps_stbcnt++; 88282e84c5bSPoul-Henning Kamp } else if (u_nsec < -PPS_MAXWANDER) { 88382e84c5bSPoul-Henning Kamp L_LINT(ftemp, -PPS_MAXWANDER); 884c68996e2SPoul-Henning Kamp pps_intcnt--; 885c68996e2SPoul-Henning Kamp time_status |= STA_PPSWANDER; 886c68996e2SPoul-Henning Kamp pps_stbcnt++; 887c68996e2SPoul-Henning Kamp } else { 8886f70df15SPoul-Henning Kamp pps_intcnt++; 8896f70df15SPoul-Henning Kamp } 89097804a5cSPoul-Henning Kamp if (pps_intcnt >= 4) { 891c68996e2SPoul-Henning Kamp pps_intcnt = 4; 89282e84c5bSPoul-Henning Kamp if (pps_shift < pps_shiftmax) { 893c68996e2SPoul-Henning Kamp pps_shift++; 894c68996e2SPoul-Henning Kamp pps_intcnt = 0; 895c68996e2SPoul-Henning Kamp } 89697804a5cSPoul-Henning Kamp } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) { 897c68996e2SPoul-Henning Kamp pps_intcnt = -4; 898c68996e2SPoul-Henning Kamp if (pps_shift > PPS_FAVG) { 899c68996e2SPoul-Henning Kamp pps_shift--; 900c68996e2SPoul-Henning Kamp pps_intcnt = 0; 901c68996e2SPoul-Henning Kamp } 902c68996e2SPoul-Henning Kamp } 903c68996e2SPoul-Henning Kamp if (u_nsec < 0) 904c68996e2SPoul-Henning Kamp u_nsec = -u_nsec; 905c68996e2SPoul-Henning Kamp pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG; 9069ada5a50SPoul-Henning Kamp 907c68996e2SPoul-Henning Kamp /* 90882e84c5bSPoul-Henning Kamp * The PPS frequency is recalculated and clamped to the maximum 90982e84c5bSPoul-Henning Kamp * MAXFREQ. If enabled, the system clock frequency is updated as 91082e84c5bSPoul-Henning Kamp * well. 911c68996e2SPoul-Henning Kamp */ 912c68996e2SPoul-Henning Kamp L_ADD(pps_freq, ftemp); 913c68996e2SPoul-Henning Kamp u_nsec = L_GINT(pps_freq); 914c68996e2SPoul-Henning Kamp if (u_nsec > MAXFREQ) 915c68996e2SPoul-Henning Kamp L_LINT(pps_freq, MAXFREQ); 916c68996e2SPoul-Henning Kamp else if (u_nsec < -MAXFREQ) 917c68996e2SPoul-Henning Kamp L_LINT(pps_freq, -MAXFREQ); 91897804a5cSPoul-Henning Kamp if (time_status & STA_PPSFREQ) 919c68996e2SPoul-Henning Kamp time_freq = pps_freq; 920c68996e2SPoul-Henning Kamp } 9216f70df15SPoul-Henning Kamp #endif /* PPS_SYNC */ 922e1d970f1SPoul-Henning Kamp 923e1d970f1SPoul-Henning Kamp #ifndef _SYS_SYSPROTO_H_ 924e1d970f1SPoul-Henning Kamp struct adjtime_args { 925e1d970f1SPoul-Henning Kamp struct timeval *delta; 926e1d970f1SPoul-Henning Kamp struct timeval *olddelta; 927e1d970f1SPoul-Henning Kamp }; 928e1d970f1SPoul-Henning Kamp #endif 929e1d970f1SPoul-Henning Kamp /* ARGSUSED */ 930e1d970f1SPoul-Henning Kamp int 931e1d970f1SPoul-Henning Kamp adjtime(struct thread *td, struct adjtime_args *uap) 932e1d970f1SPoul-Henning Kamp { 933b88ec951SJohn Baldwin struct timeval delta, olddelta, *deltap; 934b88ec951SJohn Baldwin int error; 935b88ec951SJohn Baldwin 936b88ec951SJohn Baldwin if (uap->delta) { 937b88ec951SJohn Baldwin error = copyin(uap->delta, &delta, sizeof(delta)); 938b88ec951SJohn Baldwin if (error) 939b88ec951SJohn Baldwin return (error); 940b88ec951SJohn Baldwin deltap = δ 941b88ec951SJohn Baldwin } else 942b88ec951SJohn Baldwin deltap = NULL; 943b88ec951SJohn Baldwin error = kern_adjtime(td, deltap, &olddelta); 944b88ec951SJohn Baldwin if (uap->olddelta && error == 0) 945b88ec951SJohn Baldwin error = copyout(&olddelta, uap->olddelta, sizeof(olddelta)); 946b88ec951SJohn Baldwin return (error); 947b88ec951SJohn Baldwin } 948b88ec951SJohn Baldwin 949b88ec951SJohn Baldwin int 950b88ec951SJohn Baldwin kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta) 951b88ec951SJohn Baldwin { 952e1d970f1SPoul-Henning Kamp struct timeval atv; 953e1d970f1SPoul-Henning Kamp int error; 954e1d970f1SPoul-Henning Kamp 9553bdd2d06SPoul-Henning Kamp mtx_lock(&Giant); 956b88ec951SJohn Baldwin if (olddelta) { 957e1d970f1SPoul-Henning Kamp atv.tv_sec = time_adjtime / 1000000; 958e1d970f1SPoul-Henning Kamp atv.tv_usec = time_adjtime % 1000000; 959e1d970f1SPoul-Henning Kamp if (atv.tv_usec < 0) { 960e1d970f1SPoul-Henning Kamp atv.tv_usec += 1000000; 961e1d970f1SPoul-Henning Kamp atv.tv_sec--; 962e1d970f1SPoul-Henning Kamp } 963b88ec951SJohn Baldwin *olddelta = atv; 964e1d970f1SPoul-Henning Kamp } 965b4be6ef2SRobert Watson if (delta) { 966b4be6ef2SRobert Watson if ((error = priv_check(td, PRIV_ADJTIME))) { 967e1d970f1SPoul-Henning Kamp mtx_unlock(&Giant); 968e1d970f1SPoul-Henning Kamp return (error); 969e1d970f1SPoul-Henning Kamp } 970b4be6ef2SRobert Watson time_adjtime = (int64_t)delta->tv_sec * 1000000 + 971b4be6ef2SRobert Watson delta->tv_usec; 972b4be6ef2SRobert Watson } 973b4be6ef2SRobert Watson mtx_unlock(&Giant); 974b4be6ef2SRobert Watson return (0); 975b4be6ef2SRobert Watson } 976e1d970f1SPoul-Henning Kamp 9775c7e270fSAndriy Gapon static struct callout resettodr_callout; 9785c7e270fSAndriy Gapon static int resettodr_period = 1800; 9795c7e270fSAndriy Gapon 9805c7e270fSAndriy Gapon static void 9815c7e270fSAndriy Gapon periodic_resettodr(void *arg __unused) 9825c7e270fSAndriy Gapon { 9835c7e270fSAndriy Gapon 9845c7e270fSAndriy Gapon if (!ntp_is_time_error()) { 9855c7e270fSAndriy Gapon mtx_lock(&Giant); 9865c7e270fSAndriy Gapon resettodr(); 9875c7e270fSAndriy Gapon mtx_unlock(&Giant); 9885c7e270fSAndriy Gapon } 9895c7e270fSAndriy Gapon if (resettodr_period > 0) 9905c7e270fSAndriy Gapon callout_schedule(&resettodr_callout, resettodr_period * hz); 9915c7e270fSAndriy Gapon } 9925c7e270fSAndriy Gapon 9935c7e270fSAndriy Gapon static void 9945c7e270fSAndriy Gapon shutdown_resettodr(void *arg __unused, int howto __unused) 9955c7e270fSAndriy Gapon { 9965c7e270fSAndriy Gapon 9975c7e270fSAndriy Gapon callout_drain(&resettodr_callout); 9985c7e270fSAndriy Gapon if (resettodr_period > 0 && !ntp_is_time_error()) { 9995c7e270fSAndriy Gapon mtx_lock(&Giant); 10005c7e270fSAndriy Gapon resettodr(); 10015c7e270fSAndriy Gapon mtx_unlock(&Giant); 10025c7e270fSAndriy Gapon } 10035c7e270fSAndriy Gapon } 10045c7e270fSAndriy Gapon 10055c7e270fSAndriy Gapon static int 10065c7e270fSAndriy Gapon sysctl_resettodr_period(SYSCTL_HANDLER_ARGS) 10075c7e270fSAndriy Gapon { 10085c7e270fSAndriy Gapon int error; 10095c7e270fSAndriy Gapon 10105c7e270fSAndriy Gapon error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); 10115c7e270fSAndriy Gapon if (error || !req->newptr) 10125c7e270fSAndriy Gapon return (error); 10135c7e270fSAndriy Gapon if (resettodr_period == 0) 10145c7e270fSAndriy Gapon callout_stop(&resettodr_callout); 10155c7e270fSAndriy Gapon else 10165c7e270fSAndriy Gapon callout_reset(&resettodr_callout, resettodr_period * hz, 10175c7e270fSAndriy Gapon periodic_resettodr, NULL); 10185c7e270fSAndriy Gapon return (0); 10195c7e270fSAndriy Gapon } 10205c7e270fSAndriy Gapon 10215c7e270fSAndriy Gapon SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW, 10225c7e270fSAndriy Gapon &resettodr_period, 1800, sysctl_resettodr_period, "I", 10235c7e270fSAndriy Gapon "Save system time to RTC with this period (in seconds)"); 10245c7e270fSAndriy Gapon TUNABLE_INT("machdep.rtc_save_period", &resettodr_period); 10255c7e270fSAndriy Gapon 10265c7e270fSAndriy Gapon static void 10275c7e270fSAndriy Gapon start_periodic_resettodr(void *arg __unused) 10285c7e270fSAndriy Gapon { 10295c7e270fSAndriy Gapon 10305c7e270fSAndriy Gapon EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL, 10315c7e270fSAndriy Gapon SHUTDOWN_PRI_FIRST); 10325c7e270fSAndriy Gapon callout_init(&resettodr_callout, 1); 10335c7e270fSAndriy Gapon if (resettodr_period == 0) 10345c7e270fSAndriy Gapon return; 10355c7e270fSAndriy Gapon callout_reset(&resettodr_callout, resettodr_period * hz, 10365c7e270fSAndriy Gapon periodic_resettodr, NULL); 10375c7e270fSAndriy Gapon } 10385c7e270fSAndriy Gapon 10397b9df13bSAndriy Gapon SYSINIT(periodic_resettodr, SI_SUB_RUN_SCHEDULER, SI_ORDER_MIDDLE, 10405c7e270fSAndriy Gapon start_periodic_resettodr, NULL); 1041