xref: /freebsd/sys/kern/kern_mutex.c (revision f4dc9bf43457515e5c88d1400d4f5ff70a82d9c7)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Machine independent bits of mutex implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_adaptive_mutexes.h"
40 #include "opt_ddb.h"
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <sys/turnstile.h>
60 #include <sys/vmmeter.h>
61 #include <sys/lock_profile.h>
62 
63 #include <machine/atomic.h>
64 #include <machine/bus.h>
65 #include <machine/cpu.h>
66 
67 #include <ddb/ddb.h>
68 
69 #include <fs/devfs/devfs_int.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_extern.h>
73 
74 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
75 #define	ADAPTIVE_MUTEXES
76 #endif
77 
78 #ifdef HWPMC_HOOKS
79 #include <sys/pmckern.h>
80 PMC_SOFT_DEFINE( , , lock, failed);
81 #endif
82 
83 /*
84  * Return the mutex address when the lock cookie address is provided.
85  * This functionality assumes that struct mtx* have a member named mtx_lock.
86  */
87 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
88 
89 /*
90  * Internal utility macros.
91  */
92 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
93 
94 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
95 
96 #define	mtx_owner(m)	((struct thread *)((m)->mtx_lock & ~MTX_FLAGMASK))
97 
98 static void	assert_mtx(const struct lock_object *lock, int what);
99 #ifdef DDB
100 static void	db_show_mtx(const struct lock_object *lock);
101 #endif
102 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
103 static void	lock_spin(struct lock_object *lock, uintptr_t how);
104 #ifdef KDTRACE_HOOKS
105 static int	owner_mtx(const struct lock_object *lock,
106 		    struct thread **owner);
107 #endif
108 static uintptr_t unlock_mtx(struct lock_object *lock);
109 static uintptr_t unlock_spin(struct lock_object *lock);
110 
111 /*
112  * Lock classes for sleep and spin mutexes.
113  */
114 struct lock_class lock_class_mtx_sleep = {
115 	.lc_name = "sleep mutex",
116 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
117 	.lc_assert = assert_mtx,
118 #ifdef DDB
119 	.lc_ddb_show = db_show_mtx,
120 #endif
121 	.lc_lock = lock_mtx,
122 	.lc_unlock = unlock_mtx,
123 #ifdef KDTRACE_HOOKS
124 	.lc_owner = owner_mtx,
125 #endif
126 };
127 struct lock_class lock_class_mtx_spin = {
128 	.lc_name = "spin mutex",
129 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
130 	.lc_assert = assert_mtx,
131 #ifdef DDB
132 	.lc_ddb_show = db_show_mtx,
133 #endif
134 	.lc_lock = lock_spin,
135 	.lc_unlock = unlock_spin,
136 #ifdef KDTRACE_HOOKS
137 	.lc_owner = owner_mtx,
138 #endif
139 };
140 
141 /*
142  * System-wide mutexes
143  */
144 struct mtx blocked_lock;
145 struct mtx Giant;
146 
147 void
148 assert_mtx(const struct lock_object *lock, int what)
149 {
150 
151 	mtx_assert((const struct mtx *)lock, what);
152 }
153 
154 void
155 lock_mtx(struct lock_object *lock, uintptr_t how)
156 {
157 
158 	mtx_lock((struct mtx *)lock);
159 }
160 
161 void
162 lock_spin(struct lock_object *lock, uintptr_t how)
163 {
164 
165 	panic("spin locks can only use msleep_spin");
166 }
167 
168 uintptr_t
169 unlock_mtx(struct lock_object *lock)
170 {
171 	struct mtx *m;
172 
173 	m = (struct mtx *)lock;
174 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
175 	mtx_unlock(m);
176 	return (0);
177 }
178 
179 uintptr_t
180 unlock_spin(struct lock_object *lock)
181 {
182 
183 	panic("spin locks can only use msleep_spin");
184 }
185 
186 #ifdef KDTRACE_HOOKS
187 int
188 owner_mtx(const struct lock_object *lock, struct thread **owner)
189 {
190 	const struct mtx *m = (const struct mtx *)lock;
191 
192 	*owner = mtx_owner(m);
193 	return (mtx_unowned(m) == 0);
194 }
195 #endif
196 
197 /*
198  * Function versions of the inlined __mtx_* macros.  These are used by
199  * modules and can also be called from assembly language if needed.
200  */
201 void
202 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
203 {
204 	struct mtx *m;
205 
206 	if (SCHEDULER_STOPPED())
207 		return;
208 
209 	m = mtxlock2mtx(c);
210 
211 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
212 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
213 	    curthread, m->lock_object.lo_name, file, line));
214 	KASSERT(m->mtx_lock != MTX_DESTROYED,
215 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
216 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
217 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
218 	    file, line));
219 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
220 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
221 
222 	__mtx_lock(m, curthread, opts, file, line);
223 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
224 	    line);
225 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
226 	    file, line);
227 	TD_LOCKS_INC(curthread);
228 }
229 
230 void
231 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
232 {
233 	struct mtx *m;
234 
235 	if (SCHEDULER_STOPPED())
236 		return;
237 
238 	m = mtxlock2mtx(c);
239 
240 	KASSERT(m->mtx_lock != MTX_DESTROYED,
241 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
242 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
243 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
244 	    file, line));
245 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
246 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
247 	    line);
248 	mtx_assert(m, MA_OWNED);
249 
250 	__mtx_unlock(m, curthread, opts, file, line);
251 	TD_LOCKS_DEC(curthread);
252 }
253 
254 void
255 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
256     int line)
257 {
258 	struct mtx *m;
259 
260 	if (SCHEDULER_STOPPED())
261 		return;
262 
263 	m = mtxlock2mtx(c);
264 
265 	KASSERT(m->mtx_lock != MTX_DESTROYED,
266 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
267 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
268 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
269 	    m->lock_object.lo_name, file, line));
270 	if (mtx_owned(m))
271 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
272 		    (opts & MTX_RECURSE) != 0,
273 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
274 		    m->lock_object.lo_name, file, line));
275 	opts &= ~MTX_RECURSE;
276 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
277 	    file, line, NULL);
278 	__mtx_lock_spin(m, curthread, opts, file, line);
279 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
280 	    line);
281 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
282 }
283 
284 void
285 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
286     int line)
287 {
288 	struct mtx *m;
289 
290 	if (SCHEDULER_STOPPED())
291 		return;
292 
293 	m = mtxlock2mtx(c);
294 
295 	KASSERT(m->mtx_lock != MTX_DESTROYED,
296 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
297 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
298 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
299 	    m->lock_object.lo_name, file, line));
300 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
301 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
302 	    line);
303 	mtx_assert(m, MA_OWNED);
304 
305 	__mtx_unlock_spin(m);
306 }
307 
308 /*
309  * The important part of mtx_trylock{,_flags}()
310  * Tries to acquire lock `m.'  If this function is called on a mutex that
311  * is already owned, it will recursively acquire the lock.
312  */
313 int
314 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
315 {
316 	struct mtx *m;
317 #ifdef LOCK_PROFILING
318 	uint64_t waittime = 0;
319 	int contested = 0;
320 #endif
321 	int rval;
322 
323 	if (SCHEDULER_STOPPED())
324 		return (1);
325 
326 	m = mtxlock2mtx(c);
327 
328 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
329 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
330 	    curthread, m->lock_object.lo_name, file, line));
331 	KASSERT(m->mtx_lock != MTX_DESTROYED,
332 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
333 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
334 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
335 	    file, line));
336 
337 	if (mtx_owned(m) && ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
338 	    (opts & MTX_RECURSE) != 0)) {
339 		m->mtx_recurse++;
340 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
341 		rval = 1;
342 	} else
343 		rval = _mtx_obtain_lock(m, (uintptr_t)curthread);
344 	opts &= ~MTX_RECURSE;
345 
346 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
347 	if (rval) {
348 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
349 		    file, line);
350 		TD_LOCKS_INC(curthread);
351 		if (m->mtx_recurse == 0)
352 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
353 			    m, contested, waittime, file, line);
354 
355 	}
356 
357 	return (rval);
358 }
359 
360 /*
361  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
362  *
363  * We call this if the lock is either contested (i.e. we need to go to
364  * sleep waiting for it), or if we need to recurse on it.
365  */
366 void
367 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t tid, int opts,
368     const char *file, int line)
369 {
370 	struct mtx *m;
371 	struct turnstile *ts;
372 	uintptr_t v;
373 #ifdef ADAPTIVE_MUTEXES
374 	volatile struct thread *owner;
375 #endif
376 #ifdef KTR
377 	int cont_logged = 0;
378 #endif
379 #ifdef LOCK_PROFILING
380 	int contested = 0;
381 	uint64_t waittime = 0;
382 #endif
383 #ifdef KDTRACE_HOOKS
384 	uint64_t spin_cnt = 0;
385 	uint64_t sleep_cnt = 0;
386 	int64_t sleep_time = 0;
387 	int64_t all_time = 0;
388 #endif
389 
390 	if (SCHEDULER_STOPPED())
391 		return;
392 
393 	m = mtxlock2mtx(c);
394 
395 	if (mtx_owned(m)) {
396 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
397 		    (opts & MTX_RECURSE) != 0,
398 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
399 		    m->lock_object.lo_name, file, line));
400 		opts &= ~MTX_RECURSE;
401 		m->mtx_recurse++;
402 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
403 		if (LOCK_LOG_TEST(&m->lock_object, opts))
404 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
405 		return;
406 	}
407 	opts &= ~MTX_RECURSE;
408 
409 #ifdef HWPMC_HOOKS
410 	PMC_SOFT_CALL( , , lock, failed);
411 #endif
412 	lock_profile_obtain_lock_failed(&m->lock_object,
413 		    &contested, &waittime);
414 	if (LOCK_LOG_TEST(&m->lock_object, opts))
415 		CTR4(KTR_LOCK,
416 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
417 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
418 #ifdef KDTRACE_HOOKS
419 	all_time -= lockstat_nsecs(&m->lock_object);
420 #endif
421 
422 	for (;;) {
423 		if (m->mtx_lock == MTX_UNOWNED && _mtx_obtain_lock(m, tid))
424 			break;
425 #ifdef KDTRACE_HOOKS
426 		spin_cnt++;
427 #endif
428 #ifdef ADAPTIVE_MUTEXES
429 		/*
430 		 * If the owner is running on another CPU, spin until the
431 		 * owner stops running or the state of the lock changes.
432 		 */
433 		v = m->mtx_lock;
434 		if (v != MTX_UNOWNED) {
435 			owner = (struct thread *)(v & ~MTX_FLAGMASK);
436 			if (TD_IS_RUNNING(owner)) {
437 				if (LOCK_LOG_TEST(&m->lock_object, 0))
438 					CTR3(KTR_LOCK,
439 					    "%s: spinning on %p held by %p",
440 					    __func__, m, owner);
441 				KTR_STATE1(KTR_SCHED, "thread",
442 				    sched_tdname((struct thread *)tid),
443 				    "spinning", "lockname:\"%s\"",
444 				    m->lock_object.lo_name);
445 				while (mtx_owner(m) == owner &&
446 				    TD_IS_RUNNING(owner)) {
447 					cpu_spinwait();
448 #ifdef KDTRACE_HOOKS
449 					spin_cnt++;
450 #endif
451 				}
452 				KTR_STATE0(KTR_SCHED, "thread",
453 				    sched_tdname((struct thread *)tid),
454 				    "running");
455 				continue;
456 			}
457 		}
458 #endif
459 
460 		ts = turnstile_trywait(&m->lock_object);
461 		v = m->mtx_lock;
462 
463 		/*
464 		 * Check if the lock has been released while spinning for
465 		 * the turnstile chain lock.
466 		 */
467 		if (v == MTX_UNOWNED) {
468 			turnstile_cancel(ts);
469 			continue;
470 		}
471 
472 #ifdef ADAPTIVE_MUTEXES
473 		/*
474 		 * The current lock owner might have started executing
475 		 * on another CPU (or the lock could have changed
476 		 * owners) while we were waiting on the turnstile
477 		 * chain lock.  If so, drop the turnstile lock and try
478 		 * again.
479 		 */
480 		owner = (struct thread *)(v & ~MTX_FLAGMASK);
481 		if (TD_IS_RUNNING(owner)) {
482 			turnstile_cancel(ts);
483 			continue;
484 		}
485 #endif
486 
487 		/*
488 		 * If the mutex isn't already contested and a failure occurs
489 		 * setting the contested bit, the mutex was either released
490 		 * or the state of the MTX_RECURSED bit changed.
491 		 */
492 		if ((v & MTX_CONTESTED) == 0 &&
493 		    !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
494 			turnstile_cancel(ts);
495 			continue;
496 		}
497 
498 		/*
499 		 * We definitely must sleep for this lock.
500 		 */
501 		mtx_assert(m, MA_NOTOWNED);
502 
503 #ifdef KTR
504 		if (!cont_logged) {
505 			CTR6(KTR_CONTENTION,
506 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
507 			    (void *)tid, file, line, m->lock_object.lo_name,
508 			    WITNESS_FILE(&m->lock_object),
509 			    WITNESS_LINE(&m->lock_object));
510 			cont_logged = 1;
511 		}
512 #endif
513 
514 		/*
515 		 * Block on the turnstile.
516 		 */
517 #ifdef KDTRACE_HOOKS
518 		sleep_time -= lockstat_nsecs(&m->lock_object);
519 #endif
520 		turnstile_wait(ts, mtx_owner(m), TS_EXCLUSIVE_QUEUE);
521 #ifdef KDTRACE_HOOKS
522 		sleep_time += lockstat_nsecs(&m->lock_object);
523 		sleep_cnt++;
524 #endif
525 	}
526 #ifdef KDTRACE_HOOKS
527 	all_time += lockstat_nsecs(&m->lock_object);
528 #endif
529 #ifdef KTR
530 	if (cont_logged) {
531 		CTR4(KTR_CONTENTION,
532 		    "contention end: %s acquired by %p at %s:%d",
533 		    m->lock_object.lo_name, (void *)tid, file, line);
534 	}
535 #endif
536 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
537 	    waittime, file, line);
538 #ifdef KDTRACE_HOOKS
539 	if (sleep_time)
540 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
541 
542 	/*
543 	 * Only record the loops spinning and not sleeping.
544 	 */
545 	if (spin_cnt > sleep_cnt)
546 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
547 #endif
548 }
549 
550 static void
551 _mtx_lock_spin_failed(struct mtx *m)
552 {
553 	struct thread *td;
554 
555 	td = mtx_owner(m);
556 
557 	/* If the mutex is unlocked, try again. */
558 	if (td == NULL)
559 		return;
560 
561 	printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
562 	    m, m->lock_object.lo_name, td, td->td_tid);
563 #ifdef WITNESS
564 	witness_display_spinlock(&m->lock_object, td, printf);
565 #endif
566 	panic("spin lock held too long");
567 }
568 
569 #ifdef SMP
570 /*
571  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
572  *
573  * This is only called if we need to actually spin for the lock. Recursion
574  * is handled inline.
575  */
576 void
577 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t tid, int opts,
578     const char *file, int line)
579 {
580 	struct mtx *m;
581 	int i = 0;
582 #ifdef LOCK_PROFILING
583 	int contested = 0;
584 	uint64_t waittime = 0;
585 #endif
586 #ifdef KDTRACE_HOOKS
587 	int64_t spin_time = 0;
588 #endif
589 
590 	if (SCHEDULER_STOPPED())
591 		return;
592 
593 	m = mtxlock2mtx(c);
594 
595 	if (LOCK_LOG_TEST(&m->lock_object, opts))
596 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
597 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
598 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
599 
600 #ifdef HWPMC_HOOKS
601 	PMC_SOFT_CALL( , , lock, failed);
602 #endif
603 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
604 #ifdef KDTRACE_HOOKS
605 	spin_time -= lockstat_nsecs(&m->lock_object);
606 #endif
607 	for (;;) {
608 		if (m->mtx_lock == MTX_UNOWNED && _mtx_obtain_lock(m, tid))
609 			break;
610 		/* Give interrupts a chance while we spin. */
611 		spinlock_exit();
612 		while (m->mtx_lock != MTX_UNOWNED) {
613 			if (i++ < 10000000) {
614 				cpu_spinwait();
615 				continue;
616 			}
617 			if (i < 60000000 || kdb_active || panicstr != NULL)
618 				DELAY(1);
619 			else
620 				_mtx_lock_spin_failed(m);
621 			cpu_spinwait();
622 		}
623 		spinlock_enter();
624 	}
625 #ifdef KDTRACE_HOOKS
626 	spin_time += lockstat_nsecs(&m->lock_object);
627 #endif
628 
629 	if (LOCK_LOG_TEST(&m->lock_object, opts))
630 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
631 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
632 	    "running");
633 
634 #ifdef KDTRACE_HOOKS
635 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
636 	    contested, waittime, file, line);
637 	if (spin_time != 0)
638 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
639 #endif
640 }
641 #endif /* SMP */
642 
643 void
644 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
645 {
646 	struct mtx *m;
647 	uintptr_t tid;
648 	int i;
649 #ifdef LOCK_PROFILING
650 	int contested = 0;
651 	uint64_t waittime = 0;
652 #endif
653 #ifdef KDTRACE_HOOKS
654 	int64_t spin_time = 0;
655 #endif
656 
657 	i = 0;
658 	tid = (uintptr_t)curthread;
659 
660 	if (SCHEDULER_STOPPED()) {
661 		/*
662 		 * Ensure that spinlock sections are balanced even when the
663 		 * scheduler is stopped, since we may otherwise inadvertently
664 		 * re-enable interrupts while dumping core.
665 		 */
666 		spinlock_enter();
667 		return;
668 	}
669 
670 #ifdef KDTRACE_HOOKS
671 	spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
672 #endif
673 	for (;;) {
674 retry:
675 		spinlock_enter();
676 		m = td->td_lock;
677 		KASSERT(m->mtx_lock != MTX_DESTROYED,
678 		    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
679 		KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
680 		    ("thread_lock() of sleep mutex %s @ %s:%d",
681 		    m->lock_object.lo_name, file, line));
682 		if (mtx_owned(m))
683 			KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
684 	    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
685 			    m->lock_object.lo_name, file, line));
686 		WITNESS_CHECKORDER(&m->lock_object,
687 		    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
688 		for (;;) {
689 			if (m->mtx_lock == MTX_UNOWNED && _mtx_obtain_lock(m, tid))
690 				break;
691 			if (m->mtx_lock == tid) {
692 				m->mtx_recurse++;
693 				break;
694 			}
695 #ifdef HWPMC_HOOKS
696 			PMC_SOFT_CALL( , , lock, failed);
697 #endif
698 			lock_profile_obtain_lock_failed(&m->lock_object,
699 			    &contested, &waittime);
700 			/* Give interrupts a chance while we spin. */
701 			spinlock_exit();
702 			while (m->mtx_lock != MTX_UNOWNED) {
703 				if (i++ < 10000000)
704 					cpu_spinwait();
705 				else if (i < 60000000 ||
706 				    kdb_active || panicstr != NULL)
707 					DELAY(1);
708 				else
709 					_mtx_lock_spin_failed(m);
710 				cpu_spinwait();
711 				if (m != td->td_lock)
712 					goto retry;
713 			}
714 			spinlock_enter();
715 		}
716 		if (m == td->td_lock)
717 			break;
718 		__mtx_unlock_spin(m);	/* does spinlock_exit() */
719 	}
720 #ifdef KDTRACE_HOOKS
721 	spin_time += lockstat_nsecs(&m->lock_object);
722 #endif
723 	if (m->mtx_recurse == 0)
724 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
725 		    contested, waittime, file, line);
726 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
727 	    line);
728 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
729 #ifdef KDTRACE_HOOKS
730 	if (spin_time != 0)
731 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
732 #endif
733 }
734 
735 struct mtx *
736 thread_lock_block(struct thread *td)
737 {
738 	struct mtx *lock;
739 
740 	THREAD_LOCK_ASSERT(td, MA_OWNED);
741 	lock = td->td_lock;
742 	td->td_lock = &blocked_lock;
743 	mtx_unlock_spin(lock);
744 
745 	return (lock);
746 }
747 
748 void
749 thread_lock_unblock(struct thread *td, struct mtx *new)
750 {
751 	mtx_assert(new, MA_OWNED);
752 	MPASS(td->td_lock == &blocked_lock);
753 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
754 }
755 
756 void
757 thread_lock_set(struct thread *td, struct mtx *new)
758 {
759 	struct mtx *lock;
760 
761 	mtx_assert(new, MA_OWNED);
762 	THREAD_LOCK_ASSERT(td, MA_OWNED);
763 	lock = td->td_lock;
764 	td->td_lock = new;
765 	mtx_unlock_spin(lock);
766 }
767 
768 /*
769  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
770  *
771  * We are only called here if the lock is recursed or contested (i.e. we
772  * need to wake up a blocked thread).
773  */
774 void
775 __mtx_unlock_sleep(volatile uintptr_t *c, int opts, const char *file, int line)
776 {
777 	struct mtx *m;
778 	struct turnstile *ts;
779 
780 	if (SCHEDULER_STOPPED())
781 		return;
782 
783 	m = mtxlock2mtx(c);
784 
785 	if (mtx_recursed(m)) {
786 		if (--(m->mtx_recurse) == 0)
787 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
788 		if (LOCK_LOG_TEST(&m->lock_object, opts))
789 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
790 		return;
791 	}
792 
793 	/*
794 	 * We have to lock the chain before the turnstile so this turnstile
795 	 * can be removed from the hash list if it is empty.
796 	 */
797 	turnstile_chain_lock(&m->lock_object);
798 	ts = turnstile_lookup(&m->lock_object);
799 	if (LOCK_LOG_TEST(&m->lock_object, opts))
800 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
801 	MPASS(ts != NULL);
802 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
803 	_mtx_release_lock_quick(m);
804 
805 	/*
806 	 * This turnstile is now no longer associated with the mutex.  We can
807 	 * unlock the chain lock so a new turnstile may take it's place.
808 	 */
809 	turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
810 	turnstile_chain_unlock(&m->lock_object);
811 }
812 
813 /*
814  * All the unlocking of MTX_SPIN locks is done inline.
815  * See the __mtx_unlock_spin() macro for the details.
816  */
817 
818 /*
819  * The backing function for the INVARIANTS-enabled mtx_assert()
820  */
821 #ifdef INVARIANT_SUPPORT
822 void
823 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
824 {
825 	const struct mtx *m;
826 
827 	if (panicstr != NULL || dumping)
828 		return;
829 
830 	m = mtxlock2mtx(c);
831 
832 	switch (what) {
833 	case MA_OWNED:
834 	case MA_OWNED | MA_RECURSED:
835 	case MA_OWNED | MA_NOTRECURSED:
836 		if (!mtx_owned(m))
837 			panic("mutex %s not owned at %s:%d",
838 			    m->lock_object.lo_name, file, line);
839 		if (mtx_recursed(m)) {
840 			if ((what & MA_NOTRECURSED) != 0)
841 				panic("mutex %s recursed at %s:%d",
842 				    m->lock_object.lo_name, file, line);
843 		} else if ((what & MA_RECURSED) != 0) {
844 			panic("mutex %s unrecursed at %s:%d",
845 			    m->lock_object.lo_name, file, line);
846 		}
847 		break;
848 	case MA_NOTOWNED:
849 		if (mtx_owned(m))
850 			panic("mutex %s owned at %s:%d",
851 			    m->lock_object.lo_name, file, line);
852 		break;
853 	default:
854 		panic("unknown mtx_assert at %s:%d", file, line);
855 	}
856 }
857 #endif
858 
859 /*
860  * General init routine used by the MTX_SYSINIT() macro.
861  */
862 void
863 mtx_sysinit(void *arg)
864 {
865 	struct mtx_args *margs = arg;
866 
867 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
868 	    margs->ma_opts);
869 }
870 
871 /*
872  * Mutex initialization routine; initialize lock `m' of type contained in
873  * `opts' with options contained in `opts' and name `name.'  The optional
874  * lock type `type' is used as a general lock category name for use with
875  * witness.
876  */
877 void
878 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
879 {
880 	struct mtx *m;
881 	struct lock_class *class;
882 	int flags;
883 
884 	m = mtxlock2mtx(c);
885 
886 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
887 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
888 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
889 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
890 	    &m->mtx_lock));
891 
892 	/* Determine lock class and lock flags. */
893 	if (opts & MTX_SPIN)
894 		class = &lock_class_mtx_spin;
895 	else
896 		class = &lock_class_mtx_sleep;
897 	flags = 0;
898 	if (opts & MTX_QUIET)
899 		flags |= LO_QUIET;
900 	if (opts & MTX_RECURSE)
901 		flags |= LO_RECURSABLE;
902 	if ((opts & MTX_NOWITNESS) == 0)
903 		flags |= LO_WITNESS;
904 	if (opts & MTX_DUPOK)
905 		flags |= LO_DUPOK;
906 	if (opts & MTX_NOPROFILE)
907 		flags |= LO_NOPROFILE;
908 	if (opts & MTX_NEW)
909 		flags |= LO_NEW;
910 
911 	/* Initialize mutex. */
912 	lock_init(&m->lock_object, class, name, type, flags);
913 
914 	m->mtx_lock = MTX_UNOWNED;
915 	m->mtx_recurse = 0;
916 }
917 
918 /*
919  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
920  * passed in as a flag here because if the corresponding mtx_init() was
921  * called with MTX_QUIET set, then it will already be set in the mutex's
922  * flags.
923  */
924 void
925 _mtx_destroy(volatile uintptr_t *c)
926 {
927 	struct mtx *m;
928 
929 	m = mtxlock2mtx(c);
930 
931 	if (!mtx_owned(m))
932 		MPASS(mtx_unowned(m));
933 	else {
934 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
935 
936 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
937 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
938 			spinlock_exit();
939 		else
940 			TD_LOCKS_DEC(curthread);
941 
942 		lock_profile_release_lock(&m->lock_object);
943 		/* Tell witness this isn't locked to make it happy. */
944 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
945 		    __LINE__);
946 	}
947 
948 	m->mtx_lock = MTX_DESTROYED;
949 	lock_destroy(&m->lock_object);
950 }
951 
952 /*
953  * Intialize the mutex code and system mutexes.  This is called from the MD
954  * startup code prior to mi_startup().  The per-CPU data space needs to be
955  * setup before this is called.
956  */
957 void
958 mutex_init(void)
959 {
960 
961 	/* Setup turnstiles so that sleep mutexes work. */
962 	init_turnstiles();
963 
964 	/*
965 	 * Initialize mutexes.
966 	 */
967 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
968 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
969 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
970 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
971 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
972 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
973 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
974 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
975 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
976 	mtx_lock(&Giant);
977 }
978 
979 #ifdef DDB
980 void
981 db_show_mtx(const struct lock_object *lock)
982 {
983 	struct thread *td;
984 	const struct mtx *m;
985 
986 	m = (const struct mtx *)lock;
987 
988 	db_printf(" flags: {");
989 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
990 		db_printf("SPIN");
991 	else
992 		db_printf("DEF");
993 	if (m->lock_object.lo_flags & LO_RECURSABLE)
994 		db_printf(", RECURSE");
995 	if (m->lock_object.lo_flags & LO_DUPOK)
996 		db_printf(", DUPOK");
997 	db_printf("}\n");
998 	db_printf(" state: {");
999 	if (mtx_unowned(m))
1000 		db_printf("UNOWNED");
1001 	else if (mtx_destroyed(m))
1002 		db_printf("DESTROYED");
1003 	else {
1004 		db_printf("OWNED");
1005 		if (m->mtx_lock & MTX_CONTESTED)
1006 			db_printf(", CONTESTED");
1007 		if (m->mtx_lock & MTX_RECURSED)
1008 			db_printf(", RECURSED");
1009 	}
1010 	db_printf("}\n");
1011 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1012 		td = mtx_owner(m);
1013 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1014 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1015 		if (mtx_recursed(m))
1016 			db_printf(" recursed: %d\n", m->mtx_recurse);
1017 	}
1018 }
1019 #endif
1020