xref: /freebsd/sys/kern/kern_mutex.c (revision fd9a4a67d053a51349ba6eba5ea61a7cd2cf20af)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Machine independent bits of mutex implementation.
36  */
37 
38 #include <sys/cdefs.h>
39 #include "opt_adaptive_mutexes.h"
40 #include "opt_ddb.h"
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/sbuf.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/turnstile.h>
61 #include <sys/vmmeter.h>
62 #include <sys/lock_profile.h>
63 
64 #include <machine/atomic.h>
65 #include <machine/bus.h>
66 #include <machine/cpu.h>
67 
68 #include <ddb/ddb.h>
69 
70 #include <fs/devfs/devfs_int.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 
75 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
76 #define	ADAPTIVE_MUTEXES
77 #endif
78 
79 #ifdef HWPMC_HOOKS
80 #include <sys/pmckern.h>
81 PMC_SOFT_DEFINE( , , lock, failed);
82 #endif
83 
84 /*
85  * Return the mutex address when the lock cookie address is provided.
86  * This functionality assumes that struct mtx* have a member named mtx_lock.
87  */
88 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
89 
90 /*
91  * Internal utility macros.
92  */
93 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
94 
95 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
96 
97 static void	assert_mtx(const struct lock_object *lock, int what);
98 #ifdef DDB
99 static void	db_show_mtx(const struct lock_object *lock);
100 #endif
101 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
102 static void	lock_spin(struct lock_object *lock, uintptr_t how);
103 #ifdef KDTRACE_HOOKS
104 static int	owner_mtx(const struct lock_object *lock,
105 		    struct thread **owner);
106 #endif
107 static uintptr_t unlock_mtx(struct lock_object *lock);
108 static uintptr_t unlock_spin(struct lock_object *lock);
109 
110 /*
111  * Lock classes for sleep and spin mutexes.
112  */
113 struct lock_class lock_class_mtx_sleep = {
114 	.lc_name = "sleep mutex",
115 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
116 	.lc_assert = assert_mtx,
117 #ifdef DDB
118 	.lc_ddb_show = db_show_mtx,
119 #endif
120 	.lc_lock = lock_mtx,
121 	.lc_unlock = unlock_mtx,
122 #ifdef KDTRACE_HOOKS
123 	.lc_owner = owner_mtx,
124 #endif
125 };
126 struct lock_class lock_class_mtx_spin = {
127 	.lc_name = "spin mutex",
128 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
129 	.lc_assert = assert_mtx,
130 #ifdef DDB
131 	.lc_ddb_show = db_show_mtx,
132 #endif
133 	.lc_lock = lock_spin,
134 	.lc_unlock = unlock_spin,
135 #ifdef KDTRACE_HOOKS
136 	.lc_owner = owner_mtx,
137 #endif
138 };
139 
140 #ifdef ADAPTIVE_MUTEXES
141 #ifdef MUTEX_CUSTOM_BACKOFF
142 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
143     "mtx debugging");
144 
145 static struct lock_delay_config __read_frequently mtx_delay;
146 
147 SYSCTL_U16(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
148     0, "");
149 SYSCTL_U16(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
150     0, "");
151 
152 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
153 #else
154 #define mtx_delay	locks_delay
155 #endif
156 #endif
157 
158 #ifdef MUTEX_SPIN_CUSTOM_BACKOFF
159 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin,
160     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
161     "mtx spin debugging");
162 
163 static struct lock_delay_config __read_frequently mtx_spin_delay;
164 
165 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
166     &mtx_spin_delay.base, 0, "");
167 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
168     &mtx_spin_delay.max, 0, "");
169 
170 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
171 #else
172 #define mtx_spin_delay	locks_delay
173 #endif
174 
175 /*
176  * System-wide mutexes
177  */
178 struct mtx blocked_lock;
179 struct mtx __exclusive_cache_line Giant;
180 
181 static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
182 
183 void
184 assert_mtx(const struct lock_object *lock, int what)
185 {
186 
187 	/*
188 	 * Treat LA_LOCKED as if LA_XLOCKED was asserted.
189 	 *
190 	 * Some callers of lc_assert uses LA_LOCKED to indicate that either
191 	 * a shared lock or write lock was held, while other callers uses
192 	 * the more strict LA_XLOCKED (used as MA_OWNED).
193 	 *
194 	 * Mutex is the only lock class that can not be shared, as a result,
195 	 * we can reasonably consider the caller really intends to assert
196 	 * LA_XLOCKED when they are asserting LA_LOCKED on a mutex object.
197 	 */
198 	if (what & LA_LOCKED) {
199 		what &= ~LA_LOCKED;
200 		what |= LA_XLOCKED;
201 	}
202 	mtx_assert((const struct mtx *)lock, what);
203 }
204 
205 void
206 lock_mtx(struct lock_object *lock, uintptr_t how)
207 {
208 
209 	mtx_lock((struct mtx *)lock);
210 }
211 
212 void
213 lock_spin(struct lock_object *lock, uintptr_t how)
214 {
215 
216 	mtx_lock_spin((struct mtx *)lock);
217 }
218 
219 uintptr_t
220 unlock_mtx(struct lock_object *lock)
221 {
222 	struct mtx *m;
223 
224 	m = (struct mtx *)lock;
225 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
226 	mtx_unlock(m);
227 	return (0);
228 }
229 
230 uintptr_t
231 unlock_spin(struct lock_object *lock)
232 {
233 	struct mtx *m;
234 
235 	m = (struct mtx *)lock;
236 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
237 	mtx_unlock_spin(m);
238 	return (0);
239 }
240 
241 #ifdef KDTRACE_HOOKS
242 int
243 owner_mtx(const struct lock_object *lock, struct thread **owner)
244 {
245 	const struct mtx *m;
246 	uintptr_t x;
247 
248 	m = (const struct mtx *)lock;
249 	x = m->mtx_lock;
250 	*owner = (struct thread *)(x & ~MTX_FLAGMASK);
251 	return (*owner != NULL);
252 }
253 #endif
254 
255 /*
256  * Function versions of the inlined __mtx_* macros.  These are used by
257  * modules and can also be called from assembly language if needed.
258  */
259 void
260 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
261 {
262 	struct mtx *m;
263 	uintptr_t tid, v;
264 
265 	m = mtxlock2mtx(c);
266 
267 	KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
268 	    !TD_IS_IDLETHREAD(curthread),
269 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
270 	    curthread, m->lock_object.lo_name, file, line));
271 	KASSERT(m->mtx_lock != MTX_DESTROYED,
272 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
273 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
274 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
275 	    file, line));
276 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
277 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
278 
279 	tid = (uintptr_t)curthread;
280 	v = MTX_UNOWNED;
281 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
282 		_mtx_lock_sleep(m, v, opts, file, line);
283 	else
284 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
285 		    m, 0, 0, file, line);
286 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
287 	    line);
288 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
289 	    file, line);
290 	TD_LOCKS_INC(curthread);
291 }
292 
293 void
294 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
295 {
296 	struct mtx *m;
297 
298 	m = mtxlock2mtx(c);
299 
300 	KASSERT(m->mtx_lock != MTX_DESTROYED,
301 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
302 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
303 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
304 	    file, line));
305 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
306 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
307 	    line);
308 	mtx_assert(m, MA_OWNED);
309 
310 #ifdef LOCK_PROFILING
311 	__mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
312 #else
313 	__mtx_unlock(m, curthread, opts, file, line);
314 #endif
315 	TD_LOCKS_DEC(curthread);
316 }
317 
318 void
319 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
320     int line)
321 {
322 	struct mtx *m;
323 #ifdef SMP
324 	uintptr_t tid, v;
325 #endif
326 
327 	m = mtxlock2mtx(c);
328 
329 	KASSERT(m->mtx_lock != MTX_DESTROYED,
330 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
331 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
332 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
333 	    m->lock_object.lo_name, file, line));
334 	if (mtx_owned(m))
335 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
336 		    (opts & MTX_RECURSE) != 0,
337 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
338 		    m->lock_object.lo_name, file, line));
339 	opts &= ~MTX_RECURSE;
340 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
341 	    file, line, NULL);
342 #ifdef SMP
343 	spinlock_enter();
344 	tid = (uintptr_t)curthread;
345 	v = MTX_UNOWNED;
346 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
347 		_mtx_lock_spin(m, v, opts, file, line);
348 	else
349 		LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire,
350 		    m, 0, 0, file, line);
351 #else
352 	__mtx_lock_spin(m, curthread, opts, file, line);
353 #endif
354 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
355 	    line);
356 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
357 }
358 
359 int
360 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
361     int line)
362 {
363 	struct mtx *m;
364 
365 	if (SCHEDULER_STOPPED())
366 		return (1);
367 
368 	m = mtxlock2mtx(c);
369 
370 	KASSERT(m->mtx_lock != MTX_DESTROYED,
371 	    ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
372 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
373 	    ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
374 	    m->lock_object.lo_name, file, line));
375 	KASSERT((opts & MTX_RECURSE) == 0,
376 	    ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
377 	    m->lock_object.lo_name, file, line));
378 	if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
379 		LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
380 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
381 		return (1);
382 	}
383 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
384 	return (0);
385 }
386 
387 void
388 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
389     int line)
390 {
391 	struct mtx *m;
392 
393 	m = mtxlock2mtx(c);
394 
395 	KASSERT(m->mtx_lock != MTX_DESTROYED,
396 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
397 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
398 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
399 	    m->lock_object.lo_name, file, line));
400 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
401 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
402 	    line);
403 	mtx_assert(m, MA_OWNED);
404 
405 	__mtx_unlock_spin(m);
406 }
407 
408 /*
409  * The important part of mtx_trylock{,_flags}()
410  * Tries to acquire lock `m.'  If this function is called on a mutex that
411  * is already owned, it will recursively acquire the lock.
412  */
413 int
414 _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
415 {
416 	struct thread *td;
417 	uintptr_t tid, v;
418 #ifdef LOCK_PROFILING
419 	uint64_t waittime = 0;
420 	int contested = 0;
421 #endif
422 	int rval;
423 	bool recursed;
424 
425 	td = curthread;
426 	tid = (uintptr_t)td;
427 	if (SCHEDULER_STOPPED_TD(td))
428 		return (1);
429 
430 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
431 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
432 	    curthread, m->lock_object.lo_name, file, line));
433 	KASSERT(m->mtx_lock != MTX_DESTROYED,
434 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
435 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
436 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
437 	    file, line));
438 
439 	rval = 1;
440 	recursed = false;
441 	v = MTX_UNOWNED;
442 	for (;;) {
443 		if (_mtx_obtain_lock_fetch(m, &v, tid))
444 			break;
445 		if (v == MTX_UNOWNED)
446 			continue;
447 		if (v == tid &&
448 		    ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
449 		    (opts & MTX_RECURSE) != 0)) {
450 			m->mtx_recurse++;
451 			atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
452 			recursed = true;
453 			break;
454 		}
455 		rval = 0;
456 		break;
457 	}
458 
459 	opts &= ~MTX_RECURSE;
460 
461 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
462 	if (rval) {
463 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
464 		    file, line);
465 		TD_LOCKS_INC(curthread);
466 		if (!recursed)
467 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
468 			    m, contested, waittime, file, line);
469 	}
470 
471 	return (rval);
472 }
473 
474 int
475 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
476 {
477 	struct mtx *m;
478 
479 	m = mtxlock2mtx(c);
480 	return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
481 }
482 
483 /*
484  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
485  *
486  * We call this if the lock is either contested (i.e. we need to go to
487  * sleep waiting for it), or if we need to recurse on it.
488  */
489 #if LOCK_DEBUG > 0
490 void
491 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
492     int line)
493 #else
494 void
495 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
496 #endif
497 {
498 	struct thread *td;
499 	struct mtx *m;
500 	struct turnstile *ts;
501 	uintptr_t tid;
502 	struct thread *owner;
503 #ifdef LOCK_PROFILING
504 	int contested = 0;
505 	uint64_t waittime = 0;
506 #endif
507 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
508 	struct lock_delay_arg lda;
509 #endif
510 #ifdef KDTRACE_HOOKS
511 	u_int sleep_cnt = 0;
512 	int64_t sleep_time = 0;
513 	int64_t all_time = 0;
514 #endif
515 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
516 	int doing_lockprof = 0;
517 #endif
518 
519 	td = curthread;
520 	tid = (uintptr_t)td;
521 	m = mtxlock2mtx(c);
522 
523 #ifdef KDTRACE_HOOKS
524 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
525 		while (v == MTX_UNOWNED) {
526 			if (_mtx_obtain_lock_fetch(m, &v, tid))
527 				goto out_lockstat;
528 		}
529 		doing_lockprof = 1;
530 		all_time -= lockstat_nsecs(&m->lock_object);
531 	}
532 #endif
533 #ifdef LOCK_PROFILING
534 	doing_lockprof = 1;
535 #endif
536 
537 	if (SCHEDULER_STOPPED_TD(td))
538 		return;
539 
540 	if (__predict_false(v == MTX_UNOWNED))
541 		v = MTX_READ_VALUE(m);
542 
543 	if (__predict_false(lv_mtx_owner(v) == td)) {
544 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
545 		    (opts & MTX_RECURSE) != 0,
546 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
547 		    m->lock_object.lo_name, file, line));
548 #if LOCK_DEBUG > 0
549 		opts &= ~MTX_RECURSE;
550 #endif
551 		m->mtx_recurse++;
552 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
553 		if (LOCK_LOG_TEST(&m->lock_object, opts))
554 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
555 		return;
556 	}
557 #if LOCK_DEBUG > 0
558 	opts &= ~MTX_RECURSE;
559 #endif
560 
561 #if defined(ADAPTIVE_MUTEXES)
562 	lock_delay_arg_init(&lda, &mtx_delay);
563 #elif defined(KDTRACE_HOOKS)
564 	lock_delay_arg_init_noadapt(&lda);
565 #endif
566 
567 #ifdef HWPMC_HOOKS
568 	PMC_SOFT_CALL( , , lock, failed);
569 #endif
570 	lock_profile_obtain_lock_failed(&m->lock_object, false,
571 		    &contested, &waittime);
572 	if (LOCK_LOG_TEST(&m->lock_object, opts))
573 		CTR4(KTR_LOCK,
574 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
575 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
576 
577 	THREAD_CONTENDS_ON_LOCK(&m->lock_object);
578 
579 	for (;;) {
580 		if (v == MTX_UNOWNED) {
581 			if (_mtx_obtain_lock_fetch(m, &v, tid))
582 				break;
583 			continue;
584 		}
585 #ifdef KDTRACE_HOOKS
586 		lda.spin_cnt++;
587 #endif
588 #ifdef ADAPTIVE_MUTEXES
589 		/*
590 		 * If the owner is running on another CPU, spin until the
591 		 * owner stops running or the state of the lock changes.
592 		 */
593 		owner = lv_mtx_owner(v);
594 		if (TD_IS_RUNNING(owner)) {
595 			if (LOCK_LOG_TEST(&m->lock_object, 0))
596 				CTR3(KTR_LOCK,
597 				    "%s: spinning on %p held by %p",
598 				    __func__, m, owner);
599 			KTR_STATE1(KTR_SCHED, "thread",
600 			    sched_tdname((struct thread *)tid),
601 			    "spinning", "lockname:\"%s\"",
602 			    m->lock_object.lo_name);
603 			do {
604 				lock_delay(&lda);
605 				v = MTX_READ_VALUE(m);
606 				owner = lv_mtx_owner(v);
607 			} while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
608 			KTR_STATE0(KTR_SCHED, "thread",
609 			    sched_tdname((struct thread *)tid),
610 			    "running");
611 			continue;
612 		}
613 #endif
614 
615 		ts = turnstile_trywait(&m->lock_object);
616 		v = MTX_READ_VALUE(m);
617 retry_turnstile:
618 
619 		/*
620 		 * Check if the lock has been released while spinning for
621 		 * the turnstile chain lock.
622 		 */
623 		if (v == MTX_UNOWNED) {
624 			turnstile_cancel(ts);
625 			continue;
626 		}
627 
628 #ifdef ADAPTIVE_MUTEXES
629 		/*
630 		 * The current lock owner might have started executing
631 		 * on another CPU (or the lock could have changed
632 		 * owners) while we were waiting on the turnstile
633 		 * chain lock.  If so, drop the turnstile lock and try
634 		 * again.
635 		 */
636 		owner = lv_mtx_owner(v);
637 		if (TD_IS_RUNNING(owner)) {
638 			turnstile_cancel(ts);
639 			continue;
640 		}
641 #endif
642 
643 		/*
644 		 * If the mutex isn't already contested and a failure occurs
645 		 * setting the contested bit, the mutex was either released
646 		 * or the state of the MTX_RECURSED bit changed.
647 		 */
648 		if ((v & MTX_CONTESTED) == 0 &&
649 		    !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) {
650 			goto retry_turnstile;
651 		}
652 
653 		/*
654 		 * We definitely must sleep for this lock.
655 		 */
656 		mtx_assert(m, MA_NOTOWNED);
657 
658 		/*
659 		 * Block on the turnstile.
660 		 */
661 #ifdef KDTRACE_HOOKS
662 		sleep_time -= lockstat_nsecs(&m->lock_object);
663 #endif
664 #ifndef ADAPTIVE_MUTEXES
665 		owner = mtx_owner(m);
666 #endif
667 		MPASS(owner == mtx_owner(m));
668 		turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
669 #ifdef KDTRACE_HOOKS
670 		sleep_time += lockstat_nsecs(&m->lock_object);
671 		sleep_cnt++;
672 #endif
673 		v = MTX_READ_VALUE(m);
674 	}
675 	THREAD_CONTENTION_DONE(&m->lock_object);
676 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
677 	if (__predict_true(!doing_lockprof))
678 		return;
679 #endif
680 #ifdef KDTRACE_HOOKS
681 	all_time += lockstat_nsecs(&m->lock_object);
682 	if (sleep_time)
683 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
684 
685 	/*
686 	 * Only record the loops spinning and not sleeping.
687 	 */
688 	if (lda.spin_cnt > sleep_cnt)
689 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
690 out_lockstat:
691 #endif
692 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
693 	    waittime, file, line);
694 }
695 
696 #ifdef SMP
697 /*
698  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
699  *
700  * This is only called if we need to actually spin for the lock. Recursion
701  * is handled inline.
702  */
703 #if LOCK_DEBUG > 0
704 void
705 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
706     const char *file, int line)
707 #else
708 void
709 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
710 #endif
711 {
712 	struct mtx *m;
713 	struct lock_delay_arg lda;
714 	uintptr_t tid;
715 #ifdef LOCK_PROFILING
716 	int contested = 0;
717 	uint64_t waittime = 0;
718 #endif
719 #ifdef KDTRACE_HOOKS
720 	int64_t spin_time = 0;
721 #endif
722 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
723 	int doing_lockprof = 0;
724 #endif
725 
726 	tid = (uintptr_t)curthread;
727 	m = mtxlock2mtx(c);
728 
729 #ifdef KDTRACE_HOOKS
730 	if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
731 		while (v == MTX_UNOWNED) {
732 			if (_mtx_obtain_lock_fetch(m, &v, tid))
733 				goto out_lockstat;
734 		}
735 		doing_lockprof = 1;
736 		spin_time -= lockstat_nsecs(&m->lock_object);
737 	}
738 #endif
739 #ifdef LOCK_PROFILING
740 	doing_lockprof = 1;
741 #endif
742 
743 	if (__predict_false(v == MTX_UNOWNED))
744 		v = MTX_READ_VALUE(m);
745 
746 	if (__predict_false(v == tid)) {
747 		m->mtx_recurse++;
748 		return;
749 	}
750 
751 	if (SCHEDULER_STOPPED())
752 		return;
753 
754 	if (LOCK_LOG_TEST(&m->lock_object, opts))
755 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
756 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
757 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
758 
759 	lock_delay_arg_init(&lda, &mtx_spin_delay);
760 
761 #ifdef HWPMC_HOOKS
762 	PMC_SOFT_CALL( , , lock, failed);
763 #endif
764 	lock_profile_obtain_lock_failed(&m->lock_object, true, &contested, &waittime);
765 
766 	for (;;) {
767 		if (v == MTX_UNOWNED) {
768 			if (_mtx_obtain_lock_fetch(m, &v, tid))
769 				break;
770 			continue;
771 		}
772 		/* Give interrupts a chance while we spin. */
773 		spinlock_exit();
774 		do {
775 			if (__predict_true(lda.spin_cnt < 10000000)) {
776 				lock_delay(&lda);
777 			} else {
778 				_mtx_lock_indefinite_check(m, &lda);
779 			}
780 			v = MTX_READ_VALUE(m);
781 		} while (v != MTX_UNOWNED);
782 		spinlock_enter();
783 	}
784 
785 	if (LOCK_LOG_TEST(&m->lock_object, opts))
786 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
787 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
788 	    "running");
789 
790 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
791 	if (__predict_true(!doing_lockprof))
792 		return;
793 #endif
794 #ifdef KDTRACE_HOOKS
795 	spin_time += lockstat_nsecs(&m->lock_object);
796 	if (lda.spin_cnt != 0)
797 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
798 out_lockstat:
799 #endif
800 	LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m,
801 	    contested, waittime, file, line);
802 }
803 #endif /* SMP */
804 
805 #ifdef INVARIANTS
806 static void
807 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
808 {
809 
810 	KASSERT(m->mtx_lock != MTX_DESTROYED,
811 	    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
812 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
813 	    ("thread_lock() of sleep mutex %s @ %s:%d",
814 	    m->lock_object.lo_name, file, line));
815 	KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) == 0,
816 	    ("thread_lock: got a recursive mutex %s @ %s:%d\n",
817 	    m->lock_object.lo_name, file, line));
818 	WITNESS_CHECKORDER(&m->lock_object,
819 	    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
820 }
821 #else
822 #define thread_lock_validate(m, opts, file, line) do { } while (0)
823 #endif
824 
825 #ifndef LOCK_PROFILING
826 #if LOCK_DEBUG > 0
827 void
828 _thread_lock(struct thread *td, int opts, const char *file, int line)
829 #else
830 void
831 _thread_lock(struct thread *td)
832 #endif
833 {
834 	struct mtx *m;
835 	uintptr_t tid;
836 
837 	tid = (uintptr_t)curthread;
838 
839 	if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
840 		goto slowpath_noirq;
841 	spinlock_enter();
842 	m = td->td_lock;
843 	thread_lock_validate(m, 0, file, line);
844 	if (__predict_false(m == &blocked_lock))
845 		goto slowpath_unlocked;
846 	if (__predict_false(!_mtx_obtain_lock(m, tid)))
847 		goto slowpath_unlocked;
848 	if (__predict_true(m == td->td_lock)) {
849 		WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
850 		return;
851 	}
852 	_mtx_release_lock_quick(m);
853 slowpath_unlocked:
854 	spinlock_exit();
855 slowpath_noirq:
856 #if LOCK_DEBUG > 0
857 	thread_lock_flags_(td, opts, file, line);
858 #else
859 	thread_lock_flags_(td, 0, 0, 0);
860 #endif
861 }
862 #endif
863 
864 void
865 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
866 {
867 	struct mtx *m;
868 	uintptr_t tid, v;
869 	struct lock_delay_arg lda;
870 #ifdef LOCK_PROFILING
871 	int contested = 0;
872 	uint64_t waittime = 0;
873 #endif
874 #ifdef KDTRACE_HOOKS
875 	int64_t spin_time = 0;
876 #endif
877 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
878 	int doing_lockprof = 1;
879 #endif
880 
881 	tid = (uintptr_t)curthread;
882 
883 	if (SCHEDULER_STOPPED()) {
884 		/*
885 		 * Ensure that spinlock sections are balanced even when the
886 		 * scheduler is stopped, since we may otherwise inadvertently
887 		 * re-enable interrupts while dumping core.
888 		 */
889 		spinlock_enter();
890 		return;
891 	}
892 
893 	lock_delay_arg_init(&lda, &mtx_spin_delay);
894 
895 #ifdef HWPMC_HOOKS
896 	PMC_SOFT_CALL( , , lock, failed);
897 #endif
898 
899 #ifdef LOCK_PROFILING
900 	doing_lockprof = 1;
901 #elif defined(KDTRACE_HOOKS)
902 	doing_lockprof = lockstat_enabled;
903 #endif
904 #ifdef KDTRACE_HOOKS
905 	if (__predict_false(doing_lockprof))
906 		spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
907 #endif
908 	spinlock_enter();
909 
910 	for (;;) {
911 retry:
912 		m = td->td_lock;
913 		thread_lock_validate(m, opts, file, line);
914 		v = MTX_READ_VALUE(m);
915 		for (;;) {
916 			if (v == MTX_UNOWNED) {
917 				if (_mtx_obtain_lock_fetch(m, &v, tid))
918 					break;
919 				continue;
920 			}
921 			MPASS(v != tid);
922 			lock_profile_obtain_lock_failed(&m->lock_object, true,
923 			    &contested, &waittime);
924 			/* Give interrupts a chance while we spin. */
925 			spinlock_exit();
926 			do {
927 				if (__predict_true(lda.spin_cnt < 10000000)) {
928 					lock_delay(&lda);
929 				} else {
930 					_mtx_lock_indefinite_check(m, &lda);
931 				}
932 				if (m != td->td_lock) {
933 					spinlock_enter();
934 					goto retry;
935 				}
936 				v = MTX_READ_VALUE(m);
937 			} while (v != MTX_UNOWNED);
938 			spinlock_enter();
939 		}
940 		if (m == td->td_lock)
941 			break;
942 		_mtx_release_lock_quick(m);
943 	}
944 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
945 	    line);
946 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
947 
948 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
949 	if (__predict_true(!doing_lockprof))
950 		return;
951 #endif
952 #ifdef KDTRACE_HOOKS
953 	spin_time += lockstat_nsecs(&m->lock_object);
954 #endif
955 	LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m, contested,
956 	    waittime, file, line);
957 #ifdef KDTRACE_HOOKS
958 	if (lda.spin_cnt != 0)
959 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
960 #endif
961 }
962 
963 struct mtx *
964 thread_lock_block(struct thread *td)
965 {
966 	struct mtx *lock;
967 
968 	lock = td->td_lock;
969 	mtx_assert(lock, MA_OWNED);
970 	td->td_lock = &blocked_lock;
971 
972 	return (lock);
973 }
974 
975 void
976 thread_lock_unblock(struct thread *td, struct mtx *new)
977 {
978 
979 	mtx_assert(new, MA_OWNED);
980 	KASSERT(td->td_lock == &blocked_lock,
981 	    ("thread %p lock %p not blocked_lock %p",
982 	    td, td->td_lock, &blocked_lock));
983 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
984 }
985 
986 void
987 thread_lock_block_wait(struct thread *td)
988 {
989 
990 	while (td->td_lock == &blocked_lock)
991 		cpu_spinwait();
992 
993 	/* Acquire fence to be certain that all thread state is visible. */
994 	atomic_thread_fence_acq();
995 }
996 
997 void
998 thread_lock_set(struct thread *td, struct mtx *new)
999 {
1000 	struct mtx *lock;
1001 
1002 	mtx_assert(new, MA_OWNED);
1003 	lock = td->td_lock;
1004 	mtx_assert(lock, MA_OWNED);
1005 	td->td_lock = new;
1006 	mtx_unlock_spin(lock);
1007 }
1008 
1009 /*
1010  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
1011  *
1012  * We are only called here if the lock is recursed, contested (i.e. we
1013  * need to wake up a blocked thread) or lockstat probe is active.
1014  */
1015 #if LOCK_DEBUG > 0
1016 void
1017 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
1018     const char *file, int line)
1019 #else
1020 void
1021 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
1022 #endif
1023 {
1024 	struct mtx *m;
1025 	struct turnstile *ts;
1026 	uintptr_t tid;
1027 
1028 	if (SCHEDULER_STOPPED())
1029 		return;
1030 
1031 	tid = (uintptr_t)curthread;
1032 	m = mtxlock2mtx(c);
1033 
1034 	if (__predict_false(v == tid))
1035 		v = MTX_READ_VALUE(m);
1036 
1037 	if (__predict_false(v & MTX_RECURSED)) {
1038 		if (--(m->mtx_recurse) == 0)
1039 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1040 		if (LOCK_LOG_TEST(&m->lock_object, opts))
1041 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1042 		return;
1043 	}
1044 
1045 	LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1046 	if (v == tid && _mtx_release_lock(m, tid))
1047 		return;
1048 
1049 	/*
1050 	 * We have to lock the chain before the turnstile so this turnstile
1051 	 * can be removed from the hash list if it is empty.
1052 	 */
1053 	turnstile_chain_lock(&m->lock_object);
1054 	_mtx_release_lock_quick(m);
1055 	ts = turnstile_lookup(&m->lock_object);
1056 	MPASS(ts != NULL);
1057 	if (LOCK_LOG_TEST(&m->lock_object, opts))
1058 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1059 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1060 
1061 	/*
1062 	 * This turnstile is now no longer associated with the mutex.  We can
1063 	 * unlock the chain lock so a new turnstile may take it's place.
1064 	 */
1065 	turnstile_unpend(ts);
1066 	turnstile_chain_unlock(&m->lock_object);
1067 }
1068 
1069 /*
1070  * All the unlocking of MTX_SPIN locks is done inline.
1071  * See the __mtx_unlock_spin() macro for the details.
1072  */
1073 
1074 /*
1075  * The backing function for the INVARIANTS-enabled mtx_assert()
1076  */
1077 #ifdef INVARIANT_SUPPORT
1078 void
1079 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1080 {
1081 	const struct mtx *m;
1082 
1083 	if (KERNEL_PANICKED() || dumping || SCHEDULER_STOPPED())
1084 		return;
1085 
1086 	m = mtxlock2mtx(c);
1087 
1088 	switch (what) {
1089 	case MA_OWNED:
1090 	case MA_OWNED | MA_RECURSED:
1091 	case MA_OWNED | MA_NOTRECURSED:
1092 		if (!mtx_owned(m))
1093 			panic("mutex %s not owned at %s:%d",
1094 			    m->lock_object.lo_name, file, line);
1095 		if (mtx_recursed(m)) {
1096 			if ((what & MA_NOTRECURSED) != 0)
1097 				panic("mutex %s recursed at %s:%d",
1098 				    m->lock_object.lo_name, file, line);
1099 		} else if ((what & MA_RECURSED) != 0) {
1100 			panic("mutex %s unrecursed at %s:%d",
1101 			    m->lock_object.lo_name, file, line);
1102 		}
1103 		break;
1104 	case MA_NOTOWNED:
1105 		if (mtx_owned(m))
1106 			panic("mutex %s owned at %s:%d",
1107 			    m->lock_object.lo_name, file, line);
1108 		break;
1109 	default:
1110 		panic("unknown mtx_assert at %s:%d", file, line);
1111 	}
1112 }
1113 #endif
1114 
1115 /*
1116  * General init routine used by the MTX_SYSINIT() macro.
1117  */
1118 void
1119 mtx_sysinit(void *arg)
1120 {
1121 	struct mtx_args *margs = arg;
1122 
1123 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1124 	    margs->ma_opts);
1125 }
1126 
1127 /*
1128  * Mutex initialization routine; initialize lock `m' of type contained in
1129  * `opts' with options contained in `opts' and name `name.'  The optional
1130  * lock type `type' is used as a general lock category name for use with
1131  * witness.
1132  */
1133 void
1134 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1135 {
1136 	struct mtx *m;
1137 	struct lock_class *class;
1138 	int flags;
1139 
1140 	m = mtxlock2mtx(c);
1141 
1142 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1143 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1144 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1145 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1146 	    &m->mtx_lock));
1147 
1148 	/* Determine lock class and lock flags. */
1149 	if (opts & MTX_SPIN)
1150 		class = &lock_class_mtx_spin;
1151 	else
1152 		class = &lock_class_mtx_sleep;
1153 	flags = 0;
1154 	if (opts & MTX_QUIET)
1155 		flags |= LO_QUIET;
1156 	if (opts & MTX_RECURSE)
1157 		flags |= LO_RECURSABLE;
1158 	if ((opts & MTX_NOWITNESS) == 0)
1159 		flags |= LO_WITNESS;
1160 	if (opts & MTX_DUPOK)
1161 		flags |= LO_DUPOK;
1162 	if (opts & MTX_NOPROFILE)
1163 		flags |= LO_NOPROFILE;
1164 	if (opts & MTX_NEW)
1165 		flags |= LO_NEW;
1166 
1167 	/* Initialize mutex. */
1168 	lock_init(&m->lock_object, class, name, type, flags);
1169 
1170 	m->mtx_lock = MTX_UNOWNED;
1171 	m->mtx_recurse = 0;
1172 }
1173 
1174 /*
1175  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
1176  * passed in as a flag here because if the corresponding mtx_init() was
1177  * called with MTX_QUIET set, then it will already be set in the mutex's
1178  * flags.
1179  */
1180 void
1181 _mtx_destroy(volatile uintptr_t *c)
1182 {
1183 	struct mtx *m;
1184 
1185 	m = mtxlock2mtx(c);
1186 
1187 	if (!mtx_owned(m))
1188 		MPASS(mtx_unowned(m));
1189 	else {
1190 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1191 
1192 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
1193 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin) {
1194 			lock_profile_release_lock(&m->lock_object, true);
1195 			spinlock_exit();
1196 		} else {
1197 			TD_LOCKS_DEC(curthread);
1198 			lock_profile_release_lock(&m->lock_object, false);
1199 		}
1200 
1201 		/* Tell witness this isn't locked to make it happy. */
1202 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1203 		    __LINE__);
1204 	}
1205 
1206 	m->mtx_lock = MTX_DESTROYED;
1207 	lock_destroy(&m->lock_object);
1208 }
1209 
1210 /*
1211  * Intialize the mutex code and system mutexes.  This is called from the MD
1212  * startup code prior to mi_startup().  The per-CPU data space needs to be
1213  * setup before this is called.
1214  */
1215 void
1216 mutex_init(void)
1217 {
1218 
1219 	/* Setup turnstiles so that sleep mutexes work. */
1220 	init_turnstiles();
1221 
1222 	/*
1223 	 * Initialize mutexes.
1224 	 */
1225 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1226 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1227 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
1228 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1229 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1230 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1231 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1232 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1233 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1234 	mtx_lock(&Giant);
1235 }
1236 
1237 static void __noinline
1238 _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
1239 {
1240 	struct thread *td;
1241 
1242 	ldap->spin_cnt++;
1243 	if (ldap->spin_cnt < 60000000 || kdb_active || KERNEL_PANICKED())
1244 		cpu_lock_delay();
1245 	else {
1246 		td = mtx_owner(m);
1247 
1248 		/* If the mutex is unlocked, try again. */
1249 		if (td == NULL)
1250 			return;
1251 
1252 		printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
1253 		    m, m->lock_object.lo_name, td, td->td_tid);
1254 #ifdef WITNESS
1255 		witness_display_spinlock(&m->lock_object, td, printf);
1256 #endif
1257 		panic("spin lock held too long");
1258 	}
1259 	cpu_spinwait();
1260 }
1261 
1262 void
1263 mtx_spin_wait_unlocked(struct mtx *m)
1264 {
1265 	struct lock_delay_arg lda;
1266 
1267 	KASSERT(m->mtx_lock != MTX_DESTROYED,
1268 	    ("%s() of destroyed mutex %p", __func__, m));
1269 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
1270 	    ("%s() of sleep mutex %p (%s)", __func__, m,
1271 	    m->lock_object.lo_name));
1272 	KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1273 	    m->lock_object.lo_name));
1274 
1275 	lda.spin_cnt = 0;
1276 
1277 	while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) {
1278 		if (__predict_true(lda.spin_cnt < 10000000)) {
1279 			cpu_spinwait();
1280 			lda.spin_cnt++;
1281 		} else {
1282 			_mtx_lock_indefinite_check(m, &lda);
1283 		}
1284 	}
1285 }
1286 
1287 void
1288 mtx_wait_unlocked(struct mtx *m)
1289 {
1290 	struct thread *owner;
1291 	uintptr_t v;
1292 
1293 	KASSERT(m->mtx_lock != MTX_DESTROYED,
1294 	    ("%s() of destroyed mutex %p", __func__, m));
1295 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
1296 	    ("%s() not a sleep mutex %p (%s)", __func__, m,
1297 	    m->lock_object.lo_name));
1298 	KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1299 	    m->lock_object.lo_name));
1300 
1301 	for (;;) {
1302 		v = atomic_load_acq_ptr(&m->mtx_lock);
1303 		if (v == MTX_UNOWNED) {
1304 			break;
1305 		}
1306 		owner = lv_mtx_owner(v);
1307 		if (!TD_IS_RUNNING(owner)) {
1308 			mtx_lock(m);
1309 			mtx_unlock(m);
1310 			break;
1311 		}
1312 		cpu_spinwait();
1313 	}
1314 }
1315 
1316 #ifdef DDB
1317 void
1318 db_show_mtx(const struct lock_object *lock)
1319 {
1320 	struct thread *td;
1321 	const struct mtx *m;
1322 
1323 	m = (const struct mtx *)lock;
1324 
1325 	db_printf(" flags: {");
1326 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1327 		db_printf("SPIN");
1328 	else
1329 		db_printf("DEF");
1330 	if (m->lock_object.lo_flags & LO_RECURSABLE)
1331 		db_printf(", RECURSE");
1332 	if (m->lock_object.lo_flags & LO_DUPOK)
1333 		db_printf(", DUPOK");
1334 	db_printf("}\n");
1335 	db_printf(" state: {");
1336 	if (mtx_unowned(m))
1337 		db_printf("UNOWNED");
1338 	else if (mtx_destroyed(m))
1339 		db_printf("DESTROYED");
1340 	else {
1341 		db_printf("OWNED");
1342 		if (m->mtx_lock & MTX_CONTESTED)
1343 			db_printf(", CONTESTED");
1344 		if (m->mtx_lock & MTX_RECURSED)
1345 			db_printf(", RECURSED");
1346 	}
1347 	db_printf("}\n");
1348 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1349 		td = mtx_owner(m);
1350 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1351 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1352 		if (mtx_recursed(m))
1353 			db_printf(" recursed: %d\n", m->mtx_recurse);
1354 	}
1355 }
1356 #endif
1357