1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 * $FreeBSD$ 31 */ 32 33 /* 34 * Machine independent bits of mutex implementation. 35 */ 36 37 #include "opt_ddb.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/bus.h> 42 #include <sys/kernel.h> 43 #include <sys/ktr.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mutex.h> 47 #include <sys/proc.h> 48 #include <sys/resourcevar.h> 49 #include <sys/sbuf.h> 50 #include <sys/sysctl.h> 51 #include <sys/vmmeter.h> 52 53 #include <machine/atomic.h> 54 #include <machine/bus.h> 55 #include <machine/clock.h> 56 #include <machine/cpu.h> 57 58 #include <ddb/ddb.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_extern.h> 62 63 /* 64 * Internal utility macros. 65 */ 66 #define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED) 67 68 #define mtx_owner(m) (mtx_unowned((m)) ? NULL \ 69 : (struct thread *)((m)->mtx_lock & MTX_FLAGMASK)) 70 71 /* 72 * Lock classes for sleep and spin mutexes. 73 */ 74 struct lock_class lock_class_mtx_sleep = { 75 "sleep mutex", 76 LC_SLEEPLOCK | LC_RECURSABLE 77 }; 78 struct lock_class lock_class_mtx_spin = { 79 "spin mutex", 80 LC_SPINLOCK | LC_RECURSABLE 81 }; 82 83 /* 84 * System-wide mutexes 85 */ 86 struct mtx sched_lock; 87 struct mtx Giant; 88 89 /* 90 * Prototypes for non-exported routines. 91 */ 92 static void propagate_priority(struct thread *); 93 94 static void 95 propagate_priority(struct thread *td) 96 { 97 int pri = td->td_priority; 98 struct mtx *m = td->td_blocked; 99 100 mtx_assert(&sched_lock, MA_OWNED); 101 for (;;) { 102 struct thread *td1; 103 104 td = mtx_owner(m); 105 106 if (td == NULL) { 107 /* 108 * This really isn't quite right. Really 109 * ought to bump priority of thread that 110 * next acquires the mutex. 111 */ 112 MPASS(m->mtx_lock == MTX_CONTESTED); 113 return; 114 } 115 116 MPASS(td->td_proc->p_magic == P_MAGIC); 117 KASSERT(td->td_proc->p_stat != SSLEEP, ("sleeping thread owns a mutex")); 118 if (td->td_priority <= pri) /* lower is higher priority */ 119 return; 120 121 /* 122 * Bump this thread's priority. 123 */ 124 td->td_priority = pri; 125 126 /* 127 * If lock holder is actually running, just bump priority. 128 */ 129 /* XXXKSE this test is not sufficient */ 130 if (td->td_kse && (td->td_kse->ke_oncpu != NOCPU)) { 131 MPASS(td->td_proc->p_stat == SRUN 132 || td->td_proc->p_stat == SZOMB 133 || td->td_proc->p_stat == SSTOP); 134 return; 135 } 136 137 #ifndef SMP 138 /* 139 * For UP, we check to see if td is curthread (this shouldn't 140 * ever happen however as it would mean we are in a deadlock.) 141 */ 142 KASSERT(td != curthread, ("Deadlock detected")); 143 #endif 144 145 /* 146 * If on run queue move to new run queue, and quit. 147 * XXXKSE this gets a lot more complicated under threads 148 * but try anyhow. 149 */ 150 if (td->td_proc->p_stat == SRUN) { 151 MPASS(td->td_blocked == NULL); 152 remrunqueue(td); 153 setrunqueue(td); 154 return; 155 } 156 157 /* 158 * If we aren't blocked on a mutex, we should be. 159 */ 160 KASSERT(td->td_proc->p_stat == SMTX, ( 161 "process %d(%s):%d holds %s but isn't blocked on a mutex\n", 162 td->td_proc->p_pid, td->td_proc->p_comm, td->td_proc->p_stat, 163 m->mtx_object.lo_name)); 164 165 /* 166 * Pick up the mutex that td is blocked on. 167 */ 168 m = td->td_blocked; 169 MPASS(m != NULL); 170 171 /* 172 * Check if the thread needs to be moved up on 173 * the blocked chain 174 */ 175 if (td == TAILQ_FIRST(&m->mtx_blocked)) { 176 continue; 177 } 178 179 td1 = TAILQ_PREV(td, threadqueue, td_blkq); 180 if (td1->td_priority <= pri) { 181 continue; 182 } 183 184 /* 185 * Remove thread from blocked chain and determine where 186 * it should be moved up to. Since we know that td1 has 187 * a lower priority than td, we know that at least one 188 * thread in the chain has a lower priority and that 189 * td1 will thus not be NULL after the loop. 190 */ 191 TAILQ_REMOVE(&m->mtx_blocked, td, td_blkq); 192 TAILQ_FOREACH(td1, &m->mtx_blocked, td_blkq) { 193 MPASS(td1->td_proc->p_magic == P_MAGIC); 194 if (td1->td_priority > pri) 195 break; 196 } 197 198 MPASS(td1 != NULL); 199 TAILQ_INSERT_BEFORE(td1, td, td_blkq); 200 CTR4(KTR_LOCK, 201 "propagate_priority: p %p moved before %p on [%p] %s", 202 td, td1, m, m->mtx_object.lo_name); 203 } 204 } 205 206 #ifdef MUTEX_PROFILING 207 SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging"); 208 SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling"); 209 static int mutex_prof_enable = 0; 210 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW, 211 &mutex_prof_enable, 0, "Enable tracing of mutex holdtime"); 212 213 struct mutex_prof { 214 const char *name; 215 const char *file; 216 int line; 217 #define MPROF_MAX 0 218 #define MPROF_TOT 1 219 #define MPROF_CNT 2 220 #define MPROF_AVG 3 221 u_int64_t counter[4]; 222 struct mutex_prof *next; 223 }; 224 225 /* 226 * mprof_buf is a static pool of profiling records to avoid possible 227 * reentrance of the memory allocation functions. 228 * 229 * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE. 230 */ 231 #define NUM_MPROF_BUFFERS 1000 232 static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS]; 233 static int first_free_mprof_buf; 234 #define MPROF_HASH_SIZE 1009 235 static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE]; 236 237 static int mutex_prof_acquisitions; 238 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD, 239 &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded"); 240 static int mutex_prof_records; 241 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD, 242 &mutex_prof_records, 0, "Number of profiling records"); 243 static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS; 244 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD, 245 &mutex_prof_maxrecords, 0, "Maximum number of profiling records"); 246 static int mutex_prof_rejected; 247 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD, 248 &mutex_prof_rejected, 0, "Number of rejected profiling records"); 249 static int mutex_prof_hashsize = MPROF_HASH_SIZE; 250 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD, 251 &mutex_prof_hashsize, 0, "Hash size"); 252 static int mutex_prof_collisions = 0; 253 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD, 254 &mutex_prof_collisions, 0, "Number of hash collisions"); 255 256 /* 257 * mprof_mtx protects the profiling buffers and the hash. 258 */ 259 static struct mtx mprof_mtx; 260 MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET); 261 262 static u_int64_t 263 nanoseconds(void) 264 { 265 struct timespec tv; 266 267 nanotime(&tv); 268 return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec); 269 } 270 271 static int 272 dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS) 273 { 274 struct sbuf *sb; 275 int error, i; 276 277 if (first_free_mprof_buf == 0) 278 return SYSCTL_OUT(req, "No locking recorded", 279 sizeof("No locking recorded")); 280 281 sb = sbuf_new(NULL, NULL, 1024, SBUF_AUTOEXTEND); 282 sbuf_printf(sb, "%12s %12s %12s %12s %s\n", 283 "max", "total", "count", "average", "name"); 284 mtx_lock_spin(&mprof_mtx); 285 for (i = 0; i < first_free_mprof_buf; ++i) 286 sbuf_printf(sb, "%12llu %12llu %12llu %12llu %s:%d (%s)\n", 287 mprof_buf[i].counter[MPROF_MAX] / 1000, 288 mprof_buf[i].counter[MPROF_TOT] / 1000, 289 mprof_buf[i].counter[MPROF_CNT], 290 mprof_buf[i].counter[MPROF_AVG] / 1000, 291 mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name); 292 mtx_unlock_spin(&mprof_mtx); 293 sbuf_finish(sb); 294 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 295 sbuf_delete(sb); 296 return (error); 297 } 298 SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING|CTLFLAG_RD, 299 NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics"); 300 #endif 301 302 /* 303 * Function versions of the inlined __mtx_* macros. These are used by 304 * modules and can also be called from assembly language if needed. 305 */ 306 void 307 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line) 308 { 309 310 MPASS(curthread != NULL); 311 _get_sleep_lock(m, curthread, opts, file, line); 312 LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file, 313 line); 314 WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line); 315 #ifdef MUTEX_PROFILING 316 /* don't reset the timer when/if recursing */ 317 if (m->acqtime == 0) { 318 m->file = file; 319 m->line = line; 320 m->acqtime = mutex_prof_enable ? nanoseconds() : 0; 321 ++mutex_prof_acquisitions; 322 } 323 #endif 324 } 325 326 void 327 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line) 328 { 329 330 MPASS(curthread != NULL); 331 mtx_assert(m, MA_OWNED); 332 #ifdef MUTEX_PROFILING 333 if (m->acqtime != 0) { 334 static const char *unknown = "(unknown)"; 335 struct mutex_prof *mpp; 336 u_int64_t acqtime, now; 337 const char *p, *q; 338 volatile u_int hash; 339 340 now = nanoseconds(); 341 acqtime = m->acqtime; 342 m->acqtime = 0; 343 if (now <= acqtime) 344 goto out; 345 for (p = file; strncmp(p, "../", 3) == 0; p += 3) 346 /* nothing */ ; 347 if (p == NULL || *p == '\0') 348 p = unknown; 349 for (hash = line, q = p; *q != '\0'; ++q) 350 hash = (hash * 2 + *q) % MPROF_HASH_SIZE; 351 mtx_lock_spin(&mprof_mtx); 352 for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next) 353 if (mpp->line == line && strcmp(mpp->file, p) == 0) 354 break; 355 if (mpp == NULL) { 356 /* Just exit if we cannot get a trace buffer */ 357 if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) { 358 ++mutex_prof_rejected; 359 goto unlock; 360 } 361 mpp = &mprof_buf[first_free_mprof_buf++]; 362 mpp->name = mtx_name(m); 363 mpp->file = p; 364 mpp->line = line; 365 mpp->next = mprof_hash[hash]; 366 if (mprof_hash[hash] != NULL) 367 ++mutex_prof_collisions; 368 mprof_hash[hash] = mpp; 369 ++mutex_prof_records; 370 } 371 /* 372 * Record if the mutex has been held longer now than ever 373 * before 374 */ 375 if ((now - acqtime) > mpp->counter[MPROF_MAX]) 376 mpp->counter[MPROF_MAX] = now - acqtime; 377 mpp->counter[MPROF_TOT] += now - acqtime; 378 mpp->counter[MPROF_CNT] += 1; 379 mpp->counter[MPROF_AVG] = 380 mpp->counter[MPROF_TOT] / mpp->counter[MPROF_CNT]; 381 unlock: 382 mtx_unlock_spin(&mprof_mtx); 383 } 384 out: 385 #endif 386 WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line); 387 LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file, 388 line); 389 _rel_sleep_lock(m, curthread, opts, file, line); 390 } 391 392 void 393 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line) 394 { 395 396 MPASS(curthread != NULL); 397 _get_spin_lock(m, curthread, opts, file, line); 398 LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file, 399 line); 400 WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line); 401 } 402 403 void 404 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line) 405 { 406 407 MPASS(curthread != NULL); 408 mtx_assert(m, MA_OWNED); 409 WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line); 410 LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file, 411 line); 412 _rel_spin_lock(m); 413 } 414 415 /* 416 * The important part of mtx_trylock{,_flags}() 417 * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that 418 * if we're called, it's because we know we don't already own this lock. 419 */ 420 int 421 _mtx_trylock(struct mtx *m, int opts, const char *file, int line) 422 { 423 int rval; 424 425 MPASS(curthread != NULL); 426 427 rval = _obtain_lock(m, curthread); 428 429 LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line); 430 if (rval) { 431 /* 432 * We do not handle recursion in _mtx_trylock; see the 433 * note at the top of the routine. 434 */ 435 KASSERT(!mtx_recursed(m), 436 ("mtx_trylock() called on a recursed mutex")); 437 WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK, 438 file, line); 439 } 440 441 return (rval); 442 } 443 444 /* 445 * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock. 446 * 447 * We call this if the lock is either contested (i.e. we need to go to 448 * sleep waiting for it), or if we need to recurse on it. 449 */ 450 void 451 _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line) 452 { 453 struct thread *td = curthread; 454 455 if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)td) { 456 m->mtx_recurse++; 457 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); 458 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 459 CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m); 460 return; 461 } 462 463 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 464 CTR4(KTR_LOCK, 465 "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d", 466 m->mtx_object.lo_name, (void *)m->mtx_lock, file, line); 467 468 while (!_obtain_lock(m, td)) { 469 uintptr_t v; 470 struct thread *td1; 471 472 mtx_lock_spin(&sched_lock); 473 /* 474 * Check if the lock has been released while spinning for 475 * the sched_lock. 476 */ 477 if ((v = m->mtx_lock) == MTX_UNOWNED) { 478 mtx_unlock_spin(&sched_lock); 479 continue; 480 } 481 482 /* 483 * The mutex was marked contested on release. This means that 484 * there are threads blocked on it. 485 */ 486 if (v == MTX_CONTESTED) { 487 td1 = TAILQ_FIRST(&m->mtx_blocked); 488 MPASS(td1 != NULL); 489 m->mtx_lock = (uintptr_t)td | MTX_CONTESTED; 490 491 if (td1->td_priority < td->td_priority) 492 td->td_priority = td1->td_priority; 493 mtx_unlock_spin(&sched_lock); 494 return; 495 } 496 497 /* 498 * If the mutex isn't already contested and a failure occurs 499 * setting the contested bit, the mutex was either released 500 * or the state of the MTX_RECURSED bit changed. 501 */ 502 if ((v & MTX_CONTESTED) == 0 && 503 !atomic_cmpset_ptr(&m->mtx_lock, (void *)v, 504 (void *)(v | MTX_CONTESTED))) { 505 mtx_unlock_spin(&sched_lock); 506 continue; 507 } 508 509 /* 510 * We definitely must sleep for this lock. 511 */ 512 mtx_assert(m, MA_NOTOWNED); 513 514 #ifdef notyet 515 /* 516 * If we're borrowing an interrupted thread's VM context, we 517 * must clean up before going to sleep. 518 */ 519 if (td->td_ithd != NULL) { 520 struct ithd *it = td->td_ithd; 521 522 if (it->it_interrupted) { 523 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 524 CTR2(KTR_LOCK, 525 "_mtx_lock_sleep: %p interrupted %p", 526 it, it->it_interrupted); 527 intr_thd_fixup(it); 528 } 529 } 530 #endif 531 532 /* 533 * Put us on the list of threads blocked on this mutex. 534 */ 535 if (TAILQ_EMPTY(&m->mtx_blocked)) { 536 td1 = mtx_owner(m); 537 LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested); 538 TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_blkq); 539 } else { 540 TAILQ_FOREACH(td1, &m->mtx_blocked, td_blkq) 541 if (td1->td_priority > td->td_priority) 542 break; 543 if (td1) 544 TAILQ_INSERT_BEFORE(td1, td, td_blkq); 545 else 546 TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_blkq); 547 } 548 549 /* 550 * Save who we're blocked on. 551 */ 552 td->td_blocked = m; 553 td->td_mtxname = m->mtx_object.lo_name; 554 td->td_proc->p_stat = SMTX; 555 propagate_priority(td); 556 557 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 558 CTR3(KTR_LOCK, 559 "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m, 560 m->mtx_object.lo_name); 561 562 td->td_proc->p_stats->p_ru.ru_nvcsw++; 563 mi_switch(); 564 565 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 566 CTR3(KTR_LOCK, 567 "_mtx_lock_sleep: p %p free from blocked on [%p] %s", 568 td, m, m->mtx_object.lo_name); 569 570 mtx_unlock_spin(&sched_lock); 571 } 572 573 return; 574 } 575 576 /* 577 * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock. 578 * 579 * This is only called if we need to actually spin for the lock. Recursion 580 * is handled inline. 581 */ 582 void 583 _mtx_lock_spin(struct mtx *m, int opts, const char *file, int line) 584 { 585 int i = 0; 586 587 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 588 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m); 589 590 for (;;) { 591 if (_obtain_lock(m, curthread)) 592 break; 593 594 /* Give interrupts a chance while we spin. */ 595 critical_exit(); 596 while (m->mtx_lock != MTX_UNOWNED) { 597 if (i++ < 10000000) 598 continue; 599 if (i++ < 60000000) 600 DELAY(1); 601 #ifdef DDB 602 else if (!db_active) 603 #else 604 else 605 #endif 606 panic("spin lock %s held by %p for > 5 seconds", 607 m->mtx_object.lo_name, (void *)m->mtx_lock); 608 } 609 critical_enter(); 610 } 611 612 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 613 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m); 614 615 return; 616 } 617 618 /* 619 * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock. 620 * 621 * We are only called here if the lock is recursed or contested (i.e. we 622 * need to wake up a blocked thread). 623 */ 624 void 625 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line) 626 { 627 struct thread *td, *td1; 628 struct mtx *m1; 629 int pri; 630 631 td = curthread; 632 633 if (mtx_recursed(m)) { 634 if (--(m->mtx_recurse) == 0) 635 atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED); 636 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 637 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m); 638 return; 639 } 640 641 mtx_lock_spin(&sched_lock); 642 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 643 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m); 644 645 td1 = TAILQ_FIRST(&m->mtx_blocked); 646 MPASS(td->td_proc->p_magic == P_MAGIC); 647 MPASS(td1->td_proc->p_magic == P_MAGIC); 648 649 TAILQ_REMOVE(&m->mtx_blocked, td1, td_blkq); 650 651 if (TAILQ_EMPTY(&m->mtx_blocked)) { 652 LIST_REMOVE(m, mtx_contested); 653 _release_lock_quick(m); 654 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 655 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m); 656 } else 657 atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED); 658 659 pri = PRI_MAX; 660 LIST_FOREACH(m1, &td->td_contested, mtx_contested) { 661 int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority; 662 if (cp < pri) 663 pri = cp; 664 } 665 666 if (pri > td->td_base_pri) 667 pri = td->td_base_pri; 668 td->td_priority = pri; 669 670 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 671 CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p", 672 m, td1); 673 674 td1->td_blocked = NULL; 675 td1->td_proc->p_stat = SRUN; 676 setrunqueue(td1); 677 678 if (td->td_critnest == 1 && td1->td_priority < pri) { 679 #ifdef notyet 680 if (td->td_ithd != NULL) { 681 struct ithd *it = td->td_ithd; 682 683 if (it->it_interrupted) { 684 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 685 CTR2(KTR_LOCK, 686 "_mtx_unlock_sleep: %p interrupted %p", 687 it, it->it_interrupted); 688 intr_thd_fixup(it); 689 } 690 } 691 #endif 692 setrunqueue(td); 693 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 694 CTR2(KTR_LOCK, 695 "_mtx_unlock_sleep: %p switching out lock=%p", m, 696 (void *)m->mtx_lock); 697 698 td->td_proc->p_stats->p_ru.ru_nivcsw++; 699 mi_switch(); 700 if (LOCK_LOG_TEST(&m->mtx_object, opts)) 701 CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p", 702 m, (void *)m->mtx_lock); 703 } 704 705 mtx_unlock_spin(&sched_lock); 706 707 return; 708 } 709 710 /* 711 * All the unlocking of MTX_SPIN locks is done inline. 712 * See the _rel_spin_lock() macro for the details. 713 */ 714 715 /* 716 * The backing function for the INVARIANTS-enabled mtx_assert() 717 */ 718 #ifdef INVARIANT_SUPPORT 719 void 720 _mtx_assert(struct mtx *m, int what, const char *file, int line) 721 { 722 723 if (panicstr != NULL) 724 return; 725 switch (what) { 726 case MA_OWNED: 727 case MA_OWNED | MA_RECURSED: 728 case MA_OWNED | MA_NOTRECURSED: 729 if (!mtx_owned(m)) 730 panic("mutex %s not owned at %s:%d", 731 m->mtx_object.lo_name, file, line); 732 if (mtx_recursed(m)) { 733 if ((what & MA_NOTRECURSED) != 0) 734 panic("mutex %s recursed at %s:%d", 735 m->mtx_object.lo_name, file, line); 736 } else if ((what & MA_RECURSED) != 0) { 737 panic("mutex %s unrecursed at %s:%d", 738 m->mtx_object.lo_name, file, line); 739 } 740 break; 741 case MA_NOTOWNED: 742 if (mtx_owned(m)) 743 panic("mutex %s owned at %s:%d", 744 m->mtx_object.lo_name, file, line); 745 break; 746 default: 747 panic("unknown mtx_assert at %s:%d", file, line); 748 } 749 } 750 #endif 751 752 /* 753 * The MUTEX_DEBUG-enabled mtx_validate() 754 * 755 * Most of these checks have been moved off into the LO_INITIALIZED flag 756 * maintained by the witness code. 757 */ 758 #ifdef MUTEX_DEBUG 759 760 void mtx_validate(struct mtx *); 761 762 void 763 mtx_validate(struct mtx *m) 764 { 765 766 /* 767 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly 768 * we can re-enable the kernacc() checks. 769 */ 770 #ifndef __alpha__ 771 /* 772 * Can't call kernacc() from early init386(), especially when 773 * initializing Giant mutex, because some stuff in kernacc() 774 * requires Giant itself. 775 */ 776 if (!cold) 777 if (!kernacc((caddr_t)m, sizeof(m), 778 VM_PROT_READ | VM_PROT_WRITE)) 779 panic("Can't read and write to mutex %p", m); 780 #endif 781 } 782 #endif 783 784 /* 785 * General init routine used by the MTX_SYSINIT() macro. 786 */ 787 void 788 mtx_sysinit(void *arg) 789 { 790 struct mtx_args *margs = arg; 791 792 mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts); 793 } 794 795 /* 796 * Mutex initialization routine; initialize lock `m' of type contained in 797 * `opts' with options contained in `opts' and name `name.' The optional 798 * lock type `type' is used as a general lock category name for use with 799 * witness. 800 */ 801 void 802 mtx_init(struct mtx *m, const char *name, const char *type, int opts) 803 { 804 struct lock_object *lock; 805 806 MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE | 807 MTX_SLEEPABLE | MTX_NOWITNESS | MTX_DUPOK)) == 0); 808 809 #ifdef MUTEX_DEBUG 810 /* Diagnostic and error correction */ 811 mtx_validate(m); 812 #endif 813 814 lock = &m->mtx_object; 815 KASSERT((lock->lo_flags & LO_INITIALIZED) == 0, 816 ("mutex %s %p already initialized", name, m)); 817 bzero(m, sizeof(*m)); 818 if (opts & MTX_SPIN) 819 lock->lo_class = &lock_class_mtx_spin; 820 else 821 lock->lo_class = &lock_class_mtx_sleep; 822 lock->lo_name = name; 823 lock->lo_type = type != NULL ? type : name; 824 if (opts & MTX_QUIET) 825 lock->lo_flags = LO_QUIET; 826 if (opts & MTX_RECURSE) 827 lock->lo_flags |= LO_RECURSABLE; 828 if (opts & MTX_SLEEPABLE) 829 lock->lo_flags |= LO_SLEEPABLE; 830 if ((opts & MTX_NOWITNESS) == 0) 831 lock->lo_flags |= LO_WITNESS; 832 if (opts & MTX_DUPOK) 833 lock->lo_flags |= LO_DUPOK; 834 835 m->mtx_lock = MTX_UNOWNED; 836 TAILQ_INIT(&m->mtx_blocked); 837 838 LOCK_LOG_INIT(lock, opts); 839 840 WITNESS_INIT(lock); 841 } 842 843 /* 844 * Remove lock `m' from all_mtx queue. We don't allow MTX_QUIET to be 845 * passed in as a flag here because if the corresponding mtx_init() was 846 * called with MTX_QUIET set, then it will already be set in the mutex's 847 * flags. 848 */ 849 void 850 mtx_destroy(struct mtx *m) 851 { 852 853 LOCK_LOG_DESTROY(&m->mtx_object, 0); 854 855 if (!mtx_owned(m)) 856 MPASS(mtx_unowned(m)); 857 else { 858 MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0); 859 860 /* Tell witness this isn't locked to make it happy. */ 861 WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__, 862 __LINE__); 863 } 864 865 WITNESS_DESTROY(&m->mtx_object); 866 } 867 868 /* 869 * Intialize the mutex code and system mutexes. This is called from the MD 870 * startup code prior to mi_startup(). The per-CPU data space needs to be 871 * setup before this is called. 872 */ 873 void 874 mutex_init(void) 875 { 876 877 /* Setup thread0 so that mutexes work. */ 878 LIST_INIT(&thread0.td_contested); 879 880 /* 881 * Initialize mutexes. 882 */ 883 mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE); 884 mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE); 885 mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 886 mtx_lock(&Giant); 887 } 888 889 /* 890 * Encapsulated Giant mutex routines. These routines provide encapsulation 891 * control for the Giant mutex, allowing sysctls to be used to turn on and 892 * off Giant around certain subsystems. The default value for the sysctls 893 * are set to what developers believe is stable and working in regards to 894 * the Giant pushdown. Developers should not turn off Giant via these 895 * sysctls unless they know what they are doing. 896 * 897 * Callers of mtx_lock_giant() are expected to pass the return value to an 898 * accompanying mtx_unlock_giant() later on. If multiple subsystems are 899 * effected by a Giant wrap, all related sysctl variables must be zero for 900 * the subsystem call to operate without Giant (as determined by the caller). 901 */ 902 903 SYSCTL_NODE(_kern, OID_AUTO, giant, CTLFLAG_RD, NULL, "Giant mutex manipulation"); 904 905 static int kern_giant_all = 0; 906 SYSCTL_INT(_kern_giant, OID_AUTO, all, CTLFLAG_RW, &kern_giant_all, 0, ""); 907 908 int kern_giant_proc = 1; /* Giant around PROC locks */ 909 int kern_giant_file = 1; /* Giant around struct file & filedesc */ 910 int kern_giant_ucred = 1; /* Giant around ucred */ 911 SYSCTL_INT(_kern_giant, OID_AUTO, proc, CTLFLAG_RW, &kern_giant_proc, 0, ""); 912 SYSCTL_INT(_kern_giant, OID_AUTO, file, CTLFLAG_RW, &kern_giant_file, 0, ""); 913 SYSCTL_INT(_kern_giant, OID_AUTO, ucred, CTLFLAG_RW, &kern_giant_ucred, 0, ""); 914 915 int 916 mtx_lock_giant(int sysctlvar) 917 { 918 if (sysctlvar || kern_giant_all) { 919 mtx_lock(&Giant); 920 return(1); 921 } 922 return(0); 923 } 924 925 void 926 mtx_unlock_giant(int s) 927 { 928 if (s) 929 mtx_unlock(&Giant); 930 } 931 932